cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

psci_checker.c (12543B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 *
      4 * Copyright (C) 2016 ARM Limited
      5 */
      6
      7#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
      8
      9#include <linux/atomic.h>
     10#include <linux/completion.h>
     11#include <linux/cpu.h>
     12#include <linux/cpuidle.h>
     13#include <linux/cpu_pm.h>
     14#include <linux/kernel.h>
     15#include <linux/kthread.h>
     16#include <uapi/linux/sched/types.h>
     17#include <linux/module.h>
     18#include <linux/preempt.h>
     19#include <linux/psci.h>
     20#include <linux/slab.h>
     21#include <linux/tick.h>
     22#include <linux/topology.h>
     23
     24#include <asm/cpuidle.h>
     25
     26#include <uapi/linux/psci.h>
     27
     28#define NUM_SUSPEND_CYCLE (10)
     29
     30static unsigned int nb_available_cpus;
     31static int tos_resident_cpu = -1;
     32
     33static atomic_t nb_active_threads;
     34static struct completion suspend_threads_started =
     35	COMPLETION_INITIALIZER(suspend_threads_started);
     36static struct completion suspend_threads_done =
     37	COMPLETION_INITIALIZER(suspend_threads_done);
     38
     39/*
     40 * We assume that PSCI operations are used if they are available. This is not
     41 * necessarily true on arm64, since the decision is based on the
     42 * "enable-method" property of each CPU in the DT, but given that there is no
     43 * arch-specific way to check this, we assume that the DT is sensible.
     44 */
     45static int psci_ops_check(void)
     46{
     47	int migrate_type = -1;
     48	int cpu;
     49
     50	if (!(psci_ops.cpu_off && psci_ops.cpu_on && psci_ops.cpu_suspend)) {
     51		pr_warn("Missing PSCI operations, aborting tests\n");
     52		return -EOPNOTSUPP;
     53	}
     54
     55	if (psci_ops.migrate_info_type)
     56		migrate_type = psci_ops.migrate_info_type();
     57
     58	if (migrate_type == PSCI_0_2_TOS_UP_MIGRATE ||
     59	    migrate_type == PSCI_0_2_TOS_UP_NO_MIGRATE) {
     60		/* There is a UP Trusted OS, find on which core it resides. */
     61		for_each_online_cpu(cpu)
     62			if (psci_tos_resident_on(cpu)) {
     63				tos_resident_cpu = cpu;
     64				break;
     65			}
     66		if (tos_resident_cpu == -1)
     67			pr_warn("UP Trusted OS resides on no online CPU\n");
     68	}
     69
     70	return 0;
     71}
     72
     73/*
     74 * offlined_cpus is a temporary array but passing it as an argument avoids
     75 * multiple allocations.
     76 */
     77static unsigned int down_and_up_cpus(const struct cpumask *cpus,
     78				     struct cpumask *offlined_cpus)
     79{
     80	int cpu;
     81	int err = 0;
     82
     83	cpumask_clear(offlined_cpus);
     84
     85	/* Try to power down all CPUs in the mask. */
     86	for_each_cpu(cpu, cpus) {
     87		int ret = remove_cpu(cpu);
     88
     89		/*
     90		 * cpu_down() checks the number of online CPUs before the TOS
     91		 * resident CPU.
     92		 */
     93		if (cpumask_weight(offlined_cpus) + 1 == nb_available_cpus) {
     94			if (ret != -EBUSY) {
     95				pr_err("Unexpected return code %d while trying "
     96				       "to power down last online CPU %d\n",
     97				       ret, cpu);
     98				++err;
     99			}
    100		} else if (cpu == tos_resident_cpu) {
    101			if (ret != -EPERM) {
    102				pr_err("Unexpected return code %d while trying "
    103				       "to power down TOS resident CPU %d\n",
    104				       ret, cpu);
    105				++err;
    106			}
    107		} else if (ret != 0) {
    108			pr_err("Error occurred (%d) while trying "
    109			       "to power down CPU %d\n", ret, cpu);
    110			++err;
    111		}
    112
    113		if (ret == 0)
    114			cpumask_set_cpu(cpu, offlined_cpus);
    115	}
    116
    117	/* Try to power up all the CPUs that have been offlined. */
    118	for_each_cpu(cpu, offlined_cpus) {
    119		int ret = add_cpu(cpu);
    120
    121		if (ret != 0) {
    122			pr_err("Error occurred (%d) while trying "
    123			       "to power up CPU %d\n", ret, cpu);
    124			++err;
    125		} else {
    126			cpumask_clear_cpu(cpu, offlined_cpus);
    127		}
    128	}
    129
    130	/*
    131	 * Something went bad at some point and some CPUs could not be turned
    132	 * back on.
    133	 */
    134	WARN_ON(!cpumask_empty(offlined_cpus) ||
    135		num_online_cpus() != nb_available_cpus);
    136
    137	return err;
    138}
    139
    140static void free_cpu_groups(int num, cpumask_var_t **pcpu_groups)
    141{
    142	int i;
    143	cpumask_var_t *cpu_groups = *pcpu_groups;
    144
    145	for (i = 0; i < num; ++i)
    146		free_cpumask_var(cpu_groups[i]);
    147	kfree(cpu_groups);
    148}
    149
    150static int alloc_init_cpu_groups(cpumask_var_t **pcpu_groups)
    151{
    152	int num_groups = 0;
    153	cpumask_var_t tmp, *cpu_groups;
    154
    155	if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
    156		return -ENOMEM;
    157
    158	cpu_groups = kcalloc(nb_available_cpus, sizeof(*cpu_groups),
    159			     GFP_KERNEL);
    160	if (!cpu_groups) {
    161		free_cpumask_var(tmp);
    162		return -ENOMEM;
    163	}
    164
    165	cpumask_copy(tmp, cpu_online_mask);
    166
    167	while (!cpumask_empty(tmp)) {
    168		const struct cpumask *cpu_group =
    169			topology_core_cpumask(cpumask_any(tmp));
    170
    171		if (!alloc_cpumask_var(&cpu_groups[num_groups], GFP_KERNEL)) {
    172			free_cpumask_var(tmp);
    173			free_cpu_groups(num_groups, &cpu_groups);
    174			return -ENOMEM;
    175		}
    176		cpumask_copy(cpu_groups[num_groups++], cpu_group);
    177		cpumask_andnot(tmp, tmp, cpu_group);
    178	}
    179
    180	free_cpumask_var(tmp);
    181	*pcpu_groups = cpu_groups;
    182
    183	return num_groups;
    184}
    185
    186static int hotplug_tests(void)
    187{
    188	int i, nb_cpu_group, err = -ENOMEM;
    189	cpumask_var_t offlined_cpus, *cpu_groups;
    190	char *page_buf;
    191
    192	if (!alloc_cpumask_var(&offlined_cpus, GFP_KERNEL))
    193		return err;
    194
    195	nb_cpu_group = alloc_init_cpu_groups(&cpu_groups);
    196	if (nb_cpu_group < 0)
    197		goto out_free_cpus;
    198	page_buf = (char *)__get_free_page(GFP_KERNEL);
    199	if (!page_buf)
    200		goto out_free_cpu_groups;
    201
    202	/*
    203	 * Of course the last CPU cannot be powered down and cpu_down() should
    204	 * refuse doing that.
    205	 */
    206	pr_info("Trying to turn off and on again all CPUs\n");
    207	err = down_and_up_cpus(cpu_online_mask, offlined_cpus);
    208
    209	/*
    210	 * Take down CPUs by cpu group this time. When the last CPU is turned
    211	 * off, the cpu group itself should shut down.
    212	 */
    213	for (i = 0; i < nb_cpu_group; ++i) {
    214		ssize_t len = cpumap_print_to_pagebuf(true, page_buf,
    215						      cpu_groups[i]);
    216		/* Remove trailing newline. */
    217		page_buf[len - 1] = '\0';
    218		pr_info("Trying to turn off and on again group %d (CPUs %s)\n",
    219			i, page_buf);
    220		err += down_and_up_cpus(cpu_groups[i], offlined_cpus);
    221	}
    222
    223	free_page((unsigned long)page_buf);
    224out_free_cpu_groups:
    225	free_cpu_groups(nb_cpu_group, &cpu_groups);
    226out_free_cpus:
    227	free_cpumask_var(offlined_cpus);
    228	return err;
    229}
    230
    231static void dummy_callback(struct timer_list *unused) {}
    232
    233static int suspend_cpu(struct cpuidle_device *dev,
    234		       struct cpuidle_driver *drv, int index)
    235{
    236	struct cpuidle_state *state = &drv->states[index];
    237	bool broadcast = state->flags & CPUIDLE_FLAG_TIMER_STOP;
    238	int ret;
    239
    240	arch_cpu_idle_enter();
    241
    242	if (broadcast) {
    243		/*
    244		 * The local timer will be shut down, we need to enter tick
    245		 * broadcast.
    246		 */
    247		ret = tick_broadcast_enter();
    248		if (ret) {
    249			/*
    250			 * In the absence of hardware broadcast mechanism,
    251			 * this CPU might be used to broadcast wakeups, which
    252			 * may be why entering tick broadcast has failed.
    253			 * There is little the kernel can do to work around
    254			 * that, so enter WFI instead (idle state 0).
    255			 */
    256			cpu_do_idle();
    257			ret = 0;
    258			goto out_arch_exit;
    259		}
    260	}
    261
    262	ret = state->enter(dev, drv, index);
    263
    264	if (broadcast)
    265		tick_broadcast_exit();
    266
    267out_arch_exit:
    268	arch_cpu_idle_exit();
    269
    270	return ret;
    271}
    272
    273static int suspend_test_thread(void *arg)
    274{
    275	int cpu = (long)arg;
    276	int i, nb_suspend = 0, nb_shallow_sleep = 0, nb_err = 0;
    277	struct cpuidle_device *dev;
    278	struct cpuidle_driver *drv;
    279	/* No need for an actual callback, we just want to wake up the CPU. */
    280	struct timer_list wakeup_timer;
    281
    282	/* Wait for the main thread to give the start signal. */
    283	wait_for_completion(&suspend_threads_started);
    284
    285	/* Set maximum priority to preempt all other threads on this CPU. */
    286	sched_set_fifo(current);
    287
    288	dev = this_cpu_read(cpuidle_devices);
    289	drv = cpuidle_get_cpu_driver(dev);
    290
    291	pr_info("CPU %d entering suspend cycles, states 1 through %d\n",
    292		cpu, drv->state_count - 1);
    293
    294	timer_setup_on_stack(&wakeup_timer, dummy_callback, 0);
    295	for (i = 0; i < NUM_SUSPEND_CYCLE; ++i) {
    296		int index;
    297		/*
    298		 * Test all possible states, except 0 (which is usually WFI and
    299		 * doesn't use PSCI).
    300		 */
    301		for (index = 1; index < drv->state_count; ++index) {
    302			int ret;
    303			struct cpuidle_state *state = &drv->states[index];
    304
    305			/*
    306			 * Set the timer to wake this CPU up in some time (which
    307			 * should be largely sufficient for entering suspend).
    308			 * If the local tick is disabled when entering suspend,
    309			 * suspend_cpu() takes care of switching to a broadcast
    310			 * tick, so the timer will still wake us up.
    311			 */
    312			mod_timer(&wakeup_timer, jiffies +
    313				  usecs_to_jiffies(state->target_residency));
    314
    315			/* IRQs must be disabled during suspend operations. */
    316			local_irq_disable();
    317
    318			ret = suspend_cpu(dev, drv, index);
    319
    320			/*
    321			 * We have woken up. Re-enable IRQs to handle any
    322			 * pending interrupt, do not wait until the end of the
    323			 * loop.
    324			 */
    325			local_irq_enable();
    326
    327			if (ret == index) {
    328				++nb_suspend;
    329			} else if (ret >= 0) {
    330				/* We did not enter the expected state. */
    331				++nb_shallow_sleep;
    332			} else {
    333				pr_err("Failed to suspend CPU %d: error %d "
    334				       "(requested state %d, cycle %d)\n",
    335				       cpu, ret, index, i);
    336				++nb_err;
    337			}
    338		}
    339	}
    340
    341	/*
    342	 * Disable the timer to make sure that the timer will not trigger
    343	 * later.
    344	 */
    345	del_timer(&wakeup_timer);
    346	destroy_timer_on_stack(&wakeup_timer);
    347
    348	if (atomic_dec_return_relaxed(&nb_active_threads) == 0)
    349		complete(&suspend_threads_done);
    350
    351	for (;;) {
    352		/* Needs to be set first to avoid missing a wakeup. */
    353		set_current_state(TASK_INTERRUPTIBLE);
    354		if (kthread_should_park())
    355			break;
    356		schedule();
    357	}
    358
    359	pr_info("CPU %d suspend test results: success %d, shallow states %d, errors %d\n",
    360		cpu, nb_suspend, nb_shallow_sleep, nb_err);
    361
    362	kthread_parkme();
    363
    364	return nb_err;
    365}
    366
    367static int suspend_tests(void)
    368{
    369	int i, cpu, err = 0;
    370	struct task_struct **threads;
    371	int nb_threads = 0;
    372
    373	threads = kmalloc_array(nb_available_cpus, sizeof(*threads),
    374				GFP_KERNEL);
    375	if (!threads)
    376		return -ENOMEM;
    377
    378	/*
    379	 * Stop cpuidle to prevent the idle tasks from entering a deep sleep
    380	 * mode, as it might interfere with the suspend threads on other CPUs.
    381	 * This does not prevent the suspend threads from using cpuidle (only
    382	 * the idle tasks check this status). Take the idle lock so that
    383	 * the cpuidle driver and device look-up can be carried out safely.
    384	 */
    385	cpuidle_pause_and_lock();
    386
    387	for_each_online_cpu(cpu) {
    388		struct task_struct *thread;
    389		/* Check that cpuidle is available on that CPU. */
    390		struct cpuidle_device *dev = per_cpu(cpuidle_devices, cpu);
    391		struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev);
    392
    393		if (!dev || !drv) {
    394			pr_warn("cpuidle not available on CPU %d, ignoring\n",
    395				cpu);
    396			continue;
    397		}
    398
    399		thread = kthread_create_on_cpu(suspend_test_thread,
    400					       (void *)(long)cpu, cpu,
    401					       "psci_suspend_test");
    402		if (IS_ERR(thread))
    403			pr_err("Failed to create kthread on CPU %d\n", cpu);
    404		else
    405			threads[nb_threads++] = thread;
    406	}
    407
    408	if (nb_threads < 1) {
    409		err = -ENODEV;
    410		goto out;
    411	}
    412
    413	atomic_set(&nb_active_threads, nb_threads);
    414
    415	/*
    416	 * Wake up the suspend threads. To avoid the main thread being preempted
    417	 * before all the threads have been unparked, the suspend threads will
    418	 * wait for the completion of suspend_threads_started.
    419	 */
    420	for (i = 0; i < nb_threads; ++i)
    421		wake_up_process(threads[i]);
    422	complete_all(&suspend_threads_started);
    423
    424	wait_for_completion(&suspend_threads_done);
    425
    426
    427	/* Stop and destroy all threads, get return status. */
    428	for (i = 0; i < nb_threads; ++i) {
    429		err += kthread_park(threads[i]);
    430		err += kthread_stop(threads[i]);
    431	}
    432 out:
    433	cpuidle_resume_and_unlock();
    434	kfree(threads);
    435	return err;
    436}
    437
    438static int __init psci_checker(void)
    439{
    440	int ret;
    441
    442	/*
    443	 * Since we're in an initcall, we assume that all the CPUs that all
    444	 * CPUs that can be onlined have been onlined.
    445	 *
    446	 * The tests assume that hotplug is enabled but nobody else is using it,
    447	 * otherwise the results will be unpredictable. However, since there
    448	 * is no userspace yet in initcalls, that should be fine, as long as
    449	 * no torture test is running at the same time (see Kconfig).
    450	 */
    451	nb_available_cpus = num_online_cpus();
    452
    453	/* Check PSCI operations are set up and working. */
    454	ret = psci_ops_check();
    455	if (ret)
    456		return ret;
    457
    458	pr_info("PSCI checker started using %u CPUs\n", nb_available_cpus);
    459
    460	pr_info("Starting hotplug tests\n");
    461	ret = hotplug_tests();
    462	if (ret == 0)
    463		pr_info("Hotplug tests passed OK\n");
    464	else if (ret > 0)
    465		pr_err("%d error(s) encountered in hotplug tests\n", ret);
    466	else {
    467		pr_err("Out of memory\n");
    468		return ret;
    469	}
    470
    471	pr_info("Starting suspend tests (%d cycles per state)\n",
    472		NUM_SUSPEND_CYCLE);
    473	ret = suspend_tests();
    474	if (ret == 0)
    475		pr_info("Suspend tests passed OK\n");
    476	else if (ret > 0)
    477		pr_err("%d error(s) encountered in suspend tests\n", ret);
    478	else {
    479		switch (ret) {
    480		case -ENOMEM:
    481			pr_err("Out of memory\n");
    482			break;
    483		case -ENODEV:
    484			pr_warn("Could not start suspend tests on any CPU\n");
    485			break;
    486		}
    487	}
    488
    489	pr_info("PSCI checker completed\n");
    490	return ret < 0 ? ret : 0;
    491}
    492late_initcall(psci_checker);