cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

kfd_events.c (36529B)


      1// SPDX-License-Identifier: GPL-2.0 OR MIT
      2/*
      3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
      4 *
      5 * Permission is hereby granted, free of charge, to any person obtaining a
      6 * copy of this software and associated documentation files (the "Software"),
      7 * to deal in the Software without restriction, including without limitation
      8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      9 * and/or sell copies of the Software, and to permit persons to whom the
     10 * Software is furnished to do so, subject to the following conditions:
     11 *
     12 * The above copyright notice and this permission notice shall be included in
     13 * all copies or substantial portions of the Software.
     14 *
     15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
     19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
     20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
     21 * OTHER DEALINGS IN THE SOFTWARE.
     22 */
     23
     24#include <linux/mm_types.h>
     25#include <linux/slab.h>
     26#include <linux/types.h>
     27#include <linux/sched/signal.h>
     28#include <linux/sched/mm.h>
     29#include <linux/uaccess.h>
     30#include <linux/mman.h>
     31#include <linux/memory.h>
     32#include "kfd_priv.h"
     33#include "kfd_events.h"
     34#include "kfd_iommu.h"
     35#include <linux/device.h>
     36
     37/*
     38 * Wrapper around wait_queue_entry_t
     39 */
     40struct kfd_event_waiter {
     41	wait_queue_entry_t wait;
     42	struct kfd_event *event; /* Event to wait for */
     43	bool activated;		 /* Becomes true when event is signaled */
     44};
     45
     46/*
     47 * Each signal event needs a 64-bit signal slot where the signaler will write
     48 * a 1 before sending an interrupt. (This is needed because some interrupts
     49 * do not contain enough spare data bits to identify an event.)
     50 * We get whole pages and map them to the process VA.
     51 * Individual signal events use their event_id as slot index.
     52 */
     53struct kfd_signal_page {
     54	uint64_t *kernel_address;
     55	uint64_t __user *user_address;
     56	bool need_to_free_pages;
     57};
     58
     59static uint64_t *page_slots(struct kfd_signal_page *page)
     60{
     61	return page->kernel_address;
     62}
     63
     64static struct kfd_signal_page *allocate_signal_page(struct kfd_process *p)
     65{
     66	void *backing_store;
     67	struct kfd_signal_page *page;
     68
     69	page = kzalloc(sizeof(*page), GFP_KERNEL);
     70	if (!page)
     71		return NULL;
     72
     73	backing_store = (void *) __get_free_pages(GFP_KERNEL,
     74					get_order(KFD_SIGNAL_EVENT_LIMIT * 8));
     75	if (!backing_store)
     76		goto fail_alloc_signal_store;
     77
     78	/* Initialize all events to unsignaled */
     79	memset(backing_store, (uint8_t) UNSIGNALED_EVENT_SLOT,
     80	       KFD_SIGNAL_EVENT_LIMIT * 8);
     81
     82	page->kernel_address = backing_store;
     83	page->need_to_free_pages = true;
     84	pr_debug("Allocated new event signal page at %p, for process %p\n",
     85			page, p);
     86
     87	return page;
     88
     89fail_alloc_signal_store:
     90	kfree(page);
     91	return NULL;
     92}
     93
     94static int allocate_event_notification_slot(struct kfd_process *p,
     95					    struct kfd_event *ev,
     96					    const int *restore_id)
     97{
     98	int id;
     99
    100	if (!p->signal_page) {
    101		p->signal_page = allocate_signal_page(p);
    102		if (!p->signal_page)
    103			return -ENOMEM;
    104		/* Oldest user mode expects 256 event slots */
    105		p->signal_mapped_size = 256*8;
    106	}
    107
    108	if (restore_id) {
    109		id = idr_alloc(&p->event_idr, ev, *restore_id, *restore_id + 1,
    110				GFP_KERNEL);
    111	} else {
    112		/*
    113		 * Compatibility with old user mode: Only use signal slots
    114		 * user mode has mapped, may be less than
    115		 * KFD_SIGNAL_EVENT_LIMIT. This also allows future increase
    116		 * of the event limit without breaking user mode.
    117		 */
    118		id = idr_alloc(&p->event_idr, ev, 0, p->signal_mapped_size / 8,
    119				GFP_KERNEL);
    120	}
    121	if (id < 0)
    122		return id;
    123
    124	ev->event_id = id;
    125	page_slots(p->signal_page)[id] = UNSIGNALED_EVENT_SLOT;
    126
    127	return 0;
    128}
    129
    130/*
    131 * Assumes that p->event_mutex or rcu_readlock is held and of course that p is
    132 * not going away.
    133 */
    134static struct kfd_event *lookup_event_by_id(struct kfd_process *p, uint32_t id)
    135{
    136	return idr_find(&p->event_idr, id);
    137}
    138
    139/**
    140 * lookup_signaled_event_by_partial_id - Lookup signaled event from partial ID
    141 * @p:     Pointer to struct kfd_process
    142 * @id:    ID to look up
    143 * @bits:  Number of valid bits in @id
    144 *
    145 * Finds the first signaled event with a matching partial ID. If no
    146 * matching signaled event is found, returns NULL. In that case the
    147 * caller should assume that the partial ID is invalid and do an
    148 * exhaustive search of all siglaned events.
    149 *
    150 * If multiple events with the same partial ID signal at the same
    151 * time, they will be found one interrupt at a time, not necessarily
    152 * in the same order the interrupts occurred. As long as the number of
    153 * interrupts is correct, all signaled events will be seen by the
    154 * driver.
    155 */
    156static struct kfd_event *lookup_signaled_event_by_partial_id(
    157	struct kfd_process *p, uint32_t id, uint32_t bits)
    158{
    159	struct kfd_event *ev;
    160
    161	if (!p->signal_page || id >= KFD_SIGNAL_EVENT_LIMIT)
    162		return NULL;
    163
    164	/* Fast path for the common case that @id is not a partial ID
    165	 * and we only need a single lookup.
    166	 */
    167	if (bits > 31 || (1U << bits) >= KFD_SIGNAL_EVENT_LIMIT) {
    168		if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT)
    169			return NULL;
    170
    171		return idr_find(&p->event_idr, id);
    172	}
    173
    174	/* General case for partial IDs: Iterate over all matching IDs
    175	 * and find the first one that has signaled.
    176	 */
    177	for (ev = NULL; id < KFD_SIGNAL_EVENT_LIMIT && !ev; id += 1U << bits) {
    178		if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT)
    179			continue;
    180
    181		ev = idr_find(&p->event_idr, id);
    182	}
    183
    184	return ev;
    185}
    186
    187static int create_signal_event(struct file *devkfd, struct kfd_process *p,
    188				struct kfd_event *ev, const int *restore_id)
    189{
    190	int ret;
    191
    192	if (p->signal_mapped_size &&
    193	    p->signal_event_count == p->signal_mapped_size / 8) {
    194		if (!p->signal_event_limit_reached) {
    195			pr_debug("Signal event wasn't created because limit was reached\n");
    196			p->signal_event_limit_reached = true;
    197		}
    198		return -ENOSPC;
    199	}
    200
    201	ret = allocate_event_notification_slot(p, ev, restore_id);
    202	if (ret) {
    203		pr_warn("Signal event wasn't created because out of kernel memory\n");
    204		return ret;
    205	}
    206
    207	p->signal_event_count++;
    208
    209	ev->user_signal_address = &p->signal_page->user_address[ev->event_id];
    210	pr_debug("Signal event number %zu created with id %d, address %p\n",
    211			p->signal_event_count, ev->event_id,
    212			ev->user_signal_address);
    213
    214	return 0;
    215}
    216
    217static int create_other_event(struct kfd_process *p, struct kfd_event *ev, const int *restore_id)
    218{
    219	int id;
    220
    221	if (restore_id)
    222		id = idr_alloc(&p->event_idr, ev, *restore_id, *restore_id + 1,
    223			GFP_KERNEL);
    224	else
    225		/* Cast KFD_LAST_NONSIGNAL_EVENT to uint32_t. This allows an
    226		 * intentional integer overflow to -1 without a compiler
    227		 * warning. idr_alloc treats a negative value as "maximum
    228		 * signed integer".
    229		 */
    230		id = idr_alloc(&p->event_idr, ev, KFD_FIRST_NONSIGNAL_EVENT_ID,
    231				(uint32_t)KFD_LAST_NONSIGNAL_EVENT_ID + 1,
    232				GFP_KERNEL);
    233
    234	if (id < 0)
    235		return id;
    236	ev->event_id = id;
    237
    238	return 0;
    239}
    240
    241int kfd_event_init_process(struct kfd_process *p)
    242{
    243	int id;
    244
    245	mutex_init(&p->event_mutex);
    246	idr_init(&p->event_idr);
    247	p->signal_page = NULL;
    248	p->signal_event_count = 1;
    249	/* Allocate event ID 0. It is used for a fast path to ignore bogus events
    250	 * that are sent by the CP without a context ID
    251	 */
    252	id = idr_alloc(&p->event_idr, NULL, 0, 1, GFP_KERNEL);
    253	if (id < 0) {
    254		idr_destroy(&p->event_idr);
    255		mutex_destroy(&p->event_mutex);
    256		return id;
    257	}
    258	return 0;
    259}
    260
    261static void destroy_event(struct kfd_process *p, struct kfd_event *ev)
    262{
    263	struct kfd_event_waiter *waiter;
    264
    265	/* Wake up pending waiters. They will return failure */
    266	spin_lock(&ev->lock);
    267	list_for_each_entry(waiter, &ev->wq.head, wait.entry)
    268		WRITE_ONCE(waiter->event, NULL);
    269	wake_up_all(&ev->wq);
    270	spin_unlock(&ev->lock);
    271
    272	if (ev->type == KFD_EVENT_TYPE_SIGNAL ||
    273	    ev->type == KFD_EVENT_TYPE_DEBUG)
    274		p->signal_event_count--;
    275
    276	idr_remove(&p->event_idr, ev->event_id);
    277	kfree_rcu(ev, rcu);
    278}
    279
    280static void destroy_events(struct kfd_process *p)
    281{
    282	struct kfd_event *ev;
    283	uint32_t id;
    284
    285	idr_for_each_entry(&p->event_idr, ev, id)
    286		if (ev)
    287			destroy_event(p, ev);
    288	idr_destroy(&p->event_idr);
    289	mutex_destroy(&p->event_mutex);
    290}
    291
    292/*
    293 * We assume that the process is being destroyed and there is no need to
    294 * unmap the pages or keep bookkeeping data in order.
    295 */
    296static void shutdown_signal_page(struct kfd_process *p)
    297{
    298	struct kfd_signal_page *page = p->signal_page;
    299
    300	if (page) {
    301		if (page->need_to_free_pages)
    302			free_pages((unsigned long)page->kernel_address,
    303				   get_order(KFD_SIGNAL_EVENT_LIMIT * 8));
    304		kfree(page);
    305	}
    306}
    307
    308void kfd_event_free_process(struct kfd_process *p)
    309{
    310	destroy_events(p);
    311	shutdown_signal_page(p);
    312}
    313
    314static bool event_can_be_gpu_signaled(const struct kfd_event *ev)
    315{
    316	return ev->type == KFD_EVENT_TYPE_SIGNAL ||
    317					ev->type == KFD_EVENT_TYPE_DEBUG;
    318}
    319
    320static bool event_can_be_cpu_signaled(const struct kfd_event *ev)
    321{
    322	return ev->type == KFD_EVENT_TYPE_SIGNAL;
    323}
    324
    325static int kfd_event_page_set(struct kfd_process *p, void *kernel_address,
    326		       uint64_t size, uint64_t user_handle)
    327{
    328	struct kfd_signal_page *page;
    329
    330	if (p->signal_page)
    331		return -EBUSY;
    332
    333	page = kzalloc(sizeof(*page), GFP_KERNEL);
    334	if (!page)
    335		return -ENOMEM;
    336
    337	/* Initialize all events to unsignaled */
    338	memset(kernel_address, (uint8_t) UNSIGNALED_EVENT_SLOT,
    339	       KFD_SIGNAL_EVENT_LIMIT * 8);
    340
    341	page->kernel_address = kernel_address;
    342
    343	p->signal_page = page;
    344	p->signal_mapped_size = size;
    345	p->signal_handle = user_handle;
    346	return 0;
    347}
    348
    349int kfd_kmap_event_page(struct kfd_process *p, uint64_t event_page_offset)
    350{
    351	struct kfd_dev *kfd;
    352	struct kfd_process_device *pdd;
    353	void *mem, *kern_addr;
    354	uint64_t size;
    355	int err = 0;
    356
    357	if (p->signal_page) {
    358		pr_err("Event page is already set\n");
    359		return -EINVAL;
    360	}
    361
    362	pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(event_page_offset));
    363	if (!pdd) {
    364		pr_err("Getting device by id failed in %s\n", __func__);
    365		return -EINVAL;
    366	}
    367	kfd = pdd->dev;
    368
    369	pdd = kfd_bind_process_to_device(kfd, p);
    370	if (IS_ERR(pdd))
    371		return PTR_ERR(pdd);
    372
    373	mem = kfd_process_device_translate_handle(pdd,
    374			GET_IDR_HANDLE(event_page_offset));
    375	if (!mem) {
    376		pr_err("Can't find BO, offset is 0x%llx\n", event_page_offset);
    377		return -EINVAL;
    378	}
    379
    380	err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(kfd->adev,
    381					mem, &kern_addr, &size);
    382	if (err) {
    383		pr_err("Failed to map event page to kernel\n");
    384		return err;
    385	}
    386
    387	err = kfd_event_page_set(p, kern_addr, size, event_page_offset);
    388	if (err) {
    389		pr_err("Failed to set event page\n");
    390		amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(kfd->adev, mem);
    391		return err;
    392	}
    393	return err;
    394}
    395
    396int kfd_event_create(struct file *devkfd, struct kfd_process *p,
    397		     uint32_t event_type, bool auto_reset, uint32_t node_id,
    398		     uint32_t *event_id, uint32_t *event_trigger_data,
    399		     uint64_t *event_page_offset, uint32_t *event_slot_index)
    400{
    401	int ret = 0;
    402	struct kfd_event *ev = kzalloc(sizeof(*ev), GFP_KERNEL);
    403
    404	if (!ev)
    405		return -ENOMEM;
    406
    407	ev->type = event_type;
    408	ev->auto_reset = auto_reset;
    409	ev->signaled = false;
    410
    411	spin_lock_init(&ev->lock);
    412	init_waitqueue_head(&ev->wq);
    413
    414	*event_page_offset = 0;
    415
    416	mutex_lock(&p->event_mutex);
    417
    418	switch (event_type) {
    419	case KFD_EVENT_TYPE_SIGNAL:
    420	case KFD_EVENT_TYPE_DEBUG:
    421		ret = create_signal_event(devkfd, p, ev, NULL);
    422		if (!ret) {
    423			*event_page_offset = KFD_MMAP_TYPE_EVENTS;
    424			*event_slot_index = ev->event_id;
    425		}
    426		break;
    427	default:
    428		ret = create_other_event(p, ev, NULL);
    429		break;
    430	}
    431
    432	if (!ret) {
    433		*event_id = ev->event_id;
    434		*event_trigger_data = ev->event_id;
    435	} else {
    436		kfree(ev);
    437	}
    438
    439	mutex_unlock(&p->event_mutex);
    440
    441	return ret;
    442}
    443
    444int kfd_criu_restore_event(struct file *devkfd,
    445			   struct kfd_process *p,
    446			   uint8_t __user *user_priv_ptr,
    447			   uint64_t *priv_data_offset,
    448			   uint64_t max_priv_data_size)
    449{
    450	struct kfd_criu_event_priv_data *ev_priv;
    451	struct kfd_event *ev = NULL;
    452	int ret = 0;
    453
    454	ev_priv = kmalloc(sizeof(*ev_priv), GFP_KERNEL);
    455	if (!ev_priv)
    456		return -ENOMEM;
    457
    458	ev = kzalloc(sizeof(*ev), GFP_KERNEL);
    459	if (!ev) {
    460		ret = -ENOMEM;
    461		goto exit;
    462	}
    463
    464	if (*priv_data_offset + sizeof(*ev_priv) > max_priv_data_size) {
    465		ret = -EINVAL;
    466		goto exit;
    467	}
    468
    469	ret = copy_from_user(ev_priv, user_priv_ptr + *priv_data_offset, sizeof(*ev_priv));
    470	if (ret) {
    471		ret = -EFAULT;
    472		goto exit;
    473	}
    474	*priv_data_offset += sizeof(*ev_priv);
    475
    476	if (ev_priv->user_handle) {
    477		ret = kfd_kmap_event_page(p, ev_priv->user_handle);
    478		if (ret)
    479			goto exit;
    480	}
    481
    482	ev->type = ev_priv->type;
    483	ev->auto_reset = ev_priv->auto_reset;
    484	ev->signaled = ev_priv->signaled;
    485
    486	spin_lock_init(&ev->lock);
    487	init_waitqueue_head(&ev->wq);
    488
    489	mutex_lock(&p->event_mutex);
    490	switch (ev->type) {
    491	case KFD_EVENT_TYPE_SIGNAL:
    492	case KFD_EVENT_TYPE_DEBUG:
    493		ret = create_signal_event(devkfd, p, ev, &ev_priv->event_id);
    494		break;
    495	case KFD_EVENT_TYPE_MEMORY:
    496		memcpy(&ev->memory_exception_data,
    497			&ev_priv->memory_exception_data,
    498			sizeof(struct kfd_hsa_memory_exception_data));
    499
    500		ret = create_other_event(p, ev, &ev_priv->event_id);
    501		break;
    502	case KFD_EVENT_TYPE_HW_EXCEPTION:
    503		memcpy(&ev->hw_exception_data,
    504			&ev_priv->hw_exception_data,
    505			sizeof(struct kfd_hsa_hw_exception_data));
    506
    507		ret = create_other_event(p, ev, &ev_priv->event_id);
    508		break;
    509	}
    510
    511exit:
    512	if (ret)
    513		kfree(ev);
    514
    515	kfree(ev_priv);
    516
    517	mutex_unlock(&p->event_mutex);
    518
    519	return ret;
    520}
    521
    522int kfd_criu_checkpoint_events(struct kfd_process *p,
    523			 uint8_t __user *user_priv_data,
    524			 uint64_t *priv_data_offset)
    525{
    526	struct kfd_criu_event_priv_data *ev_privs;
    527	int i = 0;
    528	int ret =  0;
    529	struct kfd_event *ev;
    530	uint32_t ev_id;
    531
    532	uint32_t num_events = kfd_get_num_events(p);
    533
    534	if (!num_events)
    535		return 0;
    536
    537	ev_privs = kvzalloc(num_events * sizeof(*ev_privs), GFP_KERNEL);
    538	if (!ev_privs)
    539		return -ENOMEM;
    540
    541
    542	idr_for_each_entry(&p->event_idr, ev, ev_id) {
    543		struct kfd_criu_event_priv_data *ev_priv;
    544
    545		/*
    546		 * Currently, all events have same size of private_data, but the current ioctl's
    547		 * and CRIU plugin supports private_data of variable sizes
    548		 */
    549		ev_priv = &ev_privs[i];
    550
    551		ev_priv->object_type = KFD_CRIU_OBJECT_TYPE_EVENT;
    552
    553		/* We store the user_handle with the first event */
    554		if (i == 0 && p->signal_page)
    555			ev_priv->user_handle = p->signal_handle;
    556
    557		ev_priv->event_id = ev->event_id;
    558		ev_priv->auto_reset = ev->auto_reset;
    559		ev_priv->type = ev->type;
    560		ev_priv->signaled = ev->signaled;
    561
    562		if (ev_priv->type == KFD_EVENT_TYPE_MEMORY)
    563			memcpy(&ev_priv->memory_exception_data,
    564				&ev->memory_exception_data,
    565				sizeof(struct kfd_hsa_memory_exception_data));
    566		else if (ev_priv->type == KFD_EVENT_TYPE_HW_EXCEPTION)
    567			memcpy(&ev_priv->hw_exception_data,
    568				&ev->hw_exception_data,
    569				sizeof(struct kfd_hsa_hw_exception_data));
    570
    571		pr_debug("Checkpointed event[%d] id = 0x%08x auto_reset = %x type = %x signaled = %x\n",
    572			  i,
    573			  ev_priv->event_id,
    574			  ev_priv->auto_reset,
    575			  ev_priv->type,
    576			  ev_priv->signaled);
    577		i++;
    578	}
    579
    580	ret = copy_to_user(user_priv_data + *priv_data_offset,
    581			   ev_privs, num_events * sizeof(*ev_privs));
    582	if (ret) {
    583		pr_err("Failed to copy events priv to user\n");
    584		ret = -EFAULT;
    585	}
    586
    587	*priv_data_offset += num_events * sizeof(*ev_privs);
    588
    589	kvfree(ev_privs);
    590	return ret;
    591}
    592
    593int kfd_get_num_events(struct kfd_process *p)
    594{
    595	struct kfd_event *ev;
    596	uint32_t id;
    597	u32 num_events = 0;
    598
    599	idr_for_each_entry(&p->event_idr, ev, id)
    600		num_events++;
    601
    602	return num_events;
    603}
    604
    605/* Assumes that p is current. */
    606int kfd_event_destroy(struct kfd_process *p, uint32_t event_id)
    607{
    608	struct kfd_event *ev;
    609	int ret = 0;
    610
    611	mutex_lock(&p->event_mutex);
    612
    613	ev = lookup_event_by_id(p, event_id);
    614
    615	if (ev)
    616		destroy_event(p, ev);
    617	else
    618		ret = -EINVAL;
    619
    620	mutex_unlock(&p->event_mutex);
    621	return ret;
    622}
    623
    624static void set_event(struct kfd_event *ev)
    625{
    626	struct kfd_event_waiter *waiter;
    627
    628	/* Auto reset if the list is non-empty and we're waking
    629	 * someone. waitqueue_active is safe here because we're
    630	 * protected by the ev->lock, which is also held when
    631	 * updating the wait queues in kfd_wait_on_events.
    632	 */
    633	ev->signaled = !ev->auto_reset || !waitqueue_active(&ev->wq);
    634
    635	list_for_each_entry(waiter, &ev->wq.head, wait.entry)
    636		WRITE_ONCE(waiter->activated, true);
    637
    638	wake_up_all(&ev->wq);
    639}
    640
    641/* Assumes that p is current. */
    642int kfd_set_event(struct kfd_process *p, uint32_t event_id)
    643{
    644	int ret = 0;
    645	struct kfd_event *ev;
    646
    647	rcu_read_lock();
    648
    649	ev = lookup_event_by_id(p, event_id);
    650	if (!ev) {
    651		ret = -EINVAL;
    652		goto unlock_rcu;
    653	}
    654	spin_lock(&ev->lock);
    655
    656	if (event_can_be_cpu_signaled(ev))
    657		set_event(ev);
    658	else
    659		ret = -EINVAL;
    660
    661	spin_unlock(&ev->lock);
    662unlock_rcu:
    663	rcu_read_unlock();
    664	return ret;
    665}
    666
    667static void reset_event(struct kfd_event *ev)
    668{
    669	ev->signaled = false;
    670}
    671
    672/* Assumes that p is current. */
    673int kfd_reset_event(struct kfd_process *p, uint32_t event_id)
    674{
    675	int ret = 0;
    676	struct kfd_event *ev;
    677
    678	rcu_read_lock();
    679
    680	ev = lookup_event_by_id(p, event_id);
    681	if (!ev) {
    682		ret = -EINVAL;
    683		goto unlock_rcu;
    684	}
    685	spin_lock(&ev->lock);
    686
    687	if (event_can_be_cpu_signaled(ev))
    688		reset_event(ev);
    689	else
    690		ret = -EINVAL;
    691
    692	spin_unlock(&ev->lock);
    693unlock_rcu:
    694	rcu_read_unlock();
    695	return ret;
    696
    697}
    698
    699static void acknowledge_signal(struct kfd_process *p, struct kfd_event *ev)
    700{
    701	WRITE_ONCE(page_slots(p->signal_page)[ev->event_id], UNSIGNALED_EVENT_SLOT);
    702}
    703
    704static void set_event_from_interrupt(struct kfd_process *p,
    705					struct kfd_event *ev)
    706{
    707	if (ev && event_can_be_gpu_signaled(ev)) {
    708		acknowledge_signal(p, ev);
    709		spin_lock(&ev->lock);
    710		set_event(ev);
    711		spin_unlock(&ev->lock);
    712	}
    713}
    714
    715void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id,
    716				uint32_t valid_id_bits)
    717{
    718	struct kfd_event *ev = NULL;
    719
    720	/*
    721	 * Because we are called from arbitrary context (workqueue) as opposed
    722	 * to process context, kfd_process could attempt to exit while we are
    723	 * running so the lookup function increments the process ref count.
    724	 */
    725	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
    726
    727	if (!p)
    728		return; /* Presumably process exited. */
    729
    730	rcu_read_lock();
    731
    732	if (valid_id_bits)
    733		ev = lookup_signaled_event_by_partial_id(p, partial_id,
    734							 valid_id_bits);
    735	if (ev) {
    736		set_event_from_interrupt(p, ev);
    737	} else if (p->signal_page) {
    738		/*
    739		 * Partial ID lookup failed. Assume that the event ID
    740		 * in the interrupt payload was invalid and do an
    741		 * exhaustive search of signaled events.
    742		 */
    743		uint64_t *slots = page_slots(p->signal_page);
    744		uint32_t id;
    745
    746		if (valid_id_bits)
    747			pr_debug_ratelimited("Partial ID invalid: %u (%u valid bits)\n",
    748					     partial_id, valid_id_bits);
    749
    750		if (p->signal_event_count < KFD_SIGNAL_EVENT_LIMIT / 64) {
    751			/* With relatively few events, it's faster to
    752			 * iterate over the event IDR
    753			 */
    754			idr_for_each_entry(&p->event_idr, ev, id) {
    755				if (id >= KFD_SIGNAL_EVENT_LIMIT)
    756					break;
    757
    758				if (READ_ONCE(slots[id]) != UNSIGNALED_EVENT_SLOT)
    759					set_event_from_interrupt(p, ev);
    760			}
    761		} else {
    762			/* With relatively many events, it's faster to
    763			 * iterate over the signal slots and lookup
    764			 * only signaled events from the IDR.
    765			 */
    766			for (id = 1; id < KFD_SIGNAL_EVENT_LIMIT; id++)
    767				if (READ_ONCE(slots[id]) != UNSIGNALED_EVENT_SLOT) {
    768					ev = lookup_event_by_id(p, id);
    769					set_event_from_interrupt(p, ev);
    770				}
    771		}
    772	}
    773
    774	rcu_read_unlock();
    775	kfd_unref_process(p);
    776}
    777
    778static struct kfd_event_waiter *alloc_event_waiters(uint32_t num_events)
    779{
    780	struct kfd_event_waiter *event_waiters;
    781	uint32_t i;
    782
    783	event_waiters = kmalloc_array(num_events,
    784					sizeof(struct kfd_event_waiter),
    785					GFP_KERNEL);
    786	if (!event_waiters)
    787		return NULL;
    788
    789	for (i = 0; (event_waiters) && (i < num_events) ; i++) {
    790		init_wait(&event_waiters[i].wait);
    791		event_waiters[i].activated = false;
    792	}
    793
    794	return event_waiters;
    795}
    796
    797static int init_event_waiter(struct kfd_process *p,
    798		struct kfd_event_waiter *waiter,
    799		uint32_t event_id)
    800{
    801	struct kfd_event *ev = lookup_event_by_id(p, event_id);
    802
    803	if (!ev)
    804		return -EINVAL;
    805
    806	spin_lock(&ev->lock);
    807	waiter->event = ev;
    808	waiter->activated = ev->signaled;
    809	ev->signaled = ev->signaled && !ev->auto_reset;
    810	if (!waiter->activated)
    811		add_wait_queue(&ev->wq, &waiter->wait);
    812	spin_unlock(&ev->lock);
    813
    814	return 0;
    815}
    816
    817/* test_event_condition - Test condition of events being waited for
    818 * @all:           Return completion only if all events have signaled
    819 * @num_events:    Number of events to wait for
    820 * @event_waiters: Array of event waiters, one per event
    821 *
    822 * Returns KFD_IOC_WAIT_RESULT_COMPLETE if all (or one) event(s) have
    823 * signaled. Returns KFD_IOC_WAIT_RESULT_TIMEOUT if no (or not all)
    824 * events have signaled. Returns KFD_IOC_WAIT_RESULT_FAIL if any of
    825 * the events have been destroyed.
    826 */
    827static uint32_t test_event_condition(bool all, uint32_t num_events,
    828				struct kfd_event_waiter *event_waiters)
    829{
    830	uint32_t i;
    831	uint32_t activated_count = 0;
    832
    833	for (i = 0; i < num_events; i++) {
    834		if (!READ_ONCE(event_waiters[i].event))
    835			return KFD_IOC_WAIT_RESULT_FAIL;
    836
    837		if (READ_ONCE(event_waiters[i].activated)) {
    838			if (!all)
    839				return KFD_IOC_WAIT_RESULT_COMPLETE;
    840
    841			activated_count++;
    842		}
    843	}
    844
    845	return activated_count == num_events ?
    846		KFD_IOC_WAIT_RESULT_COMPLETE : KFD_IOC_WAIT_RESULT_TIMEOUT;
    847}
    848
    849/*
    850 * Copy event specific data, if defined.
    851 * Currently only memory exception events have additional data to copy to user
    852 */
    853static int copy_signaled_event_data(uint32_t num_events,
    854		struct kfd_event_waiter *event_waiters,
    855		struct kfd_event_data __user *data)
    856{
    857	struct kfd_hsa_memory_exception_data *src;
    858	struct kfd_hsa_memory_exception_data __user *dst;
    859	struct kfd_event_waiter *waiter;
    860	struct kfd_event *event;
    861	uint32_t i;
    862
    863	for (i = 0; i < num_events; i++) {
    864		waiter = &event_waiters[i];
    865		event = waiter->event;
    866		if (!event)
    867			return -EINVAL; /* event was destroyed */
    868		if (waiter->activated && event->type == KFD_EVENT_TYPE_MEMORY) {
    869			dst = &data[i].memory_exception_data;
    870			src = &event->memory_exception_data;
    871			if (copy_to_user(dst, src,
    872				sizeof(struct kfd_hsa_memory_exception_data)))
    873				return -EFAULT;
    874		}
    875	}
    876
    877	return 0;
    878}
    879
    880static long user_timeout_to_jiffies(uint32_t user_timeout_ms)
    881{
    882	if (user_timeout_ms == KFD_EVENT_TIMEOUT_IMMEDIATE)
    883		return 0;
    884
    885	if (user_timeout_ms == KFD_EVENT_TIMEOUT_INFINITE)
    886		return MAX_SCHEDULE_TIMEOUT;
    887
    888	/*
    889	 * msecs_to_jiffies interprets all values above 2^31-1 as infinite,
    890	 * but we consider them finite.
    891	 * This hack is wrong, but nobody is likely to notice.
    892	 */
    893	user_timeout_ms = min_t(uint32_t, user_timeout_ms, 0x7FFFFFFF);
    894
    895	return msecs_to_jiffies(user_timeout_ms) + 1;
    896}
    897
    898static void free_waiters(uint32_t num_events, struct kfd_event_waiter *waiters)
    899{
    900	uint32_t i;
    901
    902	for (i = 0; i < num_events; i++)
    903		if (waiters[i].event) {
    904			spin_lock(&waiters[i].event->lock);
    905			remove_wait_queue(&waiters[i].event->wq,
    906					  &waiters[i].wait);
    907			spin_unlock(&waiters[i].event->lock);
    908		}
    909
    910	kfree(waiters);
    911}
    912
    913int kfd_wait_on_events(struct kfd_process *p,
    914		       uint32_t num_events, void __user *data,
    915		       bool all, uint32_t user_timeout_ms,
    916		       uint32_t *wait_result)
    917{
    918	struct kfd_event_data __user *events =
    919			(struct kfd_event_data __user *) data;
    920	uint32_t i;
    921	int ret = 0;
    922
    923	struct kfd_event_waiter *event_waiters = NULL;
    924	long timeout = user_timeout_to_jiffies(user_timeout_ms);
    925
    926	event_waiters = alloc_event_waiters(num_events);
    927	if (!event_waiters) {
    928		ret = -ENOMEM;
    929		goto out;
    930	}
    931
    932	/* Use p->event_mutex here to protect against concurrent creation and
    933	 * destruction of events while we initialize event_waiters.
    934	 */
    935	mutex_lock(&p->event_mutex);
    936
    937	for (i = 0; i < num_events; i++) {
    938		struct kfd_event_data event_data;
    939
    940		if (copy_from_user(&event_data, &events[i],
    941				sizeof(struct kfd_event_data))) {
    942			ret = -EFAULT;
    943			goto out_unlock;
    944		}
    945
    946		ret = init_event_waiter(p, &event_waiters[i],
    947					event_data.event_id);
    948		if (ret)
    949			goto out_unlock;
    950	}
    951
    952	/* Check condition once. */
    953	*wait_result = test_event_condition(all, num_events, event_waiters);
    954	if (*wait_result == KFD_IOC_WAIT_RESULT_COMPLETE) {
    955		ret = copy_signaled_event_data(num_events,
    956					       event_waiters, events);
    957		goto out_unlock;
    958	} else if (WARN_ON(*wait_result == KFD_IOC_WAIT_RESULT_FAIL)) {
    959		/* This should not happen. Events shouldn't be
    960		 * destroyed while we're holding the event_mutex
    961		 */
    962		goto out_unlock;
    963	}
    964
    965	mutex_unlock(&p->event_mutex);
    966
    967	while (true) {
    968		if (fatal_signal_pending(current)) {
    969			ret = -EINTR;
    970			break;
    971		}
    972
    973		if (signal_pending(current)) {
    974			/*
    975			 * This is wrong when a nonzero, non-infinite timeout
    976			 * is specified. We need to use
    977			 * ERESTARTSYS_RESTARTBLOCK, but struct restart_block
    978			 * contains a union with data for each user and it's
    979			 * in generic kernel code that I don't want to
    980			 * touch yet.
    981			 */
    982			ret = -ERESTARTSYS;
    983			break;
    984		}
    985
    986		/* Set task state to interruptible sleep before
    987		 * checking wake-up conditions. A concurrent wake-up
    988		 * will put the task back into runnable state. In that
    989		 * case schedule_timeout will not put the task to
    990		 * sleep and we'll get a chance to re-check the
    991		 * updated conditions almost immediately. Otherwise,
    992		 * this race condition would lead to a soft hang or a
    993		 * very long sleep.
    994		 */
    995		set_current_state(TASK_INTERRUPTIBLE);
    996
    997		*wait_result = test_event_condition(all, num_events,
    998						    event_waiters);
    999		if (*wait_result != KFD_IOC_WAIT_RESULT_TIMEOUT)
   1000			break;
   1001
   1002		if (timeout <= 0)
   1003			break;
   1004
   1005		timeout = schedule_timeout(timeout);
   1006	}
   1007	__set_current_state(TASK_RUNNING);
   1008
   1009	mutex_lock(&p->event_mutex);
   1010	/* copy_signaled_event_data may sleep. So this has to happen
   1011	 * after the task state is set back to RUNNING.
   1012	 *
   1013	 * The event may also have been destroyed after signaling. So
   1014	 * copy_signaled_event_data also must confirm that the event
   1015	 * still exists. Therefore this must be under the p->event_mutex
   1016	 * which is also held when events are destroyed.
   1017	 */
   1018	if (!ret && *wait_result == KFD_IOC_WAIT_RESULT_COMPLETE)
   1019		ret = copy_signaled_event_data(num_events,
   1020					       event_waiters, events);
   1021
   1022out_unlock:
   1023	free_waiters(num_events, event_waiters);
   1024	mutex_unlock(&p->event_mutex);
   1025out:
   1026	if (ret)
   1027		*wait_result = KFD_IOC_WAIT_RESULT_FAIL;
   1028	else if (*wait_result == KFD_IOC_WAIT_RESULT_FAIL)
   1029		ret = -EIO;
   1030
   1031	return ret;
   1032}
   1033
   1034int kfd_event_mmap(struct kfd_process *p, struct vm_area_struct *vma)
   1035{
   1036	unsigned long pfn;
   1037	struct kfd_signal_page *page;
   1038	int ret;
   1039
   1040	/* check required size doesn't exceed the allocated size */
   1041	if (get_order(KFD_SIGNAL_EVENT_LIMIT * 8) <
   1042			get_order(vma->vm_end - vma->vm_start)) {
   1043		pr_err("Event page mmap requested illegal size\n");
   1044		return -EINVAL;
   1045	}
   1046
   1047	page = p->signal_page;
   1048	if (!page) {
   1049		/* Probably KFD bug, but mmap is user-accessible. */
   1050		pr_debug("Signal page could not be found\n");
   1051		return -EINVAL;
   1052	}
   1053
   1054	pfn = __pa(page->kernel_address);
   1055	pfn >>= PAGE_SHIFT;
   1056
   1057	vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE
   1058		       | VM_DONTDUMP | VM_PFNMAP;
   1059
   1060	pr_debug("Mapping signal page\n");
   1061	pr_debug("     start user address  == 0x%08lx\n", vma->vm_start);
   1062	pr_debug("     end user address    == 0x%08lx\n", vma->vm_end);
   1063	pr_debug("     pfn                 == 0x%016lX\n", pfn);
   1064	pr_debug("     vm_flags            == 0x%08lX\n", vma->vm_flags);
   1065	pr_debug("     size                == 0x%08lX\n",
   1066			vma->vm_end - vma->vm_start);
   1067
   1068	page->user_address = (uint64_t __user *)vma->vm_start;
   1069
   1070	/* mapping the page to user process */
   1071	ret = remap_pfn_range(vma, vma->vm_start, pfn,
   1072			vma->vm_end - vma->vm_start, vma->vm_page_prot);
   1073	if (!ret)
   1074		p->signal_mapped_size = vma->vm_end - vma->vm_start;
   1075
   1076	return ret;
   1077}
   1078
   1079/*
   1080 * Assumes that p is not going away.
   1081 */
   1082static void lookup_events_by_type_and_signal(struct kfd_process *p,
   1083		int type, void *event_data)
   1084{
   1085	struct kfd_hsa_memory_exception_data *ev_data;
   1086	struct kfd_event *ev;
   1087	uint32_t id;
   1088	bool send_signal = true;
   1089
   1090	ev_data = (struct kfd_hsa_memory_exception_data *) event_data;
   1091
   1092	rcu_read_lock();
   1093
   1094	id = KFD_FIRST_NONSIGNAL_EVENT_ID;
   1095	idr_for_each_entry_continue(&p->event_idr, ev, id)
   1096		if (ev->type == type) {
   1097			send_signal = false;
   1098			dev_dbg(kfd_device,
   1099					"Event found: id %X type %d",
   1100					ev->event_id, ev->type);
   1101			spin_lock(&ev->lock);
   1102			set_event(ev);
   1103			if (ev->type == KFD_EVENT_TYPE_MEMORY && ev_data)
   1104				ev->memory_exception_data = *ev_data;
   1105			spin_unlock(&ev->lock);
   1106		}
   1107
   1108	if (type == KFD_EVENT_TYPE_MEMORY) {
   1109		dev_warn(kfd_device,
   1110			"Sending SIGSEGV to process %d (pasid 0x%x)",
   1111				p->lead_thread->pid, p->pasid);
   1112		send_sig(SIGSEGV, p->lead_thread, 0);
   1113	}
   1114
   1115	/* Send SIGTERM no event of type "type" has been found*/
   1116	if (send_signal) {
   1117		if (send_sigterm) {
   1118			dev_warn(kfd_device,
   1119				"Sending SIGTERM to process %d (pasid 0x%x)",
   1120					p->lead_thread->pid, p->pasid);
   1121			send_sig(SIGTERM, p->lead_thread, 0);
   1122		} else {
   1123			dev_err(kfd_device,
   1124				"Process %d (pasid 0x%x) got unhandled exception",
   1125				p->lead_thread->pid, p->pasid);
   1126		}
   1127	}
   1128
   1129	rcu_read_unlock();
   1130}
   1131
   1132#ifdef KFD_SUPPORT_IOMMU_V2
   1133void kfd_signal_iommu_event(struct kfd_dev *dev, u32 pasid,
   1134		unsigned long address, bool is_write_requested,
   1135		bool is_execute_requested)
   1136{
   1137	struct kfd_hsa_memory_exception_data memory_exception_data;
   1138	struct vm_area_struct *vma;
   1139	int user_gpu_id;
   1140
   1141	/*
   1142	 * Because we are called from arbitrary context (workqueue) as opposed
   1143	 * to process context, kfd_process could attempt to exit while we are
   1144	 * running so the lookup function increments the process ref count.
   1145	 */
   1146	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
   1147	struct mm_struct *mm;
   1148
   1149	if (!p)
   1150		return; /* Presumably process exited. */
   1151
   1152	/* Take a safe reference to the mm_struct, which may otherwise
   1153	 * disappear even while the kfd_process is still referenced.
   1154	 */
   1155	mm = get_task_mm(p->lead_thread);
   1156	if (!mm) {
   1157		kfd_unref_process(p);
   1158		return; /* Process is exiting */
   1159	}
   1160
   1161	user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id);
   1162	if (unlikely(user_gpu_id == -EINVAL)) {
   1163		WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id);
   1164		return;
   1165	}
   1166	memset(&memory_exception_data, 0, sizeof(memory_exception_data));
   1167
   1168	mmap_read_lock(mm);
   1169	vma = find_vma(mm, address);
   1170
   1171	memory_exception_data.gpu_id = user_gpu_id;
   1172	memory_exception_data.va = address;
   1173	/* Set failure reason */
   1174	memory_exception_data.failure.NotPresent = 1;
   1175	memory_exception_data.failure.NoExecute = 0;
   1176	memory_exception_data.failure.ReadOnly = 0;
   1177	if (vma && address >= vma->vm_start) {
   1178		memory_exception_data.failure.NotPresent = 0;
   1179
   1180		if (is_write_requested && !(vma->vm_flags & VM_WRITE))
   1181			memory_exception_data.failure.ReadOnly = 1;
   1182		else
   1183			memory_exception_data.failure.ReadOnly = 0;
   1184
   1185		if (is_execute_requested && !(vma->vm_flags & VM_EXEC))
   1186			memory_exception_data.failure.NoExecute = 1;
   1187		else
   1188			memory_exception_data.failure.NoExecute = 0;
   1189	}
   1190
   1191	mmap_read_unlock(mm);
   1192	mmput(mm);
   1193
   1194	pr_debug("notpresent %d, noexecute %d, readonly %d\n",
   1195			memory_exception_data.failure.NotPresent,
   1196			memory_exception_data.failure.NoExecute,
   1197			memory_exception_data.failure.ReadOnly);
   1198
   1199	/* Workaround on Raven to not kill the process when memory is freed
   1200	 * before IOMMU is able to finish processing all the excessive PPRs
   1201	 */
   1202
   1203	if (KFD_GC_VERSION(dev) != IP_VERSION(9, 1, 0) &&
   1204	    KFD_GC_VERSION(dev) != IP_VERSION(9, 2, 2) &&
   1205	    KFD_GC_VERSION(dev) != IP_VERSION(9, 3, 0))
   1206		lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_MEMORY,
   1207				&memory_exception_data);
   1208
   1209	kfd_unref_process(p);
   1210}
   1211#endif /* KFD_SUPPORT_IOMMU_V2 */
   1212
   1213void kfd_signal_hw_exception_event(u32 pasid)
   1214{
   1215	/*
   1216	 * Because we are called from arbitrary context (workqueue) as opposed
   1217	 * to process context, kfd_process could attempt to exit while we are
   1218	 * running so the lookup function increments the process ref count.
   1219	 */
   1220	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
   1221
   1222	if (!p)
   1223		return; /* Presumably process exited. */
   1224
   1225	lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_HW_EXCEPTION, NULL);
   1226	kfd_unref_process(p);
   1227}
   1228
   1229void kfd_signal_vm_fault_event(struct kfd_dev *dev, u32 pasid,
   1230				struct kfd_vm_fault_info *info)
   1231{
   1232	struct kfd_event *ev;
   1233	uint32_t id;
   1234	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
   1235	struct kfd_hsa_memory_exception_data memory_exception_data;
   1236	int user_gpu_id;
   1237
   1238	if (!p)
   1239		return; /* Presumably process exited. */
   1240
   1241	user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id);
   1242	if (unlikely(user_gpu_id == -EINVAL)) {
   1243		WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id);
   1244		return;
   1245	}
   1246
   1247	memset(&memory_exception_data, 0, sizeof(memory_exception_data));
   1248	memory_exception_data.gpu_id = user_gpu_id;
   1249	memory_exception_data.failure.imprecise = true;
   1250	/* Set failure reason */
   1251	if (info) {
   1252		memory_exception_data.va = (info->page_addr) << PAGE_SHIFT;
   1253		memory_exception_data.failure.NotPresent =
   1254			info->prot_valid ? 1 : 0;
   1255		memory_exception_data.failure.NoExecute =
   1256			info->prot_exec ? 1 : 0;
   1257		memory_exception_data.failure.ReadOnly =
   1258			info->prot_write ? 1 : 0;
   1259		memory_exception_data.failure.imprecise = 0;
   1260	}
   1261
   1262	rcu_read_lock();
   1263
   1264	id = KFD_FIRST_NONSIGNAL_EVENT_ID;
   1265	idr_for_each_entry_continue(&p->event_idr, ev, id)
   1266		if (ev->type == KFD_EVENT_TYPE_MEMORY) {
   1267			spin_lock(&ev->lock);
   1268			ev->memory_exception_data = memory_exception_data;
   1269			set_event(ev);
   1270			spin_unlock(&ev->lock);
   1271		}
   1272
   1273	rcu_read_unlock();
   1274	kfd_unref_process(p);
   1275}
   1276
   1277void kfd_signal_reset_event(struct kfd_dev *dev)
   1278{
   1279	struct kfd_hsa_hw_exception_data hw_exception_data;
   1280	struct kfd_hsa_memory_exception_data memory_exception_data;
   1281	struct kfd_process *p;
   1282	struct kfd_event *ev;
   1283	unsigned int temp;
   1284	uint32_t id, idx;
   1285	int reset_cause = atomic_read(&dev->sram_ecc_flag) ?
   1286			KFD_HW_EXCEPTION_ECC :
   1287			KFD_HW_EXCEPTION_GPU_HANG;
   1288
   1289	/* Whole gpu reset caused by GPU hang and memory is lost */
   1290	memset(&hw_exception_data, 0, sizeof(hw_exception_data));
   1291	hw_exception_data.memory_lost = 1;
   1292	hw_exception_data.reset_cause = reset_cause;
   1293
   1294	memset(&memory_exception_data, 0, sizeof(memory_exception_data));
   1295	memory_exception_data.ErrorType = KFD_MEM_ERR_SRAM_ECC;
   1296	memory_exception_data.failure.imprecise = true;
   1297
   1298	idx = srcu_read_lock(&kfd_processes_srcu);
   1299	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
   1300		int user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id);
   1301
   1302		if (unlikely(user_gpu_id == -EINVAL)) {
   1303			WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id);
   1304			continue;
   1305		}
   1306
   1307		rcu_read_lock();
   1308
   1309		id = KFD_FIRST_NONSIGNAL_EVENT_ID;
   1310		idr_for_each_entry_continue(&p->event_idr, ev, id) {
   1311			if (ev->type == KFD_EVENT_TYPE_HW_EXCEPTION) {
   1312				spin_lock(&ev->lock);
   1313				ev->hw_exception_data = hw_exception_data;
   1314				ev->hw_exception_data.gpu_id = user_gpu_id;
   1315				set_event(ev);
   1316				spin_unlock(&ev->lock);
   1317			}
   1318			if (ev->type == KFD_EVENT_TYPE_MEMORY &&
   1319			    reset_cause == KFD_HW_EXCEPTION_ECC) {
   1320				spin_lock(&ev->lock);
   1321				ev->memory_exception_data = memory_exception_data;
   1322				ev->memory_exception_data.gpu_id = user_gpu_id;
   1323				set_event(ev);
   1324				spin_unlock(&ev->lock);
   1325			}
   1326		}
   1327
   1328		rcu_read_unlock();
   1329	}
   1330	srcu_read_unlock(&kfd_processes_srcu, idx);
   1331}
   1332
   1333void kfd_signal_poison_consumed_event(struct kfd_dev *dev, u32 pasid)
   1334{
   1335	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
   1336	struct kfd_hsa_memory_exception_data memory_exception_data;
   1337	struct kfd_hsa_hw_exception_data hw_exception_data;
   1338	struct kfd_event *ev;
   1339	uint32_t id = KFD_FIRST_NONSIGNAL_EVENT_ID;
   1340	int user_gpu_id;
   1341
   1342	if (!p)
   1343		return; /* Presumably process exited. */
   1344
   1345	user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id);
   1346	if (unlikely(user_gpu_id == -EINVAL)) {
   1347		WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id);
   1348		return;
   1349	}
   1350
   1351	memset(&hw_exception_data, 0, sizeof(hw_exception_data));
   1352	hw_exception_data.gpu_id = user_gpu_id;
   1353	hw_exception_data.memory_lost = 1;
   1354	hw_exception_data.reset_cause = KFD_HW_EXCEPTION_ECC;
   1355
   1356	memset(&memory_exception_data, 0, sizeof(memory_exception_data));
   1357	memory_exception_data.ErrorType = KFD_MEM_ERR_POISON_CONSUMED;
   1358	memory_exception_data.gpu_id = user_gpu_id;
   1359	memory_exception_data.failure.imprecise = true;
   1360
   1361	rcu_read_lock();
   1362
   1363	idr_for_each_entry_continue(&p->event_idr, ev, id) {
   1364		if (ev->type == KFD_EVENT_TYPE_HW_EXCEPTION) {
   1365			spin_lock(&ev->lock);
   1366			ev->hw_exception_data = hw_exception_data;
   1367			set_event(ev);
   1368			spin_unlock(&ev->lock);
   1369		}
   1370
   1371		if (ev->type == KFD_EVENT_TYPE_MEMORY) {
   1372			spin_lock(&ev->lock);
   1373			ev->memory_exception_data = memory_exception_data;
   1374			set_event(ev);
   1375			spin_unlock(&ev->lock);
   1376		}
   1377	}
   1378
   1379	rcu_read_unlock();
   1380
   1381	/* user application will handle SIGBUS signal */
   1382	send_sig(SIGBUS, p->lead_thread, 0);
   1383
   1384	kfd_unref_process(p);
   1385}