cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

fixpt31_32.c (10915B)


      1/*
      2 * Copyright 2012-15 Advanced Micro Devices, Inc.
      3 *
      4 * Permission is hereby granted, free of charge, to any person obtaining a
      5 * copy of this software and associated documentation files (the "Software"),
      6 * to deal in the Software without restriction, including without limitation
      7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8 * and/or sell copies of the Software, and to permit persons to whom the
      9 * Software is furnished to do so, subject to the following conditions:
     10 *
     11 * The above copyright notice and this permission notice shall be included in
     12 * all copies or substantial portions of the Software.
     13 *
     14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
     18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
     19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
     20 * OTHER DEALINGS IN THE SOFTWARE.
     21 *
     22 * Authors: AMD
     23 *
     24 */
     25
     26#include "dm_services.h"
     27#include "include/fixed31_32.h"
     28
     29static const struct fixed31_32 dc_fixpt_two_pi = { 26986075409LL };
     30static const struct fixed31_32 dc_fixpt_ln2 = { 2977044471LL };
     31static const struct fixed31_32 dc_fixpt_ln2_div_2 = { 1488522236LL };
     32
     33static inline unsigned long long abs_i64(
     34	long long arg)
     35{
     36	if (arg > 0)
     37		return (unsigned long long)arg;
     38	else
     39		return (unsigned long long)(-arg);
     40}
     41
     42/*
     43 * @brief
     44 * result = dividend / divisor
     45 * *remainder = dividend % divisor
     46 */
     47static inline unsigned long long complete_integer_division_u64(
     48	unsigned long long dividend,
     49	unsigned long long divisor,
     50	unsigned long long *remainder)
     51{
     52	unsigned long long result;
     53
     54	ASSERT(divisor);
     55
     56	result = div64_u64_rem(dividend, divisor, remainder);
     57
     58	return result;
     59}
     60
     61
     62#define FRACTIONAL_PART_MASK \
     63	((1ULL << FIXED31_32_BITS_PER_FRACTIONAL_PART) - 1)
     64
     65#define GET_INTEGER_PART(x) \
     66	((x) >> FIXED31_32_BITS_PER_FRACTIONAL_PART)
     67
     68#define GET_FRACTIONAL_PART(x) \
     69	(FRACTIONAL_PART_MASK & (x))
     70
     71struct fixed31_32 dc_fixpt_from_fraction(long long numerator, long long denominator)
     72{
     73	struct fixed31_32 res;
     74
     75	bool arg1_negative = numerator < 0;
     76	bool arg2_negative = denominator < 0;
     77
     78	unsigned long long arg1_value = arg1_negative ? -numerator : numerator;
     79	unsigned long long arg2_value = arg2_negative ? -denominator : denominator;
     80
     81	unsigned long long remainder;
     82
     83	/* determine integer part */
     84
     85	unsigned long long res_value = complete_integer_division_u64(
     86		arg1_value, arg2_value, &remainder);
     87
     88	ASSERT(res_value <= LONG_MAX);
     89
     90	/* determine fractional part */
     91	{
     92		unsigned int i = FIXED31_32_BITS_PER_FRACTIONAL_PART;
     93
     94		do {
     95			remainder <<= 1;
     96
     97			res_value <<= 1;
     98
     99			if (remainder >= arg2_value) {
    100				res_value |= 1;
    101				remainder -= arg2_value;
    102			}
    103		} while (--i != 0);
    104	}
    105
    106	/* round up LSB */
    107	{
    108		unsigned long long summand = (remainder << 1) >= arg2_value;
    109
    110		ASSERT(res_value <= LLONG_MAX - summand);
    111
    112		res_value += summand;
    113	}
    114
    115	res.value = (long long)res_value;
    116
    117	if (arg1_negative ^ arg2_negative)
    118		res.value = -res.value;
    119
    120	return res;
    121}
    122
    123struct fixed31_32 dc_fixpt_mul(struct fixed31_32 arg1, struct fixed31_32 arg2)
    124{
    125	struct fixed31_32 res;
    126
    127	bool arg1_negative = arg1.value < 0;
    128	bool arg2_negative = arg2.value < 0;
    129
    130	unsigned long long arg1_value = arg1_negative ? -arg1.value : arg1.value;
    131	unsigned long long arg2_value = arg2_negative ? -arg2.value : arg2.value;
    132
    133	unsigned long long arg1_int = GET_INTEGER_PART(arg1_value);
    134	unsigned long long arg2_int = GET_INTEGER_PART(arg2_value);
    135
    136	unsigned long long arg1_fra = GET_FRACTIONAL_PART(arg1_value);
    137	unsigned long long arg2_fra = GET_FRACTIONAL_PART(arg2_value);
    138
    139	unsigned long long tmp;
    140
    141	res.value = arg1_int * arg2_int;
    142
    143	ASSERT(res.value <= LONG_MAX);
    144
    145	res.value <<= FIXED31_32_BITS_PER_FRACTIONAL_PART;
    146
    147	tmp = arg1_int * arg2_fra;
    148
    149	ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
    150
    151	res.value += tmp;
    152
    153	tmp = arg2_int * arg1_fra;
    154
    155	ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
    156
    157	res.value += tmp;
    158
    159	tmp = arg1_fra * arg2_fra;
    160
    161	tmp = (tmp >> FIXED31_32_BITS_PER_FRACTIONAL_PART) +
    162		(tmp >= (unsigned long long)dc_fixpt_half.value);
    163
    164	ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
    165
    166	res.value += tmp;
    167
    168	if (arg1_negative ^ arg2_negative)
    169		res.value = -res.value;
    170
    171	return res;
    172}
    173
    174struct fixed31_32 dc_fixpt_sqr(struct fixed31_32 arg)
    175{
    176	struct fixed31_32 res;
    177
    178	unsigned long long arg_value = abs_i64(arg.value);
    179
    180	unsigned long long arg_int = GET_INTEGER_PART(arg_value);
    181
    182	unsigned long long arg_fra = GET_FRACTIONAL_PART(arg_value);
    183
    184	unsigned long long tmp;
    185
    186	res.value = arg_int * arg_int;
    187
    188	ASSERT(res.value <= LONG_MAX);
    189
    190	res.value <<= FIXED31_32_BITS_PER_FRACTIONAL_PART;
    191
    192	tmp = arg_int * arg_fra;
    193
    194	ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
    195
    196	res.value += tmp;
    197
    198	ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
    199
    200	res.value += tmp;
    201
    202	tmp = arg_fra * arg_fra;
    203
    204	tmp = (tmp >> FIXED31_32_BITS_PER_FRACTIONAL_PART) +
    205		(tmp >= (unsigned long long)dc_fixpt_half.value);
    206
    207	ASSERT(tmp <= (unsigned long long)(LLONG_MAX - res.value));
    208
    209	res.value += tmp;
    210
    211	return res;
    212}
    213
    214struct fixed31_32 dc_fixpt_recip(struct fixed31_32 arg)
    215{
    216	/*
    217	 * @note
    218	 * Good idea to use Newton's method
    219	 */
    220
    221	ASSERT(arg.value);
    222
    223	return dc_fixpt_from_fraction(
    224		dc_fixpt_one.value,
    225		arg.value);
    226}
    227
    228struct fixed31_32 dc_fixpt_sinc(struct fixed31_32 arg)
    229{
    230	struct fixed31_32 square;
    231
    232	struct fixed31_32 res = dc_fixpt_one;
    233
    234	int n = 27;
    235
    236	struct fixed31_32 arg_norm = arg;
    237
    238	if (dc_fixpt_le(
    239		dc_fixpt_two_pi,
    240		dc_fixpt_abs(arg))) {
    241		arg_norm = dc_fixpt_sub(
    242			arg_norm,
    243			dc_fixpt_mul_int(
    244				dc_fixpt_two_pi,
    245				(int)div64_s64(
    246					arg_norm.value,
    247					dc_fixpt_two_pi.value)));
    248	}
    249
    250	square = dc_fixpt_sqr(arg_norm);
    251
    252	do {
    253		res = dc_fixpt_sub(
    254			dc_fixpt_one,
    255			dc_fixpt_div_int(
    256				dc_fixpt_mul(
    257					square,
    258					res),
    259				n * (n - 1)));
    260
    261		n -= 2;
    262	} while (n > 2);
    263
    264	if (arg.value != arg_norm.value)
    265		res = dc_fixpt_div(
    266			dc_fixpt_mul(res, arg_norm),
    267			arg);
    268
    269	return res;
    270}
    271
    272struct fixed31_32 dc_fixpt_sin(struct fixed31_32 arg)
    273{
    274	return dc_fixpt_mul(
    275		arg,
    276		dc_fixpt_sinc(arg));
    277}
    278
    279struct fixed31_32 dc_fixpt_cos(struct fixed31_32 arg)
    280{
    281	/* TODO implement argument normalization */
    282
    283	const struct fixed31_32 square = dc_fixpt_sqr(arg);
    284
    285	struct fixed31_32 res = dc_fixpt_one;
    286
    287	int n = 26;
    288
    289	do {
    290		res = dc_fixpt_sub(
    291			dc_fixpt_one,
    292			dc_fixpt_div_int(
    293				dc_fixpt_mul(
    294					square,
    295					res),
    296				n * (n - 1)));
    297
    298		n -= 2;
    299	} while (n != 0);
    300
    301	return res;
    302}
    303
    304/*
    305 * @brief
    306 * result = exp(arg),
    307 * where abs(arg) < 1
    308 *
    309 * Calculated as Taylor series.
    310 */
    311static struct fixed31_32 fixed31_32_exp_from_taylor_series(struct fixed31_32 arg)
    312{
    313	unsigned int n = 9;
    314
    315	struct fixed31_32 res = dc_fixpt_from_fraction(
    316		n + 2,
    317		n + 1);
    318	/* TODO find correct res */
    319
    320	ASSERT(dc_fixpt_lt(arg, dc_fixpt_one));
    321
    322	do
    323		res = dc_fixpt_add(
    324			dc_fixpt_one,
    325			dc_fixpt_div_int(
    326				dc_fixpt_mul(
    327					arg,
    328					res),
    329				n));
    330	while (--n != 1);
    331
    332	return dc_fixpt_add(
    333		dc_fixpt_one,
    334		dc_fixpt_mul(
    335			arg,
    336			res));
    337}
    338
    339struct fixed31_32 dc_fixpt_exp(struct fixed31_32 arg)
    340{
    341	/*
    342	 * @brief
    343	 * Main equation is:
    344	 * exp(x) = exp(r + m * ln(2)) = (1 << m) * exp(r),
    345	 * where m = round(x / ln(2)), r = x - m * ln(2)
    346	 */
    347
    348	if (dc_fixpt_le(
    349		dc_fixpt_ln2_div_2,
    350		dc_fixpt_abs(arg))) {
    351		int m = dc_fixpt_round(
    352			dc_fixpt_div(
    353				arg,
    354				dc_fixpt_ln2));
    355
    356		struct fixed31_32 r = dc_fixpt_sub(
    357			arg,
    358			dc_fixpt_mul_int(
    359				dc_fixpt_ln2,
    360				m));
    361
    362		ASSERT(m != 0);
    363
    364		ASSERT(dc_fixpt_lt(
    365			dc_fixpt_abs(r),
    366			dc_fixpt_one));
    367
    368		if (m > 0)
    369			return dc_fixpt_shl(
    370				fixed31_32_exp_from_taylor_series(r),
    371				(unsigned char)m);
    372		else
    373			return dc_fixpt_div_int(
    374				fixed31_32_exp_from_taylor_series(r),
    375				1LL << -m);
    376	} else if (arg.value != 0)
    377		return fixed31_32_exp_from_taylor_series(arg);
    378	else
    379		return dc_fixpt_one;
    380}
    381
    382struct fixed31_32 dc_fixpt_log(struct fixed31_32 arg)
    383{
    384	struct fixed31_32 res = dc_fixpt_neg(dc_fixpt_one);
    385	/* TODO improve 1st estimation */
    386
    387	struct fixed31_32 error;
    388
    389	ASSERT(arg.value > 0);
    390	/* TODO if arg is negative, return NaN */
    391	/* TODO if arg is zero, return -INF */
    392
    393	do {
    394		struct fixed31_32 res1 = dc_fixpt_add(
    395			dc_fixpt_sub(
    396				res,
    397				dc_fixpt_one),
    398			dc_fixpt_div(
    399				arg,
    400				dc_fixpt_exp(res)));
    401
    402		error = dc_fixpt_sub(
    403			res,
    404			res1);
    405
    406		res = res1;
    407		/* TODO determine max_allowed_error based on quality of exp() */
    408	} while (abs_i64(error.value) > 100ULL);
    409
    410	return res;
    411}
    412
    413
    414/* this function is a generic helper to translate fixed point value to
    415 * specified integer format that will consist of integer_bits integer part and
    416 * fractional_bits fractional part. For example it is used in
    417 * dc_fixpt_u2d19 to receive 2 bits integer part and 19 bits fractional
    418 * part in 32 bits. It is used in hw programming (scaler)
    419 */
    420
    421static inline unsigned int ux_dy(
    422	long long value,
    423	unsigned int integer_bits,
    424	unsigned int fractional_bits)
    425{
    426	/* 1. create mask of integer part */
    427	unsigned int result = (1 << integer_bits) - 1;
    428	/* 2. mask out fractional part */
    429	unsigned int fractional_part = FRACTIONAL_PART_MASK & value;
    430	/* 3. shrink fixed point integer part to be of integer_bits width*/
    431	result &= GET_INTEGER_PART(value);
    432	/* 4. make space for fractional part to be filled in after integer */
    433	result <<= fractional_bits;
    434	/* 5. shrink fixed point fractional part to of fractional_bits width*/
    435	fractional_part >>= FIXED31_32_BITS_PER_FRACTIONAL_PART - fractional_bits;
    436	/* 6. merge the result */
    437	return result | fractional_part;
    438}
    439
    440static inline unsigned int clamp_ux_dy(
    441	long long value,
    442	unsigned int integer_bits,
    443	unsigned int fractional_bits,
    444	unsigned int min_clamp)
    445{
    446	unsigned int truncated_val = ux_dy(value, integer_bits, fractional_bits);
    447
    448	if (value >= (1LL << (integer_bits + FIXED31_32_BITS_PER_FRACTIONAL_PART)))
    449		return (1 << (integer_bits + fractional_bits)) - 1;
    450	else if (truncated_val > min_clamp)
    451		return truncated_val;
    452	else
    453		return min_clamp;
    454}
    455
    456unsigned int dc_fixpt_u4d19(struct fixed31_32 arg)
    457{
    458	return ux_dy(arg.value, 4, 19);
    459}
    460
    461unsigned int dc_fixpt_u3d19(struct fixed31_32 arg)
    462{
    463	return ux_dy(arg.value, 3, 19);
    464}
    465
    466unsigned int dc_fixpt_u2d19(struct fixed31_32 arg)
    467{
    468	return ux_dy(arg.value, 2, 19);
    469}
    470
    471unsigned int dc_fixpt_u0d19(struct fixed31_32 arg)
    472{
    473	return ux_dy(arg.value, 0, 19);
    474}
    475
    476unsigned int dc_fixpt_clamp_u0d14(struct fixed31_32 arg)
    477{
    478	return clamp_ux_dy(arg.value, 0, 14, 1);
    479}
    480
    481unsigned int dc_fixpt_clamp_u0d10(struct fixed31_32 arg)
    482{
    483	return clamp_ux_dy(arg.value, 0, 10, 1);
    484}
    485
    486int dc_fixpt_s4d19(struct fixed31_32 arg)
    487{
    488	if (arg.value < 0)
    489		return -(int)ux_dy(dc_fixpt_abs(arg).value, 4, 19);
    490	else
    491		return ux_dy(arg.value, 4, 19);
    492}