dce110_timing_generator.c (59168B)
1/* 2 * Copyright 2012-15 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: AMD 23 * 24 */ 25 26#include "dm_services.h" 27 28/* include DCE11 register header files */ 29#include "dce/dce_11_0_d.h" 30#include "dce/dce_11_0_sh_mask.h" 31 32#include "dc_types.h" 33#include "dc_bios_types.h" 34#include "dc.h" 35 36#include "include/grph_object_id.h" 37#include "include/logger_interface.h" 38#include "dce110_timing_generator.h" 39 40#include "timing_generator.h" 41 42 43#define NUMBER_OF_FRAME_TO_WAIT_ON_TRIGGERED_RESET 10 44 45#define MAX_H_TOTAL (CRTC_H_TOTAL__CRTC_H_TOTAL_MASK + 1) 46#define MAX_V_TOTAL (CRTC_V_TOTAL__CRTC_V_TOTAL_MASKhw + 1) 47 48#define CRTC_REG(reg) (reg + tg110->offsets.crtc) 49#define DCP_REG(reg) (reg + tg110->offsets.dcp) 50 51/* Flowing register offsets are same in files of 52 * dce/dce_11_0_d.h 53 * dce/vi_polaris10_p/vi_polaris10_d.h 54 * 55 * So we can create dce110 timing generator to use it. 56 */ 57 58 59/* 60* apply_front_porch_workaround 61* 62* This is a workaround for a bug that has existed since R5xx and has not been 63* fixed keep Front porch at minimum 2 for Interlaced mode or 1 for progressive. 64*/ 65static void dce110_timing_generator_apply_front_porch_workaround( 66 struct timing_generator *tg, 67 struct dc_crtc_timing *timing) 68{ 69 if (timing->flags.INTERLACE == 1) { 70 if (timing->v_front_porch < 2) 71 timing->v_front_porch = 2; 72 } else { 73 if (timing->v_front_porch < 1) 74 timing->v_front_porch = 1; 75 } 76} 77 78/* 79 ***************************************************************************** 80 * Function: is_in_vertical_blank 81 * 82 * @brief 83 * check the current status of CRTC to check if we are in Vertical Blank 84 * regioneased" state 85 * 86 * @return 87 * true if currently in blank region, false otherwise 88 * 89 ***************************************************************************** 90 */ 91static bool dce110_timing_generator_is_in_vertical_blank( 92 struct timing_generator *tg) 93{ 94 uint32_t addr = 0; 95 uint32_t value = 0; 96 uint32_t field = 0; 97 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); 98 99 addr = CRTC_REG(mmCRTC_STATUS); 100 value = dm_read_reg(tg->ctx, addr); 101 field = get_reg_field_value(value, CRTC_STATUS, CRTC_V_BLANK); 102 return field == 1; 103} 104 105void dce110_timing_generator_set_early_control( 106 struct timing_generator *tg, 107 uint32_t early_cntl) 108{ 109 uint32_t regval; 110 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); 111 uint32_t address = CRTC_REG(mmCRTC_CONTROL); 112 113 regval = dm_read_reg(tg->ctx, address); 114 set_reg_field_value(regval, early_cntl, 115 CRTC_CONTROL, CRTC_HBLANK_EARLY_CONTROL); 116 dm_write_reg(tg->ctx, address, regval); 117} 118 119/* 120 * Enable CRTC 121 * Enable CRTC - call ASIC Control Object to enable Timing generator. 122 */ 123bool dce110_timing_generator_enable_crtc(struct timing_generator *tg) 124{ 125 enum bp_result result; 126 127 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); 128 uint32_t value = 0; 129 130 /* 131 * 3 is used to make sure V_UPDATE occurs at the beginning of the first 132 * line of vertical front porch 133 */ 134 set_reg_field_value( 135 value, 136 0, 137 CRTC_MASTER_UPDATE_MODE, 138 MASTER_UPDATE_MODE); 139 140 dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_MASTER_UPDATE_MODE), value); 141 142 /* TODO: may want this on to catch underflow */ 143 value = 0; 144 dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_MASTER_UPDATE_LOCK), value); 145 146 result = tg->bp->funcs->enable_crtc(tg->bp, tg110->controller_id, true); 147 148 return result == BP_RESULT_OK; 149} 150 151void dce110_timing_generator_program_blank_color( 152 struct timing_generator *tg, 153 const struct tg_color *black_color) 154{ 155 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); 156 uint32_t addr = CRTC_REG(mmCRTC_BLACK_COLOR); 157 uint32_t value = dm_read_reg(tg->ctx, addr); 158 159 set_reg_field_value( 160 value, 161 black_color->color_b_cb, 162 CRTC_BLACK_COLOR, 163 CRTC_BLACK_COLOR_B_CB); 164 set_reg_field_value( 165 value, 166 black_color->color_g_y, 167 CRTC_BLACK_COLOR, 168 CRTC_BLACK_COLOR_G_Y); 169 set_reg_field_value( 170 value, 171 black_color->color_r_cr, 172 CRTC_BLACK_COLOR, 173 CRTC_BLACK_COLOR_R_CR); 174 175 dm_write_reg(tg->ctx, addr, value); 176} 177 178/* 179 ***************************************************************************** 180 * Function: disable_stereo 181 * 182 * @brief 183 * Disables active stereo on controller 184 * Frame Packing need to be disabled in vBlank or when CRTC not running 185 ***************************************************************************** 186 */ 187#if 0 188@TODOSTEREO 189static void disable_stereo(struct timing_generator *tg) 190{ 191 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); 192 uint32_t addr = CRTC_REG(mmCRTC_3D_STRUCTURE_CONTROL); 193 uint32_t value = 0; 194 uint32_t test = 0; 195 uint32_t field = 0; 196 uint32_t struc_en = 0; 197 uint32_t struc_stereo_sel_ovr = 0; 198 199 value = dm_read_reg(tg->ctx, addr); 200 struc_en = get_reg_field_value( 201 value, 202 CRTC_3D_STRUCTURE_CONTROL, 203 CRTC_3D_STRUCTURE_EN); 204 205 struc_stereo_sel_ovr = get_reg_field_value( 206 value, 207 CRTC_3D_STRUCTURE_CONTROL, 208 CRTC_3D_STRUCTURE_STEREO_SEL_OVR); 209 210 /* 211 * When disabling Frame Packing in 2 step mode, we need to program both 212 * registers at the same frame 213 * Programming it in the beginning of VActive makes sure we are ok 214 */ 215 216 if (struc_en != 0 && struc_stereo_sel_ovr == 0) { 217 tg->funcs->wait_for_vblank(tg); 218 tg->funcs->wait_for_vactive(tg); 219 } 220 221 value = 0; 222 dm_write_reg(tg->ctx, addr, value); 223 224 addr = tg->regs[IDX_CRTC_STEREO_CONTROL]; 225 dm_write_reg(tg->ctx, addr, value); 226} 227#endif 228 229/* 230 * disable_crtc - call ASIC Control Object to disable Timing generator. 231 */ 232bool dce110_timing_generator_disable_crtc(struct timing_generator *tg) 233{ 234 enum bp_result result; 235 236 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); 237 238 result = tg->bp->funcs->enable_crtc(tg->bp, tg110->controller_id, false); 239 240 /* Need to make sure stereo is disabled according to the DCE5.0 spec */ 241 242 /* 243 * @TODOSTEREO call this when adding stereo support 244 * tg->funcs->disable_stereo(tg); 245 */ 246 247 return result == BP_RESULT_OK; 248} 249 250/* 251 * program_horz_count_by_2 252 * Programs DxCRTC_HORZ_COUNT_BY2_EN - 1 for DVI 30bpp mode, 0 otherwise 253 */ 254static void program_horz_count_by_2( 255 struct timing_generator *tg, 256 const struct dc_crtc_timing *timing) 257{ 258 uint32_t regval; 259 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); 260 261 regval = dm_read_reg(tg->ctx, 262 CRTC_REG(mmCRTC_COUNT_CONTROL)); 263 264 set_reg_field_value(regval, 0, CRTC_COUNT_CONTROL, 265 CRTC_HORZ_COUNT_BY2_EN); 266 267 if (timing->flags.HORZ_COUNT_BY_TWO) 268 set_reg_field_value(regval, 1, CRTC_COUNT_CONTROL, 269 CRTC_HORZ_COUNT_BY2_EN); 270 271 dm_write_reg(tg->ctx, 272 CRTC_REG(mmCRTC_COUNT_CONTROL), regval); 273} 274 275/* 276 * program_timing_generator 277 * Program CRTC Timing Registers - DxCRTC_H_*, DxCRTC_V_*, Pixel repetition. 278 * Call ASIC Control Object to program Timings. 279 */ 280bool dce110_timing_generator_program_timing_generator( 281 struct timing_generator *tg, 282 const struct dc_crtc_timing *dc_crtc_timing) 283{ 284 enum bp_result result; 285 struct bp_hw_crtc_timing_parameters bp_params; 286 struct dc_crtc_timing patched_crtc_timing; 287 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); 288 289 uint32_t vsync_offset = dc_crtc_timing->v_border_bottom + 290 dc_crtc_timing->v_front_porch; 291 uint32_t v_sync_start =dc_crtc_timing->v_addressable + vsync_offset; 292 293 uint32_t hsync_offset = dc_crtc_timing->h_border_right + 294 dc_crtc_timing->h_front_porch; 295 uint32_t h_sync_start = dc_crtc_timing->h_addressable + hsync_offset; 296 297 memset(&bp_params, 0, sizeof(struct bp_hw_crtc_timing_parameters)); 298 299 /* Due to an asic bug we need to apply the Front Porch workaround prior 300 * to programming the timing. 301 */ 302 303 patched_crtc_timing = *dc_crtc_timing; 304 305 dce110_timing_generator_apply_front_porch_workaround(tg, &patched_crtc_timing); 306 307 bp_params.controller_id = tg110->controller_id; 308 309 bp_params.h_total = patched_crtc_timing.h_total; 310 bp_params.h_addressable = 311 patched_crtc_timing.h_addressable; 312 bp_params.v_total = patched_crtc_timing.v_total; 313 bp_params.v_addressable = patched_crtc_timing.v_addressable; 314 315 bp_params.h_sync_start = h_sync_start; 316 bp_params.h_sync_width = patched_crtc_timing.h_sync_width; 317 bp_params.v_sync_start = v_sync_start; 318 bp_params.v_sync_width = patched_crtc_timing.v_sync_width; 319 320 /* Set overscan */ 321 bp_params.h_overscan_left = 322 patched_crtc_timing.h_border_left; 323 bp_params.h_overscan_right = 324 patched_crtc_timing.h_border_right; 325 bp_params.v_overscan_top = patched_crtc_timing.v_border_top; 326 bp_params.v_overscan_bottom = 327 patched_crtc_timing.v_border_bottom; 328 329 /* Set flags */ 330 if (patched_crtc_timing.flags.HSYNC_POSITIVE_POLARITY == 1) 331 bp_params.flags.HSYNC_POSITIVE_POLARITY = 1; 332 333 if (patched_crtc_timing.flags.VSYNC_POSITIVE_POLARITY == 1) 334 bp_params.flags.VSYNC_POSITIVE_POLARITY = 1; 335 336 if (patched_crtc_timing.flags.INTERLACE == 1) 337 bp_params.flags.INTERLACE = 1; 338 339 if (patched_crtc_timing.flags.HORZ_COUNT_BY_TWO == 1) 340 bp_params.flags.HORZ_COUNT_BY_TWO = 1; 341 342 result = tg->bp->funcs->program_crtc_timing(tg->bp, &bp_params); 343 344 program_horz_count_by_2(tg, &patched_crtc_timing); 345 346 tg110->base.funcs->enable_advanced_request(tg, true, &patched_crtc_timing); 347 348 /* Enable stereo - only when we need to pack 3D frame. Other types 349 * of stereo handled in explicit call */ 350 351 return result == BP_RESULT_OK; 352} 353 354/* 355 ***************************************************************************** 356 * Function: set_drr 357 * 358 * @brief 359 * Program dynamic refresh rate registers m_DxCRTC_V_TOTAL_*. 360 * 361 * @param [in] pHwCrtcTiming: point to H 362 * wCrtcTiming struct 363 ***************************************************************************** 364 */ 365void dce110_timing_generator_set_drr( 366 struct timing_generator *tg, 367 const struct drr_params *params) 368{ 369 /* register values */ 370 uint32_t v_total_min = 0; 371 uint32_t v_total_max = 0; 372 uint32_t v_total_cntl = 0; 373 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); 374 375 uint32_t addr = 0; 376 377 addr = CRTC_REG(mmCRTC_V_TOTAL_MIN); 378 v_total_min = dm_read_reg(tg->ctx, addr); 379 380 addr = CRTC_REG(mmCRTC_V_TOTAL_MAX); 381 v_total_max = dm_read_reg(tg->ctx, addr); 382 383 addr = CRTC_REG(mmCRTC_V_TOTAL_CONTROL); 384 v_total_cntl = dm_read_reg(tg->ctx, addr); 385 386 if (params != NULL && 387 params->vertical_total_max > 0 && 388 params->vertical_total_min > 0) { 389 390 set_reg_field_value(v_total_max, 391 params->vertical_total_max - 1, 392 CRTC_V_TOTAL_MAX, 393 CRTC_V_TOTAL_MAX); 394 395 set_reg_field_value(v_total_min, 396 params->vertical_total_min - 1, 397 CRTC_V_TOTAL_MIN, 398 CRTC_V_TOTAL_MIN); 399 400 set_reg_field_value(v_total_cntl, 401 1, 402 CRTC_V_TOTAL_CONTROL, 403 CRTC_V_TOTAL_MIN_SEL); 404 405 set_reg_field_value(v_total_cntl, 406 1, 407 CRTC_V_TOTAL_CONTROL, 408 CRTC_V_TOTAL_MAX_SEL); 409 410 set_reg_field_value(v_total_cntl, 411 0, 412 CRTC_V_TOTAL_CONTROL, 413 CRTC_FORCE_LOCK_ON_EVENT); 414 set_reg_field_value(v_total_cntl, 415 0, 416 CRTC_V_TOTAL_CONTROL, 417 CRTC_FORCE_LOCK_TO_MASTER_VSYNC); 418 419 set_reg_field_value(v_total_cntl, 420 0, 421 CRTC_V_TOTAL_CONTROL, 422 CRTC_SET_V_TOTAL_MIN_MASK_EN); 423 424 set_reg_field_value(v_total_cntl, 425 0, 426 CRTC_V_TOTAL_CONTROL, 427 CRTC_SET_V_TOTAL_MIN_MASK); 428 } else { 429 set_reg_field_value(v_total_cntl, 430 0, 431 CRTC_V_TOTAL_CONTROL, 432 CRTC_SET_V_TOTAL_MIN_MASK); 433 set_reg_field_value(v_total_cntl, 434 0, 435 CRTC_V_TOTAL_CONTROL, 436 CRTC_V_TOTAL_MIN_SEL); 437 set_reg_field_value(v_total_cntl, 438 0, 439 CRTC_V_TOTAL_CONTROL, 440 CRTC_V_TOTAL_MAX_SEL); 441 set_reg_field_value(v_total_min, 442 0, 443 CRTC_V_TOTAL_MIN, 444 CRTC_V_TOTAL_MIN); 445 set_reg_field_value(v_total_max, 446 0, 447 CRTC_V_TOTAL_MAX, 448 CRTC_V_TOTAL_MAX); 449 set_reg_field_value(v_total_cntl, 450 0, 451 CRTC_V_TOTAL_CONTROL, 452 CRTC_FORCE_LOCK_ON_EVENT); 453 set_reg_field_value(v_total_cntl, 454 0, 455 CRTC_V_TOTAL_CONTROL, 456 CRTC_FORCE_LOCK_TO_MASTER_VSYNC); 457 } 458 459 addr = CRTC_REG(mmCRTC_V_TOTAL_MIN); 460 dm_write_reg(tg->ctx, addr, v_total_min); 461 462 addr = CRTC_REG(mmCRTC_V_TOTAL_MAX); 463 dm_write_reg(tg->ctx, addr, v_total_max); 464 465 addr = CRTC_REG(mmCRTC_V_TOTAL_CONTROL); 466 dm_write_reg(tg->ctx, addr, v_total_cntl); 467} 468 469void dce110_timing_generator_set_static_screen_control( 470 struct timing_generator *tg, 471 uint32_t event_triggers, 472 uint32_t num_frames) 473{ 474 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); 475 uint32_t static_screen_cntl = 0; 476 uint32_t addr = 0; 477 478 // By register spec, it only takes 8 bit value 479 if (num_frames > 0xFF) 480 num_frames = 0xFF; 481 482 addr = CRTC_REG(mmCRTC_STATIC_SCREEN_CONTROL); 483 static_screen_cntl = dm_read_reg(tg->ctx, addr); 484 485 set_reg_field_value(static_screen_cntl, 486 event_triggers, 487 CRTC_STATIC_SCREEN_CONTROL, 488 CRTC_STATIC_SCREEN_EVENT_MASK); 489 490 set_reg_field_value(static_screen_cntl, 491 num_frames, 492 CRTC_STATIC_SCREEN_CONTROL, 493 CRTC_STATIC_SCREEN_FRAME_COUNT); 494 495 dm_write_reg(tg->ctx, addr, static_screen_cntl); 496} 497 498/* 499 * get_vblank_counter 500 * 501 * @brief 502 * Get counter for vertical blanks. use register CRTC_STATUS_FRAME_COUNT which 503 * holds the counter of frames. 504 * 505 * @param 506 * struct timing_generator *tg - [in] timing generator which controls the 507 * desired CRTC 508 * 509 * @return 510 * Counter of frames, which should equal to number of vblanks. 511 */ 512uint32_t dce110_timing_generator_get_vblank_counter(struct timing_generator *tg) 513{ 514 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); 515 uint32_t addr = CRTC_REG(mmCRTC_STATUS_FRAME_COUNT); 516 uint32_t value = dm_read_reg(tg->ctx, addr); 517 uint32_t field = get_reg_field_value( 518 value, CRTC_STATUS_FRAME_COUNT, CRTC_FRAME_COUNT); 519 520 return field; 521} 522 523/* 524 ***************************************************************************** 525 * Function: dce110_timing_generator_get_position 526 * 527 * @brief 528 * Returns CRTC vertical/horizontal counters 529 * 530 * @param [out] position 531 ***************************************************************************** 532 */ 533void dce110_timing_generator_get_position(struct timing_generator *tg, 534 struct crtc_position *position) 535{ 536 uint32_t value; 537 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); 538 539 value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_STATUS_POSITION)); 540 541 position->horizontal_count = get_reg_field_value( 542 value, 543 CRTC_STATUS_POSITION, 544 CRTC_HORZ_COUNT); 545 546 position->vertical_count = get_reg_field_value( 547 value, 548 CRTC_STATUS_POSITION, 549 CRTC_VERT_COUNT); 550 551 value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_NOM_VERT_POSITION)); 552 553 position->nominal_vcount = get_reg_field_value( 554 value, 555 CRTC_NOM_VERT_POSITION, 556 CRTC_VERT_COUNT_NOM); 557} 558 559/* 560 ***************************************************************************** 561 * Function: get_crtc_scanoutpos 562 * 563 * @brief 564 * Returns CRTC vertical/horizontal counters 565 * 566 * @param [out] vpos, hpos 567 ***************************************************************************** 568 */ 569void dce110_timing_generator_get_crtc_scanoutpos( 570 struct timing_generator *tg, 571 uint32_t *v_blank_start, 572 uint32_t *v_blank_end, 573 uint32_t *h_position, 574 uint32_t *v_position) 575{ 576 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); 577 struct crtc_position position; 578 579 uint32_t value = dm_read_reg(tg->ctx, 580 CRTC_REG(mmCRTC_V_BLANK_START_END)); 581 582 *v_blank_start = get_reg_field_value(value, 583 CRTC_V_BLANK_START_END, 584 CRTC_V_BLANK_START); 585 *v_blank_end = get_reg_field_value(value, 586 CRTC_V_BLANK_START_END, 587 CRTC_V_BLANK_END); 588 589 dce110_timing_generator_get_position( 590 tg, &position); 591 592 *h_position = position.horizontal_count; 593 *v_position = position.vertical_count; 594} 595 596/* TODO: is it safe to assume that mask/shift of Primary and Underlay 597 * are the same? 598 * For example: today CRTC_H_TOTAL == CRTCV_H_TOTAL but is it always 599 * guaranteed? */ 600void dce110_timing_generator_program_blanking( 601 struct timing_generator *tg, 602 const struct dc_crtc_timing *timing) 603{ 604 uint32_t vsync_offset = timing->v_border_bottom + 605 timing->v_front_porch; 606 uint32_t v_sync_start =timing->v_addressable + vsync_offset; 607 608 uint32_t hsync_offset = timing->h_border_right + 609 timing->h_front_porch; 610 uint32_t h_sync_start = timing->h_addressable + hsync_offset; 611 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); 612 613 struct dc_context *ctx = tg->ctx; 614 uint32_t value = 0; 615 uint32_t addr = 0; 616 uint32_t tmp = 0; 617 618 addr = CRTC_REG(mmCRTC_H_TOTAL); 619 value = dm_read_reg(ctx, addr); 620 set_reg_field_value( 621 value, 622 timing->h_total - 1, 623 CRTC_H_TOTAL, 624 CRTC_H_TOTAL); 625 dm_write_reg(ctx, addr, value); 626 627 addr = CRTC_REG(mmCRTC_V_TOTAL); 628 value = dm_read_reg(ctx, addr); 629 set_reg_field_value( 630 value, 631 timing->v_total - 1, 632 CRTC_V_TOTAL, 633 CRTC_V_TOTAL); 634 dm_write_reg(ctx, addr, value); 635 636 /* In case of V_TOTAL_CONTROL is on, make sure V_TOTAL_MAX and 637 * V_TOTAL_MIN are equal to V_TOTAL. 638 */ 639 addr = CRTC_REG(mmCRTC_V_TOTAL_MAX); 640 value = dm_read_reg(ctx, addr); 641 set_reg_field_value( 642 value, 643 timing->v_total - 1, 644 CRTC_V_TOTAL_MAX, 645 CRTC_V_TOTAL_MAX); 646 dm_write_reg(ctx, addr, value); 647 648 addr = CRTC_REG(mmCRTC_V_TOTAL_MIN); 649 value = dm_read_reg(ctx, addr); 650 set_reg_field_value( 651 value, 652 timing->v_total - 1, 653 CRTC_V_TOTAL_MIN, 654 CRTC_V_TOTAL_MIN); 655 dm_write_reg(ctx, addr, value); 656 657 addr = CRTC_REG(mmCRTC_H_BLANK_START_END); 658 value = dm_read_reg(ctx, addr); 659 660 tmp = timing->h_total - 661 (h_sync_start + timing->h_border_left); 662 663 set_reg_field_value( 664 value, 665 tmp, 666 CRTC_H_BLANK_START_END, 667 CRTC_H_BLANK_END); 668 669 tmp = tmp + timing->h_addressable + 670 timing->h_border_left + timing->h_border_right; 671 672 set_reg_field_value( 673 value, 674 tmp, 675 CRTC_H_BLANK_START_END, 676 CRTC_H_BLANK_START); 677 678 dm_write_reg(ctx, addr, value); 679 680 addr = CRTC_REG(mmCRTC_V_BLANK_START_END); 681 value = dm_read_reg(ctx, addr); 682 683 tmp = timing->v_total - (v_sync_start + timing->v_border_top); 684 685 set_reg_field_value( 686 value, 687 tmp, 688 CRTC_V_BLANK_START_END, 689 CRTC_V_BLANK_END); 690 691 tmp = tmp + timing->v_addressable + timing->v_border_top + 692 timing->v_border_bottom; 693 694 set_reg_field_value( 695 value, 696 tmp, 697 CRTC_V_BLANK_START_END, 698 CRTC_V_BLANK_START); 699 700 dm_write_reg(ctx, addr, value); 701} 702 703void dce110_timing_generator_set_test_pattern( 704 struct timing_generator *tg, 705 /* TODO: replace 'controller_dp_test_pattern' by 'test_pattern_mode' 706 * because this is not DP-specific (which is probably somewhere in DP 707 * encoder) */ 708 enum controller_dp_test_pattern test_pattern, 709 enum dc_color_depth color_depth) 710{ 711 struct dc_context *ctx = tg->ctx; 712 uint32_t value; 713 uint32_t addr; 714 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); 715 enum test_pattern_color_format bit_depth; 716 enum test_pattern_dyn_range dyn_range; 717 enum test_pattern_mode mode; 718 /* color ramp generator mixes 16-bits color */ 719 uint32_t src_bpc = 16; 720 /* requested bpc */ 721 uint32_t dst_bpc; 722 uint32_t index; 723 /* RGB values of the color bars. 724 * Produce two RGB colors: RGB0 - white (all Fs) 725 * and RGB1 - black (all 0s) 726 * (three RGB components for two colors) 727 */ 728 uint16_t src_color[6] = {0xFFFF, 0xFFFF, 0xFFFF, 0x0000, 729 0x0000, 0x0000}; 730 /* dest color (converted to the specified color format) */ 731 uint16_t dst_color[6]; 732 uint32_t inc_base; 733 734 /* translate to bit depth */ 735 switch (color_depth) { 736 case COLOR_DEPTH_666: 737 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_6; 738 break; 739 case COLOR_DEPTH_888: 740 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8; 741 break; 742 case COLOR_DEPTH_101010: 743 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_10; 744 break; 745 case COLOR_DEPTH_121212: 746 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_12; 747 break; 748 default: 749 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8; 750 break; 751 } 752 753 switch (test_pattern) { 754 case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES: 755 case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA: 756 { 757 dyn_range = (test_pattern == 758 CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA ? 759 TEST_PATTERN_DYN_RANGE_CEA : 760 TEST_PATTERN_DYN_RANGE_VESA); 761 mode = TEST_PATTERN_MODE_COLORSQUARES_RGB; 762 value = 0; 763 addr = CRTC_REG(mmCRTC_TEST_PATTERN_PARAMETERS); 764 765 set_reg_field_value( 766 value, 767 6, 768 CRTC_TEST_PATTERN_PARAMETERS, 769 CRTC_TEST_PATTERN_VRES); 770 set_reg_field_value( 771 value, 772 6, 773 CRTC_TEST_PATTERN_PARAMETERS, 774 CRTC_TEST_PATTERN_HRES); 775 776 dm_write_reg(ctx, addr, value); 777 778 addr = CRTC_REG(mmCRTC_TEST_PATTERN_CONTROL); 779 value = 0; 780 781 set_reg_field_value( 782 value, 783 1, 784 CRTC_TEST_PATTERN_CONTROL, 785 CRTC_TEST_PATTERN_EN); 786 787 set_reg_field_value( 788 value, 789 mode, 790 CRTC_TEST_PATTERN_CONTROL, 791 CRTC_TEST_PATTERN_MODE); 792 793 set_reg_field_value( 794 value, 795 dyn_range, 796 CRTC_TEST_PATTERN_CONTROL, 797 CRTC_TEST_PATTERN_DYNAMIC_RANGE); 798 set_reg_field_value( 799 value, 800 bit_depth, 801 CRTC_TEST_PATTERN_CONTROL, 802 CRTC_TEST_PATTERN_COLOR_FORMAT); 803 dm_write_reg(ctx, addr, value); 804 } 805 break; 806 807 case CONTROLLER_DP_TEST_PATTERN_VERTICALBARS: 808 case CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS: 809 { 810 mode = (test_pattern == 811 CONTROLLER_DP_TEST_PATTERN_VERTICALBARS ? 812 TEST_PATTERN_MODE_VERTICALBARS : 813 TEST_PATTERN_MODE_HORIZONTALBARS); 814 815 switch (bit_depth) { 816 case TEST_PATTERN_COLOR_FORMAT_BPC_6: 817 dst_bpc = 6; 818 break; 819 case TEST_PATTERN_COLOR_FORMAT_BPC_8: 820 dst_bpc = 8; 821 break; 822 case TEST_PATTERN_COLOR_FORMAT_BPC_10: 823 dst_bpc = 10; 824 break; 825 default: 826 dst_bpc = 8; 827 break; 828 } 829 830 /* adjust color to the required colorFormat */ 831 for (index = 0; index < 6; index++) { 832 /* dst = 2^dstBpc * src / 2^srcBpc = src >> 833 * (srcBpc - dstBpc); 834 */ 835 dst_color[index] = 836 src_color[index] >> (src_bpc - dst_bpc); 837 /* CRTC_TEST_PATTERN_DATA has 16 bits, 838 * lowest 6 are hardwired to ZERO 839 * color bits should be left aligned aligned to MSB 840 * XXXXXXXXXX000000 for 10 bit, 841 * XXXXXXXX00000000 for 8 bit and XXXXXX0000000000 for 6 842 */ 843 dst_color[index] <<= (16 - dst_bpc); 844 } 845 846 value = 0; 847 addr = CRTC_REG(mmCRTC_TEST_PATTERN_PARAMETERS); 848 dm_write_reg(ctx, addr, value); 849 850 /* We have to write the mask before data, similar to pipeline. 851 * For example, for 8 bpc, if we want RGB0 to be magenta, 852 * and RGB1 to be cyan, 853 * we need to make 7 writes: 854 * MASK DATA 855 * 000001 00000000 00000000 set mask to R0 856 * 000010 11111111 00000000 R0 255, 0xFF00, set mask to G0 857 * 000100 00000000 00000000 G0 0, 0x0000, set mask to B0 858 * 001000 11111111 00000000 B0 255, 0xFF00, set mask to R1 859 * 010000 00000000 00000000 R1 0, 0x0000, set mask to G1 860 * 100000 11111111 00000000 G1 255, 0xFF00, set mask to B1 861 * 100000 11111111 00000000 B1 255, 0xFF00 862 * 863 * we will make a loop of 6 in which we prepare the mask, 864 * then write, then prepare the color for next write. 865 * first iteration will write mask only, 866 * but each next iteration color prepared in 867 * previous iteration will be written within new mask, 868 * the last component will written separately, 869 * mask is not changing between 6th and 7th write 870 * and color will be prepared by last iteration 871 */ 872 873 /* write color, color values mask in CRTC_TEST_PATTERN_MASK 874 * is B1, G1, R1, B0, G0, R0 875 */ 876 value = 0; 877 addr = CRTC_REG(mmCRTC_TEST_PATTERN_COLOR); 878 for (index = 0; index < 6; index++) { 879 /* prepare color mask, first write PATTERN_DATA 880 * will have all zeros 881 */ 882 set_reg_field_value( 883 value, 884 (1 << index), 885 CRTC_TEST_PATTERN_COLOR, 886 CRTC_TEST_PATTERN_MASK); 887 /* write color component */ 888 dm_write_reg(ctx, addr, value); 889 /* prepare next color component, 890 * will be written in the next iteration 891 */ 892 set_reg_field_value( 893 value, 894 dst_color[index], 895 CRTC_TEST_PATTERN_COLOR, 896 CRTC_TEST_PATTERN_DATA); 897 } 898 /* write last color component, 899 * it's been already prepared in the loop 900 */ 901 dm_write_reg(ctx, addr, value); 902 903 /* enable test pattern */ 904 addr = CRTC_REG(mmCRTC_TEST_PATTERN_CONTROL); 905 value = 0; 906 907 set_reg_field_value( 908 value, 909 1, 910 CRTC_TEST_PATTERN_CONTROL, 911 CRTC_TEST_PATTERN_EN); 912 913 set_reg_field_value( 914 value, 915 mode, 916 CRTC_TEST_PATTERN_CONTROL, 917 CRTC_TEST_PATTERN_MODE); 918 919 set_reg_field_value( 920 value, 921 0, 922 CRTC_TEST_PATTERN_CONTROL, 923 CRTC_TEST_PATTERN_DYNAMIC_RANGE); 924 925 set_reg_field_value( 926 value, 927 bit_depth, 928 CRTC_TEST_PATTERN_CONTROL, 929 CRTC_TEST_PATTERN_COLOR_FORMAT); 930 931 dm_write_reg(ctx, addr, value); 932 } 933 break; 934 935 case CONTROLLER_DP_TEST_PATTERN_COLORRAMP: 936 { 937 mode = (bit_depth == 938 TEST_PATTERN_COLOR_FORMAT_BPC_10 ? 939 TEST_PATTERN_MODE_DUALRAMP_RGB : 940 TEST_PATTERN_MODE_SINGLERAMP_RGB); 941 942 switch (bit_depth) { 943 case TEST_PATTERN_COLOR_FORMAT_BPC_6: 944 dst_bpc = 6; 945 break; 946 case TEST_PATTERN_COLOR_FORMAT_BPC_8: 947 dst_bpc = 8; 948 break; 949 case TEST_PATTERN_COLOR_FORMAT_BPC_10: 950 dst_bpc = 10; 951 break; 952 default: 953 dst_bpc = 8; 954 break; 955 } 956 957 /* increment for the first ramp for one color gradation 958 * 1 gradation for 6-bit color is 2^10 959 * gradations in 16-bit color 960 */ 961 inc_base = (src_bpc - dst_bpc); 962 963 value = 0; 964 addr = CRTC_REG(mmCRTC_TEST_PATTERN_PARAMETERS); 965 966 switch (bit_depth) { 967 case TEST_PATTERN_COLOR_FORMAT_BPC_6: 968 { 969 set_reg_field_value( 970 value, 971 inc_base, 972 CRTC_TEST_PATTERN_PARAMETERS, 973 CRTC_TEST_PATTERN_INC0); 974 set_reg_field_value( 975 value, 976 0, 977 CRTC_TEST_PATTERN_PARAMETERS, 978 CRTC_TEST_PATTERN_INC1); 979 set_reg_field_value( 980 value, 981 6, 982 CRTC_TEST_PATTERN_PARAMETERS, 983 CRTC_TEST_PATTERN_HRES); 984 set_reg_field_value( 985 value, 986 6, 987 CRTC_TEST_PATTERN_PARAMETERS, 988 CRTC_TEST_PATTERN_VRES); 989 set_reg_field_value( 990 value, 991 0, 992 CRTC_TEST_PATTERN_PARAMETERS, 993 CRTC_TEST_PATTERN_RAMP0_OFFSET); 994 } 995 break; 996 case TEST_PATTERN_COLOR_FORMAT_BPC_8: 997 { 998 set_reg_field_value( 999 value, 1000 inc_base, 1001 CRTC_TEST_PATTERN_PARAMETERS, 1002 CRTC_TEST_PATTERN_INC0); 1003 set_reg_field_value( 1004 value, 1005 0, 1006 CRTC_TEST_PATTERN_PARAMETERS, 1007 CRTC_TEST_PATTERN_INC1); 1008 set_reg_field_value( 1009 value, 1010 8, 1011 CRTC_TEST_PATTERN_PARAMETERS, 1012 CRTC_TEST_PATTERN_HRES); 1013 set_reg_field_value( 1014 value, 1015 6, 1016 CRTC_TEST_PATTERN_PARAMETERS, 1017 CRTC_TEST_PATTERN_VRES); 1018 set_reg_field_value( 1019 value, 1020 0, 1021 CRTC_TEST_PATTERN_PARAMETERS, 1022 CRTC_TEST_PATTERN_RAMP0_OFFSET); 1023 } 1024 break; 1025 case TEST_PATTERN_COLOR_FORMAT_BPC_10: 1026 { 1027 set_reg_field_value( 1028 value, 1029 inc_base, 1030 CRTC_TEST_PATTERN_PARAMETERS, 1031 CRTC_TEST_PATTERN_INC0); 1032 set_reg_field_value( 1033 value, 1034 inc_base + 2, 1035 CRTC_TEST_PATTERN_PARAMETERS, 1036 CRTC_TEST_PATTERN_INC1); 1037 set_reg_field_value( 1038 value, 1039 8, 1040 CRTC_TEST_PATTERN_PARAMETERS, 1041 CRTC_TEST_PATTERN_HRES); 1042 set_reg_field_value( 1043 value, 1044 5, 1045 CRTC_TEST_PATTERN_PARAMETERS, 1046 CRTC_TEST_PATTERN_VRES); 1047 set_reg_field_value( 1048 value, 1049 384 << 6, 1050 CRTC_TEST_PATTERN_PARAMETERS, 1051 CRTC_TEST_PATTERN_RAMP0_OFFSET); 1052 } 1053 break; 1054 default: 1055 break; 1056 } 1057 dm_write_reg(ctx, addr, value); 1058 1059 value = 0; 1060 addr = CRTC_REG(mmCRTC_TEST_PATTERN_COLOR); 1061 dm_write_reg(ctx, addr, value); 1062 1063 /* enable test pattern */ 1064 addr = CRTC_REG(mmCRTC_TEST_PATTERN_CONTROL); 1065 value = 0; 1066 1067 set_reg_field_value( 1068 value, 1069 1, 1070 CRTC_TEST_PATTERN_CONTROL, 1071 CRTC_TEST_PATTERN_EN); 1072 1073 set_reg_field_value( 1074 value, 1075 mode, 1076 CRTC_TEST_PATTERN_CONTROL, 1077 CRTC_TEST_PATTERN_MODE); 1078 1079 set_reg_field_value( 1080 value, 1081 0, 1082 CRTC_TEST_PATTERN_CONTROL, 1083 CRTC_TEST_PATTERN_DYNAMIC_RANGE); 1084 /* add color depth translation here */ 1085 set_reg_field_value( 1086 value, 1087 bit_depth, 1088 CRTC_TEST_PATTERN_CONTROL, 1089 CRTC_TEST_PATTERN_COLOR_FORMAT); 1090 1091 dm_write_reg(ctx, addr, value); 1092 } 1093 break; 1094 case CONTROLLER_DP_TEST_PATTERN_VIDEOMODE: 1095 { 1096 value = 0; 1097 dm_write_reg(ctx, CRTC_REG(mmCRTC_TEST_PATTERN_CONTROL), value); 1098 dm_write_reg(ctx, CRTC_REG(mmCRTC_TEST_PATTERN_COLOR), value); 1099 dm_write_reg(ctx, CRTC_REG(mmCRTC_TEST_PATTERN_PARAMETERS), 1100 value); 1101 } 1102 break; 1103 default: 1104 break; 1105 } 1106} 1107 1108/* 1109 * dce110_timing_generator_validate_timing 1110 * The timing generators support a maximum display size of is 8192 x 8192 pixels, 1111 * including both active display and blanking periods. Check H Total and V Total. 1112 */ 1113bool dce110_timing_generator_validate_timing( 1114 struct timing_generator *tg, 1115 const struct dc_crtc_timing *timing, 1116 enum signal_type signal) 1117{ 1118 uint32_t h_blank; 1119 uint32_t h_back_porch, hsync_offset, h_sync_start; 1120 1121 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); 1122 1123 ASSERT(timing != NULL); 1124 1125 if (!timing) 1126 return false; 1127 1128 hsync_offset = timing->h_border_right + timing->h_front_porch; 1129 h_sync_start = timing->h_addressable + hsync_offset; 1130 1131 /* Currently we don't support 3D, so block all 3D timings */ 1132 if (timing->timing_3d_format != TIMING_3D_FORMAT_NONE) 1133 return false; 1134 1135 /* Temporarily blocking interlacing mode until it's supported */ 1136 if (timing->flags.INTERLACE == 1) 1137 return false; 1138 1139 /* Check maximum number of pixels supported by Timing Generator 1140 * (Currently will never fail, in order to fail needs display which 1141 * needs more than 8192 horizontal and 1142 * more than 8192 vertical total pixels) 1143 */ 1144 if (timing->h_total > tg110->max_h_total || 1145 timing->v_total > tg110->max_v_total) 1146 return false; 1147 1148 h_blank = (timing->h_total - timing->h_addressable - 1149 timing->h_border_right - 1150 timing->h_border_left); 1151 1152 if (h_blank < tg110->min_h_blank) 1153 return false; 1154 1155 if (timing->h_front_porch < tg110->min_h_front_porch) 1156 return false; 1157 1158 h_back_porch = h_blank - (h_sync_start - 1159 timing->h_addressable - 1160 timing->h_border_right - 1161 timing->h_sync_width); 1162 1163 if (h_back_porch < tg110->min_h_back_porch) 1164 return false; 1165 1166 return true; 1167} 1168 1169/* 1170 * Wait till we are at the beginning of VBlank. 1171 */ 1172void dce110_timing_generator_wait_for_vblank(struct timing_generator *tg) 1173{ 1174 /* We want to catch beginning of VBlank here, so if the first try are 1175 * in VBlank, we might be very close to Active, in this case wait for 1176 * another frame 1177 */ 1178 while (dce110_timing_generator_is_in_vertical_blank(tg)) { 1179 if (!dce110_timing_generator_is_counter_moving(tg)) { 1180 /* error - no point to wait if counter is not moving */ 1181 break; 1182 } 1183 } 1184 1185 while (!dce110_timing_generator_is_in_vertical_blank(tg)) { 1186 if (!dce110_timing_generator_is_counter_moving(tg)) { 1187 /* error - no point to wait if counter is not moving */ 1188 break; 1189 } 1190 } 1191} 1192 1193/* 1194 * Wait till we are in VActive (anywhere in VActive) 1195 */ 1196void dce110_timing_generator_wait_for_vactive(struct timing_generator *tg) 1197{ 1198 while (dce110_timing_generator_is_in_vertical_blank(tg)) { 1199 if (!dce110_timing_generator_is_counter_moving(tg)) { 1200 /* error - no point to wait if counter is not moving */ 1201 break; 1202 } 1203 } 1204} 1205 1206/* 1207 ***************************************************************************** 1208 * Function: dce110_timing_generator_setup_global_swap_lock 1209 * 1210 * @brief 1211 * Setups Global Swap Lock group for current pipe 1212 * Pipe can join or leave GSL group, become a TimingServer or TimingClient 1213 * 1214 * @param [in] gsl_params: setup data 1215 ***************************************************************************** 1216 */ 1217void dce110_timing_generator_setup_global_swap_lock( 1218 struct timing_generator *tg, 1219 const struct dcp_gsl_params *gsl_params) 1220{ 1221 uint32_t value; 1222 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); 1223 uint32_t address = DCP_REG(mmDCP_GSL_CONTROL); 1224 uint32_t check_point = FLIP_READY_BACK_LOOKUP; 1225 1226 value = dm_read_reg(tg->ctx, address); 1227 1228 /* This pipe will belong to GSL Group zero. */ 1229 set_reg_field_value(value, 1230 1, 1231 DCP_GSL_CONTROL, 1232 DCP_GSL0_EN); 1233 1234 set_reg_field_value(value, 1235 gsl_params->gsl_master == tg->inst, 1236 DCP_GSL_CONTROL, 1237 DCP_GSL_MASTER_EN); 1238 1239 set_reg_field_value(value, 1240 HFLIP_READY_DELAY, 1241 DCP_GSL_CONTROL, 1242 DCP_GSL_HSYNC_FLIP_FORCE_DELAY); 1243 1244 /* Keep signal low (pending high) during 6 lines. 1245 * Also defines minimum interval before re-checking signal. */ 1246 set_reg_field_value(value, 1247 HFLIP_CHECK_DELAY, 1248 DCP_GSL_CONTROL, 1249 DCP_GSL_HSYNC_FLIP_CHECK_DELAY); 1250 1251 dm_write_reg(tg->ctx, CRTC_REG(mmDCP_GSL_CONTROL), value); 1252 value = 0; 1253 1254 set_reg_field_value(value, 1255 gsl_params->gsl_master, 1256 DCIO_GSL0_CNTL, 1257 DCIO_GSL0_VSYNC_SEL); 1258 1259 set_reg_field_value(value, 1260 0, 1261 DCIO_GSL0_CNTL, 1262 DCIO_GSL0_TIMING_SYNC_SEL); 1263 1264 set_reg_field_value(value, 1265 0, 1266 DCIO_GSL0_CNTL, 1267 DCIO_GSL0_GLOBAL_UNLOCK_SEL); 1268 1269 dm_write_reg(tg->ctx, CRTC_REG(mmDCIO_GSL0_CNTL), value); 1270 1271 1272 { 1273 uint32_t value_crtc_vtotal; 1274 1275 value_crtc_vtotal = dm_read_reg(tg->ctx, 1276 CRTC_REG(mmCRTC_V_TOTAL)); 1277 1278 set_reg_field_value(value, 1279 0,/* DCP_GSL_PURPOSE_SURFACE_FLIP */ 1280 DCP_GSL_CONTROL, 1281 DCP_GSL_SYNC_SOURCE); 1282 1283 /* Checkpoint relative to end of frame */ 1284 check_point = get_reg_field_value(value_crtc_vtotal, 1285 CRTC_V_TOTAL, 1286 CRTC_V_TOTAL); 1287 1288 dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_GSL_WINDOW), 0); 1289 } 1290 1291 set_reg_field_value(value, 1292 1, 1293 DCP_GSL_CONTROL, 1294 DCP_GSL_DELAY_SURFACE_UPDATE_PENDING); 1295 1296 dm_write_reg(tg->ctx, address, value); 1297 1298 /********************************************************************/ 1299 address = CRTC_REG(mmCRTC_GSL_CONTROL); 1300 1301 value = dm_read_reg(tg->ctx, address); 1302 set_reg_field_value(value, 1303 check_point - FLIP_READY_BACK_LOOKUP, 1304 CRTC_GSL_CONTROL, 1305 CRTC_GSL_CHECK_LINE_NUM); 1306 1307 set_reg_field_value(value, 1308 VFLIP_READY_DELAY, 1309 CRTC_GSL_CONTROL, 1310 CRTC_GSL_FORCE_DELAY); 1311 1312 dm_write_reg(tg->ctx, address, value); 1313} 1314 1315void dce110_timing_generator_tear_down_global_swap_lock( 1316 struct timing_generator *tg) 1317{ 1318 /* Clear all the register writes done by 1319 * dce110_timing_generator_setup_global_swap_lock 1320 */ 1321 1322 uint32_t value; 1323 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); 1324 uint32_t address = DCP_REG(mmDCP_GSL_CONTROL); 1325 1326 value = 0; 1327 1328 /* This pipe will belong to GSL Group zero. */ 1329 /* Settig HW default values from reg specs */ 1330 set_reg_field_value(value, 1331 0, 1332 DCP_GSL_CONTROL, 1333 DCP_GSL0_EN); 1334 1335 set_reg_field_value(value, 1336 0, 1337 DCP_GSL_CONTROL, 1338 DCP_GSL_MASTER_EN); 1339 1340 set_reg_field_value(value, 1341 0x2, 1342 DCP_GSL_CONTROL, 1343 DCP_GSL_HSYNC_FLIP_FORCE_DELAY); 1344 1345 set_reg_field_value(value, 1346 0x6, 1347 DCP_GSL_CONTROL, 1348 DCP_GSL_HSYNC_FLIP_CHECK_DELAY); 1349 1350 /* Restore DCP_GSL_PURPOSE_SURFACE_FLIP */ 1351 { 1352 dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_V_TOTAL)); 1353 1354 set_reg_field_value(value, 1355 0, 1356 DCP_GSL_CONTROL, 1357 DCP_GSL_SYNC_SOURCE); 1358 } 1359 1360 set_reg_field_value(value, 1361 0, 1362 DCP_GSL_CONTROL, 1363 DCP_GSL_DELAY_SURFACE_UPDATE_PENDING); 1364 1365 dm_write_reg(tg->ctx, address, value); 1366 1367 /********************************************************************/ 1368 address = CRTC_REG(mmCRTC_GSL_CONTROL); 1369 1370 value = 0; 1371 set_reg_field_value(value, 1372 0, 1373 CRTC_GSL_CONTROL, 1374 CRTC_GSL_CHECK_LINE_NUM); 1375 1376 set_reg_field_value(value, 1377 0x2, 1378 CRTC_GSL_CONTROL, 1379 CRTC_GSL_FORCE_DELAY); 1380 1381 dm_write_reg(tg->ctx, address, value); 1382} 1383/* 1384 ***************************************************************************** 1385 * Function: is_counter_moving 1386 * 1387 * @brief 1388 * check if the timing generator is currently going 1389 * 1390 * @return 1391 * true if currently going, false if currently paused or stopped. 1392 * 1393 ***************************************************************************** 1394 */ 1395bool dce110_timing_generator_is_counter_moving(struct timing_generator *tg) 1396{ 1397 struct crtc_position position1, position2; 1398 1399 tg->funcs->get_position(tg, &position1); 1400 tg->funcs->get_position(tg, &position2); 1401 1402 if (position1.horizontal_count == position2.horizontal_count && 1403 position1.vertical_count == position2.vertical_count) 1404 return false; 1405 else 1406 return true; 1407} 1408 1409void dce110_timing_generator_enable_advanced_request( 1410 struct timing_generator *tg, 1411 bool enable, 1412 const struct dc_crtc_timing *timing) 1413{ 1414 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); 1415 uint32_t addr = CRTC_REG(mmCRTC_START_LINE_CONTROL); 1416 uint32_t value = dm_read_reg(tg->ctx, addr); 1417 1418 if (enable) { 1419 set_reg_field_value( 1420 value, 1421 0, 1422 CRTC_START_LINE_CONTROL, 1423 CRTC_LEGACY_REQUESTOR_EN); 1424 } else { 1425 set_reg_field_value( 1426 value, 1427 1, 1428 CRTC_START_LINE_CONTROL, 1429 CRTC_LEGACY_REQUESTOR_EN); 1430 } 1431 1432 if ((timing->v_sync_width + timing->v_front_porch) <= 3) { 1433 set_reg_field_value( 1434 value, 1435 3, 1436 CRTC_START_LINE_CONTROL, 1437 CRTC_ADVANCED_START_LINE_POSITION); 1438 set_reg_field_value( 1439 value, 1440 0, 1441 CRTC_START_LINE_CONTROL, 1442 CRTC_PREFETCH_EN); 1443 } else { 1444 set_reg_field_value( 1445 value, 1446 4, 1447 CRTC_START_LINE_CONTROL, 1448 CRTC_ADVANCED_START_LINE_POSITION); 1449 set_reg_field_value( 1450 value, 1451 1, 1452 CRTC_START_LINE_CONTROL, 1453 CRTC_PREFETCH_EN); 1454 } 1455 1456 set_reg_field_value( 1457 value, 1458 1, 1459 CRTC_START_LINE_CONTROL, 1460 CRTC_PROGRESSIVE_START_LINE_EARLY); 1461 1462 set_reg_field_value( 1463 value, 1464 1, 1465 CRTC_START_LINE_CONTROL, 1466 CRTC_INTERLACE_START_LINE_EARLY); 1467 1468 dm_write_reg(tg->ctx, addr, value); 1469} 1470 1471/*TODO: Figure out if we need this function. */ 1472void dce110_timing_generator_set_lock_master(struct timing_generator *tg, 1473 bool lock) 1474{ 1475 struct dc_context *ctx = tg->ctx; 1476 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); 1477 uint32_t addr = CRTC_REG(mmCRTC_MASTER_UPDATE_LOCK); 1478 uint32_t value = dm_read_reg(ctx, addr); 1479 1480 set_reg_field_value( 1481 value, 1482 lock ? 1 : 0, 1483 CRTC_MASTER_UPDATE_LOCK, 1484 MASTER_UPDATE_LOCK); 1485 1486 dm_write_reg(ctx, addr, value); 1487} 1488 1489void dce110_timing_generator_enable_reset_trigger( 1490 struct timing_generator *tg, 1491 int source_tg_inst) 1492{ 1493 uint32_t value; 1494 uint32_t rising_edge = 0; 1495 uint32_t falling_edge = 0; 1496 enum trigger_source_select trig_src_select = TRIGGER_SOURCE_SELECT_LOGIC_ZERO; 1497 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); 1498 1499 /* Setup trigger edge */ 1500 { 1501 uint32_t pol_value = dm_read_reg(tg->ctx, 1502 CRTC_REG(mmCRTC_V_SYNC_A_CNTL)); 1503 1504 /* Register spec has reversed definition: 1505 * 0 for positive, 1 for negative */ 1506 if (get_reg_field_value(pol_value, 1507 CRTC_V_SYNC_A_CNTL, 1508 CRTC_V_SYNC_A_POL) == 0) { 1509 rising_edge = 1; 1510 } else { 1511 falling_edge = 1; 1512 } 1513 } 1514 1515 value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL)); 1516 1517 trig_src_select = TRIGGER_SOURCE_SELECT_GSL_GROUP0; 1518 1519 set_reg_field_value(value, 1520 trig_src_select, 1521 CRTC_TRIGB_CNTL, 1522 CRTC_TRIGB_SOURCE_SELECT); 1523 1524 set_reg_field_value(value, 1525 TRIGGER_POLARITY_SELECT_LOGIC_ZERO, 1526 CRTC_TRIGB_CNTL, 1527 CRTC_TRIGB_POLARITY_SELECT); 1528 1529 set_reg_field_value(value, 1530 rising_edge, 1531 CRTC_TRIGB_CNTL, 1532 CRTC_TRIGB_RISING_EDGE_DETECT_CNTL); 1533 1534 set_reg_field_value(value, 1535 falling_edge, 1536 CRTC_TRIGB_CNTL, 1537 CRTC_TRIGB_FALLING_EDGE_DETECT_CNTL); 1538 1539 set_reg_field_value(value, 1540 0, /* send every signal */ 1541 CRTC_TRIGB_CNTL, 1542 CRTC_TRIGB_FREQUENCY_SELECT); 1543 1544 set_reg_field_value(value, 1545 0, /* no delay */ 1546 CRTC_TRIGB_CNTL, 1547 CRTC_TRIGB_DELAY); 1548 1549 set_reg_field_value(value, 1550 1, /* clear trigger status */ 1551 CRTC_TRIGB_CNTL, 1552 CRTC_TRIGB_CLEAR); 1553 1554 dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL), value); 1555 1556 /**************************************************************/ 1557 1558 value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL)); 1559 1560 set_reg_field_value(value, 1561 2, /* force H count to H_TOTAL and V count to V_TOTAL */ 1562 CRTC_FORCE_COUNT_NOW_CNTL, 1563 CRTC_FORCE_COUNT_NOW_MODE); 1564 1565 set_reg_field_value(value, 1566 1, /* TriggerB - we never use TriggerA */ 1567 CRTC_FORCE_COUNT_NOW_CNTL, 1568 CRTC_FORCE_COUNT_NOW_TRIG_SEL); 1569 1570 set_reg_field_value(value, 1571 1, /* clear trigger status */ 1572 CRTC_FORCE_COUNT_NOW_CNTL, 1573 CRTC_FORCE_COUNT_NOW_CLEAR); 1574 1575 dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL), value); 1576} 1577 1578void dce110_timing_generator_enable_crtc_reset( 1579 struct timing_generator *tg, 1580 int source_tg_inst, 1581 struct crtc_trigger_info *crtc_tp) 1582{ 1583 uint32_t value = 0; 1584 uint32_t rising_edge = 0; 1585 uint32_t falling_edge = 0; 1586 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); 1587 1588 /* Setup trigger edge */ 1589 switch (crtc_tp->event) { 1590 case CRTC_EVENT_VSYNC_RISING: 1591 rising_edge = 1; 1592 break; 1593 1594 case CRTC_EVENT_VSYNC_FALLING: 1595 falling_edge = 1; 1596 break; 1597 } 1598 1599 value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL)); 1600 1601 set_reg_field_value(value, 1602 source_tg_inst, 1603 CRTC_TRIGB_CNTL, 1604 CRTC_TRIGB_SOURCE_SELECT); 1605 1606 set_reg_field_value(value, 1607 TRIGGER_POLARITY_SELECT_LOGIC_ZERO, 1608 CRTC_TRIGB_CNTL, 1609 CRTC_TRIGB_POLARITY_SELECT); 1610 1611 set_reg_field_value(value, 1612 rising_edge, 1613 CRTC_TRIGB_CNTL, 1614 CRTC_TRIGB_RISING_EDGE_DETECT_CNTL); 1615 1616 set_reg_field_value(value, 1617 falling_edge, 1618 CRTC_TRIGB_CNTL, 1619 CRTC_TRIGB_FALLING_EDGE_DETECT_CNTL); 1620 1621 set_reg_field_value(value, 1622 1, /* clear trigger status */ 1623 CRTC_TRIGB_CNTL, 1624 CRTC_TRIGB_CLEAR); 1625 1626 dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL), value); 1627 1628 /**************************************************************/ 1629 1630 switch (crtc_tp->delay) { 1631 case TRIGGER_DELAY_NEXT_LINE: 1632 value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL)); 1633 1634 set_reg_field_value(value, 1635 0, /* force H count to H_TOTAL and V count to V_TOTAL */ 1636 CRTC_FORCE_COUNT_NOW_CNTL, 1637 CRTC_FORCE_COUNT_NOW_MODE); 1638 1639 set_reg_field_value(value, 1640 0, /* TriggerB - we never use TriggerA */ 1641 CRTC_FORCE_COUNT_NOW_CNTL, 1642 CRTC_FORCE_COUNT_NOW_TRIG_SEL); 1643 1644 set_reg_field_value(value, 1645 1, /* clear trigger status */ 1646 CRTC_FORCE_COUNT_NOW_CNTL, 1647 CRTC_FORCE_COUNT_NOW_CLEAR); 1648 1649 dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL), value); 1650 1651 value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_VERT_SYNC_CONTROL)); 1652 1653 set_reg_field_value(value, 1654 1, 1655 CRTC_VERT_SYNC_CONTROL, 1656 CRTC_FORCE_VSYNC_NEXT_LINE_CLEAR); 1657 1658 set_reg_field_value(value, 1659 2, 1660 CRTC_VERT_SYNC_CONTROL, 1661 CRTC_AUTO_FORCE_VSYNC_MODE); 1662 1663 break; 1664 1665 case TRIGGER_DELAY_NEXT_PIXEL: 1666 value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_VERT_SYNC_CONTROL)); 1667 1668 set_reg_field_value(value, 1669 1, 1670 CRTC_VERT_SYNC_CONTROL, 1671 CRTC_FORCE_VSYNC_NEXT_LINE_CLEAR); 1672 1673 set_reg_field_value(value, 1674 0, 1675 CRTC_VERT_SYNC_CONTROL, 1676 CRTC_AUTO_FORCE_VSYNC_MODE); 1677 1678 dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_VERT_SYNC_CONTROL), value); 1679 1680 value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL)); 1681 1682 set_reg_field_value(value, 1683 2, /* force H count to H_TOTAL and V count to V_TOTAL */ 1684 CRTC_FORCE_COUNT_NOW_CNTL, 1685 CRTC_FORCE_COUNT_NOW_MODE); 1686 1687 set_reg_field_value(value, 1688 1, /* TriggerB - we never use TriggerA */ 1689 CRTC_FORCE_COUNT_NOW_CNTL, 1690 CRTC_FORCE_COUNT_NOW_TRIG_SEL); 1691 1692 set_reg_field_value(value, 1693 1, /* clear trigger status */ 1694 CRTC_FORCE_COUNT_NOW_CNTL, 1695 CRTC_FORCE_COUNT_NOW_CLEAR); 1696 1697 dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL), value); 1698 break; 1699 } 1700 1701 value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_MASTER_UPDATE_MODE)); 1702 1703 set_reg_field_value(value, 1704 2, 1705 CRTC_MASTER_UPDATE_MODE, 1706 MASTER_UPDATE_MODE); 1707 1708 dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_MASTER_UPDATE_MODE), value); 1709} 1710void dce110_timing_generator_disable_reset_trigger( 1711 struct timing_generator *tg) 1712{ 1713 uint32_t value; 1714 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); 1715 1716 value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL)); 1717 1718 set_reg_field_value(value, 1719 0, /* force counter now mode is disabled */ 1720 CRTC_FORCE_COUNT_NOW_CNTL, 1721 CRTC_FORCE_COUNT_NOW_MODE); 1722 1723 set_reg_field_value(value, 1724 1, /* clear trigger status */ 1725 CRTC_FORCE_COUNT_NOW_CNTL, 1726 CRTC_FORCE_COUNT_NOW_CLEAR); 1727 1728 dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL), value); 1729 1730 value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_VERT_SYNC_CONTROL)); 1731 1732 set_reg_field_value(value, 1733 1, 1734 CRTC_VERT_SYNC_CONTROL, 1735 CRTC_FORCE_VSYNC_NEXT_LINE_CLEAR); 1736 1737 set_reg_field_value(value, 1738 0, 1739 CRTC_VERT_SYNC_CONTROL, 1740 CRTC_AUTO_FORCE_VSYNC_MODE); 1741 1742 dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_VERT_SYNC_CONTROL), value); 1743 1744 /********************************************************************/ 1745 value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL)); 1746 1747 set_reg_field_value(value, 1748 TRIGGER_SOURCE_SELECT_LOGIC_ZERO, 1749 CRTC_TRIGB_CNTL, 1750 CRTC_TRIGB_SOURCE_SELECT); 1751 1752 set_reg_field_value(value, 1753 TRIGGER_POLARITY_SELECT_LOGIC_ZERO, 1754 CRTC_TRIGB_CNTL, 1755 CRTC_TRIGB_POLARITY_SELECT); 1756 1757 set_reg_field_value(value, 1758 1, /* clear trigger status */ 1759 CRTC_TRIGB_CNTL, 1760 CRTC_TRIGB_CLEAR); 1761 1762 dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_TRIGB_CNTL), value); 1763} 1764 1765/* 1766 ***************************************************************************** 1767 * @brief 1768 * Checks whether CRTC triggered reset occurred 1769 * 1770 * @return 1771 * true if triggered reset occurred, false otherwise 1772 ***************************************************************************** 1773 */ 1774bool dce110_timing_generator_did_triggered_reset_occur( 1775 struct timing_generator *tg) 1776{ 1777 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); 1778 uint32_t value = dm_read_reg(tg->ctx, 1779 CRTC_REG(mmCRTC_FORCE_COUNT_NOW_CNTL)); 1780 uint32_t value1 = dm_read_reg(tg->ctx, 1781 CRTC_REG(mmCRTC_VERT_SYNC_CONTROL)); 1782 bool force = get_reg_field_value(value, 1783 CRTC_FORCE_COUNT_NOW_CNTL, 1784 CRTC_FORCE_COUNT_NOW_OCCURRED) != 0; 1785 bool vert_sync = get_reg_field_value(value1, 1786 CRTC_VERT_SYNC_CONTROL, 1787 CRTC_FORCE_VSYNC_NEXT_LINE_OCCURRED) != 0; 1788 1789 return (force || vert_sync); 1790} 1791 1792/* 1793 * dce110_timing_generator_disable_vga 1794 * Turn OFF VGA Mode and Timing - DxVGA_CONTROL 1795 * VGA Mode and VGA Timing is used by VBIOS on CRT Monitors; 1796 */ 1797void dce110_timing_generator_disable_vga( 1798 struct timing_generator *tg) 1799{ 1800 uint32_t addr = 0; 1801 uint32_t value = 0; 1802 1803 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); 1804 1805 switch (tg110->controller_id) { 1806 case CONTROLLER_ID_D0: 1807 addr = mmD1VGA_CONTROL; 1808 break; 1809 case CONTROLLER_ID_D1: 1810 addr = mmD2VGA_CONTROL; 1811 break; 1812 case CONTROLLER_ID_D2: 1813 addr = mmD3VGA_CONTROL; 1814 break; 1815 case CONTROLLER_ID_D3: 1816 addr = mmD4VGA_CONTROL; 1817 break; 1818 case CONTROLLER_ID_D4: 1819 addr = mmD5VGA_CONTROL; 1820 break; 1821 case CONTROLLER_ID_D5: 1822 addr = mmD6VGA_CONTROL; 1823 break; 1824 default: 1825 break; 1826 } 1827 value = dm_read_reg(tg->ctx, addr); 1828 1829 set_reg_field_value(value, 0, D1VGA_CONTROL, D1VGA_MODE_ENABLE); 1830 set_reg_field_value(value, 0, D1VGA_CONTROL, D1VGA_TIMING_SELECT); 1831 set_reg_field_value( 1832 value, 0, D1VGA_CONTROL, D1VGA_SYNC_POLARITY_SELECT); 1833 set_reg_field_value(value, 0, D1VGA_CONTROL, D1VGA_OVERSCAN_COLOR_EN); 1834 1835 dm_write_reg(tg->ctx, addr, value); 1836} 1837 1838/* 1839 * set_overscan_color_black 1840 * 1841 * @param :black_color is one of the color space 1842 * :this routine will set overscan black color according to the color space. 1843 * @return none 1844 */ 1845void dce110_timing_generator_set_overscan_color_black( 1846 struct timing_generator *tg, 1847 const struct tg_color *color) 1848{ 1849 struct dc_context *ctx = tg->ctx; 1850 uint32_t addr; 1851 uint32_t value = 0; 1852 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); 1853 1854 set_reg_field_value( 1855 value, 1856 color->color_b_cb, 1857 CRTC_OVERSCAN_COLOR, 1858 CRTC_OVERSCAN_COLOR_BLUE); 1859 1860 set_reg_field_value( 1861 value, 1862 color->color_r_cr, 1863 CRTC_OVERSCAN_COLOR, 1864 CRTC_OVERSCAN_COLOR_RED); 1865 1866 set_reg_field_value( 1867 value, 1868 color->color_g_y, 1869 CRTC_OVERSCAN_COLOR, 1870 CRTC_OVERSCAN_COLOR_GREEN); 1871 1872 addr = CRTC_REG(mmCRTC_OVERSCAN_COLOR); 1873 dm_write_reg(ctx, addr, value); 1874 addr = CRTC_REG(mmCRTC_BLACK_COLOR); 1875 dm_write_reg(ctx, addr, value); 1876 /* This is desirable to have a constant DAC output voltage during the 1877 * blank time that is higher than the 0 volt reference level that the 1878 * DAC outputs when the NBLANK signal 1879 * is asserted low, such as for output to an analog TV. */ 1880 addr = CRTC_REG(mmCRTC_BLANK_DATA_COLOR); 1881 dm_write_reg(ctx, addr, value); 1882 1883 /* TO DO we have to program EXT registers and we need to know LB DATA 1884 * format because it is used when more 10 , i.e. 12 bits per color 1885 * 1886 * m_mmDxCRTC_OVERSCAN_COLOR_EXT 1887 * m_mmDxCRTC_BLACK_COLOR_EXT 1888 * m_mmDxCRTC_BLANK_DATA_COLOR_EXT 1889 */ 1890 1891} 1892 1893void dce110_tg_program_blank_color(struct timing_generator *tg, 1894 const struct tg_color *black_color) 1895{ 1896 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); 1897 uint32_t addr = CRTC_REG(mmCRTC_BLACK_COLOR); 1898 uint32_t value = dm_read_reg(tg->ctx, addr); 1899 1900 set_reg_field_value( 1901 value, 1902 black_color->color_b_cb, 1903 CRTC_BLACK_COLOR, 1904 CRTC_BLACK_COLOR_B_CB); 1905 set_reg_field_value( 1906 value, 1907 black_color->color_g_y, 1908 CRTC_BLACK_COLOR, 1909 CRTC_BLACK_COLOR_G_Y); 1910 set_reg_field_value( 1911 value, 1912 black_color->color_r_cr, 1913 CRTC_BLACK_COLOR, 1914 CRTC_BLACK_COLOR_R_CR); 1915 1916 dm_write_reg(tg->ctx, addr, value); 1917 1918 addr = CRTC_REG(mmCRTC_BLANK_DATA_COLOR); 1919 dm_write_reg(tg->ctx, addr, value); 1920} 1921 1922void dce110_tg_set_overscan_color(struct timing_generator *tg, 1923 const struct tg_color *overscan_color) 1924{ 1925 struct dc_context *ctx = tg->ctx; 1926 uint32_t value = 0; 1927 uint32_t addr; 1928 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); 1929 1930 set_reg_field_value( 1931 value, 1932 overscan_color->color_b_cb, 1933 CRTC_OVERSCAN_COLOR, 1934 CRTC_OVERSCAN_COLOR_BLUE); 1935 1936 set_reg_field_value( 1937 value, 1938 overscan_color->color_g_y, 1939 CRTC_OVERSCAN_COLOR, 1940 CRTC_OVERSCAN_COLOR_GREEN); 1941 1942 set_reg_field_value( 1943 value, 1944 overscan_color->color_r_cr, 1945 CRTC_OVERSCAN_COLOR, 1946 CRTC_OVERSCAN_COLOR_RED); 1947 1948 addr = CRTC_REG(mmCRTC_OVERSCAN_COLOR); 1949 dm_write_reg(ctx, addr, value); 1950} 1951 1952void dce110_tg_program_timing(struct timing_generator *tg, 1953 const struct dc_crtc_timing *timing, 1954 int vready_offset, 1955 int vstartup_start, 1956 int vupdate_offset, 1957 int vupdate_width, 1958 const enum signal_type signal, 1959 bool use_vbios) 1960{ 1961 if (use_vbios) 1962 dce110_timing_generator_program_timing_generator(tg, timing); 1963 else 1964 dce110_timing_generator_program_blanking(tg, timing); 1965} 1966 1967bool dce110_tg_is_blanked(struct timing_generator *tg) 1968{ 1969 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); 1970 uint32_t value = dm_read_reg(tg->ctx, CRTC_REG(mmCRTC_BLANK_CONTROL)); 1971 1972 if (get_reg_field_value( 1973 value, 1974 CRTC_BLANK_CONTROL, 1975 CRTC_BLANK_DATA_EN) == 1 && 1976 get_reg_field_value( 1977 value, 1978 CRTC_BLANK_CONTROL, 1979 CRTC_CURRENT_BLANK_STATE) == 1) 1980 return true; 1981 return false; 1982} 1983 1984void dce110_tg_set_blank(struct timing_generator *tg, 1985 bool enable_blanking) 1986{ 1987 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); 1988 uint32_t value = 0; 1989 1990 set_reg_field_value( 1991 value, 1992 1, 1993 CRTC_DOUBLE_BUFFER_CONTROL, 1994 CRTC_BLANK_DATA_DOUBLE_BUFFER_EN); 1995 1996 dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_DOUBLE_BUFFER_CONTROL), value); 1997 value = 0; 1998 1999 if (enable_blanking) { 2000 set_reg_field_value( 2001 value, 2002 1, 2003 CRTC_BLANK_CONTROL, 2004 CRTC_BLANK_DATA_EN); 2005 2006 dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_BLANK_CONTROL), value); 2007 2008 } else 2009 dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_BLANK_CONTROL), 0); 2010} 2011 2012bool dce110_tg_validate_timing(struct timing_generator *tg, 2013 const struct dc_crtc_timing *timing) 2014{ 2015 return dce110_timing_generator_validate_timing(tg, timing, SIGNAL_TYPE_NONE); 2016} 2017 2018void dce110_tg_wait_for_state(struct timing_generator *tg, 2019 enum crtc_state state) 2020{ 2021 switch (state) { 2022 case CRTC_STATE_VBLANK: 2023 dce110_timing_generator_wait_for_vblank(tg); 2024 break; 2025 2026 case CRTC_STATE_VACTIVE: 2027 dce110_timing_generator_wait_for_vactive(tg); 2028 break; 2029 2030 default: 2031 break; 2032 } 2033} 2034 2035void dce110_tg_set_colors(struct timing_generator *tg, 2036 const struct tg_color *blank_color, 2037 const struct tg_color *overscan_color) 2038{ 2039 if (blank_color != NULL) 2040 dce110_tg_program_blank_color(tg, blank_color); 2041 if (overscan_color != NULL) 2042 dce110_tg_set_overscan_color(tg, overscan_color); 2043} 2044 2045/* Gets first line of blank region of the display timing for CRTC 2046 * and programms is as a trigger to fire vertical interrupt 2047 */ 2048bool dce110_arm_vert_intr(struct timing_generator *tg, uint8_t width) 2049{ 2050 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); 2051 uint32_t v_blank_start = 0; 2052 uint32_t v_blank_end = 0; 2053 uint32_t val = 0; 2054 uint32_t h_position, v_position; 2055 2056 tg->funcs->get_scanoutpos( 2057 tg, 2058 &v_blank_start, 2059 &v_blank_end, 2060 &h_position, 2061 &v_position); 2062 2063 if (v_blank_start == 0 || v_blank_end == 0) 2064 return false; 2065 2066 set_reg_field_value( 2067 val, 2068 v_blank_start, 2069 CRTC_VERTICAL_INTERRUPT0_POSITION, 2070 CRTC_VERTICAL_INTERRUPT0_LINE_START); 2071 2072 /* Set interval width for interrupt to fire to 1 scanline */ 2073 set_reg_field_value( 2074 val, 2075 v_blank_start + width, 2076 CRTC_VERTICAL_INTERRUPT0_POSITION, 2077 CRTC_VERTICAL_INTERRUPT0_LINE_END); 2078 2079 dm_write_reg(tg->ctx, CRTC_REG(mmCRTC_VERTICAL_INTERRUPT0_POSITION), val); 2080 2081 return true; 2082} 2083 2084static bool dce110_is_tg_enabled(struct timing_generator *tg) 2085{ 2086 uint32_t addr = 0; 2087 uint32_t value = 0; 2088 uint32_t field = 0; 2089 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); 2090 2091 addr = CRTC_REG(mmCRTC_CONTROL); 2092 value = dm_read_reg(tg->ctx, addr); 2093 field = get_reg_field_value(value, CRTC_CONTROL, 2094 CRTC_CURRENT_MASTER_EN_STATE); 2095 return field == 1; 2096} 2097 2098bool dce110_configure_crc(struct timing_generator *tg, 2099 const struct crc_params *params) 2100{ 2101 uint32_t cntl_addr = 0; 2102 uint32_t addr = 0; 2103 uint32_t value; 2104 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); 2105 2106 /* Cannot configure crc on a CRTC that is disabled */ 2107 if (!dce110_is_tg_enabled(tg)) 2108 return false; 2109 2110 cntl_addr = CRTC_REG(mmCRTC_CRC_CNTL); 2111 2112 /* First, disable CRC before we configure it. */ 2113 dm_write_reg(tg->ctx, cntl_addr, 0); 2114 2115 if (!params->enable) 2116 return true; 2117 2118 /* Program frame boundaries */ 2119 /* Window A x axis start and end. */ 2120 value = 0; 2121 addr = CRTC_REG(mmCRTC_CRC0_WINDOWA_X_CONTROL); 2122 set_reg_field_value(value, params->windowa_x_start, 2123 CRTC_CRC0_WINDOWA_X_CONTROL, 2124 CRTC_CRC0_WINDOWA_X_START); 2125 set_reg_field_value(value, params->windowa_x_end, 2126 CRTC_CRC0_WINDOWA_X_CONTROL, 2127 CRTC_CRC0_WINDOWA_X_END); 2128 dm_write_reg(tg->ctx, addr, value); 2129 2130 /* Window A y axis start and end. */ 2131 value = 0; 2132 addr = CRTC_REG(mmCRTC_CRC0_WINDOWA_Y_CONTROL); 2133 set_reg_field_value(value, params->windowa_y_start, 2134 CRTC_CRC0_WINDOWA_Y_CONTROL, 2135 CRTC_CRC0_WINDOWA_Y_START); 2136 set_reg_field_value(value, params->windowa_y_end, 2137 CRTC_CRC0_WINDOWA_Y_CONTROL, 2138 CRTC_CRC0_WINDOWA_Y_END); 2139 dm_write_reg(tg->ctx, addr, value); 2140 2141 /* Window B x axis start and end. */ 2142 value = 0; 2143 addr = CRTC_REG(mmCRTC_CRC0_WINDOWB_X_CONTROL); 2144 set_reg_field_value(value, params->windowb_x_start, 2145 CRTC_CRC0_WINDOWB_X_CONTROL, 2146 CRTC_CRC0_WINDOWB_X_START); 2147 set_reg_field_value(value, params->windowb_x_end, 2148 CRTC_CRC0_WINDOWB_X_CONTROL, 2149 CRTC_CRC0_WINDOWB_X_END); 2150 dm_write_reg(tg->ctx, addr, value); 2151 2152 /* Window B y axis start and end. */ 2153 value = 0; 2154 addr = CRTC_REG(mmCRTC_CRC0_WINDOWB_Y_CONTROL); 2155 set_reg_field_value(value, params->windowb_y_start, 2156 CRTC_CRC0_WINDOWB_Y_CONTROL, 2157 CRTC_CRC0_WINDOWB_Y_START); 2158 set_reg_field_value(value, params->windowb_y_end, 2159 CRTC_CRC0_WINDOWB_Y_CONTROL, 2160 CRTC_CRC0_WINDOWB_Y_END); 2161 dm_write_reg(tg->ctx, addr, value); 2162 2163 /* Set crc mode and selection, and enable. Only using CRC0*/ 2164 value = 0; 2165 set_reg_field_value(value, params->continuous_mode ? 1 : 0, 2166 CRTC_CRC_CNTL, CRTC_CRC_CONT_EN); 2167 set_reg_field_value(value, params->selection, 2168 CRTC_CRC_CNTL, CRTC_CRC0_SELECT); 2169 set_reg_field_value(value, 1, CRTC_CRC_CNTL, CRTC_CRC_EN); 2170 dm_write_reg(tg->ctx, cntl_addr, value); 2171 2172 return true; 2173} 2174 2175bool dce110_get_crc(struct timing_generator *tg, 2176 uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb) 2177{ 2178 uint32_t addr = 0; 2179 uint32_t value = 0; 2180 uint32_t field = 0; 2181 struct dce110_timing_generator *tg110 = DCE110TG_FROM_TG(tg); 2182 2183 addr = CRTC_REG(mmCRTC_CRC_CNTL); 2184 value = dm_read_reg(tg->ctx, addr); 2185 field = get_reg_field_value(value, CRTC_CRC_CNTL, CRTC_CRC_EN); 2186 2187 /* Early return if CRC is not enabled for this CRTC */ 2188 if (!field) 2189 return false; 2190 2191 addr = CRTC_REG(mmCRTC_CRC0_DATA_RG); 2192 value = dm_read_reg(tg->ctx, addr); 2193 *r_cr = get_reg_field_value(value, CRTC_CRC0_DATA_RG, CRC0_R_CR); 2194 *g_y = get_reg_field_value(value, CRTC_CRC0_DATA_RG, CRC0_G_Y); 2195 2196 addr = CRTC_REG(mmCRTC_CRC0_DATA_B); 2197 value = dm_read_reg(tg->ctx, addr); 2198 *b_cb = get_reg_field_value(value, CRTC_CRC0_DATA_B, CRC0_B_CB); 2199 2200 return true; 2201} 2202 2203static const struct timing_generator_funcs dce110_tg_funcs = { 2204 .validate_timing = dce110_tg_validate_timing, 2205 .program_timing = dce110_tg_program_timing, 2206 .enable_crtc = dce110_timing_generator_enable_crtc, 2207 .disable_crtc = dce110_timing_generator_disable_crtc, 2208 .is_counter_moving = dce110_timing_generator_is_counter_moving, 2209 .get_position = dce110_timing_generator_get_position, 2210 .get_frame_count = dce110_timing_generator_get_vblank_counter, 2211 .get_scanoutpos = dce110_timing_generator_get_crtc_scanoutpos, 2212 .set_early_control = dce110_timing_generator_set_early_control, 2213 .wait_for_state = dce110_tg_wait_for_state, 2214 .set_blank = dce110_tg_set_blank, 2215 .is_blanked = dce110_tg_is_blanked, 2216 .set_colors = dce110_tg_set_colors, 2217 .set_overscan_blank_color = 2218 dce110_timing_generator_set_overscan_color_black, 2219 .set_blank_color = dce110_timing_generator_program_blank_color, 2220 .disable_vga = dce110_timing_generator_disable_vga, 2221 .did_triggered_reset_occur = 2222 dce110_timing_generator_did_triggered_reset_occur, 2223 .setup_global_swap_lock = 2224 dce110_timing_generator_setup_global_swap_lock, 2225 .enable_reset_trigger = dce110_timing_generator_enable_reset_trigger, 2226 .enable_crtc_reset = dce110_timing_generator_enable_crtc_reset, 2227 .disable_reset_trigger = dce110_timing_generator_disable_reset_trigger, 2228 .tear_down_global_swap_lock = 2229 dce110_timing_generator_tear_down_global_swap_lock, 2230 .enable_advanced_request = 2231 dce110_timing_generator_enable_advanced_request, 2232 .set_drr = 2233 dce110_timing_generator_set_drr, 2234 .get_last_used_drr_vtotal = NULL, 2235 .set_static_screen_control = 2236 dce110_timing_generator_set_static_screen_control, 2237 .set_test_pattern = dce110_timing_generator_set_test_pattern, 2238 .arm_vert_intr = dce110_arm_vert_intr, 2239 .is_tg_enabled = dce110_is_tg_enabled, 2240 .configure_crc = dce110_configure_crc, 2241 .get_crc = dce110_get_crc, 2242}; 2243 2244void dce110_timing_generator_construct( 2245 struct dce110_timing_generator *tg110, 2246 struct dc_context *ctx, 2247 uint32_t instance, 2248 const struct dce110_timing_generator_offsets *offsets) 2249{ 2250 tg110->controller_id = CONTROLLER_ID_D0 + instance; 2251 tg110->base.inst = instance; 2252 2253 tg110->offsets = *offsets; 2254 2255 tg110->base.funcs = &dce110_tg_funcs; 2256 2257 tg110->base.ctx = ctx; 2258 tg110->base.bp = ctx->dc_bios; 2259 2260 tg110->max_h_total = CRTC_H_TOTAL__CRTC_H_TOTAL_MASK + 1; 2261 tg110->max_v_total = CRTC_V_TOTAL__CRTC_V_TOTAL_MASK + 1; 2262 2263 tg110->min_h_blank = 56; 2264 tg110->min_h_front_porch = 4; 2265 tg110->min_h_back_porch = 4; 2266}