cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

ppevvmath.h (17193B)


      1/*
      2 * Copyright 2015 Advanced Micro Devices, Inc.
      3 *
      4 * Permission is hereby granted, free of charge, to any person obtaining a
      5 * copy of this software and associated documentation files (the "Software"),
      6 * to deal in the Software without restriction, including without limitation
      7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8 * and/or sell copies of the Software, and to permit persons to whom the
      9 * Software is furnished to do so, subject to the following conditions:
     10 *
     11 * The above copyright notice and this permission notice shall be included in
     12 * all copies or substantial portions of the Software.
     13 *
     14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
     18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
     19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
     20 * OTHER DEALINGS IN THE SOFTWARE.
     21 *
     22 */
     23#include <asm/div64.h>
     24
     25#define SHIFT_AMOUNT 16 /* We multiply all original integers with 2^SHIFT_AMOUNT to get the fInt representation */
     26
     27#define PRECISION 5 /* Change this value to change the number of decimal places in the final output - 5 is a good default */
     28
     29#define SHIFTED_2 (2 << SHIFT_AMOUNT)
     30#define MAX (1 << (SHIFT_AMOUNT - 1)) - 1 /* 32767 - Might change in the future */
     31
     32/* -------------------------------------------------------------------------------
     33 * NEW TYPE - fINT
     34 * -------------------------------------------------------------------------------
     35 * A variable of type fInt can be accessed in 3 ways using the dot (.) operator
     36 * fInt A;
     37 * A.full => The full number as it is. Generally not easy to read
     38 * A.partial.real => Only the integer portion
     39 * A.partial.decimal => Only the fractional portion
     40 */
     41typedef union _fInt {
     42    int full;
     43    struct _partial {
     44        unsigned int decimal: SHIFT_AMOUNT; /*Needs to always be unsigned*/
     45        int real: 32 - SHIFT_AMOUNT;
     46    } partial;
     47} fInt;
     48
     49/* -------------------------------------------------------------------------------
     50 * Function Declarations
     51 *  -------------------------------------------------------------------------------
     52 */
     53static fInt ConvertToFraction(int);                       /* Use this to convert an INT to a FINT */
     54static fInt Convert_ULONG_ToFraction(uint32_t);           /* Use this to convert an uint32_t to a FINT */
     55static fInt GetScaledFraction(int, int);                  /* Use this to convert an INT to a FINT after scaling it by a factor */
     56static int ConvertBackToInteger(fInt);                    /* Convert a FINT back to an INT that is scaled by 1000 (i.e. last 3 digits are the decimal digits) */
     57
     58static fInt fNegate(fInt);                                /* Returns -1 * input fInt value */
     59static fInt fAdd (fInt, fInt);                            /* Returns the sum of two fInt numbers */
     60static fInt fSubtract (fInt A, fInt B);                   /* Returns A-B - Sometimes easier than Adding negative numbers */
     61static fInt fMultiply (fInt, fInt);                       /* Returns the product of two fInt numbers */
     62static fInt fDivide (fInt A, fInt B);                     /* Returns A/B */
     63static fInt fGetSquare(fInt);                             /* Returns the square of a fInt number */
     64static fInt fSqrt(fInt);                                  /* Returns the Square Root of a fInt number */
     65
     66static int uAbs(int);                                     /* Returns the Absolute value of the Int */
     67static int uPow(int base, int exponent);                  /* Returns base^exponent an INT */
     68
     69static void SolveQuadracticEqn(fInt, fInt, fInt, fInt[]); /* Returns the 2 roots via the array */
     70static bool Equal(fInt, fInt);                            /* Returns true if two fInts are equal to each other */
     71static bool GreaterThan(fInt A, fInt B);                  /* Returns true if A > B */
     72
     73static fInt fExponential(fInt exponent);                  /* Can be used to calculate e^exponent */
     74static fInt fNaturalLog(fInt value);                      /* Can be used to calculate ln(value) */
     75
     76/* Fuse decoding functions
     77 * -------------------------------------------------------------------------------------
     78 */
     79static fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength);
     80static fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength);
     81static fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength);
     82
     83/* Internal Support Functions - Use these ONLY for testing or adding to internal functions
     84 * -------------------------------------------------------------------------------------
     85 * Some of the following functions take two INTs as their input - This is unsafe for a variety of reasons.
     86 */
     87static fInt Divide (int, int);                            /* Divide two INTs and return result as FINT */
     88static fInt fNegate(fInt);
     89
     90static int uGetScaledDecimal (fInt);                      /* Internal function */
     91static int GetReal (fInt A);                              /* Internal function */
     92
     93/* -------------------------------------------------------------------------------------
     94 * TROUBLESHOOTING INFORMATION
     95 * -------------------------------------------------------------------------------------
     96 * 1) ConvertToFraction - InputOutOfRangeException: Only accepts numbers smaller than MAX (default: 32767)
     97 * 2) fAdd - OutputOutOfRangeException: Output bigger than MAX (default: 32767)
     98 * 3) fMultiply - OutputOutOfRangeException:
     99 * 4) fGetSquare - OutputOutOfRangeException:
    100 * 5) fDivide - DivideByZeroException
    101 * 6) fSqrt - NegativeSquareRootException: Input cannot be a negative number
    102 */
    103
    104/* -------------------------------------------------------------------------------------
    105 * START OF CODE
    106 * -------------------------------------------------------------------------------------
    107 */
    108static fInt fExponential(fInt exponent)        /*Can be used to calculate e^exponent*/
    109{
    110	uint32_t i;
    111	bool bNegated = false;
    112
    113	fInt fPositiveOne = ConvertToFraction(1);
    114	fInt fZERO = ConvertToFraction(0);
    115
    116	fInt lower_bound = Divide(78, 10000);
    117	fInt solution = fPositiveOne; /*Starting off with baseline of 1 */
    118	fInt error_term;
    119
    120	static const uint32_t k_array[11] = {55452, 27726, 13863, 6931, 4055, 2231, 1178, 606, 308, 155, 78};
    121	static const uint32_t expk_array[11] = {2560000, 160000, 40000, 20000, 15000, 12500, 11250, 10625, 10313, 10156, 10078};
    122
    123	if (GreaterThan(fZERO, exponent)) {
    124		exponent = fNegate(exponent);
    125		bNegated = true;
    126	}
    127
    128	while (GreaterThan(exponent, lower_bound)) {
    129		for (i = 0; i < 11; i++) {
    130			if (GreaterThan(exponent, GetScaledFraction(k_array[i], 10000))) {
    131				exponent = fSubtract(exponent, GetScaledFraction(k_array[i], 10000));
    132				solution = fMultiply(solution, GetScaledFraction(expk_array[i], 10000));
    133			}
    134		}
    135	}
    136
    137	error_term = fAdd(fPositiveOne, exponent);
    138
    139	solution = fMultiply(solution, error_term);
    140
    141	if (bNegated)
    142		solution = fDivide(fPositiveOne, solution);
    143
    144	return solution;
    145}
    146
    147static fInt fNaturalLog(fInt value)
    148{
    149	uint32_t i;
    150	fInt upper_bound = Divide(8, 1000);
    151	fInt fNegativeOne = ConvertToFraction(-1);
    152	fInt solution = ConvertToFraction(0); /*Starting off with baseline of 0 */
    153	fInt error_term;
    154
    155	static const uint32_t k_array[10] = {160000, 40000, 20000, 15000, 12500, 11250, 10625, 10313, 10156, 10078};
    156	static const uint32_t logk_array[10] = {27726, 13863, 6931, 4055, 2231, 1178, 606, 308, 155, 78};
    157
    158	while (GreaterThan(fAdd(value, fNegativeOne), upper_bound)) {
    159		for (i = 0; i < 10; i++) {
    160			if (GreaterThan(value, GetScaledFraction(k_array[i], 10000))) {
    161				value = fDivide(value, GetScaledFraction(k_array[i], 10000));
    162				solution = fAdd(solution, GetScaledFraction(logk_array[i], 10000));
    163			}
    164		}
    165	}
    166
    167	error_term = fAdd(fNegativeOne, value);
    168
    169	return (fAdd(solution, error_term));
    170}
    171
    172static fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength)
    173{
    174	fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value);
    175	fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);
    176
    177	fInt f_decoded_value;
    178
    179	f_decoded_value = fDivide(f_fuse_value, f_bit_max_value);
    180	f_decoded_value = fMultiply(f_decoded_value, f_range);
    181	f_decoded_value = fAdd(f_decoded_value, f_min);
    182
    183	return f_decoded_value;
    184}
    185
    186
    187static fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength)
    188{
    189	fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value);
    190	fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);
    191
    192	fInt f_CONSTANT_NEG13 = ConvertToFraction(-13);
    193	fInt f_CONSTANT1 = ConvertToFraction(1);
    194
    195	fInt f_decoded_value;
    196
    197	f_decoded_value = fSubtract(fDivide(f_bit_max_value, f_fuse_value), f_CONSTANT1);
    198	f_decoded_value = fNaturalLog(f_decoded_value);
    199	f_decoded_value = fMultiply(f_decoded_value, fDivide(f_range, f_CONSTANT_NEG13));
    200	f_decoded_value = fAdd(f_decoded_value, f_average);
    201
    202	return f_decoded_value;
    203}
    204
    205static fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength)
    206{
    207	fInt fLeakage;
    208	fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);
    209
    210	fLeakage = fMultiply(ln_max_div_min, Convert_ULONG_ToFraction(leakageID_fuse));
    211	fLeakage = fDivide(fLeakage, f_bit_max_value);
    212	fLeakage = fExponential(fLeakage);
    213	fLeakage = fMultiply(fLeakage, f_min);
    214
    215	return fLeakage;
    216}
    217
    218static fInt ConvertToFraction(int X) /*Add all range checking here. Is it possible to make fInt a private declaration? */
    219{
    220	fInt temp;
    221
    222	if (X <= MAX)
    223		temp.full = (X << SHIFT_AMOUNT);
    224	else
    225		temp.full = 0;
    226
    227	return temp;
    228}
    229
    230static fInt fNegate(fInt X)
    231{
    232	fInt CONSTANT_NEGONE = ConvertToFraction(-1);
    233	return (fMultiply(X, CONSTANT_NEGONE));
    234}
    235
    236static fInt Convert_ULONG_ToFraction(uint32_t X)
    237{
    238	fInt temp;
    239
    240	if (X <= MAX)
    241		temp.full = (X << SHIFT_AMOUNT);
    242	else
    243		temp.full = 0;
    244
    245	return temp;
    246}
    247
    248static fInt GetScaledFraction(int X, int factor)
    249{
    250	int times_shifted, factor_shifted;
    251	bool bNEGATED;
    252	fInt fValue;
    253
    254	times_shifted = 0;
    255	factor_shifted = 0;
    256	bNEGATED = false;
    257
    258	if (X < 0) {
    259		X = -1*X;
    260		bNEGATED = true;
    261	}
    262
    263	if (factor < 0) {
    264		factor = -1*factor;
    265		bNEGATED = !bNEGATED; /*If bNEGATED = true due to X < 0, this will cover the case of negative cancelling negative */
    266	}
    267
    268	if ((X > MAX) || factor > MAX) {
    269		if ((X/factor) <= MAX) {
    270			while (X > MAX) {
    271				X = X >> 1;
    272				times_shifted++;
    273			}
    274
    275			while (factor > MAX) {
    276				factor = factor >> 1;
    277				factor_shifted++;
    278			}
    279		} else {
    280			fValue.full = 0;
    281			return fValue;
    282		}
    283	}
    284
    285	if (factor == 1)
    286		return ConvertToFraction(X);
    287
    288	fValue = fDivide(ConvertToFraction(X * uPow(-1, bNEGATED)), ConvertToFraction(factor));
    289
    290	fValue.full = fValue.full << times_shifted;
    291	fValue.full = fValue.full >> factor_shifted;
    292
    293	return fValue;
    294}
    295
    296/* Addition using two fInts */
    297static fInt fAdd (fInt X, fInt Y)
    298{
    299	fInt Sum;
    300
    301	Sum.full = X.full + Y.full;
    302
    303	return Sum;
    304}
    305
    306/* Addition using two fInts */
    307static fInt fSubtract (fInt X, fInt Y)
    308{
    309	fInt Difference;
    310
    311	Difference.full = X.full - Y.full;
    312
    313	return Difference;
    314}
    315
    316static bool Equal(fInt A, fInt B)
    317{
    318	if (A.full == B.full)
    319		return true;
    320	else
    321		return false;
    322}
    323
    324static bool GreaterThan(fInt A, fInt B)
    325{
    326	if (A.full > B.full)
    327		return true;
    328	else
    329		return false;
    330}
    331
    332static fInt fMultiply (fInt X, fInt Y) /* Uses 64-bit integers (int64_t) */
    333{
    334	fInt Product;
    335	int64_t tempProduct;
    336
    337	/*The following is for a very specific common case: Non-zero number with ONLY fractional portion*/
    338	/* TEMPORARILY DISABLED - CAN BE USED TO IMPROVE PRECISION
    339	bool X_LessThanOne, Y_LessThanOne;
    340
    341	X_LessThanOne = (X.partial.real == 0 && X.partial.decimal != 0 && X.full >= 0);
    342	Y_LessThanOne = (Y.partial.real == 0 && Y.partial.decimal != 0 && Y.full >= 0);
    343
    344	if (X_LessThanOne && Y_LessThanOne) {
    345		Product.full = X.full * Y.full;
    346		return Product
    347	}*/
    348
    349	tempProduct = ((int64_t)X.full) * ((int64_t)Y.full); /*Q(16,16)*Q(16,16) = Q(32, 32) - Might become a negative number! */
    350	tempProduct = tempProduct >> 16; /*Remove lagging 16 bits - Will lose some precision from decimal; */
    351	Product.full = (int)tempProduct; /*The int64_t will lose the leading 16 bits that were part of the integer portion */
    352
    353	return Product;
    354}
    355
    356static fInt fDivide (fInt X, fInt Y)
    357{
    358	fInt fZERO, fQuotient;
    359	int64_t longlongX, longlongY;
    360
    361	fZERO = ConvertToFraction(0);
    362
    363	if (Equal(Y, fZERO))
    364		return fZERO;
    365
    366	longlongX = (int64_t)X.full;
    367	longlongY = (int64_t)Y.full;
    368
    369	longlongX = longlongX << 16; /*Q(16,16) -> Q(32,32) */
    370
    371	div64_s64(longlongX, longlongY); /*Q(32,32) divided by Q(16,16) = Q(16,16) Back to original format */
    372
    373	fQuotient.full = (int)longlongX;
    374	return fQuotient;
    375}
    376
    377static int ConvertBackToInteger (fInt A) /*THIS is the function that will be used to check with the Golden settings table*/
    378{
    379	fInt fullNumber, scaledDecimal, scaledReal;
    380
    381	scaledReal.full = GetReal(A) * uPow(10, PRECISION-1); /* DOUBLE CHECK THISSSS!!! */
    382
    383	scaledDecimal.full = uGetScaledDecimal(A);
    384
    385	fullNumber = fAdd(scaledDecimal,scaledReal);
    386
    387	return fullNumber.full;
    388}
    389
    390static fInt fGetSquare(fInt A)
    391{
    392	return fMultiply(A,A);
    393}
    394
    395/* x_new = x_old - (x_old^2 - C) / (2 * x_old) */
    396static fInt fSqrt(fInt num)
    397{
    398	fInt F_divide_Fprime, Fprime;
    399	fInt test;
    400	fInt twoShifted;
    401	int seed, counter, error;
    402	fInt x_new, x_old, C, y;
    403
    404	fInt fZERO = ConvertToFraction(0);
    405
    406	/* (0 > num) is the same as (num < 0), i.e., num is negative */
    407
    408	if (GreaterThan(fZERO, num) || Equal(fZERO, num))
    409		return fZERO;
    410
    411	C = num;
    412
    413	if (num.partial.real > 3000)
    414		seed = 60;
    415	else if (num.partial.real > 1000)
    416		seed = 30;
    417	else if (num.partial.real > 100)
    418		seed = 10;
    419	else
    420		seed = 2;
    421
    422	counter = 0;
    423
    424	if (Equal(num, fZERO)) /*Square Root of Zero is zero */
    425		return fZERO;
    426
    427	twoShifted = ConvertToFraction(2);
    428	x_new = ConvertToFraction(seed);
    429
    430	do {
    431		counter++;
    432
    433		x_old.full = x_new.full;
    434
    435		test = fGetSquare(x_old); /*1.75*1.75 is reverting back to 1 when shifted down */
    436		y = fSubtract(test, C); /*y = f(x) = x^2 - C; */
    437
    438		Fprime = fMultiply(twoShifted, x_old);
    439		F_divide_Fprime = fDivide(y, Fprime);
    440
    441		x_new = fSubtract(x_old, F_divide_Fprime);
    442
    443		error = ConvertBackToInteger(x_new) - ConvertBackToInteger(x_old);
    444
    445		if (counter > 20) /*20 is already way too many iterations. If we dont have an answer by then, we never will*/
    446			return x_new;
    447
    448	} while (uAbs(error) > 0);
    449
    450	return (x_new);
    451}
    452
    453static void SolveQuadracticEqn(fInt A, fInt B, fInt C, fInt Roots[])
    454{
    455	fInt *pRoots = &Roots[0];
    456	fInt temp, root_first, root_second;
    457	fInt f_CONSTANT10, f_CONSTANT100;
    458
    459	f_CONSTANT100 = ConvertToFraction(100);
    460	f_CONSTANT10 = ConvertToFraction(10);
    461
    462	while(GreaterThan(A, f_CONSTANT100) || GreaterThan(B, f_CONSTANT100) || GreaterThan(C, f_CONSTANT100)) {
    463		A = fDivide(A, f_CONSTANT10);
    464		B = fDivide(B, f_CONSTANT10);
    465		C = fDivide(C, f_CONSTANT10);
    466	}
    467
    468	temp = fMultiply(ConvertToFraction(4), A); /* root = 4*A */
    469	temp = fMultiply(temp, C); /* root = 4*A*C */
    470	temp = fSubtract(fGetSquare(B), temp); /* root = b^2 - 4AC */
    471	temp = fSqrt(temp); /*root = Sqrt (b^2 - 4AC); */
    472
    473	root_first = fSubtract(fNegate(B), temp); /* b - Sqrt(b^2 - 4AC) */
    474	root_second = fAdd(fNegate(B), temp); /* b + Sqrt(b^2 - 4AC) */
    475
    476	root_first = fDivide(root_first, ConvertToFraction(2)); /* [b +- Sqrt(b^2 - 4AC)]/[2] */
    477	root_first = fDivide(root_first, A); /*[b +- Sqrt(b^2 - 4AC)]/[2*A] */
    478
    479	root_second = fDivide(root_second, ConvertToFraction(2)); /* [b +- Sqrt(b^2 - 4AC)]/[2] */
    480	root_second = fDivide(root_second, A); /*[b +- Sqrt(b^2 - 4AC)]/[2*A] */
    481
    482	*(pRoots + 0) = root_first;
    483	*(pRoots + 1) = root_second;
    484}
    485
    486/* -----------------------------------------------------------------------------
    487 * SUPPORT FUNCTIONS
    488 * -----------------------------------------------------------------------------
    489 */
    490
    491/* Conversion Functions */
    492static int GetReal (fInt A)
    493{
    494	return (A.full >> SHIFT_AMOUNT);
    495}
    496
    497static fInt Divide (int X, int Y)
    498{
    499	fInt A, B, Quotient;
    500
    501	A.full = X << SHIFT_AMOUNT;
    502	B.full = Y << SHIFT_AMOUNT;
    503
    504	Quotient = fDivide(A, B);
    505
    506	return Quotient;
    507}
    508
    509static int uGetScaledDecimal (fInt A) /*Converts the fractional portion to whole integers - Costly function */
    510{
    511	int dec[PRECISION];
    512	int i, scaledDecimal = 0, tmp = A.partial.decimal;
    513
    514	for (i = 0; i < PRECISION; i++) {
    515		dec[i] = tmp / (1 << SHIFT_AMOUNT);
    516		tmp = tmp - ((1 << SHIFT_AMOUNT)*dec[i]);
    517		tmp *= 10;
    518		scaledDecimal = scaledDecimal + dec[i]*uPow(10, PRECISION - 1 -i);
    519	}
    520
    521	return scaledDecimal;
    522}
    523
    524static int uPow(int base, int power)
    525{
    526	if (power == 0)
    527		return 1;
    528	else
    529		return (base)*uPow(base, power - 1);
    530}
    531
    532static int uAbs(int X)
    533{
    534	if (X < 0)
    535		return (X * -1);
    536	else
    537		return X;
    538}
    539
    540static fInt fRoundUpByStepSize(fInt A, fInt fStepSize, bool error_term)
    541{
    542	fInt solution;
    543
    544	solution = fDivide(A, fStepSize);
    545	solution.partial.decimal = 0; /*All fractional digits changes to 0 */
    546
    547	if (error_term)
    548		solution.partial.real += 1; /*Error term of 1 added */
    549
    550	solution = fMultiply(solution, fStepSize);
    551	solution = fAdd(solution, fStepSize);
    552
    553	return solution;
    554}
    555