cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

fiji_smumgr.c (93500B)


      1/*
      2 * Copyright 2015 Advanced Micro Devices, Inc.
      3 *
      4 * Permission is hereby granted, free of charge, to any person obtaining a
      5 * copy of this software and associated documentation files (the "Software"),
      6 * to deal in the Software without restriction, including without limitation
      7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8 * and/or sell copies of the Software, and to permit persons to whom the
      9 * Software is furnished to do so, subject to the following conditions:
     10 *
     11 * The above copyright notice and this permission notice shall be included in
     12 * all copies or substantial portions of the Software.
     13 *
     14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
     18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
     19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
     20 * OTHER DEALINGS IN THE SOFTWARE.
     21 *
     22 */
     23
     24#include "pp_debug.h"
     25#include "smumgr.h"
     26#include "smu7_dyn_defaults.h"
     27#include "smu73.h"
     28#include "smu_ucode_xfer_vi.h"
     29#include "fiji_smumgr.h"
     30#include "fiji_ppsmc.h"
     31#include "smu73_discrete.h"
     32#include "ppatomctrl.h"
     33#include "smu/smu_7_1_3_d.h"
     34#include "smu/smu_7_1_3_sh_mask.h"
     35#include "gmc/gmc_8_1_d.h"
     36#include "gmc/gmc_8_1_sh_mask.h"
     37#include "oss/oss_3_0_d.h"
     38#include "gca/gfx_8_0_d.h"
     39#include "bif/bif_5_0_d.h"
     40#include "bif/bif_5_0_sh_mask.h"
     41#include "dce/dce_10_0_d.h"
     42#include "dce/dce_10_0_sh_mask.h"
     43#include "hardwaremanager.h"
     44#include "cgs_common.h"
     45#include "atombios.h"
     46#include "pppcielanes.h"
     47#include "hwmgr.h"
     48#include "smu7_hwmgr.h"
     49
     50
     51#define AVFS_EN_MSB                                        1568
     52#define AVFS_EN_LSB                                        1568
     53
     54#define FIJI_SMC_SIZE 0x20000
     55
     56#define POWERTUNE_DEFAULT_SET_MAX    1
     57#define VDDC_VDDCI_DELTA            300
     58#define MC_CG_ARB_FREQ_F1           0x0b
     59
     60/* [2.5%,~2.5%] Clock stretched is multiple of 2.5% vs
     61 * not and [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ]
     62 */
     63static const uint16_t fiji_clock_stretcher_lookup_table[2][4] = {
     64				{600, 1050, 3, 0}, {600, 1050, 6, 1} };
     65
     66/* [FF, SS] type, [] 4 voltage ranges, and
     67 * [Floor Freq, Boundary Freq, VID min , VID max]
     68 */
     69static const uint32_t fiji_clock_stretcher_ddt_table[2][4][4] = {
     70	{ {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} },
     71	{ {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } };
     72
     73/* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%]
     74 * (coming from PWR_CKS_CNTL.stretch_amount reg spec)
     75 */
     76static const uint8_t fiji_clock_stretch_amount_conversion[2][6] = {
     77				{0, 1, 3, 2, 4, 5}, {0, 2, 4, 5, 6, 5} };
     78
     79static const struct fiji_pt_defaults fiji_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX] = {
     80		/*sviLoadLIneEn,  SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc */
     81		{1,               0xF,             0xFD,
     82		/* TDC_MAWt, TdcWaterfallCtl, DTEAmbientTempBase */
     83		0x19,        5,               45}
     84};
     85
     86static const struct SMU73_Discrete_GraphicsLevel avfs_graphics_level[8] = {
     87		/*  Min        Sclk       pcie     DeepSleep Activity  CgSpll      CgSpll    spllSpread  SpllSpread   CcPwr  CcPwr  Sclk   Display     Enabled     Enabled                       Voltage    Power */
     88		/* Voltage,  Frequency,  DpmLevel,  DivId,    Level,  FuncCntl3,  FuncCntl4,  Spectrum,   Spectrum2,  DynRm, DynRm1  Did, Watermark, ForActivity, ForThrottle, UpHyst, DownHyst, DownHyst, Throttle */
     89		{ 0x3c0fd047, 0x30750000,   0x00,     0x03,   0x1e00, 0x00200410, 0x87020000, 0x21680000, 0x0c000000,   0,      0,   0x16,   0x00,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 },
     90		{ 0xa00fd047, 0x409c0000,   0x01,     0x04,   0x1e00, 0x00800510, 0x87020000, 0x21680000, 0x11000000,   0,      0,   0x16,   0x00,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 },
     91		{ 0x0410d047, 0x50c30000,   0x01,     0x00,   0x1e00, 0x00600410, 0x87020000, 0x21680000, 0x0d000000,   0,      0,   0x0e,   0x00,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 },
     92		{ 0x6810d047, 0x60ea0000,   0x01,     0x00,   0x1e00, 0x00800410, 0x87020000, 0x21680000, 0x0e000000,   0,      0,   0x0c,   0x00,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 },
     93		{ 0xcc10d047, 0xe8fd0000,   0x01,     0x00,   0x1e00, 0x00e00410, 0x87020000, 0x21680000, 0x0f000000,   0,      0,   0x0c,   0x00,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 },
     94		{ 0x3011d047, 0x70110100,   0x01,     0x00,   0x1e00, 0x00400510, 0x87020000, 0x21680000, 0x10000000,   0,      0,   0x0c,   0x00,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 },
     95		{ 0x9411d047, 0xf8240100,   0x01,     0x00,   0x1e00, 0x00a00510, 0x87020000, 0x21680000, 0x11000000,   0,      0,   0x0c,   0x00,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 },
     96		{ 0xf811d047, 0x80380100,   0x01,     0x00,   0x1e00, 0x00000610, 0x87020000, 0x21680000, 0x12000000,   0,      0,   0x0c,   0x01,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 }
     97};
     98
     99static int fiji_start_smu_in_protection_mode(struct pp_hwmgr *hwmgr)
    100{
    101	int result = 0;
    102
    103	/* Wait for smc boot up */
    104	/* PHM_WAIT_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
    105		RCU_UC_EVENTS, boot_seq_done, 0); */
    106
    107	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
    108			SMC_SYSCON_RESET_CNTL, rst_reg, 1);
    109
    110	result = smu7_upload_smu_firmware_image(hwmgr);
    111	if (result)
    112		return result;
    113
    114	/* Clear status */
    115	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
    116			ixSMU_STATUS, 0);
    117
    118	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
    119			SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
    120
    121	/* De-assert reset */
    122	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
    123			SMC_SYSCON_RESET_CNTL, rst_reg, 0);
    124
    125	/* Wait for ROM firmware to initialize interrupt hendler */
    126	/*SMUM_WAIT_VFPF_INDIRECT_REGISTER(hwmgr, SMC_IND,
    127			SMC_INTR_CNTL_MASK_0, 0x10040, 0xFFFFFFFF); */
    128
    129	/* Set SMU Auto Start */
    130	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
    131			SMU_INPUT_DATA, AUTO_START, 1);
    132
    133	/* Clear firmware interrupt enable flag */
    134	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
    135			ixFIRMWARE_FLAGS, 0);
    136
    137	PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, RCU_UC_EVENTS,
    138			INTERRUPTS_ENABLED, 1);
    139
    140	smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_Test, 0x20000, NULL);
    141
    142	/* Wait for done bit to be set */
    143	PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
    144			SMU_STATUS, SMU_DONE, 0);
    145
    146	/* Check pass/failed indicator */
    147	if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
    148			SMU_STATUS, SMU_PASS) != 1) {
    149		PP_ASSERT_WITH_CODE(false,
    150				"SMU Firmware start failed!", return -1);
    151	}
    152
    153	/* Wait for firmware to initialize */
    154	PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,
    155			FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
    156
    157	return result;
    158}
    159
    160static int fiji_start_smu_in_non_protection_mode(struct pp_hwmgr *hwmgr)
    161{
    162	int result = 0;
    163
    164	/* wait for smc boot up */
    165	PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
    166			RCU_UC_EVENTS, boot_seq_done, 0);
    167
    168	/* Clear firmware interrupt enable flag */
    169	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
    170			ixFIRMWARE_FLAGS, 0);
    171
    172	/* Assert reset */
    173	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
    174			SMC_SYSCON_RESET_CNTL, rst_reg, 1);
    175
    176	result = smu7_upload_smu_firmware_image(hwmgr);
    177	if (result)
    178		return result;
    179
    180	/* Set smc instruct start point at 0x0 */
    181	smu7_program_jump_on_start(hwmgr);
    182
    183	/* Enable clock */
    184	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
    185			SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
    186
    187	/* De-assert reset */
    188	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
    189			SMC_SYSCON_RESET_CNTL, rst_reg, 0);
    190
    191	/* Wait for firmware to initialize */
    192	PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,
    193			FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
    194
    195	return result;
    196}
    197
    198static int fiji_start_avfs_btc(struct pp_hwmgr *hwmgr)
    199{
    200	int result = 0;
    201	struct smu7_smumgr *smu_data = (struct smu7_smumgr *)(hwmgr->smu_backend);
    202
    203	if (0 != smu_data->avfs_btc_param) {
    204		if (0 != smum_send_msg_to_smc_with_parameter(hwmgr,
    205				PPSMC_MSG_PerformBtc, smu_data->avfs_btc_param,
    206				NULL)) {
    207			pr_info("[AVFS][Fiji_PerformBtc] PerformBTC SMU msg failed");
    208			result = -EINVAL;
    209		}
    210	}
    211	/* Soft-Reset to reset the engine before loading uCode */
    212	 /* halt */
    213	cgs_write_register(hwmgr->device, mmCP_MEC_CNTL, 0x50000000);
    214	/* reset everything */
    215	cgs_write_register(hwmgr->device, mmGRBM_SOFT_RESET, 0xffffffff);
    216	/* clear reset */
    217	cgs_write_register(hwmgr->device, mmGRBM_SOFT_RESET, 0);
    218
    219	return result;
    220}
    221
    222static int fiji_setup_graphics_level_structure(struct pp_hwmgr *hwmgr)
    223{
    224	int32_t vr_config;
    225	uint32_t table_start;
    226	uint32_t level_addr, vr_config_addr;
    227	uint32_t level_size = sizeof(avfs_graphics_level);
    228
    229	PP_ASSERT_WITH_CODE(0 == smu7_read_smc_sram_dword(hwmgr,
    230			SMU7_FIRMWARE_HEADER_LOCATION +
    231			offsetof(SMU73_Firmware_Header, DpmTable),
    232			&table_start, 0x40000),
    233			"[AVFS][Fiji_SetupGfxLvlStruct] SMU could not "
    234			"communicate starting address of DPM table",
    235			return -1;);
    236
    237	/* Default value for vr_config =
    238	 * VR_MERGED_WITH_VDDC + VR_STATIC_VOLTAGE(VDDCI) */
    239	vr_config = 0x01000500;   /* Real value:0x50001 */
    240
    241	vr_config_addr = table_start +
    242			offsetof(SMU73_Discrete_DpmTable, VRConfig);
    243
    244	PP_ASSERT_WITH_CODE(0 == smu7_copy_bytes_to_smc(hwmgr, vr_config_addr,
    245			(uint8_t *)&vr_config, sizeof(int32_t), 0x40000),
    246			"[AVFS][Fiji_SetupGfxLvlStruct] Problems copying "
    247			"vr_config value over to SMC",
    248			return -1;);
    249
    250	level_addr = table_start + offsetof(SMU73_Discrete_DpmTable, GraphicsLevel);
    251
    252	PP_ASSERT_WITH_CODE(0 == smu7_copy_bytes_to_smc(hwmgr, level_addr,
    253			(uint8_t *)(&avfs_graphics_level), level_size, 0x40000),
    254			"[AVFS][Fiji_SetupGfxLvlStruct] Copying of DPM table failed!",
    255			return -1;);
    256
    257	return 0;
    258}
    259
    260static int fiji_avfs_event_mgr(struct pp_hwmgr *hwmgr)
    261{
    262	if (!hwmgr->avfs_supported)
    263		return 0;
    264
    265	PP_ASSERT_WITH_CODE(0 == fiji_setup_graphics_level_structure(hwmgr),
    266			"[AVFS][fiji_avfs_event_mgr] Could not Copy Graphics Level"
    267			" table over to SMU",
    268			return -EINVAL);
    269	PP_ASSERT_WITH_CODE(0 == smu7_setup_pwr_virus(hwmgr),
    270			"[AVFS][fiji_avfs_event_mgr] Could not setup "
    271			"Pwr Virus for AVFS ",
    272			return -EINVAL);
    273	PP_ASSERT_WITH_CODE(0 == fiji_start_avfs_btc(hwmgr),
    274			"[AVFS][fiji_avfs_event_mgr] Failure at "
    275			"fiji_start_avfs_btc. AVFS Disabled",
    276			return -EINVAL);
    277
    278	return 0;
    279}
    280
    281static int fiji_start_smu(struct pp_hwmgr *hwmgr)
    282{
    283	int result = 0;
    284	struct fiji_smumgr *priv = (struct fiji_smumgr *)(hwmgr->smu_backend);
    285
    286	/* Only start SMC if SMC RAM is not running */
    287	if (!smu7_is_smc_ram_running(hwmgr) && hwmgr->not_vf) {
    288		/* Check if SMU is running in protected mode */
    289		if (0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
    290				CGS_IND_REG__SMC,
    291				SMU_FIRMWARE, SMU_MODE)) {
    292			result = fiji_start_smu_in_non_protection_mode(hwmgr);
    293			if (result)
    294				return result;
    295		} else {
    296			result = fiji_start_smu_in_protection_mode(hwmgr);
    297			if (result)
    298				return result;
    299		}
    300		if (fiji_avfs_event_mgr(hwmgr))
    301			hwmgr->avfs_supported = false;
    302	}
    303
    304	/* Setup SoftRegsStart here for register lookup in case
    305	 * DummyBackEnd is used and ProcessFirmwareHeader is not executed
    306	 */
    307	smu7_read_smc_sram_dword(hwmgr,
    308			SMU7_FIRMWARE_HEADER_LOCATION +
    309			offsetof(SMU73_Firmware_Header, SoftRegisters),
    310			&(priv->smu7_data.soft_regs_start), 0x40000);
    311
    312	result = smu7_request_smu_load_fw(hwmgr);
    313
    314	return result;
    315}
    316
    317static bool fiji_is_hw_avfs_present(struct pp_hwmgr *hwmgr)
    318{
    319
    320	uint32_t efuse = 0;
    321
    322	if (!hwmgr->not_vf)
    323		return false;
    324
    325	if (!atomctrl_read_efuse(hwmgr, AVFS_EN_LSB, AVFS_EN_MSB,
    326			&efuse)) {
    327		if (efuse)
    328			return true;
    329	}
    330	return false;
    331}
    332
    333static int fiji_smu_init(struct pp_hwmgr *hwmgr)
    334{
    335	struct fiji_smumgr *fiji_priv = NULL;
    336
    337	fiji_priv = kzalloc(sizeof(struct fiji_smumgr), GFP_KERNEL);
    338
    339	if (fiji_priv == NULL)
    340		return -ENOMEM;
    341
    342	hwmgr->smu_backend = fiji_priv;
    343
    344	if (smu7_init(hwmgr)) {
    345		kfree(fiji_priv);
    346		return -EINVAL;
    347	}
    348
    349	return 0;
    350}
    351
    352static int fiji_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
    353		struct phm_ppt_v1_clock_voltage_dependency_table *dep_table,
    354		uint32_t clock, uint32_t *voltage, uint32_t *mvdd)
    355{
    356	uint32_t i;
    357	uint16_t vddci;
    358	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
    359	*voltage = *mvdd = 0;
    360
    361
    362	/* clock - voltage dependency table is empty table */
    363	if (dep_table->count == 0)
    364		return -EINVAL;
    365
    366	for (i = 0; i < dep_table->count; i++) {
    367		/* find first sclk bigger than request */
    368		if (dep_table->entries[i].clk >= clock) {
    369			*voltage |= (dep_table->entries[i].vddc *
    370					VOLTAGE_SCALE) << VDDC_SHIFT;
    371			if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
    372				*voltage |= (data->vbios_boot_state.vddci_bootup_value *
    373						VOLTAGE_SCALE) << VDDCI_SHIFT;
    374			else if (dep_table->entries[i].vddci)
    375				*voltage |= (dep_table->entries[i].vddci *
    376						VOLTAGE_SCALE) << VDDCI_SHIFT;
    377			else {
    378				vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
    379						(dep_table->entries[i].vddc -
    380								VDDC_VDDCI_DELTA));
    381				*voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
    382			}
    383
    384			if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
    385				*mvdd = data->vbios_boot_state.mvdd_bootup_value *
    386					VOLTAGE_SCALE;
    387			else if (dep_table->entries[i].mvdd)
    388				*mvdd = (uint32_t) dep_table->entries[i].mvdd *
    389					VOLTAGE_SCALE;
    390
    391			*voltage |= 1 << PHASES_SHIFT;
    392			return 0;
    393		}
    394	}
    395
    396	/* sclk is bigger than max sclk in the dependence table */
    397	*voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
    398
    399	if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
    400		*voltage |= (data->vbios_boot_state.vddci_bootup_value *
    401				VOLTAGE_SCALE) << VDDCI_SHIFT;
    402	else if (dep_table->entries[i-1].vddci) {
    403		vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
    404				(dep_table->entries[i].vddc -
    405						VDDC_VDDCI_DELTA));
    406		*voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
    407	}
    408
    409	if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
    410		*mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE;
    411	else if (dep_table->entries[i].mvdd)
    412		*mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE;
    413
    414	return 0;
    415}
    416
    417
    418static uint16_t scale_fan_gain_settings(uint16_t raw_setting)
    419{
    420	uint32_t tmp;
    421	tmp = raw_setting * 4096 / 100;
    422	return (uint16_t)tmp;
    423}
    424
    425static void get_scl_sda_value(uint8_t line, uint8_t *scl, uint8_t *sda)
    426{
    427	switch (line) {
    428	case SMU7_I2CLineID_DDC1:
    429		*scl = SMU7_I2C_DDC1CLK;
    430		*sda = SMU7_I2C_DDC1DATA;
    431		break;
    432	case SMU7_I2CLineID_DDC2:
    433		*scl = SMU7_I2C_DDC2CLK;
    434		*sda = SMU7_I2C_DDC2DATA;
    435		break;
    436	case SMU7_I2CLineID_DDC3:
    437		*scl = SMU7_I2C_DDC3CLK;
    438		*sda = SMU7_I2C_DDC3DATA;
    439		break;
    440	case SMU7_I2CLineID_DDC4:
    441		*scl = SMU7_I2C_DDC4CLK;
    442		*sda = SMU7_I2C_DDC4DATA;
    443		break;
    444	case SMU7_I2CLineID_DDC5:
    445		*scl = SMU7_I2C_DDC5CLK;
    446		*sda = SMU7_I2C_DDC5DATA;
    447		break;
    448	case SMU7_I2CLineID_DDC6:
    449		*scl = SMU7_I2C_DDC6CLK;
    450		*sda = SMU7_I2C_DDC6DATA;
    451		break;
    452	case SMU7_I2CLineID_SCLSDA:
    453		*scl = SMU7_I2C_SCL;
    454		*sda = SMU7_I2C_SDA;
    455		break;
    456	case SMU7_I2CLineID_DDCVGA:
    457		*scl = SMU7_I2C_DDCVGACLK;
    458		*sda = SMU7_I2C_DDCVGADATA;
    459		break;
    460	default:
    461		*scl = 0;
    462		*sda = 0;
    463		break;
    464	}
    465}
    466
    467static void fiji_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
    468{
    469	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
    470	struct phm_ppt_v1_information *table_info =
    471			(struct  phm_ppt_v1_information *)(hwmgr->pptable);
    472
    473	if (table_info &&
    474			table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX &&
    475			table_info->cac_dtp_table->usPowerTuneDataSetID)
    476		smu_data->power_tune_defaults =
    477				&fiji_power_tune_data_set_array
    478				[table_info->cac_dtp_table->usPowerTuneDataSetID - 1];
    479	else
    480		smu_data->power_tune_defaults = &fiji_power_tune_data_set_array[0];
    481
    482}
    483
    484static int fiji_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
    485{
    486
    487	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
    488	const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
    489
    490	SMU73_Discrete_DpmTable  *dpm_table = &(smu_data->smc_state_table);
    491
    492	struct phm_ppt_v1_information *table_info =
    493			(struct phm_ppt_v1_information *)(hwmgr->pptable);
    494	struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table;
    495	struct pp_advance_fan_control_parameters *fan_table =
    496			&hwmgr->thermal_controller.advanceFanControlParameters;
    497	uint8_t uc_scl, uc_sda;
    498
    499	/* TDP number of fraction bits are changed from 8 to 7 for Fiji
    500	 * as requested by SMC team
    501	 */
    502	dpm_table->DefaultTdp = PP_HOST_TO_SMC_US(
    503			(uint16_t)(cac_dtp_table->usTDP * 128));
    504	dpm_table->TargetTdp = PP_HOST_TO_SMC_US(
    505			(uint16_t)(cac_dtp_table->usTDP * 128));
    506
    507	PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255,
    508			"Target Operating Temp is out of Range!",
    509			);
    510
    511	dpm_table->GpuTjMax = (uint8_t)(cac_dtp_table->usTargetOperatingTemp);
    512	dpm_table->GpuTjHyst = 8;
    513
    514	dpm_table->DTEAmbientTempBase = defaults->DTEAmbientTempBase;
    515
    516	/* The following are for new Fiji Multi-input fan/thermal control */
    517	dpm_table->TemperatureLimitEdge = PP_HOST_TO_SMC_US(
    518			cac_dtp_table->usTargetOperatingTemp * 256);
    519	dpm_table->TemperatureLimitHotspot = PP_HOST_TO_SMC_US(
    520			cac_dtp_table->usTemperatureLimitHotspot * 256);
    521	dpm_table->TemperatureLimitLiquid1 = PP_HOST_TO_SMC_US(
    522			cac_dtp_table->usTemperatureLimitLiquid1 * 256);
    523	dpm_table->TemperatureLimitLiquid2 = PP_HOST_TO_SMC_US(
    524			cac_dtp_table->usTemperatureLimitLiquid2 * 256);
    525	dpm_table->TemperatureLimitVrVddc = PP_HOST_TO_SMC_US(
    526			cac_dtp_table->usTemperatureLimitVrVddc * 256);
    527	dpm_table->TemperatureLimitVrMvdd = PP_HOST_TO_SMC_US(
    528			cac_dtp_table->usTemperatureLimitVrMvdd * 256);
    529	dpm_table->TemperatureLimitPlx = PP_HOST_TO_SMC_US(
    530			cac_dtp_table->usTemperatureLimitPlx * 256);
    531
    532	dpm_table->FanGainEdge = PP_HOST_TO_SMC_US(
    533			scale_fan_gain_settings(fan_table->usFanGainEdge));
    534	dpm_table->FanGainHotspot = PP_HOST_TO_SMC_US(
    535			scale_fan_gain_settings(fan_table->usFanGainHotspot));
    536	dpm_table->FanGainLiquid = PP_HOST_TO_SMC_US(
    537			scale_fan_gain_settings(fan_table->usFanGainLiquid));
    538	dpm_table->FanGainVrVddc = PP_HOST_TO_SMC_US(
    539			scale_fan_gain_settings(fan_table->usFanGainVrVddc));
    540	dpm_table->FanGainVrMvdd = PP_HOST_TO_SMC_US(
    541			scale_fan_gain_settings(fan_table->usFanGainVrMvdd));
    542	dpm_table->FanGainPlx = PP_HOST_TO_SMC_US(
    543			scale_fan_gain_settings(fan_table->usFanGainPlx));
    544	dpm_table->FanGainHbm = PP_HOST_TO_SMC_US(
    545			scale_fan_gain_settings(fan_table->usFanGainHbm));
    546
    547	dpm_table->Liquid1_I2C_address = cac_dtp_table->ucLiquid1_I2C_address;
    548	dpm_table->Liquid2_I2C_address = cac_dtp_table->ucLiquid2_I2C_address;
    549	dpm_table->Vr_I2C_address = cac_dtp_table->ucVr_I2C_address;
    550	dpm_table->Plx_I2C_address = cac_dtp_table->ucPlx_I2C_address;
    551
    552	get_scl_sda_value(cac_dtp_table->ucLiquid_I2C_Line, &uc_scl, &uc_sda);
    553	dpm_table->Liquid_I2C_LineSCL = uc_scl;
    554	dpm_table->Liquid_I2C_LineSDA = uc_sda;
    555
    556	get_scl_sda_value(cac_dtp_table->ucVr_I2C_Line, &uc_scl, &uc_sda);
    557	dpm_table->Vr_I2C_LineSCL = uc_scl;
    558	dpm_table->Vr_I2C_LineSDA = uc_sda;
    559
    560	get_scl_sda_value(cac_dtp_table->ucPlx_I2C_Line, &uc_scl, &uc_sda);
    561	dpm_table->Plx_I2C_LineSCL = uc_scl;
    562	dpm_table->Plx_I2C_LineSDA = uc_sda;
    563
    564	return 0;
    565}
    566
    567
    568static int fiji_populate_svi_load_line(struct pp_hwmgr *hwmgr)
    569{
    570	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
    571	const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
    572
    573	smu_data->power_tune_table.SviLoadLineEn = defaults->SviLoadLineEn;
    574	smu_data->power_tune_table.SviLoadLineVddC = defaults->SviLoadLineVddC;
    575	smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
    576	smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
    577
    578	return 0;
    579}
    580
    581
    582static int fiji_populate_tdc_limit(struct pp_hwmgr *hwmgr)
    583{
    584	uint16_t tdc_limit;
    585	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
    586	struct phm_ppt_v1_information *table_info =
    587			(struct phm_ppt_v1_information *)(hwmgr->pptable);
    588	const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
    589
    590	/* TDC number of fraction bits are changed from 8 to 7
    591	 * for Fiji as requested by SMC team
    592	 */
    593	tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 128);
    594	smu_data->power_tune_table.TDC_VDDC_PkgLimit =
    595			CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
    596	smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
    597			defaults->TDC_VDDC_ThrottleReleaseLimitPerc;
    598	smu_data->power_tune_table.TDC_MAWt = defaults->TDC_MAWt;
    599
    600	return 0;
    601}
    602
    603static int fiji_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
    604{
    605	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
    606	const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
    607	uint32_t temp;
    608
    609	if (smu7_read_smc_sram_dword(hwmgr,
    610			fuse_table_offset +
    611			offsetof(SMU73_Discrete_PmFuses, TdcWaterfallCtl),
    612			(uint32_t *)&temp, SMC_RAM_END))
    613		PP_ASSERT_WITH_CODE(false,
    614				"Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
    615				return -EINVAL);
    616	else {
    617		smu_data->power_tune_table.TdcWaterfallCtl = defaults->TdcWaterfallCtl;
    618		smu_data->power_tune_table.LPMLTemperatureMin =
    619				(uint8_t)((temp >> 16) & 0xff);
    620		smu_data->power_tune_table.LPMLTemperatureMax =
    621				(uint8_t)((temp >> 8) & 0xff);
    622		smu_data->power_tune_table.Reserved = (uint8_t)(temp & 0xff);
    623	}
    624	return 0;
    625}
    626
    627static int fiji_populate_temperature_scaler(struct pp_hwmgr *hwmgr)
    628{
    629	int i;
    630	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
    631
    632	/* Currently not used. Set all to zero. */
    633	for (i = 0; i < 16; i++)
    634		smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0;
    635
    636	return 0;
    637}
    638
    639static int fiji_populate_fuzzy_fan(struct pp_hwmgr *hwmgr)
    640{
    641	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
    642
    643	if ((hwmgr->thermal_controller.advanceFanControlParameters.
    644			usFanOutputSensitivity & (1 << 15)) ||
    645			0 == hwmgr->thermal_controller.advanceFanControlParameters.
    646			usFanOutputSensitivity)
    647		hwmgr->thermal_controller.advanceFanControlParameters.
    648		usFanOutputSensitivity = hwmgr->thermal_controller.
    649			advanceFanControlParameters.usDefaultFanOutputSensitivity;
    650
    651	smu_data->power_tune_table.FuzzyFan_PwmSetDelta =
    652			PP_HOST_TO_SMC_US(hwmgr->thermal_controller.
    653					advanceFanControlParameters.usFanOutputSensitivity);
    654	return 0;
    655}
    656
    657static int fiji_populate_gnb_lpml(struct pp_hwmgr *hwmgr)
    658{
    659	int i;
    660	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
    661
    662	/* Currently not used. Set all to zero. */
    663	for (i = 0; i < 16; i++)
    664		smu_data->power_tune_table.GnbLPML[i] = 0;
    665
    666	return 0;
    667}
    668
    669static int fiji_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
    670{
    671	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
    672	struct phm_ppt_v1_information *table_info =
    673			(struct phm_ppt_v1_information *)(hwmgr->pptable);
    674	uint16_t HiSidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd;
    675	uint16_t LoSidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd;
    676	struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table;
    677
    678	HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
    679	LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
    680
    681	smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
    682			CONVERT_FROM_HOST_TO_SMC_US(HiSidd);
    683	smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
    684			CONVERT_FROM_HOST_TO_SMC_US(LoSidd);
    685
    686	return 0;
    687}
    688
    689static int fiji_populate_pm_fuses(struct pp_hwmgr *hwmgr)
    690{
    691	uint32_t pm_fuse_table_offset;
    692	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
    693
    694	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
    695			PHM_PlatformCaps_PowerContainment)) {
    696		if (smu7_read_smc_sram_dword(hwmgr,
    697				SMU7_FIRMWARE_HEADER_LOCATION +
    698				offsetof(SMU73_Firmware_Header, PmFuseTable),
    699				&pm_fuse_table_offset, SMC_RAM_END))
    700			PP_ASSERT_WITH_CODE(false,
    701					"Attempt to get pm_fuse_table_offset Failed!",
    702					return -EINVAL);
    703
    704		/* DW6 */
    705		if (fiji_populate_svi_load_line(hwmgr))
    706			PP_ASSERT_WITH_CODE(false,
    707					"Attempt to populate SviLoadLine Failed!",
    708					return -EINVAL);
    709		/* DW7 */
    710		if (fiji_populate_tdc_limit(hwmgr))
    711			PP_ASSERT_WITH_CODE(false,
    712					"Attempt to populate TDCLimit Failed!", return -EINVAL);
    713		/* DW8 */
    714		if (fiji_populate_dw8(hwmgr, pm_fuse_table_offset))
    715			PP_ASSERT_WITH_CODE(false,
    716					"Attempt to populate TdcWaterfallCtl, "
    717					"LPMLTemperature Min and Max Failed!",
    718					return -EINVAL);
    719
    720		/* DW9-DW12 */
    721		if (0 != fiji_populate_temperature_scaler(hwmgr))
    722			PP_ASSERT_WITH_CODE(false,
    723					"Attempt to populate LPMLTemperatureScaler Failed!",
    724					return -EINVAL);
    725
    726		/* DW13-DW14 */
    727		if (fiji_populate_fuzzy_fan(hwmgr))
    728			PP_ASSERT_WITH_CODE(false,
    729					"Attempt to populate Fuzzy Fan Control parameters Failed!",
    730					return -EINVAL);
    731
    732		/* DW15-DW18 */
    733		if (fiji_populate_gnb_lpml(hwmgr))
    734			PP_ASSERT_WITH_CODE(false,
    735					"Attempt to populate GnbLPML Failed!",
    736					return -EINVAL);
    737
    738		/* DW20 */
    739		if (fiji_populate_bapm_vddc_base_leakage_sidd(hwmgr))
    740			PP_ASSERT_WITH_CODE(false,
    741					"Attempt to populate BapmVddCBaseLeakage Hi and Lo "
    742					"Sidd Failed!", return -EINVAL);
    743
    744		if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
    745				(uint8_t *)&smu_data->power_tune_table,
    746				sizeof(struct SMU73_Discrete_PmFuses), SMC_RAM_END))
    747			PP_ASSERT_WITH_CODE(false,
    748					"Attempt to download PmFuseTable Failed!",
    749					return -EINVAL);
    750	}
    751	return 0;
    752}
    753
    754static int fiji_populate_cac_table(struct pp_hwmgr *hwmgr,
    755		struct SMU73_Discrete_DpmTable *table)
    756{
    757	uint32_t count;
    758	uint8_t index;
    759	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
    760	struct phm_ppt_v1_information *table_info =
    761			(struct phm_ppt_v1_information *)(hwmgr->pptable);
    762	struct phm_ppt_v1_voltage_lookup_table *lookup_table =
    763			table_info->vddc_lookup_table;
    764	/* tables is already swapped, so in order to use the value from it,
    765	 * we need to swap it back.
    766	 * We are populating vddc CAC data to BapmVddc table
    767	 * in split and merged mode
    768	 */
    769
    770	for (count = 0; count < lookup_table->count; count++) {
    771		index = phm_get_voltage_index(lookup_table,
    772				data->vddc_voltage_table.entries[count].value);
    773		table->BapmVddcVidLoSidd[count] =
    774			convert_to_vid(lookup_table->entries[index].us_cac_low);
    775		table->BapmVddcVidHiSidd[count] =
    776			convert_to_vid(lookup_table->entries[index].us_cac_high);
    777	}
    778
    779	return 0;
    780}
    781
    782static int fiji_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
    783		struct SMU73_Discrete_DpmTable *table)
    784{
    785	int result;
    786
    787	result = fiji_populate_cac_table(hwmgr, table);
    788	PP_ASSERT_WITH_CODE(0 == result,
    789			"can not populate CAC voltage tables to SMC",
    790			return -EINVAL);
    791
    792	return 0;
    793}
    794
    795static int fiji_populate_ulv_level(struct pp_hwmgr *hwmgr,
    796		struct SMU73_Discrete_Ulv *state)
    797{
    798	int result = 0;
    799
    800	struct phm_ppt_v1_information *table_info =
    801			(struct phm_ppt_v1_information *)(hwmgr->pptable);
    802
    803	state->CcPwrDynRm = 0;
    804	state->CcPwrDynRm1 = 0;
    805
    806	state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset;
    807	state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset *
    808			VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);
    809
    810	state->VddcPhase = 1;
    811
    812	if (!result) {
    813		CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
    814		CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
    815		CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
    816	}
    817	return result;
    818}
    819
    820static int fiji_populate_ulv_state(struct pp_hwmgr *hwmgr,
    821		struct SMU73_Discrete_DpmTable *table)
    822{
    823	return fiji_populate_ulv_level(hwmgr, &table->Ulv);
    824}
    825
    826static int fiji_populate_smc_link_level(struct pp_hwmgr *hwmgr,
    827		struct SMU73_Discrete_DpmTable *table)
    828{
    829	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
    830	struct smu7_dpm_table *dpm_table = &data->dpm_table;
    831	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
    832	int i;
    833
    834	/* Index (dpm_table->pcie_speed_table.count)
    835	 * is reserved for PCIE boot level. */
    836	for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
    837		table->LinkLevel[i].PcieGenSpeed  =
    838				(uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
    839		table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width(
    840				dpm_table->pcie_speed_table.dpm_levels[i].param1);
    841		table->LinkLevel[i].EnabledForActivity = 1;
    842		table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff);
    843		table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5);
    844		table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30);
    845	}
    846
    847	smu_data->smc_state_table.LinkLevelCount =
    848			(uint8_t)dpm_table->pcie_speed_table.count;
    849	data->dpm_level_enable_mask.pcie_dpm_enable_mask =
    850			phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
    851
    852	return 0;
    853}
    854
    855static int fiji_calculate_sclk_params(struct pp_hwmgr *hwmgr,
    856		uint32_t clock, struct SMU73_Discrete_GraphicsLevel *sclk)
    857{
    858	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
    859	struct pp_atomctrl_clock_dividers_vi dividers;
    860	uint32_t spll_func_cntl            = data->clock_registers.vCG_SPLL_FUNC_CNTL;
    861	uint32_t spll_func_cntl_3          = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
    862	uint32_t spll_func_cntl_4          = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
    863	uint32_t cg_spll_spread_spectrum   = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
    864	uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
    865	uint32_t ref_clock;
    866	uint32_t ref_divider;
    867	uint32_t fbdiv;
    868	int result;
    869
    870	/* get the engine clock dividers for this clock value */
    871	result = atomctrl_get_engine_pll_dividers_vi(hwmgr, clock,  &dividers);
    872
    873	PP_ASSERT_WITH_CODE(result == 0,
    874			"Error retrieving Engine Clock dividers from VBIOS.",
    875			return result);
    876
    877	/* To get FBDIV we need to multiply this by 16384 and divide it by Fref. */
    878	ref_clock = atomctrl_get_reference_clock(hwmgr);
    879	ref_divider = 1 + dividers.uc_pll_ref_div;
    880
    881	/* low 14 bits is fraction and high 12 bits is divider */
    882	fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
    883
    884	/* SPLL_FUNC_CNTL setup */
    885	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
    886			SPLL_REF_DIV, dividers.uc_pll_ref_div);
    887	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
    888			SPLL_PDIV_A,  dividers.uc_pll_post_div);
    889
    890	/* SPLL_FUNC_CNTL_3 setup*/
    891	spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
    892			SPLL_FB_DIV, fbdiv);
    893
    894	/* set to use fractional accumulation*/
    895	spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
    896			SPLL_DITHEN, 1);
    897
    898	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
    899				PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
    900		struct pp_atomctrl_internal_ss_info ssInfo;
    901
    902		uint32_t vco_freq = clock * dividers.uc_pll_post_div;
    903		if (!atomctrl_get_engine_clock_spread_spectrum(hwmgr,
    904				vco_freq, &ssInfo)) {
    905			/*
    906			 * ss_info.speed_spectrum_percentage -- in unit of 0.01%
    907			 * ss_info.speed_spectrum_rate -- in unit of khz
    908			 *
    909			 * clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2
    910			 */
    911			uint32_t clk_s = ref_clock * 5 /
    912					(ref_divider * ssInfo.speed_spectrum_rate);
    913			/* clkv = 2 * D * fbdiv / NS */
    914			uint32_t clk_v = 4 * ssInfo.speed_spectrum_percentage *
    915					fbdiv / (clk_s * 10000);
    916
    917			cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
    918					CG_SPLL_SPREAD_SPECTRUM, CLKS, clk_s);
    919			cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
    920					CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
    921			cg_spll_spread_spectrum_2 = PHM_SET_FIELD(cg_spll_spread_spectrum_2,
    922					CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clk_v);
    923		}
    924	}
    925
    926	sclk->SclkFrequency        = clock;
    927	sclk->CgSpllFuncCntl3      = spll_func_cntl_3;
    928	sclk->CgSpllFuncCntl4      = spll_func_cntl_4;
    929	sclk->SpllSpreadSpectrum   = cg_spll_spread_spectrum;
    930	sclk->SpllSpreadSpectrum2  = cg_spll_spread_spectrum_2;
    931	sclk->SclkDid              = (uint8_t)dividers.pll_post_divider;
    932
    933	return 0;
    934}
    935
    936static int fiji_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
    937		uint32_t clock, struct SMU73_Discrete_GraphicsLevel *level)
    938{
    939	int result;
    940	/* PP_Clocks minClocks; */
    941	uint32_t mvdd;
    942	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
    943	struct phm_ppt_v1_information *table_info =
    944			(struct phm_ppt_v1_information *)(hwmgr->pptable);
    945	phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table = NULL;
    946
    947	result = fiji_calculate_sclk_params(hwmgr, clock, level);
    948
    949	if (hwmgr->od_enabled)
    950		vdd_dep_table = (phm_ppt_v1_clock_voltage_dependency_table *)&data->odn_dpm_table.vdd_dependency_on_sclk;
    951	else
    952		vdd_dep_table = table_info->vdd_dep_on_sclk;
    953
    954	/* populate graphics levels */
    955	result = fiji_get_dependency_volt_by_clk(hwmgr,
    956			vdd_dep_table, clock,
    957			(uint32_t *)(&level->MinVoltage), &mvdd);
    958	PP_ASSERT_WITH_CODE((0 == result),
    959			"can not find VDDC voltage value for "
    960			"VDDC engine clock dependency table",
    961			return result);
    962
    963	level->SclkFrequency = clock;
    964	level->ActivityLevel = data->current_profile_setting.sclk_activity;
    965	level->CcPwrDynRm = 0;
    966	level->CcPwrDynRm1 = 0;
    967	level->EnabledForActivity = 0;
    968	level->EnabledForThrottle = 1;
    969	level->UpHyst = data->current_profile_setting.sclk_up_hyst;
    970	level->DownHyst = data->current_profile_setting.sclk_down_hyst;
    971	level->VoltageDownHyst = 0;
    972	level->PowerThrottle = 0;
    973
    974	data->display_timing.min_clock_in_sr = hwmgr->display_config->min_core_set_clock_in_sr;
    975
    976	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep))
    977		level->DeepSleepDivId = smu7_get_sleep_divider_id_from_clock(clock,
    978								hwmgr->display_config->min_core_set_clock_in_sr);
    979
    980
    981	/* Default to slow, highest DPM level will be
    982	 * set to PPSMC_DISPLAY_WATERMARK_LOW later.
    983	 */
    984	level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
    985
    986	CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage);
    987	CONVERT_FROM_HOST_TO_SMC_UL(level->SclkFrequency);
    988	CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
    989	CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl3);
    990	CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl4);
    991	CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum);
    992	CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum2);
    993	CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
    994	CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
    995
    996	return 0;
    997}
    998
    999static int fiji_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
   1000{
   1001	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   1002	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
   1003
   1004	struct smu7_dpm_table *dpm_table = &data->dpm_table;
   1005	struct phm_ppt_v1_information *table_info =
   1006			(struct phm_ppt_v1_information *)(hwmgr->pptable);
   1007	struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
   1008	uint8_t pcie_entry_cnt = (uint8_t) data->dpm_table.pcie_speed_table.count;
   1009	int result = 0;
   1010	uint32_t array = smu_data->smu7_data.dpm_table_start +
   1011			offsetof(SMU73_Discrete_DpmTable, GraphicsLevel);
   1012	uint32_t array_size = sizeof(struct SMU73_Discrete_GraphicsLevel) *
   1013			SMU73_MAX_LEVELS_GRAPHICS;
   1014	struct SMU73_Discrete_GraphicsLevel *levels =
   1015			smu_data->smc_state_table.GraphicsLevel;
   1016	uint32_t i, max_entry;
   1017	uint8_t hightest_pcie_level_enabled = 0,
   1018			lowest_pcie_level_enabled = 0,
   1019			mid_pcie_level_enabled = 0,
   1020			count = 0;
   1021
   1022	for (i = 0; i < dpm_table->sclk_table.count; i++) {
   1023		result = fiji_populate_single_graphic_level(hwmgr,
   1024				dpm_table->sclk_table.dpm_levels[i].value,
   1025				&levels[i]);
   1026		if (result)
   1027			return result;
   1028
   1029		/* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
   1030		if (i > 1)
   1031			levels[i].DeepSleepDivId = 0;
   1032	}
   1033
   1034	/* Only enable level 0 for now.*/
   1035	levels[0].EnabledForActivity = 1;
   1036
   1037	/* set highest level watermark to high */
   1038	levels[dpm_table->sclk_table.count - 1].DisplayWatermark =
   1039			PPSMC_DISPLAY_WATERMARK_HIGH;
   1040
   1041	smu_data->smc_state_table.GraphicsDpmLevelCount =
   1042			(uint8_t)dpm_table->sclk_table.count;
   1043	data->dpm_level_enable_mask.sclk_dpm_enable_mask =
   1044			phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
   1045
   1046	if (pcie_table != NULL) {
   1047		PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt),
   1048				"There must be 1 or more PCIE levels defined in PPTable.",
   1049				return -EINVAL);
   1050		max_entry = pcie_entry_cnt - 1;
   1051		for (i = 0; i < dpm_table->sclk_table.count; i++)
   1052			levels[i].pcieDpmLevel =
   1053					(uint8_t) ((i < max_entry) ? i : max_entry);
   1054	} else {
   1055		while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
   1056				((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
   1057						(1 << (hightest_pcie_level_enabled + 1))) != 0))
   1058			hightest_pcie_level_enabled++;
   1059
   1060		while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
   1061				((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
   1062						(1 << lowest_pcie_level_enabled)) == 0))
   1063			lowest_pcie_level_enabled++;
   1064
   1065		while ((count < hightest_pcie_level_enabled) &&
   1066				((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
   1067						(1 << (lowest_pcie_level_enabled + 1 + count))) == 0))
   1068			count++;
   1069
   1070		mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1 + count) <
   1071				hightest_pcie_level_enabled ?
   1072						(lowest_pcie_level_enabled + 1 + count) :
   1073						hightest_pcie_level_enabled;
   1074
   1075		/* set pcieDpmLevel to hightest_pcie_level_enabled */
   1076		for (i = 2; i < dpm_table->sclk_table.count; i++)
   1077			levels[i].pcieDpmLevel = hightest_pcie_level_enabled;
   1078
   1079		/* set pcieDpmLevel to lowest_pcie_level_enabled */
   1080		levels[0].pcieDpmLevel = lowest_pcie_level_enabled;
   1081
   1082		/* set pcieDpmLevel to mid_pcie_level_enabled */
   1083		levels[1].pcieDpmLevel = mid_pcie_level_enabled;
   1084	}
   1085	/* level count will send to smc once at init smc table and never change */
   1086	result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
   1087			(uint32_t)array_size, SMC_RAM_END);
   1088
   1089	return result;
   1090}
   1091
   1092
   1093/*
   1094 * MCLK Frequency Ratio
   1095 * SEQ_CG_RESP  Bit[31:24] - 0x0
   1096 * Bit[27:24] \96 DDR3 Frequency ratio
   1097 * 0x0 <= 100MHz,       450 < 0x8 <= 500MHz
   1098 * 100 < 0x1 <= 150MHz,       500 < 0x9 <= 550MHz
   1099 * 150 < 0x2 <= 200MHz,       550 < 0xA <= 600MHz
   1100 * 200 < 0x3 <= 250MHz,       600 < 0xB <= 650MHz
   1101 * 250 < 0x4 <= 300MHz,       650 < 0xC <= 700MHz
   1102 * 300 < 0x5 <= 350MHz,       700 < 0xD <= 750MHz
   1103 * 350 < 0x6 <= 400MHz,       750 < 0xE <= 800MHz
   1104 * 400 < 0x7 <= 450MHz,       800 < 0xF
   1105 */
   1106static uint8_t fiji_get_mclk_frequency_ratio(uint32_t mem_clock)
   1107{
   1108	if (mem_clock <= 10000)
   1109		return 0x0;
   1110	if (mem_clock <= 15000)
   1111		return 0x1;
   1112	if (mem_clock <= 20000)
   1113		return 0x2;
   1114	if (mem_clock <= 25000)
   1115		return 0x3;
   1116	if (mem_clock <= 30000)
   1117		return 0x4;
   1118	if (mem_clock <= 35000)
   1119		return 0x5;
   1120	if (mem_clock <= 40000)
   1121		return 0x6;
   1122	if (mem_clock <= 45000)
   1123		return 0x7;
   1124	if (mem_clock <= 50000)
   1125		return 0x8;
   1126	if (mem_clock <= 55000)
   1127		return 0x9;
   1128	if (mem_clock <= 60000)
   1129		return 0xa;
   1130	if (mem_clock <= 65000)
   1131		return 0xb;
   1132	if (mem_clock <= 70000)
   1133		return 0xc;
   1134	if (mem_clock <= 75000)
   1135		return 0xd;
   1136	if (mem_clock <= 80000)
   1137		return 0xe;
   1138	/* mem_clock > 800MHz */
   1139	return 0xf;
   1140}
   1141
   1142static int fiji_calculate_mclk_params(struct pp_hwmgr *hwmgr,
   1143    uint32_t clock, struct SMU73_Discrete_MemoryLevel *mclk)
   1144{
   1145	struct pp_atomctrl_memory_clock_param mem_param;
   1146	int result;
   1147
   1148	result = atomctrl_get_memory_pll_dividers_vi(hwmgr, clock, &mem_param);
   1149	PP_ASSERT_WITH_CODE((0 == result),
   1150			"Failed to get Memory PLL Dividers.",
   1151			);
   1152
   1153	/* Save the result data to outpupt memory level structure */
   1154	mclk->MclkFrequency   = clock;
   1155	mclk->MclkDivider     = (uint8_t)mem_param.mpll_post_divider;
   1156	mclk->FreqRange       = fiji_get_mclk_frequency_ratio(clock);
   1157
   1158	return result;
   1159}
   1160
   1161static int fiji_populate_single_memory_level(struct pp_hwmgr *hwmgr,
   1162		uint32_t clock, struct SMU73_Discrete_MemoryLevel *mem_level)
   1163{
   1164	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   1165	struct phm_ppt_v1_information *table_info =
   1166			(struct phm_ppt_v1_information *)(hwmgr->pptable);
   1167	int result = 0;
   1168	uint32_t mclk_stutter_mode_threshold = 60000;
   1169	phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table = NULL;
   1170
   1171	if (hwmgr->od_enabled)
   1172		vdd_dep_table = (phm_ppt_v1_clock_voltage_dependency_table *)&data->odn_dpm_table.vdd_dependency_on_mclk;
   1173	else
   1174		vdd_dep_table = table_info->vdd_dep_on_mclk;
   1175
   1176	if (vdd_dep_table) {
   1177		result = fiji_get_dependency_volt_by_clk(hwmgr,
   1178				vdd_dep_table, clock,
   1179				(uint32_t *)(&mem_level->MinVoltage), &mem_level->MinMvdd);
   1180		PP_ASSERT_WITH_CODE((0 == result),
   1181				"can not find MinVddc voltage value from memory "
   1182				"VDDC voltage dependency table", return result);
   1183	}
   1184
   1185	mem_level->EnabledForThrottle = 1;
   1186	mem_level->EnabledForActivity = 0;
   1187	mem_level->UpHyst = data->current_profile_setting.mclk_up_hyst;
   1188	mem_level->DownHyst = data->current_profile_setting.mclk_down_hyst;
   1189	mem_level->VoltageDownHyst = 0;
   1190	mem_level->ActivityLevel = data->current_profile_setting.mclk_activity;
   1191	mem_level->StutterEnable = false;
   1192
   1193	mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
   1194
   1195	/* enable stutter mode if all the follow condition applied
   1196	 * PECI_GetNumberOfActiveDisplays(hwmgr->pPECI,
   1197	 * &(data->DisplayTiming.numExistingDisplays));
   1198	 */
   1199	data->display_timing.num_existing_displays = hwmgr->display_config->num_display;
   1200	data->display_timing.vrefresh = hwmgr->display_config->vrefresh;
   1201
   1202	if (mclk_stutter_mode_threshold &&
   1203		(clock <= mclk_stutter_mode_threshold) &&
   1204		(!data->is_uvd_enabled) &&
   1205		(PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL,
   1206				STUTTER_ENABLE) & 0x1))
   1207		mem_level->StutterEnable = true;
   1208
   1209	result = fiji_calculate_mclk_params(hwmgr, clock, mem_level);
   1210	if (!result) {
   1211		CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd);
   1212		CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency);
   1213		CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel);
   1214		CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage);
   1215	}
   1216	return result;
   1217}
   1218
   1219static int fiji_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
   1220{
   1221	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   1222	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
   1223	struct smu7_dpm_table *dpm_table = &data->dpm_table;
   1224	int result;
   1225	/* populate MCLK dpm table to SMU7 */
   1226	uint32_t array = smu_data->smu7_data.dpm_table_start +
   1227			offsetof(SMU73_Discrete_DpmTable, MemoryLevel);
   1228	uint32_t array_size = sizeof(SMU73_Discrete_MemoryLevel) *
   1229			SMU73_MAX_LEVELS_MEMORY;
   1230	struct SMU73_Discrete_MemoryLevel *levels =
   1231			smu_data->smc_state_table.MemoryLevel;
   1232	uint32_t i;
   1233
   1234	for (i = 0; i < dpm_table->mclk_table.count; i++) {
   1235		PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
   1236				"can not populate memory level as memory clock is zero",
   1237				return -EINVAL);
   1238		result = fiji_populate_single_memory_level(hwmgr,
   1239				dpm_table->mclk_table.dpm_levels[i].value,
   1240				&levels[i]);
   1241		if (result)
   1242			return result;
   1243	}
   1244
   1245	/* Only enable level 0 for now. */
   1246	levels[0].EnabledForActivity = 1;
   1247
   1248	/* in order to prevent MC activity from stutter mode to push DPM up.
   1249	 * the UVD change complements this by putting the MCLK in
   1250	 * a higher state by default such that we are not effected by
   1251	 * up threshold or and MCLK DPM latency.
   1252	 */
   1253	levels[0].ActivityLevel = (uint16_t)data->mclk_dpm0_activity_target;
   1254	CONVERT_FROM_HOST_TO_SMC_US(levels[0].ActivityLevel);
   1255
   1256	smu_data->smc_state_table.MemoryDpmLevelCount =
   1257			(uint8_t)dpm_table->mclk_table.count;
   1258	data->dpm_level_enable_mask.mclk_dpm_enable_mask =
   1259			phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
   1260	/* set highest level watermark to high */
   1261	levels[dpm_table->mclk_table.count - 1].DisplayWatermark =
   1262			PPSMC_DISPLAY_WATERMARK_HIGH;
   1263
   1264	/* level count will send to smc once at init smc table and never change */
   1265	result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
   1266			(uint32_t)array_size, SMC_RAM_END);
   1267
   1268	return result;
   1269}
   1270
   1271static int fiji_populate_mvdd_value(struct pp_hwmgr *hwmgr,
   1272		uint32_t mclk, SMIO_Pattern *smio_pat)
   1273{
   1274	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   1275	struct phm_ppt_v1_information *table_info =
   1276			(struct phm_ppt_v1_information *)(hwmgr->pptable);
   1277	uint32_t i = 0;
   1278
   1279	if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
   1280		/* find mvdd value which clock is more than request */
   1281		for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) {
   1282			if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) {
   1283				smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value;
   1284				break;
   1285			}
   1286		}
   1287		PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,
   1288				"MVDD Voltage is outside the supported range.",
   1289				return -EINVAL);
   1290	} else
   1291		return -EINVAL;
   1292
   1293	return 0;
   1294}
   1295
   1296static int fiji_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
   1297		SMU73_Discrete_DpmTable *table)
   1298{
   1299	int result = 0;
   1300	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   1301	struct phm_ppt_v1_information *table_info =
   1302			(struct phm_ppt_v1_information *)(hwmgr->pptable);
   1303	struct pp_atomctrl_clock_dividers_vi dividers;
   1304	SMIO_Pattern vol_level;
   1305	uint32_t mvdd;
   1306	uint16_t us_mvdd;
   1307	uint32_t spll_func_cntl    = data->clock_registers.vCG_SPLL_FUNC_CNTL;
   1308	uint32_t spll_func_cntl_2  = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
   1309
   1310	table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
   1311
   1312	if (!data->sclk_dpm_key_disabled) {
   1313		/* Get MinVoltage and Frequency from DPM0,
   1314		 * already converted to SMC_UL */
   1315		table->ACPILevel.SclkFrequency =
   1316				data->dpm_table.sclk_table.dpm_levels[0].value;
   1317		result = fiji_get_dependency_volt_by_clk(hwmgr,
   1318				table_info->vdd_dep_on_sclk,
   1319				table->ACPILevel.SclkFrequency,
   1320				(uint32_t *)(&table->ACPILevel.MinVoltage), &mvdd);
   1321		PP_ASSERT_WITH_CODE((0 == result),
   1322				"Cannot find ACPI VDDC voltage value " \
   1323				"in Clock Dependency Table",
   1324				);
   1325	} else {
   1326		table->ACPILevel.SclkFrequency =
   1327				data->vbios_boot_state.sclk_bootup_value;
   1328		table->ACPILevel.MinVoltage =
   1329				data->vbios_boot_state.vddc_bootup_value * VOLTAGE_SCALE;
   1330	}
   1331
   1332	/* get the engine clock dividers for this clock value */
   1333	result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
   1334			table->ACPILevel.SclkFrequency,  &dividers);
   1335	PP_ASSERT_WITH_CODE(result == 0,
   1336			"Error retrieving Engine Clock dividers from VBIOS.",
   1337			return result);
   1338
   1339	table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
   1340	table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
   1341	table->ACPILevel.DeepSleepDivId = 0;
   1342
   1343	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
   1344			SPLL_PWRON, 0);
   1345	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
   1346			SPLL_RESET, 1);
   1347	spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, CG_SPLL_FUNC_CNTL_2,
   1348			SCLK_MUX_SEL, 4);
   1349
   1350	table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
   1351	table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
   1352	table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
   1353	table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
   1354	table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
   1355	table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
   1356	table->ACPILevel.CcPwrDynRm = 0;
   1357	table->ACPILevel.CcPwrDynRm1 = 0;
   1358
   1359	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
   1360	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
   1361	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage);
   1362	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
   1363	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
   1364	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
   1365	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
   1366	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
   1367	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
   1368	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
   1369	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
   1370
   1371	if (!data->mclk_dpm_key_disabled) {
   1372		/* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */
   1373		table->MemoryACPILevel.MclkFrequency =
   1374				data->dpm_table.mclk_table.dpm_levels[0].value;
   1375		result = fiji_get_dependency_volt_by_clk(hwmgr,
   1376				table_info->vdd_dep_on_mclk,
   1377				table->MemoryACPILevel.MclkFrequency,
   1378			(uint32_t *)(&table->MemoryACPILevel.MinVoltage), &mvdd);
   1379		PP_ASSERT_WITH_CODE((0 == result),
   1380				"Cannot find ACPI VDDCI voltage value in Clock Dependency Table",
   1381				);
   1382	} else {
   1383		table->MemoryACPILevel.MclkFrequency =
   1384				data->vbios_boot_state.mclk_bootup_value;
   1385		table->MemoryACPILevel.MinVoltage =
   1386				data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE;
   1387	}
   1388
   1389	us_mvdd = 0;
   1390	if ((SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control) ||
   1391			(data->mclk_dpm_key_disabled))
   1392		us_mvdd = data->vbios_boot_state.mvdd_bootup_value;
   1393	else {
   1394		if (!fiji_populate_mvdd_value(hwmgr,
   1395				data->dpm_table.mclk_table.dpm_levels[0].value,
   1396				&vol_level))
   1397			us_mvdd = vol_level.Voltage;
   1398	}
   1399
   1400	table->MemoryACPILevel.MinMvdd =
   1401			PP_HOST_TO_SMC_UL(us_mvdd * VOLTAGE_SCALE);
   1402
   1403	table->MemoryACPILevel.EnabledForThrottle = 0;
   1404	table->MemoryACPILevel.EnabledForActivity = 0;
   1405	table->MemoryACPILevel.UpHyst = 0;
   1406	table->MemoryACPILevel.DownHyst = 100;
   1407	table->MemoryACPILevel.VoltageDownHyst = 0;
   1408	table->MemoryACPILevel.ActivityLevel =
   1409			PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity);
   1410
   1411	table->MemoryACPILevel.StutterEnable = false;
   1412	CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency);
   1413	CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);
   1414
   1415	return result;
   1416}
   1417
   1418static int fiji_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
   1419		SMU73_Discrete_DpmTable *table)
   1420{
   1421	int result = -EINVAL;
   1422	uint8_t count;
   1423	struct pp_atomctrl_clock_dividers_vi dividers;
   1424	struct phm_ppt_v1_information *table_info =
   1425			(struct phm_ppt_v1_information *)(hwmgr->pptable);
   1426	struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
   1427			table_info->mm_dep_table;
   1428
   1429	table->VceLevelCount = (uint8_t)(mm_table->count);
   1430	table->VceBootLevel = 0;
   1431
   1432	for (count = 0; count < table->VceLevelCount; count++) {
   1433		table->VceLevel[count].Frequency = mm_table->entries[count].eclk;
   1434		table->VceLevel[count].MinVoltage = 0;
   1435		table->VceLevel[count].MinVoltage |=
   1436				(mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
   1437		table->VceLevel[count].MinVoltage |=
   1438				((mm_table->entries[count].vddc - VDDC_VDDCI_DELTA) *
   1439						VOLTAGE_SCALE) << VDDCI_SHIFT;
   1440		table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
   1441
   1442		/*retrieve divider value for VBIOS */
   1443		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
   1444				table->VceLevel[count].Frequency, &dividers);
   1445		PP_ASSERT_WITH_CODE((0 == result),
   1446				"can not find divide id for VCE engine clock",
   1447				return result);
   1448
   1449		table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
   1450
   1451		CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
   1452		CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage);
   1453	}
   1454	return result;
   1455}
   1456
   1457static int fiji_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
   1458		SMU73_Discrete_DpmTable *table)
   1459{
   1460	int result = -EINVAL;
   1461	uint8_t count;
   1462	struct pp_atomctrl_clock_dividers_vi dividers;
   1463	struct phm_ppt_v1_information *table_info =
   1464			(struct phm_ppt_v1_information *)(hwmgr->pptable);
   1465	struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
   1466			table_info->mm_dep_table;
   1467
   1468	table->AcpLevelCount = (uint8_t)(mm_table->count);
   1469	table->AcpBootLevel = 0;
   1470
   1471	for (count = 0; count < table->AcpLevelCount; count++) {
   1472		table->AcpLevel[count].Frequency = mm_table->entries[count].aclk;
   1473		table->AcpLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
   1474				VOLTAGE_SCALE) << VDDC_SHIFT;
   1475		table->AcpLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
   1476				VDDC_VDDCI_DELTA) * VOLTAGE_SCALE) << VDDCI_SHIFT;
   1477		table->AcpLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
   1478
   1479		/* retrieve divider value for VBIOS */
   1480		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
   1481				table->AcpLevel[count].Frequency, &dividers);
   1482		PP_ASSERT_WITH_CODE((0 == result),
   1483				"can not find divide id for engine clock", return result);
   1484
   1485		table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
   1486
   1487		CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
   1488		CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].MinVoltage);
   1489	}
   1490	return result;
   1491}
   1492
   1493static int fiji_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr,
   1494		int32_t eng_clock, int32_t mem_clock,
   1495		struct SMU73_Discrete_MCArbDramTimingTableEntry *arb_regs)
   1496{
   1497	uint32_t dram_timing;
   1498	uint32_t dram_timing2;
   1499	uint32_t burstTime;
   1500	ULONG trrds, trrdl;
   1501	int result;
   1502
   1503	result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
   1504			eng_clock, mem_clock);
   1505	PP_ASSERT_WITH_CODE(result == 0,
   1506			"Error calling VBIOS to set DRAM_TIMING.", return result);
   1507
   1508	dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
   1509	dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
   1510	burstTime = cgs_read_register(hwmgr->device, mmMC_ARB_BURST_TIME);
   1511
   1512	trrds = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDS0);
   1513	trrdl = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDL0);
   1514
   1515	arb_regs->McArbDramTiming  = PP_HOST_TO_SMC_UL(dram_timing);
   1516	arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2);
   1517	arb_regs->McArbBurstTime   = (uint8_t)burstTime;
   1518	arb_regs->TRRDS            = (uint8_t)trrds;
   1519	arb_regs->TRRDL            = (uint8_t)trrdl;
   1520
   1521	return 0;
   1522}
   1523
   1524static int fiji_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
   1525{
   1526	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   1527	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
   1528	struct SMU73_Discrete_MCArbDramTimingTable arb_regs;
   1529	uint32_t i, j;
   1530	int result = 0;
   1531
   1532	for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
   1533		for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
   1534			result = fiji_populate_memory_timing_parameters(hwmgr,
   1535					data->dpm_table.sclk_table.dpm_levels[i].value,
   1536					data->dpm_table.mclk_table.dpm_levels[j].value,
   1537					&arb_regs.entries[i][j]);
   1538			if (result)
   1539				break;
   1540		}
   1541	}
   1542
   1543	if (!result)
   1544		result = smu7_copy_bytes_to_smc(
   1545				hwmgr,
   1546				smu_data->smu7_data.arb_table_start,
   1547				(uint8_t *)&arb_regs,
   1548				sizeof(SMU73_Discrete_MCArbDramTimingTable),
   1549				SMC_RAM_END);
   1550	return result;
   1551}
   1552
   1553static int fiji_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
   1554		struct SMU73_Discrete_DpmTable *table)
   1555{
   1556	int result = -EINVAL;
   1557	uint8_t count;
   1558	struct pp_atomctrl_clock_dividers_vi dividers;
   1559	struct phm_ppt_v1_information *table_info =
   1560			(struct phm_ppt_v1_information *)(hwmgr->pptable);
   1561	struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
   1562			table_info->mm_dep_table;
   1563
   1564	table->UvdLevelCount = (uint8_t)(mm_table->count);
   1565	table->UvdBootLevel = 0;
   1566
   1567	for (count = 0; count < table->UvdLevelCount; count++) {
   1568		table->UvdLevel[count].MinVoltage = 0;
   1569		table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
   1570		table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
   1571		table->UvdLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
   1572				VOLTAGE_SCALE) << VDDC_SHIFT;
   1573		table->UvdLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
   1574				VDDC_VDDCI_DELTA) * VOLTAGE_SCALE) << VDDCI_SHIFT;
   1575		table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
   1576
   1577		/* retrieve divider value for VBIOS */
   1578		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
   1579				table->UvdLevel[count].VclkFrequency, &dividers);
   1580		PP_ASSERT_WITH_CODE((0 == result),
   1581				"can not find divide id for Vclk clock", return result);
   1582
   1583		table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
   1584
   1585		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
   1586				table->UvdLevel[count].DclkFrequency, &dividers);
   1587		PP_ASSERT_WITH_CODE((0 == result),
   1588				"can not find divide id for Dclk clock", return result);
   1589
   1590		table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
   1591
   1592		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
   1593		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
   1594		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage);
   1595
   1596	}
   1597	return result;
   1598}
   1599
   1600static int fiji_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
   1601		struct SMU73_Discrete_DpmTable *table)
   1602{
   1603	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   1604
   1605	table->GraphicsBootLevel = 0;
   1606	table->MemoryBootLevel = 0;
   1607
   1608	/* find boot level from dpm table */
   1609	phm_find_boot_level(&(data->dpm_table.sclk_table),
   1610			    data->vbios_boot_state.sclk_bootup_value,
   1611			    (uint32_t *)&(table->GraphicsBootLevel));
   1612
   1613	phm_find_boot_level(&(data->dpm_table.mclk_table),
   1614			    data->vbios_boot_state.mclk_bootup_value,
   1615			    (uint32_t *)&(table->MemoryBootLevel));
   1616
   1617	table->BootVddc  = data->vbios_boot_state.vddc_bootup_value *
   1618			VOLTAGE_SCALE;
   1619	table->BootVddci = data->vbios_boot_state.vddci_bootup_value *
   1620			VOLTAGE_SCALE;
   1621	table->BootMVdd  = data->vbios_boot_state.mvdd_bootup_value *
   1622			VOLTAGE_SCALE;
   1623
   1624	CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc);
   1625	CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci);
   1626	CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
   1627
   1628	return 0;
   1629}
   1630
   1631static int fiji_populate_smc_initailial_state(struct pp_hwmgr *hwmgr)
   1632{
   1633	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   1634	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
   1635	struct phm_ppt_v1_information *table_info =
   1636			(struct phm_ppt_v1_information *)(hwmgr->pptable);
   1637	uint8_t count, level;
   1638
   1639	count = (uint8_t)(table_info->vdd_dep_on_sclk->count);
   1640	for (level = 0; level < count; level++) {
   1641		if (table_info->vdd_dep_on_sclk->entries[level].clk >=
   1642				data->vbios_boot_state.sclk_bootup_value) {
   1643			smu_data->smc_state_table.GraphicsBootLevel = level;
   1644			break;
   1645		}
   1646	}
   1647
   1648	count = (uint8_t)(table_info->vdd_dep_on_mclk->count);
   1649	for (level = 0; level < count; level++) {
   1650		if (table_info->vdd_dep_on_mclk->entries[level].clk >=
   1651				data->vbios_boot_state.mclk_bootup_value) {
   1652			smu_data->smc_state_table.MemoryBootLevel = level;
   1653			break;
   1654		}
   1655	}
   1656
   1657	return 0;
   1658}
   1659
   1660static int fiji_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
   1661{
   1662	uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks,
   1663			volt_with_cks, value;
   1664	uint16_t clock_freq_u16;
   1665	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
   1666	uint8_t type, i, j, cks_setting, stretch_amount, stretch_amount2,
   1667			volt_offset = 0;
   1668	struct phm_ppt_v1_information *table_info =
   1669			(struct phm_ppt_v1_information *)(hwmgr->pptable);
   1670	struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
   1671			table_info->vdd_dep_on_sclk;
   1672
   1673	stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount;
   1674
   1675	/* Read SMU_Eefuse to read and calculate RO and determine
   1676	 * if the part is SS or FF. if RO >= 1660MHz, part is FF.
   1677	 */
   1678	efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
   1679			ixSMU_EFUSE_0 + (146 * 4));
   1680	efuse2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
   1681			ixSMU_EFUSE_0 + (148 * 4));
   1682	efuse &= 0xFF000000;
   1683	efuse = efuse >> 24;
   1684	efuse2 &= 0xF;
   1685
   1686	if (efuse2 == 1)
   1687		ro = (2300 - 1350) * efuse / 255 + 1350;
   1688	else
   1689		ro = (2500 - 1000) * efuse / 255 + 1000;
   1690
   1691	if (ro >= 1660)
   1692		type = 0;
   1693	else
   1694		type = 1;
   1695
   1696	/* Populate Stretch amount */
   1697	smu_data->smc_state_table.ClockStretcherAmount = stretch_amount;
   1698
   1699	/* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */
   1700	for (i = 0; i < sclk_table->count; i++) {
   1701		smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |=
   1702				sclk_table->entries[i].cks_enable << i;
   1703		volt_without_cks = (uint32_t)((14041 *
   1704			(sclk_table->entries[i].clk/100) / 10000 + 3571 + 75 - ro) * 1000 /
   1705			(4026 - (13924 * (sclk_table->entries[i].clk/100) / 10000)));
   1706		volt_with_cks = (uint32_t)((13946 *
   1707			(sclk_table->entries[i].clk/100) / 10000 + 3320 + 45 - ro) * 1000 /
   1708			(3664 - (11454 * (sclk_table->entries[i].clk/100) / 10000)));
   1709		if (volt_without_cks >= volt_with_cks)
   1710			volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks +
   1711					sclk_table->entries[i].cks_voffset) * 100 / 625) + 1);
   1712		smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset;
   1713	}
   1714
   1715	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
   1716			STRETCH_ENABLE, 0x0);
   1717	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
   1718			masterReset, 0x1);
   1719	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
   1720			staticEnable, 0x1);
   1721	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
   1722			masterReset, 0x0);
   1723
   1724	/* Populate CKS Lookup Table */
   1725	if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5)
   1726		stretch_amount2 = 0;
   1727	else if (stretch_amount == 3 || stretch_amount == 4)
   1728		stretch_amount2 = 1;
   1729	else {
   1730		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
   1731				PHM_PlatformCaps_ClockStretcher);
   1732		PP_ASSERT_WITH_CODE(false,
   1733				"Stretch Amount in PPTable not supported",
   1734				return -EINVAL);
   1735	}
   1736
   1737	value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
   1738			ixPWR_CKS_CNTL);
   1739	value &= 0xFFC2FF87;
   1740	smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq =
   1741			fiji_clock_stretcher_lookup_table[stretch_amount2][0];
   1742	smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq =
   1743			fiji_clock_stretcher_lookup_table[stretch_amount2][1];
   1744	clock_freq_u16 = (uint16_t)(PP_SMC_TO_HOST_UL(smu_data->smc_state_table.
   1745			GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount - 1].
   1746			SclkFrequency) / 100);
   1747	if (fiji_clock_stretcher_lookup_table[stretch_amount2][0] <
   1748			clock_freq_u16 &&
   1749	    fiji_clock_stretcher_lookup_table[stretch_amount2][1] >
   1750			clock_freq_u16) {
   1751		/* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */
   1752		value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 16;
   1753		/* Program PWR_CKS_CNTL. CKS_LDO_REFSEL */
   1754		value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][2]) << 18;
   1755		/* Program PWR_CKS_CNTL. CKS_STRETCH_AMOUNT */
   1756		value |= (fiji_clock_stretch_amount_conversion
   1757				[fiji_clock_stretcher_lookup_table[stretch_amount2][3]]
   1758				 [stretch_amount]) << 3;
   1759	}
   1760	CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable.
   1761			CKS_LOOKUPTableEntry[0].minFreq);
   1762	CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable.
   1763			CKS_LOOKUPTableEntry[0].maxFreq);
   1764	smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting =
   1765			fiji_clock_stretcher_lookup_table[stretch_amount2][2] & 0x7F;
   1766	smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting |=
   1767			(fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 7;
   1768
   1769	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
   1770			ixPWR_CKS_CNTL, value);
   1771
   1772	/* Populate DDT Lookup Table */
   1773	for (i = 0; i < 4; i++) {
   1774		/* Assign the minimum and maximum VID stored
   1775		 * in the last row of Clock Stretcher Voltage Table.
   1776		 */
   1777		smu_data->smc_state_table.ClockStretcherDataTable.
   1778		ClockStretcherDataTableEntry[i].minVID =
   1779				(uint8_t) fiji_clock_stretcher_ddt_table[type][i][2];
   1780		smu_data->smc_state_table.ClockStretcherDataTable.
   1781		ClockStretcherDataTableEntry[i].maxVID =
   1782				(uint8_t) fiji_clock_stretcher_ddt_table[type][i][3];
   1783		/* Loop through each SCLK and check the frequency
   1784		 * to see if it lies within the frequency for clock stretcher.
   1785		 */
   1786		for (j = 0; j < smu_data->smc_state_table.GraphicsDpmLevelCount; j++) {
   1787			cks_setting = 0;
   1788			clock_freq = PP_SMC_TO_HOST_UL(
   1789					smu_data->smc_state_table.GraphicsLevel[j].SclkFrequency);
   1790			/* Check the allowed frequency against the sclk level[j].
   1791			 *  Sclk's endianness has already been converted,
   1792			 *  and it's in 10Khz unit,
   1793			 *  as opposed to Data table, which is in Mhz unit.
   1794			 */
   1795			if (clock_freq >=
   1796					(fiji_clock_stretcher_ddt_table[type][i][0]) * 100) {
   1797				cks_setting |= 0x2;
   1798				if (clock_freq <
   1799						(fiji_clock_stretcher_ddt_table[type][i][1]) * 100)
   1800					cks_setting |= 0x1;
   1801			}
   1802			smu_data->smc_state_table.ClockStretcherDataTable.
   1803			ClockStretcherDataTableEntry[i].setting |= cks_setting << (j * 2);
   1804		}
   1805		CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.
   1806				ClockStretcherDataTable.
   1807				ClockStretcherDataTableEntry[i].setting);
   1808	}
   1809
   1810	value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL);
   1811	value &= 0xFFFFFFFE;
   1812	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value);
   1813
   1814	return 0;
   1815}
   1816
   1817static int fiji_populate_vr_config(struct pp_hwmgr *hwmgr,
   1818		struct SMU73_Discrete_DpmTable *table)
   1819{
   1820	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   1821	uint16_t config;
   1822
   1823	config = VR_MERGED_WITH_VDDC;
   1824	table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT);
   1825
   1826	/* Set Vddc Voltage Controller */
   1827	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
   1828		config = VR_SVI2_PLANE_1;
   1829		table->VRConfig |= config;
   1830	} else {
   1831		PP_ASSERT_WITH_CODE(false,
   1832				"VDDC should be on SVI2 control in merged mode!",
   1833				);
   1834	}
   1835	/* Set Vddci Voltage Controller */
   1836	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
   1837		config = VR_SVI2_PLANE_2;  /* only in merged mode */
   1838		table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
   1839	} else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
   1840		config = VR_SMIO_PATTERN_1;
   1841		table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
   1842	} else {
   1843		config = VR_STATIC_VOLTAGE;
   1844		table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
   1845	}
   1846	/* Set Mvdd Voltage Controller */
   1847	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
   1848		config = VR_SVI2_PLANE_2;
   1849		table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
   1850	} else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
   1851		config = VR_SMIO_PATTERN_2;
   1852		table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
   1853	} else {
   1854		config = VR_STATIC_VOLTAGE;
   1855		table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
   1856	}
   1857
   1858	return 0;
   1859}
   1860
   1861static int fiji_init_arb_table_index(struct pp_hwmgr *hwmgr)
   1862{
   1863	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
   1864	uint32_t tmp;
   1865	int result;
   1866
   1867	/* This is a read-modify-write on the first byte of the ARB table.
   1868	 * The first byte in the SMU73_Discrete_MCArbDramTimingTable structure
   1869	 * is the field 'current'.
   1870	 * This solution is ugly, but we never write the whole table only
   1871	 * individual fields in it.
   1872	 * In reality this field should not be in that structure
   1873	 * but in a soft register.
   1874	 */
   1875	result = smu7_read_smc_sram_dword(hwmgr,
   1876			smu_data->smu7_data.arb_table_start, &tmp, SMC_RAM_END);
   1877
   1878	if (result)
   1879		return result;
   1880
   1881	tmp &= 0x00FFFFFF;
   1882	tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24;
   1883
   1884	return smu7_write_smc_sram_dword(hwmgr,
   1885			smu_data->smu7_data.arb_table_start,  tmp, SMC_RAM_END);
   1886}
   1887
   1888static int fiji_setup_dpm_led_config(struct pp_hwmgr *hwmgr)
   1889{
   1890	pp_atomctrl_voltage_table param_led_dpm;
   1891	int result = 0;
   1892	u32 mask = 0;
   1893
   1894	result = atomctrl_get_voltage_table_v3(hwmgr,
   1895					       VOLTAGE_TYPE_LEDDPM, VOLTAGE_OBJ_GPIO_LUT,
   1896					       &param_led_dpm);
   1897	if (result == 0) {
   1898		int i, j;
   1899		u32 tmp = param_led_dpm.mask_low;
   1900
   1901		for (i = 0, j = 0; i < 32; i++) {
   1902			if (tmp & 1) {
   1903				mask |= (i << (8 * j));
   1904				if (++j >= 3)
   1905					break;
   1906			}
   1907			tmp >>= 1;
   1908		}
   1909	}
   1910	if (mask)
   1911		smum_send_msg_to_smc_with_parameter(hwmgr,
   1912						    PPSMC_MSG_LedConfig,
   1913						    mask,
   1914						    NULL);
   1915	return 0;
   1916}
   1917
   1918static int fiji_init_smc_table(struct pp_hwmgr *hwmgr)
   1919{
   1920	int result;
   1921	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   1922	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
   1923	struct phm_ppt_v1_information *table_info =
   1924			(struct phm_ppt_v1_information *)(hwmgr->pptable);
   1925	struct SMU73_Discrete_DpmTable *table = &(smu_data->smc_state_table);
   1926	uint8_t i;
   1927	struct pp_atomctrl_gpio_pin_assignment gpio_pin;
   1928
   1929	fiji_initialize_power_tune_defaults(hwmgr);
   1930
   1931	if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control)
   1932		fiji_populate_smc_voltage_tables(hwmgr, table);
   1933
   1934	table->SystemFlags = 0;
   1935
   1936	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
   1937			PHM_PlatformCaps_AutomaticDCTransition))
   1938		table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
   1939
   1940	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
   1941			PHM_PlatformCaps_StepVddc))
   1942		table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
   1943
   1944	if (data->is_memory_gddr5)
   1945		table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
   1946
   1947	if (data->ulv_supported && table_info->us_ulv_voltage_offset) {
   1948		result = fiji_populate_ulv_state(hwmgr, table);
   1949		PP_ASSERT_WITH_CODE(0 == result,
   1950				"Failed to initialize ULV state!", return result);
   1951		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
   1952				ixCG_ULV_PARAMETER, 0x40035);
   1953	}
   1954
   1955	result = fiji_populate_smc_link_level(hwmgr, table);
   1956	PP_ASSERT_WITH_CODE(0 == result,
   1957			"Failed to initialize Link Level!", return result);
   1958
   1959	result = fiji_populate_all_graphic_levels(hwmgr);
   1960	PP_ASSERT_WITH_CODE(0 == result,
   1961			"Failed to initialize Graphics Level!", return result);
   1962
   1963	result = fiji_populate_all_memory_levels(hwmgr);
   1964	PP_ASSERT_WITH_CODE(0 == result,
   1965			"Failed to initialize Memory Level!", return result);
   1966
   1967	result = fiji_populate_smc_acpi_level(hwmgr, table);
   1968	PP_ASSERT_WITH_CODE(0 == result,
   1969			"Failed to initialize ACPI Level!", return result);
   1970
   1971	result = fiji_populate_smc_vce_level(hwmgr, table);
   1972	PP_ASSERT_WITH_CODE(0 == result,
   1973			"Failed to initialize VCE Level!", return result);
   1974
   1975	result = fiji_populate_smc_acp_level(hwmgr, table);
   1976	PP_ASSERT_WITH_CODE(0 == result,
   1977			"Failed to initialize ACP Level!", return result);
   1978
   1979	/* Since only the initial state is completely set up at this point
   1980	 * (the other states are just copies of the boot state) we only
   1981	 * need to populate the  ARB settings for the initial state.
   1982	 */
   1983	result = fiji_program_memory_timing_parameters(hwmgr);
   1984	PP_ASSERT_WITH_CODE(0 == result,
   1985			"Failed to Write ARB settings for the initial state.", return result);
   1986
   1987	result = fiji_populate_smc_uvd_level(hwmgr, table);
   1988	PP_ASSERT_WITH_CODE(0 == result,
   1989			"Failed to initialize UVD Level!", return result);
   1990
   1991	result = fiji_populate_smc_boot_level(hwmgr, table);
   1992	PP_ASSERT_WITH_CODE(0 == result,
   1993			"Failed to initialize Boot Level!", return result);
   1994
   1995	result = fiji_populate_smc_initailial_state(hwmgr);
   1996	PP_ASSERT_WITH_CODE(0 == result,
   1997			"Failed to initialize Boot State!", return result);
   1998
   1999	result = fiji_populate_bapm_parameters_in_dpm_table(hwmgr);
   2000	PP_ASSERT_WITH_CODE(0 == result,
   2001			"Failed to populate BAPM Parameters!", return result);
   2002
   2003	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
   2004			PHM_PlatformCaps_ClockStretcher)) {
   2005		result = fiji_populate_clock_stretcher_data_table(hwmgr);
   2006		PP_ASSERT_WITH_CODE(0 == result,
   2007				"Failed to populate Clock Stretcher Data Table!",
   2008				return result);
   2009	}
   2010
   2011	table->GraphicsVoltageChangeEnable  = 1;
   2012	table->GraphicsThermThrottleEnable  = 1;
   2013	table->GraphicsInterval = 1;
   2014	table->VoltageInterval  = 1;
   2015	table->ThermalInterval  = 1;
   2016	table->TemperatureLimitHigh =
   2017			table_info->cac_dtp_table->usTargetOperatingTemp *
   2018			SMU7_Q88_FORMAT_CONVERSION_UNIT;
   2019	table->TemperatureLimitLow  =
   2020			(table_info->cac_dtp_table->usTargetOperatingTemp - 1) *
   2021			SMU7_Q88_FORMAT_CONVERSION_UNIT;
   2022	table->MemoryVoltageChangeEnable = 1;
   2023	table->MemoryInterval = 1;
   2024	table->VoltageResponseTime = 0;
   2025	table->PhaseResponseTime = 0;
   2026	table->MemoryThermThrottleEnable = 1;
   2027	table->PCIeBootLinkLevel = 0;      /* 0:Gen1 1:Gen2 2:Gen3*/
   2028	table->PCIeGenInterval = 1;
   2029	table->VRConfig = 0;
   2030
   2031	result = fiji_populate_vr_config(hwmgr, table);
   2032	PP_ASSERT_WITH_CODE(0 == result,
   2033			"Failed to populate VRConfig setting!", return result);
   2034	data->vr_config = table->VRConfig;
   2035	table->ThermGpio = 17;
   2036	table->SclkStepSize = 0x4000;
   2037
   2038	if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
   2039		table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
   2040		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
   2041				PHM_PlatformCaps_RegulatorHot);
   2042	} else {
   2043		table->VRHotGpio = SMU7_UNUSED_GPIO_PIN;
   2044		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
   2045				PHM_PlatformCaps_RegulatorHot);
   2046	}
   2047
   2048	if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID,
   2049			&gpio_pin)) {
   2050		table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift;
   2051		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
   2052				PHM_PlatformCaps_AutomaticDCTransition);
   2053	} else {
   2054		table->AcDcGpio = SMU7_UNUSED_GPIO_PIN;
   2055		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
   2056				PHM_PlatformCaps_AutomaticDCTransition);
   2057	}
   2058
   2059	/* Thermal Output GPIO */
   2060	if (atomctrl_get_pp_assign_pin(hwmgr, THERMAL_INT_OUTPUT_GPIO_PINID,
   2061			&gpio_pin)) {
   2062		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
   2063				PHM_PlatformCaps_ThermalOutGPIO);
   2064
   2065		table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift;
   2066
   2067		/* For porlarity read GPIOPAD_A with assigned Gpio pin
   2068		 * since VBIOS will program this register to set 'inactive state',
   2069		 * driver can then determine 'active state' from this and
   2070		 * program SMU with correct polarity
   2071		 */
   2072		table->ThermOutPolarity = (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) &
   2073				(1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0;
   2074		table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
   2075
   2076		/* if required, combine VRHot/PCC with thermal out GPIO */
   2077		if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
   2078				PHM_PlatformCaps_RegulatorHot) &&
   2079			phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
   2080					PHM_PlatformCaps_CombinePCCWithThermalSignal))
   2081			table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
   2082	} else {
   2083		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
   2084				PHM_PlatformCaps_ThermalOutGPIO);
   2085		table->ThermOutGpio = 17;
   2086		table->ThermOutPolarity = 1;
   2087		table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
   2088	}
   2089
   2090	for (i = 0; i < SMU73_MAX_ENTRIES_SMIO; i++)
   2091		table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
   2092
   2093	CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
   2094	CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
   2095	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
   2096	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
   2097	CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
   2098	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
   2099	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
   2100	CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
   2101	CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
   2102
   2103	/* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
   2104	result = smu7_copy_bytes_to_smc(hwmgr,
   2105			smu_data->smu7_data.dpm_table_start +
   2106			offsetof(SMU73_Discrete_DpmTable, SystemFlags),
   2107			(uint8_t *)&(table->SystemFlags),
   2108			sizeof(SMU73_Discrete_DpmTable) - 3 * sizeof(SMU73_PIDController),
   2109			SMC_RAM_END);
   2110	PP_ASSERT_WITH_CODE(0 == result,
   2111			"Failed to upload dpm data to SMC memory!", return result);
   2112
   2113	result = fiji_init_arb_table_index(hwmgr);
   2114	PP_ASSERT_WITH_CODE(0 == result,
   2115			"Failed to upload arb data to SMC memory!", return result);
   2116
   2117	result = fiji_populate_pm_fuses(hwmgr);
   2118	PP_ASSERT_WITH_CODE(0 == result,
   2119			"Failed to  populate PM fuses to SMC memory!", return result);
   2120
   2121	result = fiji_setup_dpm_led_config(hwmgr);
   2122	PP_ASSERT_WITH_CODE(0 == result,
   2123			    "Failed to setup dpm led config", return result);
   2124
   2125	return 0;
   2126}
   2127
   2128static int fiji_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
   2129{
   2130	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
   2131
   2132	SMU73_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE };
   2133	uint32_t duty100;
   2134	uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2;
   2135	uint16_t fdo_min, slope1, slope2;
   2136	uint32_t reference_clock;
   2137	int res;
   2138	uint64_t tmp64;
   2139
   2140	if (hwmgr->thermal_controller.fanInfo.bNoFan) {
   2141		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
   2142			PHM_PlatformCaps_MicrocodeFanControl);
   2143		return 0;
   2144	}
   2145
   2146	if (smu_data->smu7_data.fan_table_start == 0) {
   2147		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
   2148				PHM_PlatformCaps_MicrocodeFanControl);
   2149		return 0;
   2150	}
   2151
   2152	duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
   2153			CG_FDO_CTRL1, FMAX_DUTY100);
   2154
   2155	if (duty100 == 0) {
   2156		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
   2157				PHM_PlatformCaps_MicrocodeFanControl);
   2158		return 0;
   2159	}
   2160
   2161	tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.
   2162			usPWMMin * duty100;
   2163	do_div(tmp64, 10000);
   2164	fdo_min = (uint16_t)tmp64;
   2165
   2166	t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed -
   2167			hwmgr->thermal_controller.advanceFanControlParameters.usTMin;
   2168	t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh -
   2169			hwmgr->thermal_controller.advanceFanControlParameters.usTMed;
   2170
   2171	pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed -
   2172			hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin;
   2173	pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh -
   2174			hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed;
   2175
   2176	slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100);
   2177	slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100);
   2178
   2179	fan_table.TempMin = cpu_to_be16((50 + hwmgr->
   2180			thermal_controller.advanceFanControlParameters.usTMin) / 100);
   2181	fan_table.TempMed = cpu_to_be16((50 + hwmgr->
   2182			thermal_controller.advanceFanControlParameters.usTMed) / 100);
   2183	fan_table.TempMax = cpu_to_be16((50 + hwmgr->
   2184			thermal_controller.advanceFanControlParameters.usTMax) / 100);
   2185
   2186	fan_table.Slope1 = cpu_to_be16(slope1);
   2187	fan_table.Slope2 = cpu_to_be16(slope2);
   2188
   2189	fan_table.FdoMin = cpu_to_be16(fdo_min);
   2190
   2191	fan_table.HystDown = cpu_to_be16(hwmgr->
   2192			thermal_controller.advanceFanControlParameters.ucTHyst);
   2193
   2194	fan_table.HystUp = cpu_to_be16(1);
   2195
   2196	fan_table.HystSlope = cpu_to_be16(1);
   2197
   2198	fan_table.TempRespLim = cpu_to_be16(5);
   2199
   2200	reference_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
   2201
   2202	fan_table.RefreshPeriod = cpu_to_be32((hwmgr->
   2203			thermal_controller.advanceFanControlParameters.ulCycleDelay *
   2204			reference_clock) / 1600);
   2205
   2206	fan_table.FdoMax = cpu_to_be16((uint16_t)duty100);
   2207
   2208	fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(
   2209			hwmgr->device, CGS_IND_REG__SMC,
   2210			CG_MULT_THERMAL_CTRL, TEMP_SEL);
   2211
   2212	res = smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.fan_table_start,
   2213			(uint8_t *)&fan_table, (uint32_t)sizeof(fan_table),
   2214			SMC_RAM_END);
   2215
   2216	if (!res && hwmgr->thermal_controller.
   2217			advanceFanControlParameters.ucMinimumPWMLimit)
   2218		res = smum_send_msg_to_smc_with_parameter(hwmgr,
   2219				PPSMC_MSG_SetFanMinPwm,
   2220				hwmgr->thermal_controller.
   2221				advanceFanControlParameters.ucMinimumPWMLimit,
   2222				NULL);
   2223
   2224	if (!res && hwmgr->thermal_controller.
   2225			advanceFanControlParameters.ulMinFanSCLKAcousticLimit)
   2226		res = smum_send_msg_to_smc_with_parameter(hwmgr,
   2227				PPSMC_MSG_SetFanSclkTarget,
   2228				hwmgr->thermal_controller.
   2229				advanceFanControlParameters.ulMinFanSCLKAcousticLimit,
   2230				NULL);
   2231
   2232	if (res)
   2233		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
   2234				PHM_PlatformCaps_MicrocodeFanControl);
   2235
   2236	return 0;
   2237}
   2238
   2239
   2240static int fiji_thermal_avfs_enable(struct pp_hwmgr *hwmgr)
   2241{
   2242	if (!hwmgr->avfs_supported)
   2243		return 0;
   2244
   2245	smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableAvfs, NULL);
   2246
   2247	return 0;
   2248}
   2249
   2250static int fiji_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
   2251{
   2252	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   2253
   2254	if (data->need_update_smu7_dpm_table &
   2255		(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
   2256		return fiji_program_memory_timing_parameters(hwmgr);
   2257
   2258	return 0;
   2259}
   2260
   2261static int fiji_update_sclk_threshold(struct pp_hwmgr *hwmgr)
   2262{
   2263	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   2264	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
   2265
   2266	int result = 0;
   2267	uint32_t low_sclk_interrupt_threshold = 0;
   2268
   2269	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
   2270			PHM_PlatformCaps_SclkThrottleLowNotification)
   2271		&& (data->low_sclk_interrupt_threshold != 0)) {
   2272		low_sclk_interrupt_threshold =
   2273				data->low_sclk_interrupt_threshold;
   2274
   2275		CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
   2276
   2277		result = smu7_copy_bytes_to_smc(
   2278				hwmgr,
   2279				smu_data->smu7_data.dpm_table_start +
   2280				offsetof(SMU73_Discrete_DpmTable,
   2281					LowSclkInterruptThreshold),
   2282				(uint8_t *)&low_sclk_interrupt_threshold,
   2283				sizeof(uint32_t),
   2284				SMC_RAM_END);
   2285	}
   2286	result = fiji_program_mem_timing_parameters(hwmgr);
   2287	PP_ASSERT_WITH_CODE((result == 0),
   2288			"Failed to program memory timing parameters!",
   2289			);
   2290	return result;
   2291}
   2292
   2293static uint32_t fiji_get_offsetof(uint32_t type, uint32_t member)
   2294{
   2295	switch (type) {
   2296	case SMU_SoftRegisters:
   2297		switch (member) {
   2298		case HandshakeDisables:
   2299			return offsetof(SMU73_SoftRegisters, HandshakeDisables);
   2300		case VoltageChangeTimeout:
   2301			return offsetof(SMU73_SoftRegisters, VoltageChangeTimeout);
   2302		case AverageGraphicsActivity:
   2303			return offsetof(SMU73_SoftRegisters, AverageGraphicsActivity);
   2304		case AverageMemoryActivity:
   2305			return offsetof(SMU73_SoftRegisters, AverageMemoryActivity);
   2306		case PreVBlankGap:
   2307			return offsetof(SMU73_SoftRegisters, PreVBlankGap);
   2308		case VBlankTimeout:
   2309			return offsetof(SMU73_SoftRegisters, VBlankTimeout);
   2310		case UcodeLoadStatus:
   2311			return offsetof(SMU73_SoftRegisters, UcodeLoadStatus);
   2312		case DRAM_LOG_ADDR_H:
   2313			return offsetof(SMU73_SoftRegisters, DRAM_LOG_ADDR_H);
   2314		case DRAM_LOG_ADDR_L:
   2315			return offsetof(SMU73_SoftRegisters, DRAM_LOG_ADDR_L);
   2316		case DRAM_LOG_PHY_ADDR_H:
   2317			return offsetof(SMU73_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
   2318		case DRAM_LOG_PHY_ADDR_L:
   2319			return offsetof(SMU73_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
   2320		case DRAM_LOG_BUFF_SIZE:
   2321			return offsetof(SMU73_SoftRegisters, DRAM_LOG_BUFF_SIZE);
   2322		}
   2323		break;
   2324	case SMU_Discrete_DpmTable:
   2325		switch (member) {
   2326		case UvdBootLevel:
   2327			return offsetof(SMU73_Discrete_DpmTable, UvdBootLevel);
   2328		case VceBootLevel:
   2329			return offsetof(SMU73_Discrete_DpmTable, VceBootLevel);
   2330		case LowSclkInterruptThreshold:
   2331			return offsetof(SMU73_Discrete_DpmTable, LowSclkInterruptThreshold);
   2332		}
   2333		break;
   2334	}
   2335	pr_warn("can't get the offset of type %x member %x\n", type, member);
   2336	return 0;
   2337}
   2338
   2339static uint32_t fiji_get_mac_definition(uint32_t value)
   2340{
   2341	switch (value) {
   2342	case SMU_MAX_LEVELS_GRAPHICS:
   2343		return SMU73_MAX_LEVELS_GRAPHICS;
   2344	case SMU_MAX_LEVELS_MEMORY:
   2345		return SMU73_MAX_LEVELS_MEMORY;
   2346	case SMU_MAX_LEVELS_LINK:
   2347		return SMU73_MAX_LEVELS_LINK;
   2348	case SMU_MAX_ENTRIES_SMIO:
   2349		return SMU73_MAX_ENTRIES_SMIO;
   2350	case SMU_MAX_LEVELS_VDDC:
   2351		return SMU73_MAX_LEVELS_VDDC;
   2352	case SMU_MAX_LEVELS_VDDGFX:
   2353		return SMU73_MAX_LEVELS_VDDGFX;
   2354	case SMU_MAX_LEVELS_VDDCI:
   2355		return SMU73_MAX_LEVELS_VDDCI;
   2356	case SMU_MAX_LEVELS_MVDD:
   2357		return SMU73_MAX_LEVELS_MVDD;
   2358	}
   2359
   2360	pr_warn("can't get the mac of %x\n", value);
   2361	return 0;
   2362}
   2363
   2364
   2365static int fiji_update_uvd_smc_table(struct pp_hwmgr *hwmgr)
   2366{
   2367	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
   2368	uint32_t mm_boot_level_offset, mm_boot_level_value;
   2369	struct phm_ppt_v1_information *table_info =
   2370			(struct phm_ppt_v1_information *)(hwmgr->pptable);
   2371
   2372	smu_data->smc_state_table.UvdBootLevel = 0;
   2373	if (table_info->mm_dep_table->count > 0)
   2374		smu_data->smc_state_table.UvdBootLevel =
   2375				(uint8_t) (table_info->mm_dep_table->count - 1);
   2376	mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + offsetof(SMU73_Discrete_DpmTable,
   2377						UvdBootLevel);
   2378	mm_boot_level_offset /= 4;
   2379	mm_boot_level_offset *= 4;
   2380	mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
   2381			CGS_IND_REG__SMC, mm_boot_level_offset);
   2382	mm_boot_level_value &= 0x00FFFFFF;
   2383	mm_boot_level_value |= smu_data->smc_state_table.UvdBootLevel << 24;
   2384	cgs_write_ind_register(hwmgr->device,
   2385			CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
   2386
   2387	if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
   2388			PHM_PlatformCaps_UVDDPM) ||
   2389		phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
   2390			PHM_PlatformCaps_StablePState))
   2391		smum_send_msg_to_smc_with_parameter(hwmgr,
   2392				PPSMC_MSG_UVDDPM_SetEnabledMask,
   2393				(uint32_t)(1 << smu_data->smc_state_table.UvdBootLevel),
   2394				NULL);
   2395	return 0;
   2396}
   2397
   2398static int fiji_update_vce_smc_table(struct pp_hwmgr *hwmgr)
   2399{
   2400	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
   2401	uint32_t mm_boot_level_offset, mm_boot_level_value;
   2402	struct phm_ppt_v1_information *table_info =
   2403			(struct phm_ppt_v1_information *)(hwmgr->pptable);
   2404
   2405	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
   2406					PHM_PlatformCaps_StablePState))
   2407		smu_data->smc_state_table.VceBootLevel =
   2408			(uint8_t) (table_info->mm_dep_table->count - 1);
   2409	else
   2410		smu_data->smc_state_table.VceBootLevel = 0;
   2411
   2412	mm_boot_level_offset = smu_data->smu7_data.dpm_table_start +
   2413					offsetof(SMU73_Discrete_DpmTable, VceBootLevel);
   2414	mm_boot_level_offset /= 4;
   2415	mm_boot_level_offset *= 4;
   2416	mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
   2417			CGS_IND_REG__SMC, mm_boot_level_offset);
   2418	mm_boot_level_value &= 0xFF00FFFF;
   2419	mm_boot_level_value |= smu_data->smc_state_table.VceBootLevel << 16;
   2420	cgs_write_ind_register(hwmgr->device,
   2421			CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
   2422
   2423	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState))
   2424		smum_send_msg_to_smc_with_parameter(hwmgr,
   2425				PPSMC_MSG_VCEDPM_SetEnabledMask,
   2426				(uint32_t)1 << smu_data->smc_state_table.VceBootLevel,
   2427				NULL);
   2428	return 0;
   2429}
   2430
   2431static int fiji_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
   2432{
   2433	switch (type) {
   2434	case SMU_UVD_TABLE:
   2435		fiji_update_uvd_smc_table(hwmgr);
   2436		break;
   2437	case SMU_VCE_TABLE:
   2438		fiji_update_vce_smc_table(hwmgr);
   2439		break;
   2440	default:
   2441		break;
   2442	}
   2443	return 0;
   2444}
   2445
   2446static int fiji_process_firmware_header(struct pp_hwmgr *hwmgr)
   2447{
   2448	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   2449	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
   2450	uint32_t tmp;
   2451	int result;
   2452	bool error = false;
   2453
   2454	result = smu7_read_smc_sram_dword(hwmgr,
   2455			SMU7_FIRMWARE_HEADER_LOCATION +
   2456			offsetof(SMU73_Firmware_Header, DpmTable),
   2457			&tmp, SMC_RAM_END);
   2458
   2459	if (0 == result)
   2460		smu_data->smu7_data.dpm_table_start = tmp;
   2461
   2462	error |= (0 != result);
   2463
   2464	result = smu7_read_smc_sram_dword(hwmgr,
   2465			SMU7_FIRMWARE_HEADER_LOCATION +
   2466			offsetof(SMU73_Firmware_Header, SoftRegisters),
   2467			&tmp, SMC_RAM_END);
   2468
   2469	if (!result) {
   2470		data->soft_regs_start = tmp;
   2471		smu_data->smu7_data.soft_regs_start = tmp;
   2472	}
   2473
   2474	error |= (0 != result);
   2475
   2476	result = smu7_read_smc_sram_dword(hwmgr,
   2477			SMU7_FIRMWARE_HEADER_LOCATION +
   2478			offsetof(SMU73_Firmware_Header, mcRegisterTable),
   2479			&tmp, SMC_RAM_END);
   2480
   2481	if (!result)
   2482		smu_data->smu7_data.mc_reg_table_start = tmp;
   2483
   2484	result = smu7_read_smc_sram_dword(hwmgr,
   2485			SMU7_FIRMWARE_HEADER_LOCATION +
   2486			offsetof(SMU73_Firmware_Header, FanTable),
   2487			&tmp, SMC_RAM_END);
   2488
   2489	if (!result)
   2490		smu_data->smu7_data.fan_table_start = tmp;
   2491
   2492	error |= (0 != result);
   2493
   2494	result = smu7_read_smc_sram_dword(hwmgr,
   2495			SMU7_FIRMWARE_HEADER_LOCATION +
   2496			offsetof(SMU73_Firmware_Header, mcArbDramTimingTable),
   2497			&tmp, SMC_RAM_END);
   2498
   2499	if (!result)
   2500		smu_data->smu7_data.arb_table_start = tmp;
   2501
   2502	error |= (0 != result);
   2503
   2504	result = smu7_read_smc_sram_dword(hwmgr,
   2505			SMU7_FIRMWARE_HEADER_LOCATION +
   2506			offsetof(SMU73_Firmware_Header, Version),
   2507			&tmp, SMC_RAM_END);
   2508
   2509	if (!result)
   2510		hwmgr->microcode_version_info.SMC = tmp;
   2511
   2512	error |= (0 != result);
   2513
   2514	return error ? -1 : 0;
   2515}
   2516
   2517static int fiji_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
   2518{
   2519
   2520	/* Program additional LP registers
   2521	 * that are no longer programmed by VBIOS
   2522	 */
   2523	cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP,
   2524			cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
   2525	cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP,
   2526			cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
   2527	cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP,
   2528			cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
   2529	cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP,
   2530			cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
   2531	cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP,
   2532			cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
   2533	cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP,
   2534			cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
   2535	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP,
   2536			cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
   2537
   2538	return 0;
   2539}
   2540
   2541static bool fiji_is_dpm_running(struct pp_hwmgr *hwmgr)
   2542{
   2543	return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
   2544			CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
   2545			? true : false;
   2546}
   2547
   2548static int fiji_update_dpm_settings(struct pp_hwmgr *hwmgr,
   2549				void *profile_setting)
   2550{
   2551	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   2552	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)
   2553			(hwmgr->smu_backend);
   2554	struct profile_mode_setting *setting;
   2555	struct SMU73_Discrete_GraphicsLevel *levels =
   2556			smu_data->smc_state_table.GraphicsLevel;
   2557	uint32_t array = smu_data->smu7_data.dpm_table_start +
   2558			offsetof(SMU73_Discrete_DpmTable, GraphicsLevel);
   2559
   2560	uint32_t mclk_array = smu_data->smu7_data.dpm_table_start +
   2561			offsetof(SMU73_Discrete_DpmTable, MemoryLevel);
   2562	struct SMU73_Discrete_MemoryLevel *mclk_levels =
   2563			smu_data->smc_state_table.MemoryLevel;
   2564	uint32_t i;
   2565	uint32_t offset, up_hyst_offset, down_hyst_offset, clk_activity_offset, tmp;
   2566
   2567	if (profile_setting == NULL)
   2568		return -EINVAL;
   2569
   2570	setting = (struct profile_mode_setting *)profile_setting;
   2571
   2572	if (setting->bupdate_sclk) {
   2573		if (!data->sclk_dpm_key_disabled)
   2574			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_FreezeLevel, NULL);
   2575		for (i = 0; i < smu_data->smc_state_table.GraphicsDpmLevelCount; i++) {
   2576			if (levels[i].ActivityLevel !=
   2577				cpu_to_be16(setting->sclk_activity)) {
   2578				levels[i].ActivityLevel = cpu_to_be16(setting->sclk_activity);
   2579
   2580				clk_activity_offset = array + (sizeof(SMU73_Discrete_GraphicsLevel) * i)
   2581						+ offsetof(SMU73_Discrete_GraphicsLevel, ActivityLevel);
   2582				offset = clk_activity_offset & ~0x3;
   2583				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
   2584				tmp = phm_set_field_to_u32(clk_activity_offset, tmp, levels[i].ActivityLevel, sizeof(uint16_t));
   2585				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
   2586
   2587			}
   2588			if (levels[i].UpHyst != setting->sclk_up_hyst ||
   2589				levels[i].DownHyst != setting->sclk_down_hyst) {
   2590				levels[i].UpHyst = setting->sclk_up_hyst;
   2591				levels[i].DownHyst = setting->sclk_down_hyst;
   2592				up_hyst_offset = array + (sizeof(SMU73_Discrete_GraphicsLevel) * i)
   2593						+ offsetof(SMU73_Discrete_GraphicsLevel, UpHyst);
   2594				down_hyst_offset = array + (sizeof(SMU73_Discrete_GraphicsLevel) * i)
   2595						+ offsetof(SMU73_Discrete_GraphicsLevel, DownHyst);
   2596				offset = up_hyst_offset & ~0x3;
   2597				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
   2598				tmp = phm_set_field_to_u32(up_hyst_offset, tmp, levels[i].UpHyst, sizeof(uint8_t));
   2599				tmp = phm_set_field_to_u32(down_hyst_offset, tmp, levels[i].DownHyst, sizeof(uint8_t));
   2600				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
   2601			}
   2602		}
   2603		if (!data->sclk_dpm_key_disabled)
   2604			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_UnfreezeLevel, NULL);
   2605	}
   2606
   2607	if (setting->bupdate_mclk) {
   2608		if (!data->mclk_dpm_key_disabled)
   2609			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_FreezeLevel, NULL);
   2610		for (i = 0; i < smu_data->smc_state_table.MemoryDpmLevelCount; i++) {
   2611			if (mclk_levels[i].ActivityLevel !=
   2612				cpu_to_be16(setting->mclk_activity)) {
   2613				mclk_levels[i].ActivityLevel = cpu_to_be16(setting->mclk_activity);
   2614
   2615				clk_activity_offset = mclk_array + (sizeof(SMU73_Discrete_MemoryLevel) * i)
   2616						+ offsetof(SMU73_Discrete_MemoryLevel, ActivityLevel);
   2617				offset = clk_activity_offset & ~0x3;
   2618				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
   2619				tmp = phm_set_field_to_u32(clk_activity_offset, tmp, mclk_levels[i].ActivityLevel, sizeof(uint16_t));
   2620				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
   2621
   2622			}
   2623			if (mclk_levels[i].UpHyst != setting->mclk_up_hyst ||
   2624				mclk_levels[i].DownHyst != setting->mclk_down_hyst) {
   2625				mclk_levels[i].UpHyst = setting->mclk_up_hyst;
   2626				mclk_levels[i].DownHyst = setting->mclk_down_hyst;
   2627				up_hyst_offset = mclk_array + (sizeof(SMU73_Discrete_MemoryLevel) * i)
   2628						+ offsetof(SMU73_Discrete_MemoryLevel, UpHyst);
   2629				down_hyst_offset = mclk_array + (sizeof(SMU73_Discrete_MemoryLevel) * i)
   2630						+ offsetof(SMU73_Discrete_MemoryLevel, DownHyst);
   2631				offset = up_hyst_offset & ~0x3;
   2632				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
   2633				tmp = phm_set_field_to_u32(up_hyst_offset, tmp, mclk_levels[i].UpHyst, sizeof(uint8_t));
   2634				tmp = phm_set_field_to_u32(down_hyst_offset, tmp, mclk_levels[i].DownHyst, sizeof(uint8_t));
   2635				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
   2636			}
   2637		}
   2638		if (!data->mclk_dpm_key_disabled)
   2639			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_UnfreezeLevel, NULL);
   2640	}
   2641	return 0;
   2642}
   2643
   2644const struct pp_smumgr_func fiji_smu_funcs = {
   2645	.name = "fiji_smu",
   2646	.smu_init = &fiji_smu_init,
   2647	.smu_fini = &smu7_smu_fini,
   2648	.start_smu = &fiji_start_smu,
   2649	.check_fw_load_finish = &smu7_check_fw_load_finish,
   2650	.request_smu_load_fw = &smu7_reload_firmware,
   2651	.request_smu_load_specific_fw = NULL,
   2652	.send_msg_to_smc = &smu7_send_msg_to_smc,
   2653	.send_msg_to_smc_with_parameter = &smu7_send_msg_to_smc_with_parameter,
   2654	.get_argument = smu7_get_argument,
   2655	.download_pptable_settings = NULL,
   2656	.upload_pptable_settings = NULL,
   2657	.update_smc_table = fiji_update_smc_table,
   2658	.get_offsetof = fiji_get_offsetof,
   2659	.process_firmware_header = fiji_process_firmware_header,
   2660	.init_smc_table = fiji_init_smc_table,
   2661	.update_sclk_threshold = fiji_update_sclk_threshold,
   2662	.thermal_setup_fan_table = fiji_thermal_setup_fan_table,
   2663	.thermal_avfs_enable = fiji_thermal_avfs_enable,
   2664	.populate_all_graphic_levels = fiji_populate_all_graphic_levels,
   2665	.populate_all_memory_levels = fiji_populate_all_memory_levels,
   2666	.get_mac_definition = fiji_get_mac_definition,
   2667	.initialize_mc_reg_table = fiji_initialize_mc_reg_table,
   2668	.is_dpm_running = fiji_is_dpm_running,
   2669	.is_hw_avfs_present = fiji_is_hw_avfs_present,
   2670	.update_dpm_settings = fiji_update_dpm_settings,
   2671};