cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

iceland_smumgr.c (90384B)


      1/*
      2 * Copyright 2016 Advanced Micro Devices, Inc.
      3 *
      4 * Permission is hereby granted, free of charge, to any person obtaining a
      5 * copy of this software and associated documentation files (the "Software"),
      6 * to deal in the Software without restriction, including without limitation
      7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8 * and/or sell copies of the Software, and to permit persons to whom the
      9 * Software is furnished to do so, subject to the following conditions:
     10 *
     11 * The above copyright notice and this permission notice shall be included in
     12 * all copies or substantial portions of the Software.
     13 *
     14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
     18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
     19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
     20 * OTHER DEALINGS IN THE SOFTWARE.
     21 *
     22 * Author: Huang Rui <ray.huang@amd.com>
     23 *
     24 */
     25#include "pp_debug.h"
     26#include <linux/types.h>
     27#include <linux/kernel.h>
     28#include <linux/pci.h>
     29#include <linux/slab.h>
     30#include <linux/gfp.h>
     31
     32#include "smumgr.h"
     33#include "iceland_smumgr.h"
     34
     35#include "ppsmc.h"
     36
     37#include "cgs_common.h"
     38
     39#include "smu7_dyn_defaults.h"
     40#include "smu7_hwmgr.h"
     41#include "hardwaremanager.h"
     42#include "ppatomctrl.h"
     43#include "atombios.h"
     44#include "pppcielanes.h"
     45#include "pp_endian.h"
     46#include "processpptables.h"
     47
     48
     49#include "smu/smu_7_1_1_d.h"
     50#include "smu/smu_7_1_1_sh_mask.h"
     51#include "smu71_discrete.h"
     52
     53#include "smu_ucode_xfer_vi.h"
     54#include "gmc/gmc_8_1_d.h"
     55#include "gmc/gmc_8_1_sh_mask.h"
     56#include "bif/bif_5_0_d.h"
     57#include "bif/bif_5_0_sh_mask.h"
     58#include "dce/dce_10_0_d.h"
     59#include "dce/dce_10_0_sh_mask.h"
     60
     61
     62#define ICELAND_SMC_SIZE               0x20000
     63
     64#define POWERTUNE_DEFAULT_SET_MAX    1
     65#define MC_CG_ARB_FREQ_F1           0x0b
     66#define VDDC_VDDCI_DELTA            200
     67
     68#define DEVICE_ID_VI_ICELAND_M_6900	0x6900
     69#define DEVICE_ID_VI_ICELAND_M_6901	0x6901
     70#define DEVICE_ID_VI_ICELAND_M_6902	0x6902
     71#define DEVICE_ID_VI_ICELAND_M_6903	0x6903
     72
     73static const struct iceland_pt_defaults defaults_iceland = {
     74	/*
     75	 * sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc,
     76	 * TDC_MAWt, TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac, BAPM_TEMP_GRADIENT
     77	 */
     78	1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000,
     79	{ 0x79,  0x253, 0x25D, 0xAE,  0x72,  0x80,  0x83,  0x86,  0x6F,  0xC8,  0xC9,  0xC9,  0x2F,  0x4D,  0x61  },
     80	{ 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 }
     81};
     82
     83/* 35W - XT, XTL */
     84static const struct iceland_pt_defaults defaults_icelandxt = {
     85	/*
     86	 * sviLoadLIneEn, SviLoadLineVddC,
     87	 * TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt,
     88	 * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac,
     89	 * BAPM_TEMP_GRADIENT
     90	 */
     91	1, 0xF, 0xFD, 0x19, 5, 45, 0, 0x0,
     92	{ 0xA7,  0x0, 0x0, 0xB5,  0x0, 0x0, 0x9F,  0x0, 0x0, 0xD6,  0x0, 0x0, 0xD7,  0x0, 0x0},
     93	{ 0x1EA, 0x0, 0x0, 0x224, 0x0, 0x0, 0x25E, 0x0, 0x0, 0x28E, 0x0, 0x0, 0x2AB, 0x0, 0x0}
     94};
     95
     96/* 25W - PRO, LE */
     97static const struct iceland_pt_defaults defaults_icelandpro = {
     98	/*
     99	 * sviLoadLIneEn, SviLoadLineVddC,
    100	 * TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt,
    101	 * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac,
    102	 * BAPM_TEMP_GRADIENT
    103	 */
    104	1, 0xF, 0xFD, 0x19, 5, 45, 0, 0x0,
    105	{ 0xB7,  0x0, 0x0, 0xC3,  0x0, 0x0, 0xB5,  0x0, 0x0, 0xEA,  0x0, 0x0, 0xE6,  0x0, 0x0},
    106	{ 0x1EA, 0x0, 0x0, 0x224, 0x0, 0x0, 0x25E, 0x0, 0x0, 0x28E, 0x0, 0x0, 0x2AB, 0x0, 0x0}
    107};
    108
    109static int iceland_start_smc(struct pp_hwmgr *hwmgr)
    110{
    111	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
    112				  SMC_SYSCON_RESET_CNTL, rst_reg, 0);
    113
    114	return 0;
    115}
    116
    117static void iceland_reset_smc(struct pp_hwmgr *hwmgr)
    118{
    119	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
    120				  SMC_SYSCON_RESET_CNTL,
    121				  rst_reg, 1);
    122}
    123
    124
    125static void iceland_stop_smc_clock(struct pp_hwmgr *hwmgr)
    126{
    127	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
    128				  SMC_SYSCON_CLOCK_CNTL_0,
    129				  ck_disable, 1);
    130}
    131
    132static void iceland_start_smc_clock(struct pp_hwmgr *hwmgr)
    133{
    134	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
    135				  SMC_SYSCON_CLOCK_CNTL_0,
    136				  ck_disable, 0);
    137}
    138
    139static int iceland_smu_start_smc(struct pp_hwmgr *hwmgr)
    140{
    141	/* set smc instruct start point at 0x0 */
    142	smu7_program_jump_on_start(hwmgr);
    143
    144	/* enable smc clock */
    145	iceland_start_smc_clock(hwmgr);
    146
    147	/* de-assert reset */
    148	iceland_start_smc(hwmgr);
    149
    150	PHM_WAIT_INDIRECT_FIELD(hwmgr, SMC_IND, FIRMWARE_FLAGS,
    151				 INTERRUPTS_ENABLED, 1);
    152
    153	return 0;
    154}
    155
    156
    157static int iceland_upload_smc_firmware_data(struct pp_hwmgr *hwmgr,
    158					uint32_t length, const uint8_t *src,
    159					uint32_t limit, uint32_t start_addr)
    160{
    161	uint32_t byte_count = length;
    162	uint32_t data;
    163
    164	PP_ASSERT_WITH_CODE((limit >= byte_count), "SMC address is beyond the SMC RAM area.", return -EINVAL);
    165
    166	cgs_write_register(hwmgr->device, mmSMC_IND_INDEX_0, start_addr);
    167	PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 1);
    168
    169	while (byte_count >= 4) {
    170		data = src[0] * 0x1000000 + src[1] * 0x10000 + src[2] * 0x100 + src[3];
    171		cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data);
    172		src += 4;
    173		byte_count -= 4;
    174	}
    175
    176	PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0);
    177
    178	PP_ASSERT_WITH_CODE((0 == byte_count), "SMC size must be divisible by 4.", return -EINVAL);
    179
    180	return 0;
    181}
    182
    183
    184static int iceland_smu_upload_firmware_image(struct pp_hwmgr *hwmgr)
    185{
    186	uint32_t val;
    187	struct cgs_firmware_info info = {0};
    188
    189	if (hwmgr == NULL || hwmgr->device == NULL)
    190		return -EINVAL;
    191
    192	/* load SMC firmware */
    193	cgs_get_firmware_info(hwmgr->device,
    194		smu7_convert_fw_type_to_cgs(UCODE_ID_SMU), &info);
    195
    196	if (info.image_size & 3) {
    197		pr_err("[ powerplay ] SMC ucode is not 4 bytes aligned\n");
    198		return -EINVAL;
    199	}
    200
    201	if (info.image_size > ICELAND_SMC_SIZE) {
    202		pr_err("[ powerplay ] SMC address is beyond the SMC RAM area\n");
    203		return -EINVAL;
    204	}
    205	hwmgr->smu_version = info.version;
    206	/* wait for smc boot up */
    207	PHM_WAIT_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
    208					 RCU_UC_EVENTS, boot_seq_done, 0);
    209
    210	/* clear firmware interrupt enable flag */
    211	val = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
    212				    ixSMC_SYSCON_MISC_CNTL);
    213	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
    214			       ixSMC_SYSCON_MISC_CNTL, val | 1);
    215
    216	/* stop smc clock */
    217	iceland_stop_smc_clock(hwmgr);
    218
    219	/* reset smc */
    220	iceland_reset_smc(hwmgr);
    221	iceland_upload_smc_firmware_data(hwmgr, info.image_size,
    222				(uint8_t *)info.kptr, ICELAND_SMC_SIZE,
    223				info.ucode_start_address);
    224
    225	return 0;
    226}
    227
    228static int iceland_request_smu_load_specific_fw(struct pp_hwmgr *hwmgr,
    229						uint32_t firmwareType)
    230{
    231	return 0;
    232}
    233
    234static int iceland_start_smu(struct pp_hwmgr *hwmgr)
    235{
    236	struct iceland_smumgr *priv = hwmgr->smu_backend;
    237	int result;
    238
    239	if (!smu7_is_smc_ram_running(hwmgr)) {
    240		result = iceland_smu_upload_firmware_image(hwmgr);
    241		if (result)
    242			return result;
    243
    244		iceland_smu_start_smc(hwmgr);
    245	}
    246
    247	/* Setup SoftRegsStart here to visit the register UcodeLoadStatus
    248	 * to check fw loading state
    249	 */
    250	smu7_read_smc_sram_dword(hwmgr,
    251			SMU71_FIRMWARE_HEADER_LOCATION +
    252			offsetof(SMU71_Firmware_Header, SoftRegisters),
    253			&(priv->smu7_data.soft_regs_start), 0x40000);
    254
    255	result = smu7_request_smu_load_fw(hwmgr);
    256
    257	return result;
    258}
    259
    260static int iceland_smu_init(struct pp_hwmgr *hwmgr)
    261{
    262	struct iceland_smumgr *iceland_priv = NULL;
    263
    264	iceland_priv = kzalloc(sizeof(struct iceland_smumgr), GFP_KERNEL);
    265
    266	if (iceland_priv == NULL)
    267		return -ENOMEM;
    268
    269	hwmgr->smu_backend = iceland_priv;
    270
    271	if (smu7_init(hwmgr)) {
    272		kfree(iceland_priv);
    273		return -EINVAL;
    274	}
    275
    276	return 0;
    277}
    278
    279
    280static void iceland_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
    281{
    282	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
    283	struct amdgpu_device *adev = hwmgr->adev;
    284	uint32_t dev_id;
    285
    286	dev_id = adev->pdev->device;
    287
    288	switch (dev_id) {
    289	case DEVICE_ID_VI_ICELAND_M_6900:
    290	case DEVICE_ID_VI_ICELAND_M_6903:
    291		smu_data->power_tune_defaults = &defaults_icelandxt;
    292		break;
    293
    294	case DEVICE_ID_VI_ICELAND_M_6901:
    295	case DEVICE_ID_VI_ICELAND_M_6902:
    296		smu_data->power_tune_defaults = &defaults_icelandpro;
    297		break;
    298	default:
    299		smu_data->power_tune_defaults = &defaults_iceland;
    300		pr_warn("Unknown V.I. Device ID.\n");
    301		break;
    302	}
    303	return;
    304}
    305
    306static int iceland_populate_svi_load_line(struct pp_hwmgr *hwmgr)
    307{
    308	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
    309	const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults;
    310
    311	smu_data->power_tune_table.SviLoadLineEn = defaults->svi_load_line_en;
    312	smu_data->power_tune_table.SviLoadLineVddC = defaults->svi_load_line_vddc;
    313	smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
    314	smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
    315
    316	return 0;
    317}
    318
    319static int iceland_populate_tdc_limit(struct pp_hwmgr *hwmgr)
    320{
    321	uint16_t tdc_limit;
    322	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
    323	const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults;
    324
    325	tdc_limit = (uint16_t)(hwmgr->dyn_state.cac_dtp_table->usTDC * 256);
    326	smu_data->power_tune_table.TDC_VDDC_PkgLimit =
    327			CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
    328	smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
    329			defaults->tdc_vddc_throttle_release_limit_perc;
    330	smu_data->power_tune_table.TDC_MAWt = defaults->tdc_mawt;
    331
    332	return 0;
    333}
    334
    335static int iceland_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
    336{
    337	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
    338	const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults;
    339	uint32_t temp;
    340
    341	if (smu7_read_smc_sram_dword(hwmgr,
    342			fuse_table_offset +
    343			offsetof(SMU71_Discrete_PmFuses, TdcWaterfallCtl),
    344			(uint32_t *)&temp, SMC_RAM_END))
    345		PP_ASSERT_WITH_CODE(false,
    346				"Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
    347				return -EINVAL);
    348	else
    349		smu_data->power_tune_table.TdcWaterfallCtl = defaults->tdc_waterfall_ctl;
    350
    351	return 0;
    352}
    353
    354static int iceland_populate_temperature_scaler(struct pp_hwmgr *hwmgr)
    355{
    356	return 0;
    357}
    358
    359static int iceland_populate_gnb_lpml(struct pp_hwmgr *hwmgr)
    360{
    361	int i;
    362	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
    363
    364	/* Currently not used. Set all to zero. */
    365	for (i = 0; i < 8; i++)
    366		smu_data->power_tune_table.GnbLPML[i] = 0;
    367
    368	return 0;
    369}
    370
    371static int iceland_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
    372{
    373	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
    374	uint16_t HiSidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd;
    375	uint16_t LoSidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd;
    376	struct phm_cac_tdp_table *cac_table = hwmgr->dyn_state.cac_dtp_table;
    377
    378	HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
    379	LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
    380
    381	smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
    382			CONVERT_FROM_HOST_TO_SMC_US(HiSidd);
    383	smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
    384			CONVERT_FROM_HOST_TO_SMC_US(LoSidd);
    385
    386	return 0;
    387}
    388
    389static int iceland_populate_bapm_vddc_vid_sidd(struct pp_hwmgr *hwmgr)
    390{
    391	int i;
    392	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
    393	uint8_t *hi_vid = smu_data->power_tune_table.BapmVddCVidHiSidd;
    394	uint8_t *lo_vid = smu_data->power_tune_table.BapmVddCVidLoSidd;
    395
    396	PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.cac_leakage_table,
    397			    "The CAC Leakage table does not exist!", return -EINVAL);
    398	PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count <= 8,
    399			    "There should never be more than 8 entries for BapmVddcVid!!!", return -EINVAL);
    400	PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count == hwmgr->dyn_state.vddc_dependency_on_sclk->count,
    401			    "CACLeakageTable->count and VddcDependencyOnSCLk->count not equal", return -EINVAL);
    402
    403	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EVV)) {
    404		for (i = 0; (uint32_t) i < hwmgr->dyn_state.cac_leakage_table->count; i++) {
    405			lo_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc1);
    406			hi_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc2);
    407		}
    408	} else {
    409		PP_ASSERT_WITH_CODE(false, "Iceland should always support EVV", return -EINVAL);
    410	}
    411
    412	return 0;
    413}
    414
    415static int iceland_populate_vddc_vid(struct pp_hwmgr *hwmgr)
    416{
    417	int i;
    418	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
    419	uint8_t *vid = smu_data->power_tune_table.VddCVid;
    420	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
    421
    422	PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 8,
    423		"There should never be more than 8 entries for VddcVid!!!",
    424		return -EINVAL);
    425
    426	for (i = 0; i < (int)data->vddc_voltage_table.count; i++) {
    427		vid[i] = convert_to_vid(data->vddc_voltage_table.entries[i].value);
    428	}
    429
    430	return 0;
    431}
    432
    433
    434
    435static int iceland_populate_pm_fuses(struct pp_hwmgr *hwmgr)
    436{
    437	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
    438	uint32_t pm_fuse_table_offset;
    439
    440	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
    441			PHM_PlatformCaps_PowerContainment)) {
    442		if (smu7_read_smc_sram_dword(hwmgr,
    443				SMU71_FIRMWARE_HEADER_LOCATION +
    444				offsetof(SMU71_Firmware_Header, PmFuseTable),
    445				&pm_fuse_table_offset, SMC_RAM_END))
    446			PP_ASSERT_WITH_CODE(false,
    447					"Attempt to get pm_fuse_table_offset Failed!",
    448					return -EINVAL);
    449
    450		/* DW0 - DW3 */
    451		if (iceland_populate_bapm_vddc_vid_sidd(hwmgr))
    452			PP_ASSERT_WITH_CODE(false,
    453					"Attempt to populate bapm vddc vid Failed!",
    454					return -EINVAL);
    455
    456		/* DW4 - DW5 */
    457		if (iceland_populate_vddc_vid(hwmgr))
    458			PP_ASSERT_WITH_CODE(false,
    459					"Attempt to populate vddc vid Failed!",
    460					return -EINVAL);
    461
    462		/* DW6 */
    463		if (iceland_populate_svi_load_line(hwmgr))
    464			PP_ASSERT_WITH_CODE(false,
    465					"Attempt to populate SviLoadLine Failed!",
    466					return -EINVAL);
    467		/* DW7 */
    468		if (iceland_populate_tdc_limit(hwmgr))
    469			PP_ASSERT_WITH_CODE(false,
    470					"Attempt to populate TDCLimit Failed!", return -EINVAL);
    471		/* DW8 */
    472		if (iceland_populate_dw8(hwmgr, pm_fuse_table_offset))
    473			PP_ASSERT_WITH_CODE(false,
    474					"Attempt to populate TdcWaterfallCtl, "
    475					"LPMLTemperature Min and Max Failed!",
    476					return -EINVAL);
    477
    478		/* DW9-DW12 */
    479		if (0 != iceland_populate_temperature_scaler(hwmgr))
    480			PP_ASSERT_WITH_CODE(false,
    481					"Attempt to populate LPMLTemperatureScaler Failed!",
    482					return -EINVAL);
    483
    484		/* DW13-DW16 */
    485		if (iceland_populate_gnb_lpml(hwmgr))
    486			PP_ASSERT_WITH_CODE(false,
    487					"Attempt to populate GnbLPML Failed!",
    488					return -EINVAL);
    489
    490		/* DW18 */
    491		if (iceland_populate_bapm_vddc_base_leakage_sidd(hwmgr))
    492			PP_ASSERT_WITH_CODE(false,
    493					"Attempt to populate BapmVddCBaseLeakage Hi and Lo Sidd Failed!",
    494					return -EINVAL);
    495
    496		if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
    497				(uint8_t *)&smu_data->power_tune_table,
    498				sizeof(struct SMU71_Discrete_PmFuses), SMC_RAM_END))
    499			PP_ASSERT_WITH_CODE(false,
    500					"Attempt to download PmFuseTable Failed!",
    501					return -EINVAL);
    502	}
    503	return 0;
    504}
    505
    506static int iceland_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
    507	struct phm_clock_voltage_dependency_table *allowed_clock_voltage_table,
    508	uint32_t clock, uint32_t *vol)
    509{
    510	uint32_t i = 0;
    511
    512	/* clock - voltage dependency table is empty table */
    513	if (allowed_clock_voltage_table->count == 0)
    514		return -EINVAL;
    515
    516	for (i = 0; i < allowed_clock_voltage_table->count; i++) {
    517		/* find first sclk bigger than request */
    518		if (allowed_clock_voltage_table->entries[i].clk >= clock) {
    519			*vol = allowed_clock_voltage_table->entries[i].v;
    520			return 0;
    521		}
    522	}
    523
    524	/* sclk is bigger than max sclk in the dependence table */
    525	*vol = allowed_clock_voltage_table->entries[i - 1].v;
    526
    527	return 0;
    528}
    529
    530static int iceland_get_std_voltage_value_sidd(struct pp_hwmgr *hwmgr,
    531		pp_atomctrl_voltage_table_entry *tab, uint16_t *hi,
    532		uint16_t *lo)
    533{
    534	uint16_t v_index;
    535	bool vol_found = false;
    536	*hi = tab->value * VOLTAGE_SCALE;
    537	*lo = tab->value * VOLTAGE_SCALE;
    538
    539	/* SCLK/VDDC Dependency Table has to exist. */
    540	PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.vddc_dependency_on_sclk,
    541			"The SCLK/VDDC Dependency Table does not exist.",
    542			return -EINVAL);
    543
    544	if (NULL == hwmgr->dyn_state.cac_leakage_table) {
    545		pr_warn("CAC Leakage Table does not exist, using vddc.\n");
    546		return 0;
    547	}
    548
    549	/*
    550	 * Since voltage in the sclk/vddc dependency table is not
    551	 * necessarily in ascending order because of ELB voltage
    552	 * patching, loop through entire list to find exact voltage.
    553	 */
    554	for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) {
    555		if (tab->value == hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) {
    556			vol_found = true;
    557			if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) {
    558				*lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE;
    559				*hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage * VOLTAGE_SCALE);
    560			} else {
    561				pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index, using maximum index from CAC table.\n");
    562				*lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE;
    563				*hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE);
    564			}
    565			break;
    566		}
    567	}
    568
    569	/*
    570	 * If voltage is not found in the first pass, loop again to
    571	 * find the best match, equal or higher value.
    572	 */
    573	if (!vol_found) {
    574		for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) {
    575			if (tab->value <= hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) {
    576				vol_found = true;
    577				if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) {
    578					*lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE;
    579					*hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage) * VOLTAGE_SCALE;
    580				} else {
    581					pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index in second look up, using maximum index from CAC table.");
    582					*lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE;
    583					*hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE);
    584				}
    585				break;
    586			}
    587		}
    588
    589		if (!vol_found)
    590			pr_warn("Unable to get std_vddc from SCLK/VDDC Dependency Table, using vddc.\n");
    591	}
    592
    593	return 0;
    594}
    595
    596static int iceland_populate_smc_voltage_table(struct pp_hwmgr *hwmgr,
    597		pp_atomctrl_voltage_table_entry *tab,
    598		SMU71_Discrete_VoltageLevel *smc_voltage_tab)
    599{
    600	int result;
    601
    602	result = iceland_get_std_voltage_value_sidd(hwmgr, tab,
    603			&smc_voltage_tab->StdVoltageHiSidd,
    604			&smc_voltage_tab->StdVoltageLoSidd);
    605	if (0 != result) {
    606		smc_voltage_tab->StdVoltageHiSidd = tab->value * VOLTAGE_SCALE;
    607		smc_voltage_tab->StdVoltageLoSidd = tab->value * VOLTAGE_SCALE;
    608	}
    609
    610	smc_voltage_tab->Voltage = PP_HOST_TO_SMC_US(tab->value * VOLTAGE_SCALE);
    611	CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageHiSidd);
    612	CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageHiSidd);
    613
    614	return 0;
    615}
    616
    617static int iceland_populate_smc_vddc_table(struct pp_hwmgr *hwmgr,
    618			SMU71_Discrete_DpmTable *table)
    619{
    620	unsigned int count;
    621	int result;
    622	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
    623
    624	table->VddcLevelCount = data->vddc_voltage_table.count;
    625	for (count = 0; count < table->VddcLevelCount; count++) {
    626		result = iceland_populate_smc_voltage_table(hwmgr,
    627				&(data->vddc_voltage_table.entries[count]),
    628				&(table->VddcLevel[count]));
    629		PP_ASSERT_WITH_CODE(0 == result, "do not populate SMC VDDC voltage table", return -EINVAL);
    630
    631		/* GPIO voltage control */
    632		if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->voltage_control)
    633			table->VddcLevel[count].Smio |= data->vddc_voltage_table.entries[count].smio_low;
    634		else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control)
    635			table->VddcLevel[count].Smio = 0;
    636	}
    637
    638	CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount);
    639
    640	return 0;
    641}
    642
    643static int iceland_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr,
    644			SMU71_Discrete_DpmTable *table)
    645{
    646	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
    647	uint32_t count;
    648	int result;
    649
    650	table->VddciLevelCount = data->vddci_voltage_table.count;
    651
    652	for (count = 0; count < table->VddciLevelCount; count++) {
    653		result = iceland_populate_smc_voltage_table(hwmgr,
    654				&(data->vddci_voltage_table.entries[count]),
    655				&(table->VddciLevel[count]));
    656		PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC VDDCI voltage table", return -EINVAL);
    657		if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control)
    658			table->VddciLevel[count].Smio |= data->vddci_voltage_table.entries[count].smio_low;
    659		else
    660			table->VddciLevel[count].Smio |= 0;
    661	}
    662
    663	CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount);
    664
    665	return 0;
    666}
    667
    668static int iceland_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
    669			SMU71_Discrete_DpmTable *table)
    670{
    671	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
    672	uint32_t count;
    673	int result;
    674
    675	table->MvddLevelCount = data->mvdd_voltage_table.count;
    676
    677	for (count = 0; count < table->VddciLevelCount; count++) {
    678		result = iceland_populate_smc_voltage_table(hwmgr,
    679				&(data->mvdd_voltage_table.entries[count]),
    680				&table->MvddLevel[count]);
    681		PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC mvdd voltage table", return -EINVAL);
    682		if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control)
    683			table->MvddLevel[count].Smio |= data->mvdd_voltage_table.entries[count].smio_low;
    684		else
    685			table->MvddLevel[count].Smio |= 0;
    686	}
    687
    688	CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount);
    689
    690	return 0;
    691}
    692
    693
    694static int iceland_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
    695	SMU71_Discrete_DpmTable *table)
    696{
    697	int result;
    698
    699	result = iceland_populate_smc_vddc_table(hwmgr, table);
    700	PP_ASSERT_WITH_CODE(0 == result,
    701			"can not populate VDDC voltage table to SMC", return -EINVAL);
    702
    703	result = iceland_populate_smc_vdd_ci_table(hwmgr, table);
    704	PP_ASSERT_WITH_CODE(0 == result,
    705			"can not populate VDDCI voltage table to SMC", return -EINVAL);
    706
    707	result = iceland_populate_smc_mvdd_table(hwmgr, table);
    708	PP_ASSERT_WITH_CODE(0 == result,
    709			"can not populate MVDD voltage table to SMC", return -EINVAL);
    710
    711	return 0;
    712}
    713
    714static int iceland_populate_ulv_level(struct pp_hwmgr *hwmgr,
    715		struct SMU71_Discrete_Ulv *state)
    716{
    717	uint32_t voltage_response_time, ulv_voltage;
    718	int result;
    719	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
    720
    721	state->CcPwrDynRm = 0;
    722	state->CcPwrDynRm1 = 0;
    723
    724	result = pp_tables_get_response_times(hwmgr, &voltage_response_time, &ulv_voltage);
    725	PP_ASSERT_WITH_CODE((0 == result), "can not get ULV voltage value", return result;);
    726
    727	if (ulv_voltage == 0) {
    728		data->ulv_supported = false;
    729		return 0;
    730	}
    731
    732	if (data->voltage_control != SMU7_VOLTAGE_CONTROL_BY_SVID2) {
    733		/* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
    734		if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v)
    735			state->VddcOffset = 0;
    736		else
    737			/* used in SMIO Mode. not implemented for now. this is backup only for CI. */
    738			state->VddcOffset = (uint16_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage);
    739	} else {
    740		/* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
    741		if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v)
    742			state->VddcOffsetVid = 0;
    743		else  /* used in SVI2 Mode */
    744			state->VddcOffsetVid = (uint8_t)(
    745					(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage)
    746						* VOLTAGE_VID_OFFSET_SCALE2
    747						/ VOLTAGE_VID_OFFSET_SCALE1);
    748	}
    749	state->VddcPhase = 1;
    750
    751	CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
    752	CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
    753	CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
    754
    755	return 0;
    756}
    757
    758static int iceland_populate_ulv_state(struct pp_hwmgr *hwmgr,
    759		 SMU71_Discrete_Ulv *ulv_level)
    760{
    761	return iceland_populate_ulv_level(hwmgr, ulv_level);
    762}
    763
    764static int iceland_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU71_Discrete_DpmTable *table)
    765{
    766	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
    767	struct smu7_dpm_table *dpm_table = &data->dpm_table;
    768	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
    769	uint32_t i;
    770
    771	/* Index (dpm_table->pcie_speed_table.count) is reserved for PCIE boot level. */
    772	for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
    773		table->LinkLevel[i].PcieGenSpeed  =
    774			(uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
    775		table->LinkLevel[i].PcieLaneCount =
    776			(uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1);
    777		table->LinkLevel[i].EnabledForActivity =
    778			1;
    779		table->LinkLevel[i].SPC =
    780			(uint8_t)(data->pcie_spc_cap & 0xff);
    781		table->LinkLevel[i].DownThreshold =
    782			PP_HOST_TO_SMC_UL(5);
    783		table->LinkLevel[i].UpThreshold =
    784			PP_HOST_TO_SMC_UL(30);
    785	}
    786
    787	smu_data->smc_state_table.LinkLevelCount =
    788		(uint8_t)dpm_table->pcie_speed_table.count;
    789	data->dpm_level_enable_mask.pcie_dpm_enable_mask =
    790		phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
    791
    792	return 0;
    793}
    794
    795static int iceland_calculate_sclk_params(struct pp_hwmgr *hwmgr,
    796		uint32_t engine_clock, SMU71_Discrete_GraphicsLevel *sclk)
    797{
    798	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
    799	pp_atomctrl_clock_dividers_vi dividers;
    800	uint32_t spll_func_cntl            = data->clock_registers.vCG_SPLL_FUNC_CNTL;
    801	uint32_t spll_func_cntl_3          = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
    802	uint32_t spll_func_cntl_4          = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
    803	uint32_t cg_spll_spread_spectrum   = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
    804	uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
    805	uint32_t    reference_clock;
    806	uint32_t reference_divider;
    807	uint32_t fbdiv;
    808	int result;
    809
    810	/* get the engine clock dividers for this clock value*/
    811	result = atomctrl_get_engine_pll_dividers_vi(hwmgr, engine_clock,  &dividers);
    812
    813	PP_ASSERT_WITH_CODE(result == 0,
    814		"Error retrieving Engine Clock dividers from VBIOS.", return result);
    815
    816	/* To get FBDIV we need to multiply this by 16384 and divide it by Fref.*/
    817	reference_clock = atomctrl_get_reference_clock(hwmgr);
    818
    819	reference_divider = 1 + dividers.uc_pll_ref_div;
    820
    821	/* low 14 bits is fraction and high 12 bits is divider*/
    822	fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
    823
    824	/* SPLL_FUNC_CNTL setup*/
    825	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
    826		CG_SPLL_FUNC_CNTL, SPLL_REF_DIV, dividers.uc_pll_ref_div);
    827	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
    828		CG_SPLL_FUNC_CNTL, SPLL_PDIV_A,  dividers.uc_pll_post_div);
    829
    830	/* SPLL_FUNC_CNTL_3 setup*/
    831	spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
    832		CG_SPLL_FUNC_CNTL_3, SPLL_FB_DIV, fbdiv);
    833
    834	/* set to use fractional accumulation*/
    835	spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
    836		CG_SPLL_FUNC_CNTL_3, SPLL_DITHEN, 1);
    837
    838	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
    839			PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
    840		pp_atomctrl_internal_ss_info ss_info;
    841
    842		uint32_t vcoFreq = engine_clock * dividers.uc_pll_post_div;
    843		if (0 == atomctrl_get_engine_clock_spread_spectrum(hwmgr, vcoFreq, &ss_info)) {
    844			/*
    845			* ss_info.speed_spectrum_percentage -- in unit of 0.01%
    846			* ss_info.speed_spectrum_rate -- in unit of khz
    847			*/
    848			/* clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2 */
    849			uint32_t clkS = reference_clock * 5 / (reference_divider * ss_info.speed_spectrum_rate);
    850
    851			/* clkv = 2 * D * fbdiv / NS */
    852			uint32_t clkV = 4 * ss_info.speed_spectrum_percentage * fbdiv / (clkS * 10000);
    853
    854			cg_spll_spread_spectrum =
    855				PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, CLKS, clkS);
    856			cg_spll_spread_spectrum =
    857				PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
    858			cg_spll_spread_spectrum_2 =
    859				PHM_SET_FIELD(cg_spll_spread_spectrum_2, CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clkV);
    860		}
    861	}
    862
    863	sclk->SclkFrequency        = engine_clock;
    864	sclk->CgSpllFuncCntl3      = spll_func_cntl_3;
    865	sclk->CgSpllFuncCntl4      = spll_func_cntl_4;
    866	sclk->SpllSpreadSpectrum   = cg_spll_spread_spectrum;
    867	sclk->SpllSpreadSpectrum2  = cg_spll_spread_spectrum_2;
    868	sclk->SclkDid              = (uint8_t)dividers.pll_post_divider;
    869
    870	return 0;
    871}
    872
    873static int iceland_populate_phase_value_based_on_sclk(struct pp_hwmgr *hwmgr,
    874				const struct phm_phase_shedding_limits_table *pl,
    875					uint32_t sclk, uint32_t *p_shed)
    876{
    877	unsigned int i;
    878
    879	/* use the minimum phase shedding */
    880	*p_shed = 1;
    881
    882	for (i = 0; i < pl->count; i++) {
    883		if (sclk < pl->entries[i].Sclk) {
    884			*p_shed = i;
    885			break;
    886		}
    887	}
    888	return 0;
    889}
    890
    891static int iceland_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
    892						uint32_t engine_clock,
    893				SMU71_Discrete_GraphicsLevel *graphic_level)
    894{
    895	int result;
    896	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
    897
    898	result = iceland_calculate_sclk_params(hwmgr, engine_clock, graphic_level);
    899
    900	/* populate graphics levels*/
    901	result = iceland_get_dependency_volt_by_clk(hwmgr,
    902		hwmgr->dyn_state.vddc_dependency_on_sclk, engine_clock,
    903		&graphic_level->MinVddc);
    904	PP_ASSERT_WITH_CODE((0 == result),
    905		"can not find VDDC voltage value for VDDC engine clock dependency table", return result);
    906
    907	/* SCLK frequency in units of 10KHz*/
    908	graphic_level->SclkFrequency = engine_clock;
    909	graphic_level->MinVddcPhases = 1;
    910
    911	if (data->vddc_phase_shed_control)
    912		iceland_populate_phase_value_based_on_sclk(hwmgr,
    913				hwmgr->dyn_state.vddc_phase_shed_limits_table,
    914				engine_clock,
    915				&graphic_level->MinVddcPhases);
    916
    917	/* Indicates maximum activity level for this performance level. 50% for now*/
    918	graphic_level->ActivityLevel = data->current_profile_setting.sclk_activity;
    919
    920	graphic_level->CcPwrDynRm = 0;
    921	graphic_level->CcPwrDynRm1 = 0;
    922	/* this level can be used if activity is high enough.*/
    923	graphic_level->EnabledForActivity = 0;
    924	/* this level can be used for throttling.*/
    925	graphic_level->EnabledForThrottle = 1;
    926	graphic_level->UpHyst = data->current_profile_setting.sclk_up_hyst;
    927	graphic_level->DownHyst = data->current_profile_setting.sclk_down_hyst;
    928	graphic_level->VoltageDownHyst = 0;
    929	graphic_level->PowerThrottle = 0;
    930
    931	data->display_timing.min_clock_in_sr =
    932			hwmgr->display_config->min_core_set_clock_in_sr;
    933
    934	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
    935			PHM_PlatformCaps_SclkDeepSleep))
    936		graphic_level->DeepSleepDivId =
    937				smu7_get_sleep_divider_id_from_clock(engine_clock,
    938						data->display_timing.min_clock_in_sr);
    939
    940	/* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/
    941	graphic_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
    942
    943	if (0 == result) {
    944		graphic_level->MinVddc = PP_HOST_TO_SMC_UL(graphic_level->MinVddc * VOLTAGE_SCALE);
    945		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVddcPhases);
    946		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SclkFrequency);
    947		CONVERT_FROM_HOST_TO_SMC_US(graphic_level->ActivityLevel);
    948		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl3);
    949		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl4);
    950		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum);
    951		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum2);
    952		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm);
    953		CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm1);
    954	}
    955
    956	return result;
    957}
    958
    959static int iceland_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
    960{
    961	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
    962	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
    963	struct smu7_dpm_table *dpm_table = &data->dpm_table;
    964	uint32_t level_array_adress = smu_data->smu7_data.dpm_table_start +
    965				offsetof(SMU71_Discrete_DpmTable, GraphicsLevel);
    966
    967	uint32_t level_array_size = sizeof(SMU71_Discrete_GraphicsLevel) *
    968						SMU71_MAX_LEVELS_GRAPHICS;
    969
    970	SMU71_Discrete_GraphicsLevel *levels = smu_data->smc_state_table.GraphicsLevel;
    971
    972	uint32_t i;
    973	uint8_t highest_pcie_level_enabled = 0;
    974	uint8_t lowest_pcie_level_enabled = 0, mid_pcie_level_enabled = 0;
    975	uint8_t count = 0;
    976	int result = 0;
    977
    978	memset(levels, 0x00, level_array_size);
    979
    980	for (i = 0; i < dpm_table->sclk_table.count; i++) {
    981		result = iceland_populate_single_graphic_level(hwmgr,
    982					dpm_table->sclk_table.dpm_levels[i].value,
    983					&(smu_data->smc_state_table.GraphicsLevel[i]));
    984		if (result != 0)
    985			return result;
    986
    987		/* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
    988		if (i > 1)
    989			smu_data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0;
    990	}
    991
    992	/* Only enable level 0 for now. */
    993	smu_data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1;
    994
    995	/* set highest level watermark to high */
    996	if (dpm_table->sclk_table.count > 1)
    997		smu_data->smc_state_table.GraphicsLevel[dpm_table->sclk_table.count-1].DisplayWatermark =
    998			PPSMC_DISPLAY_WATERMARK_HIGH;
    999
   1000	smu_data->smc_state_table.GraphicsDpmLevelCount =
   1001		(uint8_t)dpm_table->sclk_table.count;
   1002	data->dpm_level_enable_mask.sclk_dpm_enable_mask =
   1003		phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
   1004
   1005	while ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
   1006				(1 << (highest_pcie_level_enabled + 1))) != 0) {
   1007		highest_pcie_level_enabled++;
   1008	}
   1009
   1010	while ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
   1011		(1 << lowest_pcie_level_enabled)) == 0) {
   1012		lowest_pcie_level_enabled++;
   1013	}
   1014
   1015	while ((count < highest_pcie_level_enabled) &&
   1016			((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
   1017				(1 << (lowest_pcie_level_enabled + 1 + count))) == 0)) {
   1018		count++;
   1019	}
   1020
   1021	mid_pcie_level_enabled = (lowest_pcie_level_enabled+1+count) < highest_pcie_level_enabled ?
   1022		(lowest_pcie_level_enabled+1+count) : highest_pcie_level_enabled;
   1023
   1024
   1025	/* set pcieDpmLevel to highest_pcie_level_enabled*/
   1026	for (i = 2; i < dpm_table->sclk_table.count; i++) {
   1027		smu_data->smc_state_table.GraphicsLevel[i].pcieDpmLevel = highest_pcie_level_enabled;
   1028	}
   1029
   1030	/* set pcieDpmLevel to lowest_pcie_level_enabled*/
   1031	smu_data->smc_state_table.GraphicsLevel[0].pcieDpmLevel = lowest_pcie_level_enabled;
   1032
   1033	/* set pcieDpmLevel to mid_pcie_level_enabled*/
   1034	smu_data->smc_state_table.GraphicsLevel[1].pcieDpmLevel = mid_pcie_level_enabled;
   1035
   1036	/* level count will send to smc once at init smc table and never change*/
   1037	result = smu7_copy_bytes_to_smc(hwmgr, level_array_adress,
   1038				(uint8_t *)levels, (uint32_t)level_array_size,
   1039								SMC_RAM_END);
   1040
   1041	return result;
   1042}
   1043
   1044static int iceland_calculate_mclk_params(
   1045		struct pp_hwmgr *hwmgr,
   1046		uint32_t memory_clock,
   1047		SMU71_Discrete_MemoryLevel *mclk,
   1048		bool strobe_mode,
   1049		bool dllStateOn
   1050		)
   1051{
   1052	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   1053
   1054	uint32_t  dll_cntl = data->clock_registers.vDLL_CNTL;
   1055	uint32_t  mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
   1056	uint32_t  mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL;
   1057	uint32_t  mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL;
   1058	uint32_t  mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL;
   1059	uint32_t  mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1;
   1060	uint32_t  mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2;
   1061	uint32_t  mpll_ss1 = data->clock_registers.vMPLL_SS1;
   1062	uint32_t  mpll_ss2 = data->clock_registers.vMPLL_SS2;
   1063
   1064	pp_atomctrl_memory_clock_param mpll_param;
   1065	int result;
   1066
   1067	result = atomctrl_get_memory_pll_dividers_si(hwmgr,
   1068				memory_clock, &mpll_param, strobe_mode);
   1069	PP_ASSERT_WITH_CODE(0 == result,
   1070		"Error retrieving Memory Clock Parameters from VBIOS.", return result);
   1071
   1072	/* MPLL_FUNC_CNTL setup*/
   1073	mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL, mpll_param.bw_ctrl);
   1074
   1075	/* MPLL_FUNC_CNTL_1 setup*/
   1076	mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
   1077							MPLL_FUNC_CNTL_1, CLKF, mpll_param.mpll_fb_divider.cl_kf);
   1078	mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
   1079							MPLL_FUNC_CNTL_1, CLKFRAC, mpll_param.mpll_fb_divider.clk_frac);
   1080	mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
   1081							MPLL_FUNC_CNTL_1, VCO_MODE, mpll_param.vco_mode);
   1082
   1083	/* MPLL_AD_FUNC_CNTL setup*/
   1084	mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl,
   1085							MPLL_AD_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
   1086
   1087	if (data->is_memory_gddr5) {
   1088		/* MPLL_DQ_FUNC_CNTL setup*/
   1089		mpll_dq_func_cntl  = PHM_SET_FIELD(mpll_dq_func_cntl,
   1090								MPLL_DQ_FUNC_CNTL, YCLK_SEL, mpll_param.yclk_sel);
   1091		mpll_dq_func_cntl  = PHM_SET_FIELD(mpll_dq_func_cntl,
   1092								MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
   1093	}
   1094
   1095	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
   1096			PHM_PlatformCaps_MemorySpreadSpectrumSupport)) {
   1097		/*
   1098		 ************************************
   1099		 Fref = Reference Frequency
   1100		 NF = Feedback divider ratio
   1101		 NR = Reference divider ratio
   1102		 Fnom = Nominal VCO output frequency = Fref * NF / NR
   1103		 Fs = Spreading Rate
   1104		 D = Percentage down-spread / 2
   1105		 Fint = Reference input frequency to PFD = Fref / NR
   1106		 NS = Spreading rate divider ratio = int(Fint / (2 * Fs))
   1107		 CLKS = NS - 1 = ISS_STEP_NUM[11:0]
   1108		 NV = D * Fs / Fnom * 4 * ((Fnom/Fref * NR) ^ 2)
   1109		 CLKV = 65536 * NV = ISS_STEP_SIZE[25:0]
   1110		 *************************************
   1111		 */
   1112		pp_atomctrl_internal_ss_info ss_info;
   1113		uint32_t freq_nom;
   1114		uint32_t tmp;
   1115		uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr);
   1116
   1117		/* for GDDR5 for all modes and DDR3 */
   1118		if (1 == mpll_param.qdr)
   1119			freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider);
   1120		else
   1121			freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider);
   1122
   1123		/* tmp = (freq_nom / reference_clock * reference_divider) ^ 2  Note: S.I. reference_divider = 1*/
   1124		tmp = (freq_nom / reference_clock);
   1125		tmp = tmp * tmp;
   1126
   1127		if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) {
   1128			/* ss_info.speed_spectrum_percentage -- in unit of 0.01% */
   1129			/* ss.Info.speed_spectrum_rate -- in unit of khz */
   1130			/* CLKS = reference_clock / (2 * speed_spectrum_rate * reference_divider) * 10 */
   1131			/*     = reference_clock * 5 / speed_spectrum_rate */
   1132			uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate;
   1133
   1134			/* CLKV = 65536 * speed_spectrum_percentage / 2 * spreadSpecrumRate / freq_nom * 4 / 100000 * ((freq_nom / reference_clock) ^ 2) */
   1135			/*     = 131 * speed_spectrum_percentage * speed_spectrum_rate / 100 * ((freq_nom / reference_clock) ^ 2) / freq_nom */
   1136			uint32_t clkv =
   1137				(uint32_t)((((131 * ss_info.speed_spectrum_percentage *
   1138							ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom);
   1139
   1140			mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv);
   1141			mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks);
   1142		}
   1143	}
   1144
   1145	/* MCLK_PWRMGT_CNTL setup */
   1146	mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
   1147		MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed);
   1148	mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
   1149		MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn);
   1150	mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
   1151		MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn);
   1152
   1153
   1154	/* Save the result data to outpupt memory level structure */
   1155	mclk->MclkFrequency   = memory_clock;
   1156	mclk->MpllFuncCntl    = mpll_func_cntl;
   1157	mclk->MpllFuncCntl_1  = mpll_func_cntl_1;
   1158	mclk->MpllFuncCntl_2  = mpll_func_cntl_2;
   1159	mclk->MpllAdFuncCntl  = mpll_ad_func_cntl;
   1160	mclk->MpllDqFuncCntl  = mpll_dq_func_cntl;
   1161	mclk->MclkPwrmgtCntl  = mclk_pwrmgt_cntl;
   1162	mclk->DllCntl         = dll_cntl;
   1163	mclk->MpllSs1         = mpll_ss1;
   1164	mclk->MpllSs2         = mpll_ss2;
   1165
   1166	return 0;
   1167}
   1168
   1169static uint8_t iceland_get_mclk_frequency_ratio(uint32_t memory_clock,
   1170		bool strobe_mode)
   1171{
   1172	uint8_t mc_para_index;
   1173
   1174	if (strobe_mode) {
   1175		if (memory_clock < 12500) {
   1176			mc_para_index = 0x00;
   1177		} else if (memory_clock > 47500) {
   1178			mc_para_index = 0x0f;
   1179		} else {
   1180			mc_para_index = (uint8_t)((memory_clock - 10000) / 2500);
   1181		}
   1182	} else {
   1183		if (memory_clock < 65000) {
   1184			mc_para_index = 0x00;
   1185		} else if (memory_clock > 135000) {
   1186			mc_para_index = 0x0f;
   1187		} else {
   1188			mc_para_index = (uint8_t)((memory_clock - 60000) / 5000);
   1189		}
   1190	}
   1191
   1192	return mc_para_index;
   1193}
   1194
   1195static uint8_t iceland_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock)
   1196{
   1197	uint8_t mc_para_index;
   1198
   1199	if (memory_clock < 10000) {
   1200		mc_para_index = 0;
   1201	} else if (memory_clock >= 80000) {
   1202		mc_para_index = 0x0f;
   1203	} else {
   1204		mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1);
   1205	}
   1206
   1207	return mc_para_index;
   1208}
   1209
   1210static int iceland_populate_phase_value_based_on_mclk(struct pp_hwmgr *hwmgr, const struct phm_phase_shedding_limits_table *pl,
   1211					uint32_t memory_clock, uint32_t *p_shed)
   1212{
   1213	unsigned int i;
   1214
   1215	*p_shed = 1;
   1216
   1217	for (i = 0; i < pl->count; i++) {
   1218		if (memory_clock < pl->entries[i].Mclk) {
   1219			*p_shed = i;
   1220			break;
   1221		}
   1222	}
   1223
   1224	return 0;
   1225}
   1226
   1227static int iceland_populate_single_memory_level(
   1228		struct pp_hwmgr *hwmgr,
   1229		uint32_t memory_clock,
   1230		SMU71_Discrete_MemoryLevel *memory_level
   1231		)
   1232{
   1233	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   1234	int result = 0;
   1235	bool dll_state_on;
   1236	uint32_t mclk_edc_wr_enable_threshold = 40000;
   1237	uint32_t mclk_edc_enable_threshold = 40000;
   1238	uint32_t mclk_strobe_mode_threshold = 40000;
   1239
   1240	if (hwmgr->dyn_state.vddc_dependency_on_mclk != NULL) {
   1241		result = iceland_get_dependency_volt_by_clk(hwmgr,
   1242			hwmgr->dyn_state.vddc_dependency_on_mclk, memory_clock, &memory_level->MinVddc);
   1243		PP_ASSERT_WITH_CODE((0 == result),
   1244			"can not find MinVddc voltage value from memory VDDC voltage dependency table", return result);
   1245	}
   1246
   1247	if (data->vddci_control == SMU7_VOLTAGE_CONTROL_NONE) {
   1248		memory_level->MinVddci = memory_level->MinVddc;
   1249	} else if (NULL != hwmgr->dyn_state.vddci_dependency_on_mclk) {
   1250		result = iceland_get_dependency_volt_by_clk(hwmgr,
   1251				hwmgr->dyn_state.vddci_dependency_on_mclk,
   1252				memory_clock,
   1253				&memory_level->MinVddci);
   1254		PP_ASSERT_WITH_CODE((0 == result),
   1255			"can not find MinVddci voltage value from memory VDDCI voltage dependency table", return result);
   1256	}
   1257
   1258	memory_level->MinVddcPhases = 1;
   1259
   1260	if (data->vddc_phase_shed_control) {
   1261		iceland_populate_phase_value_based_on_mclk(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table,
   1262				memory_clock, &memory_level->MinVddcPhases);
   1263	}
   1264
   1265	memory_level->EnabledForThrottle = 1;
   1266	memory_level->EnabledForActivity = 0;
   1267	memory_level->UpHyst = data->current_profile_setting.mclk_up_hyst;
   1268	memory_level->DownHyst = data->current_profile_setting.mclk_down_hyst;
   1269	memory_level->VoltageDownHyst = 0;
   1270
   1271	/* Indicates maximum activity level for this performance level.*/
   1272	memory_level->ActivityLevel = data->current_profile_setting.mclk_activity;
   1273	memory_level->StutterEnable = 0;
   1274	memory_level->StrobeEnable = 0;
   1275	memory_level->EdcReadEnable = 0;
   1276	memory_level->EdcWriteEnable = 0;
   1277	memory_level->RttEnable = 0;
   1278
   1279	/* default set to low watermark. Highest level will be set to high later.*/
   1280	memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
   1281
   1282	data->display_timing.num_existing_displays = hwmgr->display_config->num_display;
   1283	data->display_timing.vrefresh = hwmgr->display_config->vrefresh;
   1284
   1285	/* stutter mode not support on iceland */
   1286
   1287	/* decide strobe mode*/
   1288	memory_level->StrobeEnable = (mclk_strobe_mode_threshold != 0) &&
   1289		(memory_clock <= mclk_strobe_mode_threshold);
   1290
   1291	/* decide EDC mode and memory clock ratio*/
   1292	if (data->is_memory_gddr5) {
   1293		memory_level->StrobeRatio = iceland_get_mclk_frequency_ratio(memory_clock,
   1294					memory_level->StrobeEnable);
   1295
   1296		if ((mclk_edc_enable_threshold != 0) &&
   1297				(memory_clock > mclk_edc_enable_threshold)) {
   1298			memory_level->EdcReadEnable = 1;
   1299		}
   1300
   1301		if ((mclk_edc_wr_enable_threshold != 0) &&
   1302				(memory_clock > mclk_edc_wr_enable_threshold)) {
   1303			memory_level->EdcWriteEnable = 1;
   1304		}
   1305
   1306		if (memory_level->StrobeEnable) {
   1307			if (iceland_get_mclk_frequency_ratio(memory_clock, 1) >=
   1308					((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf))
   1309				dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
   1310			else
   1311				dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0;
   1312		} else
   1313			dll_state_on = data->dll_default_on;
   1314	} else {
   1315		memory_level->StrobeRatio =
   1316			iceland_get_ddr3_mclk_frequency_ratio(memory_clock);
   1317		dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
   1318	}
   1319
   1320	result = iceland_calculate_mclk_params(hwmgr,
   1321		memory_clock, memory_level, memory_level->StrobeEnable, dll_state_on);
   1322
   1323	if (0 == result) {
   1324		memory_level->MinVddc = PP_HOST_TO_SMC_UL(memory_level->MinVddc * VOLTAGE_SCALE);
   1325		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinVddcPhases);
   1326		memory_level->MinVddci = PP_HOST_TO_SMC_UL(memory_level->MinVddci * VOLTAGE_SCALE);
   1327		memory_level->MinMvdd = PP_HOST_TO_SMC_UL(memory_level->MinMvdd * VOLTAGE_SCALE);
   1328		/* MCLK frequency in units of 10KHz*/
   1329		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency);
   1330		/* Indicates maximum activity level for this performance level.*/
   1331		CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel);
   1332		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl);
   1333		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1);
   1334		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2);
   1335		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl);
   1336		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl);
   1337		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl);
   1338		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl);
   1339		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1);
   1340		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2);
   1341	}
   1342
   1343	return result;
   1344}
   1345
   1346static int iceland_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
   1347{
   1348	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   1349	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
   1350	struct smu7_dpm_table *dpm_table = &data->dpm_table;
   1351	int result;
   1352
   1353	/* populate MCLK dpm table to SMU7 */
   1354	uint32_t level_array_adress = smu_data->smu7_data.dpm_table_start + offsetof(SMU71_Discrete_DpmTable, MemoryLevel);
   1355	uint32_t level_array_size = sizeof(SMU71_Discrete_MemoryLevel) * SMU71_MAX_LEVELS_MEMORY;
   1356	SMU71_Discrete_MemoryLevel *levels = smu_data->smc_state_table.MemoryLevel;
   1357	uint32_t i;
   1358
   1359	memset(levels, 0x00, level_array_size);
   1360
   1361	for (i = 0; i < dpm_table->mclk_table.count; i++) {
   1362		PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
   1363			"can not populate memory level as memory clock is zero", return -EINVAL);
   1364		result = iceland_populate_single_memory_level(hwmgr, dpm_table->mclk_table.dpm_levels[i].value,
   1365			&(smu_data->smc_state_table.MemoryLevel[i]));
   1366		if (0 != result) {
   1367			return result;
   1368		}
   1369	}
   1370
   1371	/* Only enable level 0 for now.*/
   1372	smu_data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1;
   1373
   1374	/*
   1375	* in order to prevent MC activity from stutter mode to push DPM up.
   1376	* the UVD change complements this by putting the MCLK in a higher state
   1377	* by default such that we are not effected by up threshold or and MCLK DPM latency.
   1378	*/
   1379	smu_data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F;
   1380	CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.MemoryLevel[0].ActivityLevel);
   1381
   1382	smu_data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count;
   1383	data->dpm_level_enable_mask.mclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
   1384	/* set highest level watermark to high*/
   1385	smu_data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH;
   1386
   1387	/* level count will send to smc once at init smc table and never change*/
   1388	result = smu7_copy_bytes_to_smc(hwmgr,
   1389		level_array_adress, (uint8_t *)levels, (uint32_t)level_array_size,
   1390		SMC_RAM_END);
   1391
   1392	return result;
   1393}
   1394
   1395static int iceland_populate_mvdd_value(struct pp_hwmgr *hwmgr, uint32_t mclk,
   1396					SMU71_Discrete_VoltageLevel *voltage)
   1397{
   1398	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   1399
   1400	uint32_t i = 0;
   1401
   1402	if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
   1403		/* find mvdd value which clock is more than request */
   1404		for (i = 0; i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count; i++) {
   1405			if (mclk <= hwmgr->dyn_state.mvdd_dependency_on_mclk->entries[i].clk) {
   1406				/* Always round to higher voltage. */
   1407				voltage->Voltage = data->mvdd_voltage_table.entries[i].value;
   1408				break;
   1409			}
   1410		}
   1411
   1412		PP_ASSERT_WITH_CODE(i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count,
   1413			"MVDD Voltage is outside the supported range.", return -EINVAL);
   1414
   1415	} else {
   1416		return -EINVAL;
   1417	}
   1418
   1419	return 0;
   1420}
   1421
   1422static int iceland_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
   1423	SMU71_Discrete_DpmTable *table)
   1424{
   1425	int result = 0;
   1426	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   1427	struct pp_atomctrl_clock_dividers_vi dividers;
   1428	uint32_t vddc_phase_shed_control = 0;
   1429
   1430	SMU71_Discrete_VoltageLevel voltage_level;
   1431	uint32_t spll_func_cntl    = data->clock_registers.vCG_SPLL_FUNC_CNTL;
   1432	uint32_t spll_func_cntl_2  = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
   1433	uint32_t dll_cntl          = data->clock_registers.vDLL_CNTL;
   1434	uint32_t mclk_pwrmgt_cntl  = data->clock_registers.vMCLK_PWRMGT_CNTL;
   1435
   1436
   1437	/* The ACPI state should not do DPM on DC (or ever).*/
   1438	table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
   1439
   1440	if (data->acpi_vddc)
   1441		table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->acpi_vddc * VOLTAGE_SCALE);
   1442	else
   1443		table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->min_vddc_in_pptable * VOLTAGE_SCALE);
   1444
   1445	table->ACPILevel.MinVddcPhases = vddc_phase_shed_control ? 0 : 1;
   1446	/* assign zero for now*/
   1447	table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr);
   1448
   1449	/* get the engine clock dividers for this clock value*/
   1450	result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
   1451		table->ACPILevel.SclkFrequency,  &dividers);
   1452
   1453	PP_ASSERT_WITH_CODE(result == 0,
   1454		"Error retrieving Engine Clock dividers from VBIOS.", return result);
   1455
   1456	/* divider ID for required SCLK*/
   1457	table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
   1458	table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
   1459	table->ACPILevel.DeepSleepDivId = 0;
   1460
   1461	spll_func_cntl      = PHM_SET_FIELD(spll_func_cntl,
   1462							CG_SPLL_FUNC_CNTL,   SPLL_PWRON,     0);
   1463	spll_func_cntl      = PHM_SET_FIELD(spll_func_cntl,
   1464							CG_SPLL_FUNC_CNTL,   SPLL_RESET,     1);
   1465	spll_func_cntl_2    = PHM_SET_FIELD(spll_func_cntl_2,
   1466							CG_SPLL_FUNC_CNTL_2, SCLK_MUX_SEL,   4);
   1467
   1468	table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
   1469	table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
   1470	table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
   1471	table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
   1472	table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
   1473	table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
   1474	table->ACPILevel.CcPwrDynRm = 0;
   1475	table->ACPILevel.CcPwrDynRm1 = 0;
   1476
   1477
   1478	/* For various features to be enabled/disabled while this level is active.*/
   1479	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
   1480	/* SCLK frequency in units of 10KHz*/
   1481	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
   1482	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
   1483	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
   1484	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
   1485	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
   1486	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
   1487	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
   1488	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
   1489	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
   1490
   1491	/* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/
   1492	table->MemoryACPILevel.MinVddc = table->ACPILevel.MinVddc;
   1493	table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;
   1494
   1495	if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
   1496		table->MemoryACPILevel.MinVddci = table->MemoryACPILevel.MinVddc;
   1497	else {
   1498		if (data->acpi_vddci != 0)
   1499			table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->acpi_vddci * VOLTAGE_SCALE);
   1500		else
   1501			table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->min_vddci_in_pptable * VOLTAGE_SCALE);
   1502	}
   1503
   1504	if (0 == iceland_populate_mvdd_value(hwmgr, 0, &voltage_level))
   1505		table->MemoryACPILevel.MinMvdd =
   1506			PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE);
   1507	else
   1508		table->MemoryACPILevel.MinMvdd = 0;
   1509
   1510	/* Force reset on DLL*/
   1511	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
   1512		MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1);
   1513	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
   1514		MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1);
   1515
   1516	/* Disable DLL in ACPIState*/
   1517	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
   1518		MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0);
   1519	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
   1520		MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0);
   1521
   1522	/* Enable DLL bypass signal*/
   1523	dll_cntl            = PHM_SET_FIELD(dll_cntl,
   1524		DLL_CNTL, MRDCK0_BYPASS, 0);
   1525	dll_cntl            = PHM_SET_FIELD(dll_cntl,
   1526		DLL_CNTL, MRDCK1_BYPASS, 0);
   1527
   1528	table->MemoryACPILevel.DllCntl            =
   1529		PP_HOST_TO_SMC_UL(dll_cntl);
   1530	table->MemoryACPILevel.MclkPwrmgtCntl     =
   1531		PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl);
   1532	table->MemoryACPILevel.MpllAdFuncCntl     =
   1533		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL);
   1534	table->MemoryACPILevel.MpllDqFuncCntl     =
   1535		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL);
   1536	table->MemoryACPILevel.MpllFuncCntl       =
   1537		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL);
   1538	table->MemoryACPILevel.MpllFuncCntl_1     =
   1539		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1);
   1540	table->MemoryACPILevel.MpllFuncCntl_2     =
   1541		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2);
   1542	table->MemoryACPILevel.MpllSs1            =
   1543		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1);
   1544	table->MemoryACPILevel.MpllSs2            =
   1545		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2);
   1546
   1547	table->MemoryACPILevel.EnabledForThrottle = 0;
   1548	table->MemoryACPILevel.EnabledForActivity = 0;
   1549	table->MemoryACPILevel.UpHyst = 0;
   1550	table->MemoryACPILevel.DownHyst = 100;
   1551	table->MemoryACPILevel.VoltageDownHyst = 0;
   1552	/* Indicates maximum activity level for this performance level.*/
   1553	table->MemoryACPILevel.ActivityLevel = PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity);
   1554
   1555	table->MemoryACPILevel.StutterEnable = 0;
   1556	table->MemoryACPILevel.StrobeEnable = 0;
   1557	table->MemoryACPILevel.EdcReadEnable = 0;
   1558	table->MemoryACPILevel.EdcWriteEnable = 0;
   1559	table->MemoryACPILevel.RttEnable = 0;
   1560
   1561	return result;
   1562}
   1563
   1564static int iceland_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
   1565					SMU71_Discrete_DpmTable *table)
   1566{
   1567	return 0;
   1568}
   1569
   1570static int iceland_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
   1571		SMU71_Discrete_DpmTable *table)
   1572{
   1573	return 0;
   1574}
   1575
   1576static int iceland_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
   1577		SMU71_Discrete_DpmTable *table)
   1578{
   1579	return 0;
   1580}
   1581
   1582static int iceland_populate_memory_timing_parameters(
   1583		struct pp_hwmgr *hwmgr,
   1584		uint32_t engine_clock,
   1585		uint32_t memory_clock,
   1586		struct SMU71_Discrete_MCArbDramTimingTableEntry *arb_regs
   1587		)
   1588{
   1589	uint32_t dramTiming;
   1590	uint32_t dramTiming2;
   1591	uint32_t burstTime;
   1592	int result;
   1593
   1594	result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
   1595				engine_clock, memory_clock);
   1596
   1597	PP_ASSERT_WITH_CODE(result == 0,
   1598		"Error calling VBIOS to set DRAM_TIMING.", return result);
   1599
   1600	dramTiming  = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
   1601	dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
   1602	burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
   1603
   1604	arb_regs->McArbDramTiming  = PP_HOST_TO_SMC_UL(dramTiming);
   1605	arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2);
   1606	arb_regs->McArbBurstTime = (uint8_t)burstTime;
   1607
   1608	return 0;
   1609}
   1610
   1611static int iceland_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
   1612{
   1613	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   1614	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
   1615	int result = 0;
   1616	SMU71_Discrete_MCArbDramTimingTable  arb_regs;
   1617	uint32_t i, j;
   1618
   1619	memset(&arb_regs, 0x00, sizeof(SMU71_Discrete_MCArbDramTimingTable));
   1620
   1621	for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
   1622		for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
   1623			result = iceland_populate_memory_timing_parameters
   1624				(hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value,
   1625				 data->dpm_table.mclk_table.dpm_levels[j].value,
   1626				 &arb_regs.entries[i][j]);
   1627
   1628			if (0 != result) {
   1629				break;
   1630			}
   1631		}
   1632	}
   1633
   1634	if (0 == result) {
   1635		result = smu7_copy_bytes_to_smc(
   1636				hwmgr,
   1637				smu_data->smu7_data.arb_table_start,
   1638				(uint8_t *)&arb_regs,
   1639				sizeof(SMU71_Discrete_MCArbDramTimingTable),
   1640				SMC_RAM_END
   1641				);
   1642	}
   1643
   1644	return result;
   1645}
   1646
   1647static int iceland_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
   1648			SMU71_Discrete_DpmTable *table)
   1649{
   1650	int result = 0;
   1651	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   1652	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
   1653	table->GraphicsBootLevel = 0;
   1654	table->MemoryBootLevel = 0;
   1655
   1656	/* find boot level from dpm table*/
   1657	result = phm_find_boot_level(&(data->dpm_table.sclk_table),
   1658			data->vbios_boot_state.sclk_bootup_value,
   1659			(uint32_t *)&(smu_data->smc_state_table.GraphicsBootLevel));
   1660
   1661	if (0 != result) {
   1662		smu_data->smc_state_table.GraphicsBootLevel = 0;
   1663		pr_err("VBIOS did not find boot engine clock value in dependency table. Using Graphics DPM level 0!\n");
   1664		result = 0;
   1665	}
   1666
   1667	result = phm_find_boot_level(&(data->dpm_table.mclk_table),
   1668		data->vbios_boot_state.mclk_bootup_value,
   1669		(uint32_t *)&(smu_data->smc_state_table.MemoryBootLevel));
   1670
   1671	if (0 != result) {
   1672		smu_data->smc_state_table.MemoryBootLevel = 0;
   1673		pr_err("VBIOS did not find boot engine clock value in dependency table. Using Memory DPM level 0!\n");
   1674		result = 0;
   1675	}
   1676
   1677	table->BootVddc = data->vbios_boot_state.vddc_bootup_value;
   1678	if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
   1679		table->BootVddci = table->BootVddc;
   1680	else
   1681		table->BootVddci = data->vbios_boot_state.vddci_bootup_value;
   1682
   1683	table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value;
   1684
   1685	return result;
   1686}
   1687
   1688static int iceland_populate_mc_reg_address(struct pp_hwmgr *hwmgr,
   1689				 SMU71_Discrete_MCRegisters *mc_reg_table)
   1690{
   1691	const struct iceland_smumgr *smu_data = (struct iceland_smumgr *)hwmgr->smu_backend;
   1692
   1693	uint32_t i, j;
   1694
   1695	for (i = 0, j = 0; j < smu_data->mc_reg_table.last; j++) {
   1696		if (smu_data->mc_reg_table.validflag & 1<<j) {
   1697			PP_ASSERT_WITH_CODE(i < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE,
   1698				"Index of mc_reg_table->address[] array out of boundary", return -EINVAL);
   1699			mc_reg_table->address[i].s0 =
   1700				PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s0);
   1701			mc_reg_table->address[i].s1 =
   1702				PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s1);
   1703			i++;
   1704		}
   1705	}
   1706
   1707	mc_reg_table->last = (uint8_t)i;
   1708
   1709	return 0;
   1710}
   1711
   1712/*convert register values from driver to SMC format */
   1713static void iceland_convert_mc_registers(
   1714	const struct iceland_mc_reg_entry *entry,
   1715	SMU71_Discrete_MCRegisterSet *data,
   1716	uint32_t num_entries, uint32_t valid_flag)
   1717{
   1718	uint32_t i, j;
   1719
   1720	for (i = 0, j = 0; j < num_entries; j++) {
   1721		if (valid_flag & 1<<j) {
   1722			data->value[i] = PP_HOST_TO_SMC_UL(entry->mc_data[j]);
   1723			i++;
   1724		}
   1725	}
   1726}
   1727
   1728static int iceland_convert_mc_reg_table_entry_to_smc(struct pp_hwmgr *hwmgr,
   1729		const uint32_t memory_clock,
   1730		SMU71_Discrete_MCRegisterSet *mc_reg_table_data
   1731		)
   1732{
   1733	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
   1734	uint32_t i = 0;
   1735
   1736	for (i = 0; i < smu_data->mc_reg_table.num_entries; i++) {
   1737		if (memory_clock <=
   1738			smu_data->mc_reg_table.mc_reg_table_entry[i].mclk_max) {
   1739			break;
   1740		}
   1741	}
   1742
   1743	if ((i == smu_data->mc_reg_table.num_entries) && (i > 0))
   1744		--i;
   1745
   1746	iceland_convert_mc_registers(&smu_data->mc_reg_table.mc_reg_table_entry[i],
   1747				mc_reg_table_data, smu_data->mc_reg_table.last,
   1748				smu_data->mc_reg_table.validflag);
   1749
   1750	return 0;
   1751}
   1752
   1753static int iceland_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr,
   1754		SMU71_Discrete_MCRegisters *mc_regs)
   1755{
   1756	int result = 0;
   1757	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   1758	int res;
   1759	uint32_t i;
   1760
   1761	for (i = 0; i < data->dpm_table.mclk_table.count; i++) {
   1762		res = iceland_convert_mc_reg_table_entry_to_smc(
   1763				hwmgr,
   1764				data->dpm_table.mclk_table.dpm_levels[i].value,
   1765				&mc_regs->data[i]
   1766				);
   1767
   1768		if (0 != res)
   1769			result = res;
   1770	}
   1771
   1772	return result;
   1773}
   1774
   1775static int iceland_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr)
   1776{
   1777	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
   1778	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   1779	uint32_t address;
   1780	int32_t result;
   1781
   1782	if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK))
   1783		return 0;
   1784
   1785
   1786	memset(&smu_data->mc_regs, 0, sizeof(SMU71_Discrete_MCRegisters));
   1787
   1788	result = iceland_convert_mc_reg_table_to_smc(hwmgr, &(smu_data->mc_regs));
   1789
   1790	if (result != 0)
   1791		return result;
   1792
   1793
   1794	address = smu_data->smu7_data.mc_reg_table_start + (uint32_t)offsetof(SMU71_Discrete_MCRegisters, data[0]);
   1795
   1796	return  smu7_copy_bytes_to_smc(hwmgr, address,
   1797				 (uint8_t *)&smu_data->mc_regs.data[0],
   1798				sizeof(SMU71_Discrete_MCRegisterSet) * data->dpm_table.mclk_table.count,
   1799				SMC_RAM_END);
   1800}
   1801
   1802static int iceland_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr)
   1803{
   1804	int result;
   1805	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
   1806
   1807	memset(&smu_data->mc_regs, 0x00, sizeof(SMU71_Discrete_MCRegisters));
   1808	result = iceland_populate_mc_reg_address(hwmgr, &(smu_data->mc_regs));
   1809	PP_ASSERT_WITH_CODE(0 == result,
   1810		"Failed to initialize MCRegTable for the MC register addresses!", return result;);
   1811
   1812	result = iceland_convert_mc_reg_table_to_smc(hwmgr, &smu_data->mc_regs);
   1813	PP_ASSERT_WITH_CODE(0 == result,
   1814		"Failed to initialize MCRegTable for driver state!", return result;);
   1815
   1816	return smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.mc_reg_table_start,
   1817			(uint8_t *)&smu_data->mc_regs, sizeof(SMU71_Discrete_MCRegisters), SMC_RAM_END);
   1818}
   1819
   1820static int iceland_populate_smc_initial_state(struct pp_hwmgr *hwmgr)
   1821{
   1822	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   1823	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
   1824	uint8_t count, level;
   1825
   1826	count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->count);
   1827
   1828	for (level = 0; level < count; level++) {
   1829		if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[level].clk
   1830			 >= data->vbios_boot_state.sclk_bootup_value) {
   1831			smu_data->smc_state_table.GraphicsBootLevel = level;
   1832			break;
   1833		}
   1834	}
   1835
   1836	count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_mclk->count);
   1837
   1838	for (level = 0; level < count; level++) {
   1839		if (hwmgr->dyn_state.vddc_dependency_on_mclk->entries[level].clk
   1840			>= data->vbios_boot_state.mclk_bootup_value) {
   1841			smu_data->smc_state_table.MemoryBootLevel = level;
   1842			break;
   1843		}
   1844	}
   1845
   1846	return 0;
   1847}
   1848
   1849static int iceland_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
   1850{
   1851	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   1852	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
   1853	const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults;
   1854	SMU71_Discrete_DpmTable  *dpm_table = &(smu_data->smc_state_table);
   1855	struct phm_cac_tdp_table *cac_dtp_table = hwmgr->dyn_state.cac_dtp_table;
   1856	struct phm_ppm_table *ppm = hwmgr->dyn_state.ppm_parameter_table;
   1857	const uint16_t *def1, *def2;
   1858	int i, j, k;
   1859
   1860
   1861	/*
   1862	 * TDP number of fraction bits are changed from 8 to 7 for Iceland
   1863	 * as requested by SMC team
   1864	 */
   1865
   1866	dpm_table->DefaultTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 256));
   1867	dpm_table->TargetTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usConfigurableTDP * 256));
   1868
   1869
   1870	dpm_table->DTETjOffset = 0;
   1871
   1872	dpm_table->GpuTjMax = (uint8_t)(data->thermal_temp_setting.temperature_high / PP_TEMPERATURE_UNITS_PER_CENTIGRADES);
   1873	dpm_table->GpuTjHyst = 8;
   1874
   1875	dpm_table->DTEAmbientTempBase = defaults->dte_ambient_temp_base;
   1876
   1877	/* The following are for new Iceland Multi-input fan/thermal control */
   1878	if (NULL != ppm) {
   1879		dpm_table->PPM_PkgPwrLimit = (uint16_t)ppm->dgpu_tdp * 256 / 1000;
   1880		dpm_table->PPM_TemperatureLimit = (uint16_t)ppm->tj_max * 256;
   1881	} else {
   1882		dpm_table->PPM_PkgPwrLimit = 0;
   1883		dpm_table->PPM_TemperatureLimit = 0;
   1884	}
   1885
   1886	CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_PkgPwrLimit);
   1887	CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_TemperatureLimit);
   1888
   1889	dpm_table->BAPM_TEMP_GRADIENT = PP_HOST_TO_SMC_UL(defaults->bapm_temp_gradient);
   1890	def1 = defaults->bapmti_r;
   1891	def2 = defaults->bapmti_rc;
   1892
   1893	for (i = 0; i < SMU71_DTE_ITERATIONS; i++) {
   1894		for (j = 0; j < SMU71_DTE_SOURCES; j++) {
   1895			for (k = 0; k < SMU71_DTE_SINKS; k++) {
   1896				dpm_table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*def1);
   1897				dpm_table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*def2);
   1898				def1++;
   1899				def2++;
   1900			}
   1901		}
   1902	}
   1903
   1904	return 0;
   1905}
   1906
   1907static int iceland_populate_smc_svi2_config(struct pp_hwmgr *hwmgr,
   1908					    SMU71_Discrete_DpmTable *tab)
   1909{
   1910	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   1911
   1912	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control)
   1913		tab->SVI2Enable |= VDDC_ON_SVI2;
   1914
   1915	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control)
   1916		tab->SVI2Enable |= VDDCI_ON_SVI2;
   1917	else
   1918		tab->MergedVddci = 1;
   1919
   1920	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control)
   1921		tab->SVI2Enable |= MVDD_ON_SVI2;
   1922
   1923	PP_ASSERT_WITH_CODE(tab->SVI2Enable != (VDDC_ON_SVI2 | VDDCI_ON_SVI2 | MVDD_ON_SVI2) &&
   1924		(tab->SVI2Enable & VDDC_ON_SVI2), "SVI2 domain configuration is incorrect!", return -EINVAL);
   1925
   1926	return 0;
   1927}
   1928
   1929static int iceland_init_smc_table(struct pp_hwmgr *hwmgr)
   1930{
   1931	int result;
   1932	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   1933	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
   1934	SMU71_Discrete_DpmTable  *table = &(smu_data->smc_state_table);
   1935
   1936
   1937	iceland_initialize_power_tune_defaults(hwmgr);
   1938	memset(&(smu_data->smc_state_table), 0x00, sizeof(smu_data->smc_state_table));
   1939
   1940	if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control) {
   1941		iceland_populate_smc_voltage_tables(hwmgr, table);
   1942	}
   1943
   1944	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
   1945			PHM_PlatformCaps_AutomaticDCTransition))
   1946		table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
   1947
   1948
   1949	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
   1950			PHM_PlatformCaps_StepVddc))
   1951		table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
   1952
   1953	if (data->is_memory_gddr5)
   1954		table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
   1955
   1956
   1957	if (data->ulv_supported) {
   1958		result = iceland_populate_ulv_state(hwmgr, &(smu_data->ulv_setting));
   1959		PP_ASSERT_WITH_CODE(0 == result,
   1960			"Failed to initialize ULV state!", return result;);
   1961
   1962		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
   1963			ixCG_ULV_PARAMETER, 0x40035);
   1964	}
   1965
   1966	result = iceland_populate_smc_link_level(hwmgr, table);
   1967	PP_ASSERT_WITH_CODE(0 == result,
   1968		"Failed to initialize Link Level!", return result;);
   1969
   1970	result = iceland_populate_all_graphic_levels(hwmgr);
   1971	PP_ASSERT_WITH_CODE(0 == result,
   1972		"Failed to initialize Graphics Level!", return result;);
   1973
   1974	result = iceland_populate_all_memory_levels(hwmgr);
   1975	PP_ASSERT_WITH_CODE(0 == result,
   1976		"Failed to initialize Memory Level!", return result;);
   1977
   1978	result = iceland_populate_smc_acpi_level(hwmgr, table);
   1979	PP_ASSERT_WITH_CODE(0 == result,
   1980		"Failed to initialize ACPI Level!", return result;);
   1981
   1982	result = iceland_populate_smc_vce_level(hwmgr, table);
   1983	PP_ASSERT_WITH_CODE(0 == result,
   1984		"Failed to initialize VCE Level!", return result;);
   1985
   1986	result = iceland_populate_smc_acp_level(hwmgr, table);
   1987	PP_ASSERT_WITH_CODE(0 == result,
   1988		"Failed to initialize ACP Level!", return result;);
   1989
   1990	/* Since only the initial state is completely set up at this point (the other states are just copies of the boot state) we only */
   1991	/* need to populate the  ARB settings for the initial state. */
   1992	result = iceland_program_memory_timing_parameters(hwmgr);
   1993	PP_ASSERT_WITH_CODE(0 == result,
   1994		"Failed to Write ARB settings for the initial state.", return result;);
   1995
   1996	result = iceland_populate_smc_uvd_level(hwmgr, table);
   1997	PP_ASSERT_WITH_CODE(0 == result,
   1998		"Failed to initialize UVD Level!", return result;);
   1999
   2000	table->GraphicsBootLevel = 0;
   2001	table->MemoryBootLevel = 0;
   2002
   2003	result = iceland_populate_smc_boot_level(hwmgr, table);
   2004	PP_ASSERT_WITH_CODE(0 == result,
   2005		"Failed to initialize Boot Level!", return result;);
   2006
   2007	result = iceland_populate_smc_initial_state(hwmgr);
   2008	PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Boot State!", return result);
   2009
   2010	result = iceland_populate_bapm_parameters_in_dpm_table(hwmgr);
   2011	PP_ASSERT_WITH_CODE(0 == result, "Failed to populate BAPM Parameters!", return result);
   2012
   2013	table->GraphicsVoltageChangeEnable  = 1;
   2014	table->GraphicsThermThrottleEnable  = 1;
   2015	table->GraphicsInterval = 1;
   2016	table->VoltageInterval  = 1;
   2017	table->ThermalInterval  = 1;
   2018
   2019	table->TemperatureLimitHigh =
   2020		(data->thermal_temp_setting.temperature_high *
   2021		 SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
   2022	table->TemperatureLimitLow =
   2023		(data->thermal_temp_setting.temperature_low *
   2024		SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
   2025
   2026	table->MemoryVoltageChangeEnable  = 1;
   2027	table->MemoryInterval  = 1;
   2028	table->VoltageResponseTime  = 0;
   2029	table->PhaseResponseTime  = 0;
   2030	table->MemoryThermThrottleEnable  = 1;
   2031	table->PCIeBootLinkLevel = 0;
   2032	table->PCIeGenInterval = 1;
   2033
   2034	result = iceland_populate_smc_svi2_config(hwmgr, table);
   2035	PP_ASSERT_WITH_CODE(0 == result,
   2036		"Failed to populate SVI2 setting!", return result);
   2037
   2038	table->ThermGpio  = 17;
   2039	table->SclkStepSize = 0x4000;
   2040
   2041	CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
   2042	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcVid);
   2043	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcPhase);
   2044	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddciVid);
   2045	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskMvddVid);
   2046	CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
   2047	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
   2048	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
   2049	CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
   2050	CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
   2051
   2052	table->BootVddc = PP_HOST_TO_SMC_US(table->BootVddc * VOLTAGE_SCALE);
   2053	table->BootVddci = PP_HOST_TO_SMC_US(table->BootVddci * VOLTAGE_SCALE);
   2054	table->BootMVdd = PP_HOST_TO_SMC_US(table->BootMVdd * VOLTAGE_SCALE);
   2055
   2056	/* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
   2057	result = smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.dpm_table_start +
   2058										offsetof(SMU71_Discrete_DpmTable, SystemFlags),
   2059										(uint8_t *)&(table->SystemFlags),
   2060										sizeof(SMU71_Discrete_DpmTable)-3 * sizeof(SMU71_PIDController),
   2061										SMC_RAM_END);
   2062
   2063	PP_ASSERT_WITH_CODE(0 == result,
   2064		"Failed to upload dpm data to SMC memory!", return result;);
   2065
   2066	/* Upload all ulv setting to SMC memory.(dpm level, dpm level count etc) */
   2067	result = smu7_copy_bytes_to_smc(hwmgr,
   2068			smu_data->smu7_data.ulv_setting_starts,
   2069			(uint8_t *)&(smu_data->ulv_setting),
   2070			sizeof(SMU71_Discrete_Ulv),
   2071			SMC_RAM_END);
   2072
   2073
   2074	result = iceland_populate_initial_mc_reg_table(hwmgr);
   2075	PP_ASSERT_WITH_CODE((0 == result),
   2076		"Failed to populate initialize MC Reg table!", return result);
   2077
   2078	result = iceland_populate_pm_fuses(hwmgr);
   2079	PP_ASSERT_WITH_CODE(0 == result,
   2080			"Failed to  populate PM fuses to SMC memory!", return result);
   2081
   2082	return 0;
   2083}
   2084
   2085static int iceland_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
   2086{
   2087	struct smu7_smumgr *smu7_data = (struct smu7_smumgr *)(hwmgr->smu_backend);
   2088	SMU71_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE };
   2089	uint32_t duty100;
   2090	uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2;
   2091	uint16_t fdo_min, slope1, slope2;
   2092	uint32_t reference_clock;
   2093	int res;
   2094	uint64_t tmp64;
   2095
   2096	if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl))
   2097		return 0;
   2098
   2099	if (hwmgr->thermal_controller.fanInfo.bNoFan) {
   2100		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
   2101			PHM_PlatformCaps_MicrocodeFanControl);
   2102		return 0;
   2103	}
   2104
   2105	if (0 == smu7_data->fan_table_start) {
   2106		phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
   2107		return 0;
   2108	}
   2109
   2110	duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_FDO_CTRL1, FMAX_DUTY100);
   2111
   2112	if (0 == duty100) {
   2113		phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
   2114		return 0;
   2115	}
   2116
   2117	tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin * duty100;
   2118	do_div(tmp64, 10000);
   2119	fdo_min = (uint16_t)tmp64;
   2120
   2121	t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed - hwmgr->thermal_controller.advanceFanControlParameters.usTMin;
   2122	t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh - hwmgr->thermal_controller.advanceFanControlParameters.usTMed;
   2123
   2124	pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin;
   2125	pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed;
   2126
   2127	slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100);
   2128	slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100);
   2129
   2130	fan_table.TempMin = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMin) / 100);
   2131	fan_table.TempMed = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMed) / 100);
   2132	fan_table.TempMax = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMax) / 100);
   2133
   2134	fan_table.Slope1 = cpu_to_be16(slope1);
   2135	fan_table.Slope2 = cpu_to_be16(slope2);
   2136
   2137	fan_table.FdoMin = cpu_to_be16(fdo_min);
   2138
   2139	fan_table.HystDown = cpu_to_be16(hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst);
   2140
   2141	fan_table.HystUp = cpu_to_be16(1);
   2142
   2143	fan_table.HystSlope = cpu_to_be16(1);
   2144
   2145	fan_table.TempRespLim = cpu_to_be16(5);
   2146
   2147	reference_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
   2148
   2149	fan_table.RefreshPeriod = cpu_to_be32((hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600);
   2150
   2151	fan_table.FdoMax = cpu_to_be16((uint16_t)duty100);
   2152
   2153	fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_MULT_THERMAL_CTRL, TEMP_SEL);
   2154
   2155	/* fan_table.FanControl_GL_Flag = 1; */
   2156
   2157	res = smu7_copy_bytes_to_smc(hwmgr, smu7_data->fan_table_start, (uint8_t *)&fan_table, (uint32_t)sizeof(fan_table), SMC_RAM_END);
   2158
   2159	return res;
   2160}
   2161
   2162
   2163static int iceland_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
   2164{
   2165	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   2166
   2167	if (data->need_update_smu7_dpm_table &
   2168		(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
   2169		return iceland_program_memory_timing_parameters(hwmgr);
   2170
   2171	return 0;
   2172}
   2173
   2174static int iceland_update_sclk_threshold(struct pp_hwmgr *hwmgr)
   2175{
   2176	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   2177	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
   2178
   2179	int result = 0;
   2180	uint32_t low_sclk_interrupt_threshold = 0;
   2181
   2182	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
   2183			PHM_PlatformCaps_SclkThrottleLowNotification)
   2184		&& (data->low_sclk_interrupt_threshold != 0)) {
   2185		low_sclk_interrupt_threshold =
   2186				data->low_sclk_interrupt_threshold;
   2187
   2188		CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
   2189
   2190		result = smu7_copy_bytes_to_smc(
   2191				hwmgr,
   2192				smu_data->smu7_data.dpm_table_start +
   2193				offsetof(SMU71_Discrete_DpmTable,
   2194					LowSclkInterruptThreshold),
   2195				(uint8_t *)&low_sclk_interrupt_threshold,
   2196				sizeof(uint32_t),
   2197				SMC_RAM_END);
   2198	}
   2199
   2200	result = iceland_update_and_upload_mc_reg_table(hwmgr);
   2201
   2202	PP_ASSERT_WITH_CODE((0 == result), "Failed to upload MC reg table!", return result);
   2203
   2204	result = iceland_program_mem_timing_parameters(hwmgr);
   2205	PP_ASSERT_WITH_CODE((result == 0),
   2206			"Failed to program memory timing parameters!",
   2207			);
   2208
   2209	return result;
   2210}
   2211
   2212static uint32_t iceland_get_offsetof(uint32_t type, uint32_t member)
   2213{
   2214	switch (type) {
   2215	case SMU_SoftRegisters:
   2216		switch (member) {
   2217		case HandshakeDisables:
   2218			return offsetof(SMU71_SoftRegisters, HandshakeDisables);
   2219		case VoltageChangeTimeout:
   2220			return offsetof(SMU71_SoftRegisters, VoltageChangeTimeout);
   2221		case AverageGraphicsActivity:
   2222			return offsetof(SMU71_SoftRegisters, AverageGraphicsActivity);
   2223		case AverageMemoryActivity:
   2224			return offsetof(SMU71_SoftRegisters, AverageMemoryActivity);
   2225		case PreVBlankGap:
   2226			return offsetof(SMU71_SoftRegisters, PreVBlankGap);
   2227		case VBlankTimeout:
   2228			return offsetof(SMU71_SoftRegisters, VBlankTimeout);
   2229		case UcodeLoadStatus:
   2230			return offsetof(SMU71_SoftRegisters, UcodeLoadStatus);
   2231		case DRAM_LOG_ADDR_H:
   2232			return offsetof(SMU71_SoftRegisters, DRAM_LOG_ADDR_H);
   2233		case DRAM_LOG_ADDR_L:
   2234			return offsetof(SMU71_SoftRegisters, DRAM_LOG_ADDR_L);
   2235		case DRAM_LOG_PHY_ADDR_H:
   2236			return offsetof(SMU71_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
   2237		case DRAM_LOG_PHY_ADDR_L:
   2238			return offsetof(SMU71_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
   2239		case DRAM_LOG_BUFF_SIZE:
   2240			return offsetof(SMU71_SoftRegisters, DRAM_LOG_BUFF_SIZE);
   2241		}
   2242		break;
   2243	case SMU_Discrete_DpmTable:
   2244		switch (member) {
   2245		case LowSclkInterruptThreshold:
   2246			return offsetof(SMU71_Discrete_DpmTable, LowSclkInterruptThreshold);
   2247		}
   2248		break;
   2249	}
   2250	pr_warn("can't get the offset of type %x member %x\n", type, member);
   2251	return 0;
   2252}
   2253
   2254static uint32_t iceland_get_mac_definition(uint32_t value)
   2255{
   2256	switch (value) {
   2257	case SMU_MAX_LEVELS_GRAPHICS:
   2258		return SMU71_MAX_LEVELS_GRAPHICS;
   2259	case SMU_MAX_LEVELS_MEMORY:
   2260		return SMU71_MAX_LEVELS_MEMORY;
   2261	case SMU_MAX_LEVELS_LINK:
   2262		return SMU71_MAX_LEVELS_LINK;
   2263	case SMU_MAX_ENTRIES_SMIO:
   2264		return SMU71_MAX_ENTRIES_SMIO;
   2265	case SMU_MAX_LEVELS_VDDC:
   2266		return SMU71_MAX_LEVELS_VDDC;
   2267	case SMU_MAX_LEVELS_VDDCI:
   2268		return SMU71_MAX_LEVELS_VDDCI;
   2269	case SMU_MAX_LEVELS_MVDD:
   2270		return SMU71_MAX_LEVELS_MVDD;
   2271	}
   2272
   2273	pr_warn("can't get the mac of %x\n", value);
   2274	return 0;
   2275}
   2276
   2277static int iceland_process_firmware_header(struct pp_hwmgr *hwmgr)
   2278{
   2279	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   2280	struct smu7_smumgr *smu7_data = (struct smu7_smumgr *)(hwmgr->smu_backend);
   2281
   2282	uint32_t tmp;
   2283	int result;
   2284	bool error = false;
   2285
   2286	result = smu7_read_smc_sram_dword(hwmgr,
   2287				SMU71_FIRMWARE_HEADER_LOCATION +
   2288				offsetof(SMU71_Firmware_Header, DpmTable),
   2289				&tmp, SMC_RAM_END);
   2290
   2291	if (0 == result) {
   2292		smu7_data->dpm_table_start = tmp;
   2293	}
   2294
   2295	error |= (0 != result);
   2296
   2297	result = smu7_read_smc_sram_dword(hwmgr,
   2298				SMU71_FIRMWARE_HEADER_LOCATION +
   2299				offsetof(SMU71_Firmware_Header, SoftRegisters),
   2300				&tmp, SMC_RAM_END);
   2301
   2302	if (0 == result) {
   2303		data->soft_regs_start = tmp;
   2304		smu7_data->soft_regs_start = tmp;
   2305	}
   2306
   2307	error |= (0 != result);
   2308
   2309
   2310	result = smu7_read_smc_sram_dword(hwmgr,
   2311				SMU71_FIRMWARE_HEADER_LOCATION +
   2312				offsetof(SMU71_Firmware_Header, mcRegisterTable),
   2313				&tmp, SMC_RAM_END);
   2314
   2315	if (0 == result) {
   2316		smu7_data->mc_reg_table_start = tmp;
   2317	}
   2318
   2319	result = smu7_read_smc_sram_dword(hwmgr,
   2320				SMU71_FIRMWARE_HEADER_LOCATION +
   2321				offsetof(SMU71_Firmware_Header, FanTable),
   2322				&tmp, SMC_RAM_END);
   2323
   2324	if (0 == result) {
   2325		smu7_data->fan_table_start = tmp;
   2326	}
   2327
   2328	error |= (0 != result);
   2329
   2330	result = smu7_read_smc_sram_dword(hwmgr,
   2331				SMU71_FIRMWARE_HEADER_LOCATION +
   2332				offsetof(SMU71_Firmware_Header, mcArbDramTimingTable),
   2333				&tmp, SMC_RAM_END);
   2334
   2335	if (0 == result) {
   2336		smu7_data->arb_table_start = tmp;
   2337	}
   2338
   2339	error |= (0 != result);
   2340
   2341
   2342	result = smu7_read_smc_sram_dword(hwmgr,
   2343				SMU71_FIRMWARE_HEADER_LOCATION +
   2344				offsetof(SMU71_Firmware_Header, Version),
   2345				&tmp, SMC_RAM_END);
   2346
   2347	if (0 == result) {
   2348		hwmgr->microcode_version_info.SMC = tmp;
   2349	}
   2350
   2351	error |= (0 != result);
   2352
   2353	result = smu7_read_smc_sram_dword(hwmgr,
   2354				SMU71_FIRMWARE_HEADER_LOCATION +
   2355				offsetof(SMU71_Firmware_Header, UlvSettings),
   2356				&tmp, SMC_RAM_END);
   2357
   2358	if (0 == result) {
   2359		smu7_data->ulv_setting_starts = tmp;
   2360	}
   2361
   2362	error |= (0 != result);
   2363
   2364	return error ? 1 : 0;
   2365}
   2366
   2367/*---------------------------MC----------------------------*/
   2368
   2369static uint8_t iceland_get_memory_modile_index(struct pp_hwmgr *hwmgr)
   2370{
   2371	return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16));
   2372}
   2373
   2374static bool iceland_check_s0_mc_reg_index(uint16_t in_reg, uint16_t *out_reg)
   2375{
   2376	bool result = true;
   2377
   2378	switch (in_reg) {
   2379	case  mmMC_SEQ_RAS_TIMING:
   2380		*out_reg = mmMC_SEQ_RAS_TIMING_LP;
   2381		break;
   2382
   2383	case  mmMC_SEQ_DLL_STBY:
   2384		*out_reg = mmMC_SEQ_DLL_STBY_LP;
   2385		break;
   2386
   2387	case  mmMC_SEQ_G5PDX_CMD0:
   2388		*out_reg = mmMC_SEQ_G5PDX_CMD0_LP;
   2389		break;
   2390
   2391	case  mmMC_SEQ_G5PDX_CMD1:
   2392		*out_reg = mmMC_SEQ_G5PDX_CMD1_LP;
   2393		break;
   2394
   2395	case  mmMC_SEQ_G5PDX_CTRL:
   2396		*out_reg = mmMC_SEQ_G5PDX_CTRL_LP;
   2397		break;
   2398
   2399	case mmMC_SEQ_CAS_TIMING:
   2400		*out_reg = mmMC_SEQ_CAS_TIMING_LP;
   2401		break;
   2402
   2403	case mmMC_SEQ_MISC_TIMING:
   2404		*out_reg = mmMC_SEQ_MISC_TIMING_LP;
   2405		break;
   2406
   2407	case mmMC_SEQ_MISC_TIMING2:
   2408		*out_reg = mmMC_SEQ_MISC_TIMING2_LP;
   2409		break;
   2410
   2411	case mmMC_SEQ_PMG_DVS_CMD:
   2412		*out_reg = mmMC_SEQ_PMG_DVS_CMD_LP;
   2413		break;
   2414
   2415	case mmMC_SEQ_PMG_DVS_CTL:
   2416		*out_reg = mmMC_SEQ_PMG_DVS_CTL_LP;
   2417		break;
   2418
   2419	case mmMC_SEQ_RD_CTL_D0:
   2420		*out_reg = mmMC_SEQ_RD_CTL_D0_LP;
   2421		break;
   2422
   2423	case mmMC_SEQ_RD_CTL_D1:
   2424		*out_reg = mmMC_SEQ_RD_CTL_D1_LP;
   2425		break;
   2426
   2427	case mmMC_SEQ_WR_CTL_D0:
   2428		*out_reg = mmMC_SEQ_WR_CTL_D0_LP;
   2429		break;
   2430
   2431	case mmMC_SEQ_WR_CTL_D1:
   2432		*out_reg = mmMC_SEQ_WR_CTL_D1_LP;
   2433		break;
   2434
   2435	case mmMC_PMG_CMD_EMRS:
   2436		*out_reg = mmMC_SEQ_PMG_CMD_EMRS_LP;
   2437		break;
   2438
   2439	case mmMC_PMG_CMD_MRS:
   2440		*out_reg = mmMC_SEQ_PMG_CMD_MRS_LP;
   2441		break;
   2442
   2443	case mmMC_PMG_CMD_MRS1:
   2444		*out_reg = mmMC_SEQ_PMG_CMD_MRS1_LP;
   2445		break;
   2446
   2447	case mmMC_SEQ_PMG_TIMING:
   2448		*out_reg = mmMC_SEQ_PMG_TIMING_LP;
   2449		break;
   2450
   2451	case mmMC_PMG_CMD_MRS2:
   2452		*out_reg = mmMC_SEQ_PMG_CMD_MRS2_LP;
   2453		break;
   2454
   2455	case mmMC_SEQ_WR_CTL_2:
   2456		*out_reg = mmMC_SEQ_WR_CTL_2_LP;
   2457		break;
   2458
   2459	default:
   2460		result = false;
   2461		break;
   2462	}
   2463
   2464	return result;
   2465}
   2466
   2467static int iceland_set_s0_mc_reg_index(struct iceland_mc_reg_table *table)
   2468{
   2469	uint32_t i;
   2470	uint16_t address;
   2471
   2472	for (i = 0; i < table->last; i++) {
   2473		table->mc_reg_address[i].s0 =
   2474			iceland_check_s0_mc_reg_index(table->mc_reg_address[i].s1, &address)
   2475			? address : table->mc_reg_address[i].s1;
   2476	}
   2477	return 0;
   2478}
   2479
   2480static int iceland_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table,
   2481					struct iceland_mc_reg_table *ni_table)
   2482{
   2483	uint8_t i, j;
   2484
   2485	PP_ASSERT_WITH_CODE((table->last <= SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),
   2486		"Invalid VramInfo table.", return -EINVAL);
   2487	PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES),
   2488		"Invalid VramInfo table.", return -EINVAL);
   2489
   2490	for (i = 0; i < table->last; i++) {
   2491		ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1;
   2492	}
   2493	ni_table->last = table->last;
   2494
   2495	for (i = 0; i < table->num_entries; i++) {
   2496		ni_table->mc_reg_table_entry[i].mclk_max =
   2497			table->mc_reg_table_entry[i].mclk_max;
   2498		for (j = 0; j < table->last; j++) {
   2499			ni_table->mc_reg_table_entry[i].mc_data[j] =
   2500				table->mc_reg_table_entry[i].mc_data[j];
   2501		}
   2502	}
   2503
   2504	ni_table->num_entries = table->num_entries;
   2505
   2506	return 0;
   2507}
   2508
   2509static int iceland_set_mc_special_registers(struct pp_hwmgr *hwmgr,
   2510					struct iceland_mc_reg_table *table)
   2511{
   2512	uint8_t i, j, k;
   2513	uint32_t temp_reg;
   2514	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   2515
   2516	for (i = 0, j = table->last; i < table->last; i++) {
   2517		PP_ASSERT_WITH_CODE((j < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),
   2518			"Invalid VramInfo table.", return -EINVAL);
   2519
   2520		switch (table->mc_reg_address[i].s1) {
   2521
   2522		case mmMC_SEQ_MISC1:
   2523			temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS);
   2524			table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS;
   2525			table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP;
   2526			for (k = 0; k < table->num_entries; k++) {
   2527				table->mc_reg_table_entry[k].mc_data[j] =
   2528					((temp_reg & 0xffff0000)) |
   2529					((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16);
   2530			}
   2531			j++;
   2532
   2533			PP_ASSERT_WITH_CODE((j < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),
   2534				"Invalid VramInfo table.", return -EINVAL);
   2535			temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS);
   2536			table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS;
   2537			table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP;
   2538			for (k = 0; k < table->num_entries; k++) {
   2539				table->mc_reg_table_entry[k].mc_data[j] =
   2540					(temp_reg & 0xffff0000) |
   2541					(table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
   2542
   2543				if (!data->is_memory_gddr5) {
   2544					table->mc_reg_table_entry[k].mc_data[j] |= 0x100;
   2545				}
   2546			}
   2547			j++;
   2548
   2549			if (!data->is_memory_gddr5) {
   2550				PP_ASSERT_WITH_CODE((j < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),
   2551					"Invalid VramInfo table.", return -EINVAL);
   2552				table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD;
   2553				table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD;
   2554				for (k = 0; k < table->num_entries; k++) {
   2555					table->mc_reg_table_entry[k].mc_data[j] =
   2556						(table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16;
   2557				}
   2558				j++;
   2559			}
   2560
   2561			break;
   2562
   2563		case mmMC_SEQ_RESERVE_M:
   2564			temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1);
   2565			table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1;
   2566			table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP;
   2567			for (k = 0; k < table->num_entries; k++) {
   2568				table->mc_reg_table_entry[k].mc_data[j] =
   2569					(temp_reg & 0xffff0000) |
   2570					(table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
   2571			}
   2572			j++;
   2573			break;
   2574
   2575		default:
   2576			break;
   2577		}
   2578
   2579	}
   2580
   2581	table->last = j;
   2582
   2583	return 0;
   2584}
   2585
   2586static int iceland_set_valid_flag(struct iceland_mc_reg_table *table)
   2587{
   2588	uint8_t i, j;
   2589	for (i = 0; i < table->last; i++) {
   2590		for (j = 1; j < table->num_entries; j++) {
   2591			if (table->mc_reg_table_entry[j-1].mc_data[i] !=
   2592				table->mc_reg_table_entry[j].mc_data[i]) {
   2593				table->validflag |= (1<<i);
   2594				break;
   2595			}
   2596		}
   2597	}
   2598
   2599	return 0;
   2600}
   2601
   2602static int iceland_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
   2603{
   2604	int result;
   2605	struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
   2606	pp_atomctrl_mc_reg_table *table;
   2607	struct iceland_mc_reg_table *ni_table = &smu_data->mc_reg_table;
   2608	uint8_t module_index = iceland_get_memory_modile_index(hwmgr);
   2609
   2610	table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL);
   2611
   2612	if (NULL == table)
   2613		return -ENOMEM;
   2614
   2615	/* Program additional LP registers that are no longer programmed by VBIOS */
   2616	cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
   2617	cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
   2618	cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY));
   2619	cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0));
   2620	cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1));
   2621	cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL));
   2622	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD));
   2623	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL));
   2624	cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING));
   2625	cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
   2626	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS));
   2627	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS));
   2628	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1));
   2629	cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0));
   2630	cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
   2631	cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
   2632	cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
   2633	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
   2634	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2));
   2635	cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2));
   2636
   2637	result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table);
   2638
   2639	if (0 == result)
   2640		result = iceland_copy_vbios_smc_reg_table(table, ni_table);
   2641
   2642	if (0 == result) {
   2643		iceland_set_s0_mc_reg_index(ni_table);
   2644		result = iceland_set_mc_special_registers(hwmgr, ni_table);
   2645	}
   2646
   2647	if (0 == result)
   2648		iceland_set_valid_flag(ni_table);
   2649
   2650	kfree(table);
   2651
   2652	return result;
   2653}
   2654
   2655static bool iceland_is_dpm_running(struct pp_hwmgr *hwmgr)
   2656{
   2657	return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
   2658			CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
   2659			? true : false;
   2660}
   2661
   2662const struct pp_smumgr_func iceland_smu_funcs = {
   2663	.name = "iceland_smu",
   2664	.smu_init = &iceland_smu_init,
   2665	.smu_fini = &smu7_smu_fini,
   2666	.start_smu = &iceland_start_smu,
   2667	.check_fw_load_finish = &smu7_check_fw_load_finish,
   2668	.request_smu_load_fw = &smu7_request_smu_load_fw,
   2669	.request_smu_load_specific_fw = &iceland_request_smu_load_specific_fw,
   2670	.send_msg_to_smc = &smu7_send_msg_to_smc,
   2671	.send_msg_to_smc_with_parameter = &smu7_send_msg_to_smc_with_parameter,
   2672	.get_argument = smu7_get_argument,
   2673	.download_pptable_settings = NULL,
   2674	.upload_pptable_settings = NULL,
   2675	.get_offsetof = iceland_get_offsetof,
   2676	.process_firmware_header = iceland_process_firmware_header,
   2677	.init_smc_table = iceland_init_smc_table,
   2678	.update_sclk_threshold = iceland_update_sclk_threshold,
   2679	.thermal_setup_fan_table = iceland_thermal_setup_fan_table,
   2680	.populate_all_graphic_levels = iceland_populate_all_graphic_levels,
   2681	.populate_all_memory_levels = iceland_populate_all_memory_levels,
   2682	.get_mac_definition = iceland_get_mac_definition,
   2683	.initialize_mc_reg_table = iceland_initialize_mc_reg_table,
   2684	.is_dpm_running = iceland_is_dpm_running,
   2685};
   2686