cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

vegam_smumgr.c (79470B)


      1/*
      2 * Copyright 2017 Advanced Micro Devices, Inc.
      3 *
      4 * Permission is hereby granted, free of charge, to any person obtaining a
      5 * copy of this software and associated documentation files (the "Software"),
      6 * to deal in the Software without restriction, including without limitation
      7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8 * and/or sell copies of the Software, and to permit persons to whom the
      9 * Software is furnished to do so, subject to the following conditions:
     10 *
     11 * The above copyright notice and this permission notice shall be included in
     12 * all copies or substantial portions of the Software.
     13 *
     14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
     18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
     19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
     20 * OTHER DEALINGS IN THE SOFTWARE.
     21 *
     22 */
     23#include "pp_debug.h"
     24#include "smumgr.h"
     25#include "smu_ucode_xfer_vi.h"
     26#include "vegam_smumgr.h"
     27#include "smu/smu_7_1_3_d.h"
     28#include "smu/smu_7_1_3_sh_mask.h"
     29#include "gmc/gmc_8_1_d.h"
     30#include "gmc/gmc_8_1_sh_mask.h"
     31#include "oss/oss_3_0_d.h"
     32#include "gca/gfx_8_0_d.h"
     33#include "bif/bif_5_0_d.h"
     34#include "bif/bif_5_0_sh_mask.h"
     35#include "ppatomctrl.h"
     36#include "cgs_common.h"
     37#include "smu7_ppsmc.h"
     38
     39#include "smu7_dyn_defaults.h"
     40
     41#include "smu7_hwmgr.h"
     42#include "hardwaremanager.h"
     43#include "atombios.h"
     44#include "pppcielanes.h"
     45
     46#include "dce/dce_11_2_d.h"
     47#include "dce/dce_11_2_sh_mask.h"
     48
     49#define PPVEGAM_TARGETACTIVITY_DFLT                     50
     50
     51#define VOLTAGE_VID_OFFSET_SCALE1   625
     52#define VOLTAGE_VID_OFFSET_SCALE2   100
     53#define POWERTUNE_DEFAULT_SET_MAX    1
     54#define VDDC_VDDCI_DELTA            200
     55#define MC_CG_ARB_FREQ_F1           0x0b
     56
     57#define STRAP_ASIC_RO_LSB    2168
     58#define STRAP_ASIC_RO_MSB    2175
     59
     60#define PPSMC_MSG_ApplyAvfsCksOffVoltage      ((uint16_t) 0x415)
     61#define PPSMC_MSG_EnableModeSwitchRLCNotification  ((uint16_t) 0x305)
     62
     63static const struct vegam_pt_defaults
     64vegam_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX] = {
     65	/* sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt,
     66	 * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac, BAPM_TEMP_GRADIENT */
     67	{ 1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000,
     68	{ 0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8, 0xC9, 0xC9, 0x2F, 0x4D, 0x61},
     69	{ 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 } },
     70};
     71
     72static const sclkFcwRange_t Range_Table[NUM_SCLK_RANGE] = {
     73			{VCO_2_4, POSTDIV_DIV_BY_16,  75, 160, 112},
     74			{VCO_3_6, POSTDIV_DIV_BY_16, 112, 224, 160},
     75			{VCO_2_4, POSTDIV_DIV_BY_8,   75, 160, 112},
     76			{VCO_3_6, POSTDIV_DIV_BY_8,  112, 224, 160},
     77			{VCO_2_4, POSTDIV_DIV_BY_4,   75, 160, 112},
     78			{VCO_3_6, POSTDIV_DIV_BY_4,  112, 216, 160},
     79			{VCO_2_4, POSTDIV_DIV_BY_2,   75, 160, 108},
     80			{VCO_3_6, POSTDIV_DIV_BY_2,  112, 216, 160} };
     81
     82static int vegam_smu_init(struct pp_hwmgr *hwmgr)
     83{
     84	struct vegam_smumgr *smu_data;
     85
     86	smu_data = kzalloc(sizeof(struct vegam_smumgr), GFP_KERNEL);
     87	if (smu_data == NULL)
     88		return -ENOMEM;
     89
     90	hwmgr->smu_backend = smu_data;
     91
     92	if (smu7_init(hwmgr)) {
     93		kfree(smu_data);
     94		return -EINVAL;
     95	}
     96
     97	return 0;
     98}
     99
    100static int vegam_start_smu_in_protection_mode(struct pp_hwmgr *hwmgr)
    101{
    102	int result = 0;
    103
    104	/* Wait for smc boot up */
    105	/* PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(smumgr, SMC_IND, RCU_UC_EVENTS, boot_seq_done, 0) */
    106
    107	/* Assert reset */
    108	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
    109					SMC_SYSCON_RESET_CNTL, rst_reg, 1);
    110
    111	result = smu7_upload_smu_firmware_image(hwmgr);
    112	if (result != 0)
    113		return result;
    114
    115	/* Clear status */
    116	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixSMU_STATUS, 0);
    117
    118	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
    119					SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
    120
    121	/* De-assert reset */
    122	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
    123					SMC_SYSCON_RESET_CNTL, rst_reg, 0);
    124
    125
    126	PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, RCU_UC_EVENTS, INTERRUPTS_ENABLED, 1);
    127
    128
    129	/* Call Test SMU message with 0x20000 offset to trigger SMU start */
    130	smu7_send_msg_to_smc_offset(hwmgr);
    131
    132	/* Wait done bit to be set */
    133	/* Check pass/failed indicator */
    134
    135	PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND, SMU_STATUS, SMU_DONE, 0);
    136
    137	if (1 != PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
    138						SMU_STATUS, SMU_PASS))
    139		PP_ASSERT_WITH_CODE(false, "SMU Firmware start failed!", return -1);
    140
    141	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixFIRMWARE_FLAGS, 0);
    142
    143	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
    144					SMC_SYSCON_RESET_CNTL, rst_reg, 1);
    145
    146	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
    147					SMC_SYSCON_RESET_CNTL, rst_reg, 0);
    148
    149	/* Wait for firmware to initialize */
    150	PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
    151
    152	return result;
    153}
    154
    155static int vegam_start_smu_in_non_protection_mode(struct pp_hwmgr *hwmgr)
    156{
    157	int result = 0;
    158
    159	/* wait for smc boot up */
    160	PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND, RCU_UC_EVENTS, boot_seq_done, 0);
    161
    162	/* Clear firmware interrupt enable flag */
    163	/* PHM_WRITE_VFPF_INDIRECT_FIELD(pSmuMgr, SMC_IND, SMC_SYSCON_MISC_CNTL, pre_fetcher_en, 1); */
    164	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
    165				ixFIRMWARE_FLAGS, 0);
    166
    167	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
    168					SMC_SYSCON_RESET_CNTL,
    169					rst_reg, 1);
    170
    171	result = smu7_upload_smu_firmware_image(hwmgr);
    172	if (result != 0)
    173		return result;
    174
    175	/* Set smc instruct start point at 0x0 */
    176	smu7_program_jump_on_start(hwmgr);
    177
    178	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
    179					SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
    180
    181	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
    182					SMC_SYSCON_RESET_CNTL, rst_reg, 0);
    183
    184	/* Wait for firmware to initialize */
    185
    186	PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,
    187					FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
    188
    189	return result;
    190}
    191
    192static int vegam_start_smu(struct pp_hwmgr *hwmgr)
    193{
    194	int result = 0;
    195	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
    196
    197	/* Only start SMC if SMC RAM is not running */
    198	if (!smu7_is_smc_ram_running(hwmgr) && hwmgr->not_vf) {
    199		smu_data->protected_mode = (uint8_t)(PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
    200				CGS_IND_REG__SMC, SMU_FIRMWARE, SMU_MODE));
    201		smu_data->smu7_data.security_hard_key = (uint8_t)(PHM_READ_VFPF_INDIRECT_FIELD(
    202				hwmgr->device, CGS_IND_REG__SMC, SMU_FIRMWARE, SMU_SEL));
    203
    204		/* Check if SMU is running in protected mode */
    205		if (smu_data->protected_mode == 0)
    206			result = vegam_start_smu_in_non_protection_mode(hwmgr);
    207		else
    208			result = vegam_start_smu_in_protection_mode(hwmgr);
    209
    210		if (result != 0)
    211			PP_ASSERT_WITH_CODE(0, "Failed to load SMU ucode.", return result);
    212	}
    213
    214	/* Setup SoftRegsStart here for register lookup in case DummyBackEnd is used and ProcessFirmwareHeader is not executed */
    215	smu7_read_smc_sram_dword(hwmgr,
    216			SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU75_Firmware_Header, SoftRegisters),
    217			&(smu_data->smu7_data.soft_regs_start),
    218			0x40000);
    219
    220	result = smu7_request_smu_load_fw(hwmgr);
    221
    222	return result;
    223}
    224
    225static int vegam_process_firmware_header(struct pp_hwmgr *hwmgr)
    226{
    227	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
    228	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
    229	uint32_t tmp;
    230	int result;
    231	bool error = false;
    232
    233	result = smu7_read_smc_sram_dword(hwmgr,
    234			SMU7_FIRMWARE_HEADER_LOCATION +
    235			offsetof(SMU75_Firmware_Header, DpmTable),
    236			&tmp, SMC_RAM_END);
    237
    238	if (0 == result)
    239		smu_data->smu7_data.dpm_table_start = tmp;
    240
    241	error |= (0 != result);
    242
    243	result = smu7_read_smc_sram_dword(hwmgr,
    244			SMU7_FIRMWARE_HEADER_LOCATION +
    245			offsetof(SMU75_Firmware_Header, SoftRegisters),
    246			&tmp, SMC_RAM_END);
    247
    248	if (!result) {
    249		data->soft_regs_start = tmp;
    250		smu_data->smu7_data.soft_regs_start = tmp;
    251	}
    252
    253	error |= (0 != result);
    254
    255	result = smu7_read_smc_sram_dword(hwmgr,
    256			SMU7_FIRMWARE_HEADER_LOCATION +
    257			offsetof(SMU75_Firmware_Header, mcRegisterTable),
    258			&tmp, SMC_RAM_END);
    259
    260	if (!result)
    261		smu_data->smu7_data.mc_reg_table_start = tmp;
    262
    263	result = smu7_read_smc_sram_dword(hwmgr,
    264			SMU7_FIRMWARE_HEADER_LOCATION +
    265			offsetof(SMU75_Firmware_Header, FanTable),
    266			&tmp, SMC_RAM_END);
    267
    268	if (!result)
    269		smu_data->smu7_data.fan_table_start = tmp;
    270
    271	error |= (0 != result);
    272
    273	result = smu7_read_smc_sram_dword(hwmgr,
    274			SMU7_FIRMWARE_HEADER_LOCATION +
    275			offsetof(SMU75_Firmware_Header, mcArbDramTimingTable),
    276			&tmp, SMC_RAM_END);
    277
    278	if (!result)
    279		smu_data->smu7_data.arb_table_start = tmp;
    280
    281	error |= (0 != result);
    282
    283	result = smu7_read_smc_sram_dword(hwmgr,
    284			SMU7_FIRMWARE_HEADER_LOCATION +
    285			offsetof(SMU75_Firmware_Header, Version),
    286			&tmp, SMC_RAM_END);
    287
    288	if (!result)
    289		hwmgr->microcode_version_info.SMC = tmp;
    290
    291	error |= (0 != result);
    292
    293	return error ? -1 : 0;
    294}
    295
    296static bool vegam_is_dpm_running(struct pp_hwmgr *hwmgr)
    297{
    298	return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
    299			CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
    300			? true : false;
    301}
    302
    303static uint32_t vegam_get_mac_definition(uint32_t value)
    304{
    305	switch (value) {
    306	case SMU_MAX_LEVELS_GRAPHICS:
    307		return SMU75_MAX_LEVELS_GRAPHICS;
    308	case SMU_MAX_LEVELS_MEMORY:
    309		return SMU75_MAX_LEVELS_MEMORY;
    310	case SMU_MAX_LEVELS_LINK:
    311		return SMU75_MAX_LEVELS_LINK;
    312	case SMU_MAX_ENTRIES_SMIO:
    313		return SMU75_MAX_ENTRIES_SMIO;
    314	case SMU_MAX_LEVELS_VDDC:
    315		return SMU75_MAX_LEVELS_VDDC;
    316	case SMU_MAX_LEVELS_VDDGFX:
    317		return SMU75_MAX_LEVELS_VDDGFX;
    318	case SMU_MAX_LEVELS_VDDCI:
    319		return SMU75_MAX_LEVELS_VDDCI;
    320	case SMU_MAX_LEVELS_MVDD:
    321		return SMU75_MAX_LEVELS_MVDD;
    322	case SMU_UVD_MCLK_HANDSHAKE_DISABLE:
    323		return SMU7_UVD_MCLK_HANDSHAKE_DISABLE |
    324				SMU7_VCE_MCLK_HANDSHAKE_DISABLE;
    325	}
    326
    327	pr_warn("can't get the mac of %x\n", value);
    328	return 0;
    329}
    330
    331static int vegam_update_uvd_smc_table(struct pp_hwmgr *hwmgr)
    332{
    333	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
    334	uint32_t mm_boot_level_offset, mm_boot_level_value;
    335	struct phm_ppt_v1_information *table_info =
    336			(struct phm_ppt_v1_information *)(hwmgr->pptable);
    337
    338	smu_data->smc_state_table.UvdBootLevel = 0;
    339	if (table_info->mm_dep_table->count > 0)
    340		smu_data->smc_state_table.UvdBootLevel =
    341				(uint8_t) (table_info->mm_dep_table->count - 1);
    342	mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + offsetof(SMU75_Discrete_DpmTable,
    343						UvdBootLevel);
    344	mm_boot_level_offset /= 4;
    345	mm_boot_level_offset *= 4;
    346	mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
    347			CGS_IND_REG__SMC, mm_boot_level_offset);
    348	mm_boot_level_value &= 0x00FFFFFF;
    349	mm_boot_level_value |= smu_data->smc_state_table.UvdBootLevel << 24;
    350	cgs_write_ind_register(hwmgr->device,
    351			CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
    352
    353	if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
    354			PHM_PlatformCaps_UVDDPM) ||
    355		phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
    356			PHM_PlatformCaps_StablePState))
    357		smum_send_msg_to_smc_with_parameter(hwmgr,
    358				PPSMC_MSG_UVDDPM_SetEnabledMask,
    359				(uint32_t)(1 << smu_data->smc_state_table.UvdBootLevel),
    360				NULL);
    361	return 0;
    362}
    363
    364static int vegam_update_vce_smc_table(struct pp_hwmgr *hwmgr)
    365{
    366	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
    367	uint32_t mm_boot_level_offset, mm_boot_level_value;
    368	struct phm_ppt_v1_information *table_info =
    369			(struct phm_ppt_v1_information *)(hwmgr->pptable);
    370
    371	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
    372					PHM_PlatformCaps_StablePState))
    373		smu_data->smc_state_table.VceBootLevel =
    374			(uint8_t) (table_info->mm_dep_table->count - 1);
    375	else
    376		smu_data->smc_state_table.VceBootLevel = 0;
    377
    378	mm_boot_level_offset = smu_data->smu7_data.dpm_table_start +
    379					offsetof(SMU75_Discrete_DpmTable, VceBootLevel);
    380	mm_boot_level_offset /= 4;
    381	mm_boot_level_offset *= 4;
    382	mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
    383			CGS_IND_REG__SMC, mm_boot_level_offset);
    384	mm_boot_level_value &= 0xFF00FFFF;
    385	mm_boot_level_value |= smu_data->smc_state_table.VceBootLevel << 16;
    386	cgs_write_ind_register(hwmgr->device,
    387			CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
    388
    389	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState))
    390		smum_send_msg_to_smc_with_parameter(hwmgr,
    391				PPSMC_MSG_VCEDPM_SetEnabledMask,
    392				(uint32_t)1 << smu_data->smc_state_table.VceBootLevel,
    393				NULL);
    394	return 0;
    395}
    396
    397static int vegam_update_bif_smc_table(struct pp_hwmgr *hwmgr)
    398{
    399	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
    400	struct phm_ppt_v1_information *table_info =
    401			(struct phm_ppt_v1_information *)(hwmgr->pptable);
    402	struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
    403	int max_entry, i;
    404
    405	max_entry = (SMU75_MAX_LEVELS_LINK < pcie_table->count) ?
    406						SMU75_MAX_LEVELS_LINK :
    407						pcie_table->count;
    408	/* Setup BIF_SCLK levels */
    409	for (i = 0; i < max_entry; i++)
    410		smu_data->bif_sclk_table[i] = pcie_table->entries[i].pcie_sclk;
    411	return 0;
    412}
    413
    414static int vegam_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
    415{
    416	switch (type) {
    417	case SMU_UVD_TABLE:
    418		vegam_update_uvd_smc_table(hwmgr);
    419		break;
    420	case SMU_VCE_TABLE:
    421		vegam_update_vce_smc_table(hwmgr);
    422		break;
    423	case SMU_BIF_TABLE:
    424		vegam_update_bif_smc_table(hwmgr);
    425		break;
    426	default:
    427		break;
    428	}
    429	return 0;
    430}
    431
    432static void vegam_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
    433{
    434	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
    435	struct  phm_ppt_v1_information *table_info =
    436			(struct  phm_ppt_v1_information *)(hwmgr->pptable);
    437
    438	if (table_info &&
    439			table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX &&
    440			table_info->cac_dtp_table->usPowerTuneDataSetID)
    441		smu_data->power_tune_defaults =
    442				&vegam_power_tune_data_set_array
    443				[table_info->cac_dtp_table->usPowerTuneDataSetID - 1];
    444	else
    445		smu_data->power_tune_defaults = &vegam_power_tune_data_set_array[0];
    446
    447}
    448
    449static int vegam_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
    450			SMU75_Discrete_DpmTable *table)
    451{
    452	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
    453	uint32_t count, level;
    454
    455	if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
    456		count = data->mvdd_voltage_table.count;
    457		if (count > SMU_MAX_SMIO_LEVELS)
    458			count = SMU_MAX_SMIO_LEVELS;
    459		for (level = 0; level < count; level++) {
    460			table->SmioTable2.Pattern[level].Voltage = PP_HOST_TO_SMC_US(
    461					data->mvdd_voltage_table.entries[level].value * VOLTAGE_SCALE);
    462			/* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level.*/
    463			table->SmioTable2.Pattern[level].Smio =
    464				(uint8_t) level;
    465			table->Smio[level] |=
    466				data->mvdd_voltage_table.entries[level].smio_low;
    467		}
    468		table->SmioMask2 = data->mvdd_voltage_table.mask_low;
    469
    470		table->MvddLevelCount = (uint32_t) PP_HOST_TO_SMC_UL(count);
    471	}
    472
    473	return 0;
    474}
    475
    476static int vegam_populate_smc_vddci_table(struct pp_hwmgr *hwmgr,
    477					struct SMU75_Discrete_DpmTable *table)
    478{
    479	uint32_t count, level;
    480	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
    481
    482	count = data->vddci_voltage_table.count;
    483
    484	if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
    485		if (count > SMU_MAX_SMIO_LEVELS)
    486			count = SMU_MAX_SMIO_LEVELS;
    487		for (level = 0; level < count; ++level) {
    488			table->SmioTable1.Pattern[level].Voltage = PP_HOST_TO_SMC_US(
    489					data->vddci_voltage_table.entries[level].value * VOLTAGE_SCALE);
    490			table->SmioTable1.Pattern[level].Smio = (uint8_t) level;
    491
    492			table->Smio[level] |= data->vddci_voltage_table.entries[level].smio_low;
    493		}
    494	}
    495
    496	table->SmioMask1 = data->vddci_voltage_table.mask_low;
    497
    498	return 0;
    499}
    500
    501static int vegam_populate_cac_table(struct pp_hwmgr *hwmgr,
    502		struct SMU75_Discrete_DpmTable *table)
    503{
    504	uint32_t count;
    505	uint8_t index;
    506	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
    507	struct phm_ppt_v1_information *table_info =
    508			(struct phm_ppt_v1_information *)(hwmgr->pptable);
    509	struct phm_ppt_v1_voltage_lookup_table *lookup_table =
    510			table_info->vddc_lookup_table;
    511	/* tables is already swapped, so in order to use the value from it,
    512	 * we need to swap it back.
    513	 * We are populating vddc CAC data to BapmVddc table
    514	 * in split and merged mode
    515	 */
    516	for (count = 0; count < lookup_table->count; count++) {
    517		index = phm_get_voltage_index(lookup_table,
    518				data->vddc_voltage_table.entries[count].value);
    519		table->BapmVddcVidLoSidd[count] =
    520				convert_to_vid(lookup_table->entries[index].us_cac_low);
    521		table->BapmVddcVidHiSidd[count] =
    522				convert_to_vid(lookup_table->entries[index].us_cac_mid);
    523		table->BapmVddcVidHiSidd2[count] =
    524				convert_to_vid(lookup_table->entries[index].us_cac_high);
    525	}
    526
    527	return 0;
    528}
    529
    530static int vegam_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
    531		struct SMU75_Discrete_DpmTable *table)
    532{
    533	vegam_populate_smc_vddci_table(hwmgr, table);
    534	vegam_populate_smc_mvdd_table(hwmgr, table);
    535	vegam_populate_cac_table(hwmgr, table);
    536
    537	return 0;
    538}
    539
    540static int vegam_populate_ulv_level(struct pp_hwmgr *hwmgr,
    541		struct SMU75_Discrete_Ulv *state)
    542{
    543	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
    544	struct phm_ppt_v1_information *table_info =
    545			(struct phm_ppt_v1_information *)(hwmgr->pptable);
    546
    547	state->CcPwrDynRm = 0;
    548	state->CcPwrDynRm1 = 0;
    549
    550	state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset;
    551	state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset *
    552			VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);
    553
    554	state->VddcPhase = data->vddc_phase_shed_control ^ 0x3;
    555
    556	CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
    557	CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
    558	CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
    559
    560	return 0;
    561}
    562
    563static int vegam_populate_ulv_state(struct pp_hwmgr *hwmgr,
    564		struct SMU75_Discrete_DpmTable *table)
    565{
    566	return vegam_populate_ulv_level(hwmgr, &table->Ulv);
    567}
    568
    569static int vegam_populate_smc_link_level(struct pp_hwmgr *hwmgr,
    570		struct SMU75_Discrete_DpmTable *table)
    571{
    572	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
    573	struct vegam_smumgr *smu_data =
    574			(struct vegam_smumgr *)(hwmgr->smu_backend);
    575	struct smu7_dpm_table *dpm_table = &data->dpm_table;
    576	int i;
    577
    578	/* Index (dpm_table->pcie_speed_table.count)
    579	 * is reserved for PCIE boot level. */
    580	for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
    581		table->LinkLevel[i].PcieGenSpeed  =
    582				(uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
    583		table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width(
    584				dpm_table->pcie_speed_table.dpm_levels[i].param1);
    585		table->LinkLevel[i].EnabledForActivity = 1;
    586		table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff);
    587		table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5);
    588		table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30);
    589	}
    590
    591	smu_data->smc_state_table.LinkLevelCount =
    592			(uint8_t)dpm_table->pcie_speed_table.count;
    593
    594/* To Do move to hwmgr */
    595	data->dpm_level_enable_mask.pcie_dpm_enable_mask =
    596			phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
    597
    598	return 0;
    599}
    600
    601static int vegam_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
    602		struct phm_ppt_v1_clock_voltage_dependency_table *dep_table,
    603		uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd)
    604{
    605	uint32_t i;
    606	uint16_t vddci;
    607	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
    608
    609	*voltage = *mvdd = 0;
    610
    611	/* clock - voltage dependency table is empty table */
    612	if (dep_table->count == 0)
    613		return -EINVAL;
    614
    615	for (i = 0; i < dep_table->count; i++) {
    616		/* find first sclk bigger than request */
    617		if (dep_table->entries[i].clk >= clock) {
    618			*voltage |= (dep_table->entries[i].vddc *
    619					VOLTAGE_SCALE) << VDDC_SHIFT;
    620			if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
    621				*voltage |= (data->vbios_boot_state.vddci_bootup_value *
    622						VOLTAGE_SCALE) << VDDCI_SHIFT;
    623			else if (dep_table->entries[i].vddci)
    624				*voltage |= (dep_table->entries[i].vddci *
    625						VOLTAGE_SCALE) << VDDCI_SHIFT;
    626			else {
    627				vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
    628						(dep_table->entries[i].vddc -
    629								(uint16_t)VDDC_VDDCI_DELTA));
    630				*voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
    631			}
    632
    633			if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
    634				*mvdd = data->vbios_boot_state.mvdd_bootup_value *
    635					VOLTAGE_SCALE;
    636			else if (dep_table->entries[i].mvdd)
    637				*mvdd = (uint32_t) dep_table->entries[i].mvdd *
    638					VOLTAGE_SCALE;
    639
    640			*voltage |= 1 << PHASES_SHIFT;
    641			return 0;
    642		}
    643	}
    644
    645	/* sclk is bigger than max sclk in the dependence table */
    646	*voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
    647
    648	if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
    649		*voltage |= (data->vbios_boot_state.vddci_bootup_value *
    650				VOLTAGE_SCALE) << VDDCI_SHIFT;
    651	else if (dep_table->entries[i - 1].vddci)
    652		*voltage |= (dep_table->entries[i - 1].vddci *
    653				VOLTAGE_SCALE) << VDDC_SHIFT;
    654	else {
    655		vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
    656				(dep_table->entries[i - 1].vddc -
    657						(uint16_t)VDDC_VDDCI_DELTA));
    658
    659		*voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
    660	}
    661
    662	if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
    663		*mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE;
    664	else if (dep_table->entries[i].mvdd)
    665		*mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE;
    666
    667	return 0;
    668}
    669
    670static void vegam_get_sclk_range_table(struct pp_hwmgr *hwmgr,
    671				   SMU75_Discrete_DpmTable  *table)
    672{
    673	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
    674	uint32_t i, ref_clk;
    675
    676	struct pp_atom_ctrl_sclk_range_table range_table_from_vbios = { { {0} } };
    677
    678	ref_clk = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
    679
    680	if (0 == atomctrl_get_smc_sclk_range_table(hwmgr, &range_table_from_vbios)) {
    681		for (i = 0; i < NUM_SCLK_RANGE; i++) {
    682			table->SclkFcwRangeTable[i].vco_setting =
    683					range_table_from_vbios.entry[i].ucVco_setting;
    684			table->SclkFcwRangeTable[i].postdiv =
    685					range_table_from_vbios.entry[i].ucPostdiv;
    686			table->SclkFcwRangeTable[i].fcw_pcc =
    687					range_table_from_vbios.entry[i].usFcw_pcc;
    688
    689			table->SclkFcwRangeTable[i].fcw_trans_upper =
    690					range_table_from_vbios.entry[i].usFcw_trans_upper;
    691			table->SclkFcwRangeTable[i].fcw_trans_lower =
    692					range_table_from_vbios.entry[i].usRcw_trans_lower;
    693
    694			CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_pcc);
    695			CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_upper);
    696			CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_lower);
    697		}
    698		return;
    699	}
    700
    701	for (i = 0; i < NUM_SCLK_RANGE; i++) {
    702		smu_data->range_table[i].trans_lower_frequency =
    703				(ref_clk * Range_Table[i].fcw_trans_lower) >> Range_Table[i].postdiv;
    704		smu_data->range_table[i].trans_upper_frequency =
    705				(ref_clk * Range_Table[i].fcw_trans_upper) >> Range_Table[i].postdiv;
    706
    707		table->SclkFcwRangeTable[i].vco_setting = Range_Table[i].vco_setting;
    708		table->SclkFcwRangeTable[i].postdiv = Range_Table[i].postdiv;
    709		table->SclkFcwRangeTable[i].fcw_pcc = Range_Table[i].fcw_pcc;
    710
    711		table->SclkFcwRangeTable[i].fcw_trans_upper = Range_Table[i].fcw_trans_upper;
    712		table->SclkFcwRangeTable[i].fcw_trans_lower = Range_Table[i].fcw_trans_lower;
    713
    714		CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_pcc);
    715		CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_upper);
    716		CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_lower);
    717	}
    718}
    719
    720static int vegam_calculate_sclk_params(struct pp_hwmgr *hwmgr,
    721		uint32_t clock, SMU_SclkSetting *sclk_setting)
    722{
    723	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
    724	const SMU75_Discrete_DpmTable *table = &(smu_data->smc_state_table);
    725	struct pp_atomctrl_clock_dividers_ai dividers;
    726	uint32_t ref_clock;
    727	uint32_t pcc_target_percent, pcc_target_freq, ss_target_percent, ss_target_freq;
    728	uint8_t i;
    729	int result;
    730	uint64_t temp;
    731
    732	sclk_setting->SclkFrequency = clock;
    733	/* get the engine clock dividers for this clock value */
    734	result = atomctrl_get_engine_pll_dividers_ai(hwmgr, clock,  &dividers);
    735	if (result == 0) {
    736		sclk_setting->Fcw_int = dividers.usSclk_fcw_int;
    737		sclk_setting->Fcw_frac = dividers.usSclk_fcw_frac;
    738		sclk_setting->Pcc_fcw_int = dividers.usPcc_fcw_int;
    739		sclk_setting->PllRange = dividers.ucSclkPllRange;
    740		sclk_setting->Sclk_slew_rate = 0x400;
    741		sclk_setting->Pcc_up_slew_rate = dividers.usPcc_fcw_slew_frac;
    742		sclk_setting->Pcc_down_slew_rate = 0xffff;
    743		sclk_setting->SSc_En = dividers.ucSscEnable;
    744		sclk_setting->Fcw1_int = dividers.usSsc_fcw1_int;
    745		sclk_setting->Fcw1_frac = dividers.usSsc_fcw1_frac;
    746		sclk_setting->Sclk_ss_slew_rate = dividers.usSsc_fcw_slew_frac;
    747		return result;
    748	}
    749
    750	ref_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
    751
    752	for (i = 0; i < NUM_SCLK_RANGE; i++) {
    753		if (clock > smu_data->range_table[i].trans_lower_frequency
    754		&& clock <= smu_data->range_table[i].trans_upper_frequency) {
    755			sclk_setting->PllRange = i;
    756			break;
    757		}
    758	}
    759
    760	sclk_setting->Fcw_int = (uint16_t)
    761			((clock << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) /
    762					ref_clock);
    763	temp = clock << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv;
    764	temp <<= 0x10;
    765	do_div(temp, ref_clock);
    766	sclk_setting->Fcw_frac = temp & 0xffff;
    767
    768	pcc_target_percent = 10; /*  Hardcode 10% for now. */
    769	pcc_target_freq = clock - (clock * pcc_target_percent / 100);
    770	sclk_setting->Pcc_fcw_int = (uint16_t)
    771			((pcc_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) /
    772					ref_clock);
    773
    774	ss_target_percent = 2; /*  Hardcode 2% for now. */
    775	sclk_setting->SSc_En = 0;
    776	if (ss_target_percent) {
    777		sclk_setting->SSc_En = 1;
    778		ss_target_freq = clock - (clock * ss_target_percent / 100);
    779		sclk_setting->Fcw1_int = (uint16_t)
    780				((ss_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) /
    781						ref_clock);
    782		temp = ss_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv;
    783		temp <<= 0x10;
    784		do_div(temp, ref_clock);
    785		sclk_setting->Fcw1_frac = temp & 0xffff;
    786	}
    787
    788	return 0;
    789}
    790
    791static uint8_t vegam_get_sleep_divider_id_from_clock(uint32_t clock,
    792		uint32_t clock_insr)
    793{
    794	uint8_t i;
    795	uint32_t temp;
    796	uint32_t min = max(clock_insr, (uint32_t)SMU7_MINIMUM_ENGINE_CLOCK);
    797
    798	PP_ASSERT_WITH_CODE((clock >= min),
    799			"Engine clock can't satisfy stutter requirement!",
    800			return 0);
    801	for (i = 31;  ; i--) {
    802		temp = clock / (i + 1);
    803
    804		if (temp >= min || i == 0)
    805			break;
    806	}
    807	return i;
    808}
    809
    810static int vegam_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
    811		uint32_t clock, struct SMU75_Discrete_GraphicsLevel *level)
    812{
    813	int result;
    814	/* PP_Clocks minClocks; */
    815	uint32_t mvdd;
    816	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
    817	struct phm_ppt_v1_information *table_info =
    818			(struct phm_ppt_v1_information *)(hwmgr->pptable);
    819	SMU_SclkSetting curr_sclk_setting = { 0 };
    820
    821	result = vegam_calculate_sclk_params(hwmgr, clock, &curr_sclk_setting);
    822
    823	/* populate graphics levels */
    824	result = vegam_get_dependency_volt_by_clk(hwmgr,
    825			table_info->vdd_dep_on_sclk, clock,
    826			&level->MinVoltage, &mvdd);
    827
    828	PP_ASSERT_WITH_CODE((0 == result),
    829			"can not find VDDC voltage value for "
    830			"VDDC engine clock dependency table",
    831			return result);
    832	level->ActivityLevel = (uint16_t)(SclkDPMTuning_VEGAM >> DPMTuning_Activity_Shift);
    833
    834	level->CcPwrDynRm = 0;
    835	level->CcPwrDynRm1 = 0;
    836	level->EnabledForActivity = 0;
    837	level->EnabledForThrottle = 1;
    838	level->VoltageDownHyst = 0;
    839	level->PowerThrottle = 0;
    840	data->display_timing.min_clock_in_sr = hwmgr->display_config->min_core_set_clock_in_sr;
    841
    842	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep))
    843		level->DeepSleepDivId = vegam_get_sleep_divider_id_from_clock(clock,
    844								hwmgr->display_config->min_core_set_clock_in_sr);
    845
    846	level->SclkSetting = curr_sclk_setting;
    847
    848	CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage);
    849	CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
    850	CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
    851	CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
    852	CONVERT_FROM_HOST_TO_SMC_UL(level->SclkSetting.SclkFrequency);
    853	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw_int);
    854	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw_frac);
    855	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_fcw_int);
    856	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Sclk_slew_rate);
    857	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_up_slew_rate);
    858	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_down_slew_rate);
    859	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw1_int);
    860	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw1_frac);
    861	CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Sclk_ss_slew_rate);
    862	return 0;
    863}
    864
    865static int vegam_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
    866{
    867	struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
    868	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
    869	struct smu7_dpm_table *dpm_table = &hw_data->dpm_table;
    870	struct phm_ppt_v1_information *table_info =
    871			(struct phm_ppt_v1_information *)(hwmgr->pptable);
    872	struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
    873	uint8_t pcie_entry_cnt = (uint8_t) hw_data->dpm_table.pcie_speed_table.count;
    874	int result = 0;
    875	uint32_t array = smu_data->smu7_data.dpm_table_start +
    876			offsetof(SMU75_Discrete_DpmTable, GraphicsLevel);
    877	uint32_t array_size = sizeof(struct SMU75_Discrete_GraphicsLevel) *
    878			SMU75_MAX_LEVELS_GRAPHICS;
    879	struct SMU75_Discrete_GraphicsLevel *levels =
    880			smu_data->smc_state_table.GraphicsLevel;
    881	uint32_t i, max_entry;
    882	uint8_t hightest_pcie_level_enabled = 0,
    883		lowest_pcie_level_enabled = 0,
    884		mid_pcie_level_enabled = 0,
    885		count = 0;
    886
    887	vegam_get_sclk_range_table(hwmgr, &(smu_data->smc_state_table));
    888
    889	for (i = 0; i < dpm_table->sclk_table.count; i++) {
    890
    891		result = vegam_populate_single_graphic_level(hwmgr,
    892				dpm_table->sclk_table.dpm_levels[i].value,
    893				&(smu_data->smc_state_table.GraphicsLevel[i]));
    894		if (result)
    895			return result;
    896
    897		levels[i].UpHyst = (uint8_t)
    898				(SclkDPMTuning_VEGAM >> DPMTuning_Uphyst_Shift);
    899		levels[i].DownHyst = (uint8_t)
    900				(SclkDPMTuning_VEGAM >> DPMTuning_Downhyst_Shift);
    901		/* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
    902		if (i > 1)
    903			levels[i].DeepSleepDivId = 0;
    904	}
    905	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
    906					PHM_PlatformCaps_SPLLShutdownSupport))
    907		smu_data->smc_state_table.GraphicsLevel[0].SclkSetting.SSc_En = 0;
    908
    909	smu_data->smc_state_table.GraphicsDpmLevelCount =
    910			(uint8_t)dpm_table->sclk_table.count;
    911	hw_data->dpm_level_enable_mask.sclk_dpm_enable_mask =
    912			phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
    913
    914	for (i = 0; i < dpm_table->sclk_table.count; i++)
    915		levels[i].EnabledForActivity =
    916				(hw_data->dpm_level_enable_mask.sclk_dpm_enable_mask >> i) & 0x1;
    917
    918	if (pcie_table != NULL) {
    919		PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt),
    920				"There must be 1 or more PCIE levels defined in PPTable.",
    921				return -EINVAL);
    922		max_entry = pcie_entry_cnt - 1;
    923		for (i = 0; i < dpm_table->sclk_table.count; i++)
    924			levels[i].pcieDpmLevel =
    925					(uint8_t) ((i < max_entry) ? i : max_entry);
    926	} else {
    927		while (hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
    928				((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &
    929						(1 << (hightest_pcie_level_enabled + 1))) != 0))
    930			hightest_pcie_level_enabled++;
    931
    932		while (hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
    933				((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &
    934						(1 << lowest_pcie_level_enabled)) == 0))
    935			lowest_pcie_level_enabled++;
    936
    937		while ((count < hightest_pcie_level_enabled) &&
    938				((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &
    939						(1 << (lowest_pcie_level_enabled + 1 + count))) == 0))
    940			count++;
    941
    942		mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1 + count) <
    943				hightest_pcie_level_enabled ?
    944						(lowest_pcie_level_enabled + 1 + count) :
    945						hightest_pcie_level_enabled;
    946
    947		/* set pcieDpmLevel to hightest_pcie_level_enabled */
    948		for (i = 2; i < dpm_table->sclk_table.count; i++)
    949			levels[i].pcieDpmLevel = hightest_pcie_level_enabled;
    950
    951		/* set pcieDpmLevel to lowest_pcie_level_enabled */
    952		levels[0].pcieDpmLevel = lowest_pcie_level_enabled;
    953
    954		/* set pcieDpmLevel to mid_pcie_level_enabled */
    955		levels[1].pcieDpmLevel = mid_pcie_level_enabled;
    956	}
    957	/* level count will send to smc once at init smc table and never change */
    958	result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
    959			(uint32_t)array_size, SMC_RAM_END);
    960
    961	return result;
    962}
    963
    964static int vegam_calculate_mclk_params(struct pp_hwmgr *hwmgr,
    965		uint32_t clock, struct SMU75_Discrete_MemoryLevel *mem_level)
    966{
    967	struct pp_atomctrl_memory_clock_param_ai mpll_param;
    968
    969	PP_ASSERT_WITH_CODE(!atomctrl_get_memory_pll_dividers_ai(hwmgr,
    970			clock, &mpll_param),
    971			"Failed to retrieve memory pll parameter.",
    972			return -EINVAL);
    973
    974	mem_level->MclkFrequency = (uint32_t)mpll_param.ulClock;
    975	mem_level->Fcw_int = (uint16_t)mpll_param.ulMclk_fcw_int;
    976	mem_level->Fcw_frac = (uint16_t)mpll_param.ulMclk_fcw_frac;
    977	mem_level->Postdiv = (uint8_t)mpll_param.ulPostDiv;
    978
    979	return 0;
    980}
    981
    982static int vegam_populate_single_memory_level(struct pp_hwmgr *hwmgr,
    983		uint32_t clock, struct SMU75_Discrete_MemoryLevel *mem_level)
    984{
    985	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
    986	struct phm_ppt_v1_information *table_info =
    987			(struct phm_ppt_v1_information *)(hwmgr->pptable);
    988	int result = 0;
    989	uint32_t mclk_stutter_mode_threshold = 60000;
    990
    991
    992	if (table_info->vdd_dep_on_mclk) {
    993		result = vegam_get_dependency_volt_by_clk(hwmgr,
    994				table_info->vdd_dep_on_mclk, clock,
    995				&mem_level->MinVoltage, &mem_level->MinMvdd);
    996		PP_ASSERT_WITH_CODE(!result,
    997				"can not find MinVddc voltage value from memory "
    998				"VDDC voltage dependency table", return result);
    999	}
   1000
   1001	result = vegam_calculate_mclk_params(hwmgr, clock, mem_level);
   1002	PP_ASSERT_WITH_CODE(!result,
   1003			"Failed to calculate mclk params.",
   1004			return -EINVAL);
   1005
   1006	mem_level->EnabledForThrottle = 1;
   1007	mem_level->EnabledForActivity = 0;
   1008	mem_level->VoltageDownHyst = 0;
   1009	mem_level->ActivityLevel = (uint16_t)
   1010			(MemoryDPMTuning_VEGAM >> DPMTuning_Activity_Shift);
   1011	mem_level->StutterEnable = false;
   1012	mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
   1013
   1014	data->display_timing.num_existing_displays = hwmgr->display_config->num_display;
   1015	data->display_timing.vrefresh = hwmgr->display_config->vrefresh;
   1016
   1017	if (mclk_stutter_mode_threshold &&
   1018		(clock <= mclk_stutter_mode_threshold) &&
   1019		(PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL,
   1020				STUTTER_ENABLE) & 0x1))
   1021		mem_level->StutterEnable = true;
   1022
   1023	if (!result) {
   1024		CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd);
   1025		CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency);
   1026		CONVERT_FROM_HOST_TO_SMC_US(mem_level->Fcw_int);
   1027		CONVERT_FROM_HOST_TO_SMC_US(mem_level->Fcw_frac);
   1028		CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel);
   1029		CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage);
   1030	}
   1031
   1032	return result;
   1033}
   1034
   1035static int vegam_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
   1036{
   1037	struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
   1038	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
   1039	struct smu7_dpm_table *dpm_table = &hw_data->dpm_table;
   1040	int result;
   1041	/* populate MCLK dpm table to SMU7 */
   1042	uint32_t array = smu_data->smu7_data.dpm_table_start +
   1043			offsetof(SMU75_Discrete_DpmTable, MemoryLevel);
   1044	uint32_t array_size = sizeof(SMU75_Discrete_MemoryLevel) *
   1045			SMU75_MAX_LEVELS_MEMORY;
   1046	struct SMU75_Discrete_MemoryLevel *levels =
   1047			smu_data->smc_state_table.MemoryLevel;
   1048	uint32_t i;
   1049
   1050	for (i = 0; i < dpm_table->mclk_table.count; i++) {
   1051		PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
   1052				"can not populate memory level as memory clock is zero",
   1053				return -EINVAL);
   1054		result = vegam_populate_single_memory_level(hwmgr,
   1055				dpm_table->mclk_table.dpm_levels[i].value,
   1056				&levels[i]);
   1057
   1058		if (result)
   1059			return result;
   1060
   1061		levels[i].UpHyst = (uint8_t)
   1062				(MemoryDPMTuning_VEGAM >> DPMTuning_Uphyst_Shift);
   1063		levels[i].DownHyst = (uint8_t)
   1064				(MemoryDPMTuning_VEGAM >> DPMTuning_Downhyst_Shift);
   1065	}
   1066
   1067	smu_data->smc_state_table.MemoryDpmLevelCount =
   1068			(uint8_t)dpm_table->mclk_table.count;
   1069	hw_data->dpm_level_enable_mask.mclk_dpm_enable_mask =
   1070			phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
   1071
   1072	for (i = 0; i < dpm_table->mclk_table.count; i++)
   1073		levels[i].EnabledForActivity =
   1074				(hw_data->dpm_level_enable_mask.mclk_dpm_enable_mask >> i) & 0x1;
   1075
   1076	levels[dpm_table->mclk_table.count - 1].DisplayWatermark =
   1077			PPSMC_DISPLAY_WATERMARK_HIGH;
   1078
   1079	/* level count will send to smc once at init smc table and never change */
   1080	result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
   1081			(uint32_t)array_size, SMC_RAM_END);
   1082
   1083	return result;
   1084}
   1085
   1086static int vegam_populate_mvdd_value(struct pp_hwmgr *hwmgr,
   1087		uint32_t mclk, SMIO_Pattern *smio_pat)
   1088{
   1089	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   1090	struct phm_ppt_v1_information *table_info =
   1091			(struct phm_ppt_v1_information *)(hwmgr->pptable);
   1092	uint32_t i = 0;
   1093
   1094	if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
   1095		/* find mvdd value which clock is more than request */
   1096		for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) {
   1097			if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) {
   1098				smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value;
   1099				break;
   1100			}
   1101		}
   1102		PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,
   1103				"MVDD Voltage is outside the supported range.",
   1104				return -EINVAL);
   1105	} else
   1106		return -EINVAL;
   1107
   1108	return 0;
   1109}
   1110
   1111static int vegam_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
   1112		SMU75_Discrete_DpmTable *table)
   1113{
   1114	int result = 0;
   1115	uint32_t sclk_frequency;
   1116	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   1117	struct phm_ppt_v1_information *table_info =
   1118			(struct phm_ppt_v1_information *)(hwmgr->pptable);
   1119	SMIO_Pattern vol_level;
   1120	uint32_t mvdd;
   1121
   1122	table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
   1123
   1124	/* Get MinVoltage and Frequency from DPM0,
   1125	 * already converted to SMC_UL */
   1126	sclk_frequency = data->vbios_boot_state.sclk_bootup_value;
   1127	result = vegam_get_dependency_volt_by_clk(hwmgr,
   1128			table_info->vdd_dep_on_sclk,
   1129			sclk_frequency,
   1130			&table->ACPILevel.MinVoltage, &mvdd);
   1131	PP_ASSERT_WITH_CODE(!result,
   1132			"Cannot find ACPI VDDC voltage value "
   1133			"in Clock Dependency Table",
   1134			);
   1135
   1136	result = vegam_calculate_sclk_params(hwmgr, sclk_frequency,
   1137			&(table->ACPILevel.SclkSetting));
   1138	PP_ASSERT_WITH_CODE(!result,
   1139			"Error retrieving Engine Clock dividers from VBIOS.",
   1140			return result);
   1141
   1142	table->ACPILevel.DeepSleepDivId = 0;
   1143	table->ACPILevel.CcPwrDynRm = 0;
   1144	table->ACPILevel.CcPwrDynRm1 = 0;
   1145
   1146	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
   1147	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage);
   1148	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
   1149	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
   1150
   1151	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkSetting.SclkFrequency);
   1152	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw_int);
   1153	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw_frac);
   1154	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_fcw_int);
   1155	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Sclk_slew_rate);
   1156	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_up_slew_rate);
   1157	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_down_slew_rate);
   1158	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw1_int);
   1159	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw1_frac);
   1160	CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Sclk_ss_slew_rate);
   1161
   1162
   1163	/* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */
   1164	table->MemoryACPILevel.MclkFrequency = data->vbios_boot_state.mclk_bootup_value;
   1165	result = vegam_get_dependency_volt_by_clk(hwmgr,
   1166			table_info->vdd_dep_on_mclk,
   1167			table->MemoryACPILevel.MclkFrequency,
   1168			&table->MemoryACPILevel.MinVoltage, &mvdd);
   1169	PP_ASSERT_WITH_CODE((0 == result),
   1170			"Cannot find ACPI VDDCI voltage value "
   1171			"in Clock Dependency Table",
   1172			);
   1173
   1174	if (!vegam_populate_mvdd_value(hwmgr, 0, &vol_level))
   1175		table->MemoryACPILevel.MinMvdd = PP_HOST_TO_SMC_UL(vol_level.Voltage);
   1176	else
   1177		table->MemoryACPILevel.MinMvdd = 0;
   1178
   1179	table->MemoryACPILevel.StutterEnable = false;
   1180
   1181	table->MemoryACPILevel.EnabledForThrottle = 0;
   1182	table->MemoryACPILevel.EnabledForActivity = 0;
   1183	table->MemoryACPILevel.UpHyst = 0;
   1184	table->MemoryACPILevel.DownHyst = 100;
   1185	table->MemoryACPILevel.VoltageDownHyst = 0;
   1186	table->MemoryACPILevel.ActivityLevel =
   1187		PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity);
   1188
   1189	CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency);
   1190	CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);
   1191
   1192	return result;
   1193}
   1194
   1195static int vegam_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
   1196		SMU75_Discrete_DpmTable *table)
   1197{
   1198	int result = -EINVAL;
   1199	uint8_t count;
   1200	struct pp_atomctrl_clock_dividers_vi dividers;
   1201	struct phm_ppt_v1_information *table_info =
   1202			(struct phm_ppt_v1_information *)(hwmgr->pptable);
   1203	struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
   1204			table_info->mm_dep_table;
   1205	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   1206	uint32_t vddci;
   1207
   1208	table->VceLevelCount = (uint8_t)(mm_table->count);
   1209	table->VceBootLevel = 0;
   1210
   1211	for (count = 0; count < table->VceLevelCount; count++) {
   1212		table->VceLevel[count].Frequency = mm_table->entries[count].eclk;
   1213		table->VceLevel[count].MinVoltage = 0;
   1214		table->VceLevel[count].MinVoltage |=
   1215				(mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
   1216
   1217		if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control)
   1218			vddci = (uint32_t)phm_find_closest_vddci(&(data->vddci_voltage_table),
   1219						mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
   1220		else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control)
   1221			vddci = mm_table->entries[count].vddc - VDDC_VDDCI_DELTA;
   1222		else
   1223			vddci = (data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE) << VDDCI_SHIFT;
   1224
   1225
   1226		table->VceLevel[count].MinVoltage |=
   1227				(vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
   1228		table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
   1229
   1230		/*retrieve divider value for VBIOS */
   1231		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
   1232				table->VceLevel[count].Frequency, &dividers);
   1233		PP_ASSERT_WITH_CODE((0 == result),
   1234				"can not find divide id for VCE engine clock",
   1235				return result);
   1236
   1237		table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
   1238
   1239		CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
   1240		CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage);
   1241	}
   1242	return result;
   1243}
   1244
   1245static int vegam_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr,
   1246		int32_t eng_clock, int32_t mem_clock,
   1247		SMU75_Discrete_MCArbDramTimingTableEntry *arb_regs)
   1248{
   1249	uint32_t dram_timing;
   1250	uint32_t dram_timing2;
   1251	uint32_t burst_time;
   1252	uint32_t rfsh_rate;
   1253	uint32_t misc3;
   1254
   1255	int result;
   1256
   1257	result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
   1258			eng_clock, mem_clock);
   1259	PP_ASSERT_WITH_CODE(result == 0,
   1260			"Error calling VBIOS to set DRAM_TIMING.",
   1261			return result);
   1262
   1263	dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
   1264	dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
   1265	burst_time = cgs_read_register(hwmgr->device, mmMC_ARB_BURST_TIME);
   1266	rfsh_rate = cgs_read_register(hwmgr->device, mmMC_ARB_RFSH_RATE);
   1267	misc3 = cgs_read_register(hwmgr->device, mmMC_ARB_MISC3);
   1268
   1269	arb_regs->McArbDramTiming  = PP_HOST_TO_SMC_UL(dram_timing);
   1270	arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2);
   1271	arb_regs->McArbBurstTime   = PP_HOST_TO_SMC_UL(burst_time);
   1272	arb_regs->McArbRfshRate = PP_HOST_TO_SMC_UL(rfsh_rate);
   1273	arb_regs->McArbMisc3 = PP_HOST_TO_SMC_UL(misc3);
   1274
   1275	return 0;
   1276}
   1277
   1278static int vegam_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
   1279{
   1280	struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
   1281	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
   1282	struct SMU75_Discrete_MCArbDramTimingTable arb_regs;
   1283	uint32_t i, j;
   1284	int result = 0;
   1285
   1286	memset(&arb_regs, 0, sizeof(SMU75_Discrete_MCArbDramTimingTable));
   1287
   1288	for (i = 0; i < hw_data->dpm_table.sclk_table.count; i++) {
   1289		for (j = 0; j < hw_data->dpm_table.mclk_table.count; j++) {
   1290			result = vegam_populate_memory_timing_parameters(hwmgr,
   1291					hw_data->dpm_table.sclk_table.dpm_levels[i].value,
   1292					hw_data->dpm_table.mclk_table.dpm_levels[j].value,
   1293					&arb_regs.entries[i][j]);
   1294			if (result)
   1295				return result;
   1296		}
   1297	}
   1298
   1299	result = smu7_copy_bytes_to_smc(
   1300			hwmgr,
   1301			smu_data->smu7_data.arb_table_start,
   1302			(uint8_t *)&arb_regs,
   1303			sizeof(SMU75_Discrete_MCArbDramTimingTable),
   1304			SMC_RAM_END);
   1305	return result;
   1306}
   1307
   1308static int vegam_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
   1309		struct SMU75_Discrete_DpmTable *table)
   1310{
   1311	int result = -EINVAL;
   1312	uint8_t count;
   1313	struct pp_atomctrl_clock_dividers_vi dividers;
   1314	struct phm_ppt_v1_information *table_info =
   1315			(struct phm_ppt_v1_information *)(hwmgr->pptable);
   1316	struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
   1317			table_info->mm_dep_table;
   1318	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   1319	uint32_t vddci;
   1320
   1321	table->UvdLevelCount = (uint8_t)(mm_table->count);
   1322	table->UvdBootLevel = 0;
   1323
   1324	for (count = 0; count < table->UvdLevelCount; count++) {
   1325		table->UvdLevel[count].MinVoltage = 0;
   1326		table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
   1327		table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
   1328		table->UvdLevel[count].MinVoltage |=
   1329				(mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
   1330
   1331		if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control)
   1332			vddci = (uint32_t)phm_find_closest_vddci(&(data->vddci_voltage_table),
   1333						mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
   1334		else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control)
   1335			vddci = mm_table->entries[count].vddc - VDDC_VDDCI_DELTA;
   1336		else
   1337			vddci = (data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE) << VDDCI_SHIFT;
   1338
   1339		table->UvdLevel[count].MinVoltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
   1340		table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
   1341
   1342		/* retrieve divider value for VBIOS */
   1343		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
   1344				table->UvdLevel[count].VclkFrequency, &dividers);
   1345		PP_ASSERT_WITH_CODE((0 == result),
   1346				"can not find divide id for Vclk clock", return result);
   1347
   1348		table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
   1349
   1350		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
   1351				table->UvdLevel[count].DclkFrequency, &dividers);
   1352		PP_ASSERT_WITH_CODE((0 == result),
   1353				"can not find divide id for Dclk clock", return result);
   1354
   1355		table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
   1356
   1357		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
   1358		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
   1359		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage);
   1360	}
   1361
   1362	return result;
   1363}
   1364
   1365static int vegam_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
   1366		struct SMU75_Discrete_DpmTable *table)
   1367{
   1368	int result = 0;
   1369	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   1370
   1371	table->GraphicsBootLevel = 0;
   1372	table->MemoryBootLevel = 0;
   1373
   1374	/* find boot level from dpm table */
   1375	result = phm_find_boot_level(&(data->dpm_table.sclk_table),
   1376			data->vbios_boot_state.sclk_bootup_value,
   1377			(uint32_t *)&(table->GraphicsBootLevel));
   1378	if (result)
   1379		return result;
   1380
   1381	result = phm_find_boot_level(&(data->dpm_table.mclk_table),
   1382			data->vbios_boot_state.mclk_bootup_value,
   1383			(uint32_t *)&(table->MemoryBootLevel));
   1384
   1385	if (result)
   1386		return result;
   1387
   1388	table->BootVddc  = data->vbios_boot_state.vddc_bootup_value *
   1389			VOLTAGE_SCALE;
   1390	table->BootVddci = data->vbios_boot_state.vddci_bootup_value *
   1391			VOLTAGE_SCALE;
   1392	table->BootMVdd  = data->vbios_boot_state.mvdd_bootup_value *
   1393			VOLTAGE_SCALE;
   1394
   1395	CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc);
   1396	CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci);
   1397	CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
   1398
   1399	return 0;
   1400}
   1401
   1402static int vegam_populate_smc_initial_state(struct pp_hwmgr *hwmgr)
   1403{
   1404	struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
   1405	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
   1406	struct phm_ppt_v1_information *table_info =
   1407			(struct phm_ppt_v1_information *)(hwmgr->pptable);
   1408	uint8_t count, level;
   1409
   1410	count = (uint8_t)(table_info->vdd_dep_on_sclk->count);
   1411
   1412	for (level = 0; level < count; level++) {
   1413		if (table_info->vdd_dep_on_sclk->entries[level].clk >=
   1414				hw_data->vbios_boot_state.sclk_bootup_value) {
   1415			smu_data->smc_state_table.GraphicsBootLevel = level;
   1416			break;
   1417		}
   1418	}
   1419
   1420	count = (uint8_t)(table_info->vdd_dep_on_mclk->count);
   1421	for (level = 0; level < count; level++) {
   1422		if (table_info->vdd_dep_on_mclk->entries[level].clk >=
   1423				hw_data->vbios_boot_state.mclk_bootup_value) {
   1424			smu_data->smc_state_table.MemoryBootLevel = level;
   1425			break;
   1426		}
   1427	}
   1428
   1429	return 0;
   1430}
   1431
   1432static uint16_t scale_fan_gain_settings(uint16_t raw_setting)
   1433{
   1434	uint32_t tmp;
   1435	tmp = raw_setting * 4096 / 100;
   1436	return (uint16_t)tmp;
   1437}
   1438
   1439static int vegam_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
   1440{
   1441	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
   1442
   1443	const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults;
   1444	SMU75_Discrete_DpmTable  *table = &(smu_data->smc_state_table);
   1445	struct phm_ppt_v1_information *table_info =
   1446			(struct phm_ppt_v1_information *)(hwmgr->pptable);
   1447	struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table;
   1448	struct pp_advance_fan_control_parameters *fan_table =
   1449			&hwmgr->thermal_controller.advanceFanControlParameters;
   1450	int i, j, k;
   1451	const uint16_t *pdef1;
   1452	const uint16_t *pdef2;
   1453
   1454	table->DefaultTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 128));
   1455	table->TargetTdp  = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 128));
   1456
   1457	PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255,
   1458				"Target Operating Temp is out of Range!",
   1459				);
   1460
   1461	table->TemperatureLimitEdge = PP_HOST_TO_SMC_US(
   1462			cac_dtp_table->usTargetOperatingTemp * 256);
   1463	table->TemperatureLimitHotspot = PP_HOST_TO_SMC_US(
   1464			cac_dtp_table->usTemperatureLimitHotspot * 256);
   1465	table->FanGainEdge = PP_HOST_TO_SMC_US(
   1466			scale_fan_gain_settings(fan_table->usFanGainEdge));
   1467	table->FanGainHotspot = PP_HOST_TO_SMC_US(
   1468			scale_fan_gain_settings(fan_table->usFanGainHotspot));
   1469
   1470	pdef1 = defaults->BAPMTI_R;
   1471	pdef2 = defaults->BAPMTI_RC;
   1472
   1473	for (i = 0; i < SMU75_DTE_ITERATIONS; i++) {
   1474		for (j = 0; j < SMU75_DTE_SOURCES; j++) {
   1475			for (k = 0; k < SMU75_DTE_SINKS; k++) {
   1476				table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*pdef1);
   1477				table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*pdef2);
   1478				pdef1++;
   1479				pdef2++;
   1480			}
   1481		}
   1482	}
   1483
   1484	return 0;
   1485}
   1486
   1487static int vegam_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
   1488{
   1489	uint32_t ro, efuse, volt_without_cks, volt_with_cks, value, max, min;
   1490	struct vegam_smumgr *smu_data =
   1491			(struct vegam_smumgr *)(hwmgr->smu_backend);
   1492
   1493	uint8_t i, stretch_amount, volt_offset = 0;
   1494	struct phm_ppt_v1_information *table_info =
   1495			(struct phm_ppt_v1_information *)(hwmgr->pptable);
   1496	struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
   1497			table_info->vdd_dep_on_sclk;
   1498
   1499	stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount;
   1500
   1501	atomctrl_read_efuse(hwmgr, STRAP_ASIC_RO_LSB, STRAP_ASIC_RO_MSB,
   1502			&efuse);
   1503
   1504	min = 1200;
   1505	max = 2500;
   1506
   1507	ro = efuse * (max - min) / 255 + min;
   1508
   1509	/* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */
   1510	for (i = 0; i < sclk_table->count; i++) {
   1511		smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |=
   1512				sclk_table->entries[i].cks_enable << i;
   1513		volt_without_cks = (uint32_t)((2753594000U + (sclk_table->entries[i].clk/100) *
   1514				136418 - (ro - 70) * 1000000) /
   1515				(2424180 - (sclk_table->entries[i].clk/100) * 1132925/1000));
   1516		volt_with_cks = (uint32_t)((2797202000U + sclk_table->entries[i].clk/100 *
   1517				3232 - (ro - 65) * 1000000) /
   1518				(2522480 - sclk_table->entries[i].clk/100 * 115764/100));
   1519
   1520		if (volt_without_cks >= volt_with_cks)
   1521			volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks +
   1522					sclk_table->entries[i].cks_voffset) * 100 + 624) / 625);
   1523
   1524		smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset;
   1525	}
   1526
   1527	smu_data->smc_state_table.LdoRefSel =
   1528			(table_info->cac_dtp_table->ucCKS_LDO_REFSEL != 0) ?
   1529			table_info->cac_dtp_table->ucCKS_LDO_REFSEL : 5;
   1530	/* Populate CKS Lookup Table */
   1531	if (!(stretch_amount == 1 || stretch_amount == 2 ||
   1532	      stretch_amount == 5 || stretch_amount == 3 ||
   1533	      stretch_amount == 4)) {
   1534		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
   1535				PHM_PlatformCaps_ClockStretcher);
   1536		PP_ASSERT_WITH_CODE(false,
   1537				"Stretch Amount in PPTable not supported\n",
   1538				return -EINVAL);
   1539	}
   1540
   1541	value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL);
   1542	value &= 0xFFFFFFFE;
   1543	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value);
   1544
   1545	return 0;
   1546}
   1547
   1548static bool vegam_is_hw_avfs_present(struct pp_hwmgr *hwmgr)
   1549{
   1550	uint32_t efuse;
   1551
   1552	efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
   1553			ixSMU_EFUSE_0 + (49 * 4));
   1554	efuse &= 0x00000001;
   1555
   1556	if (efuse)
   1557		return true;
   1558
   1559	return false;
   1560}
   1561
   1562static int vegam_populate_avfs_parameters(struct pp_hwmgr *hwmgr)
   1563{
   1564	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   1565	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
   1566
   1567	SMU75_Discrete_DpmTable  *table = &(smu_data->smc_state_table);
   1568	int result = 0;
   1569	struct pp_atom_ctrl__avfs_parameters avfs_params = {0};
   1570	AVFS_meanNsigma_t AVFS_meanNsigma = { {0} };
   1571	AVFS_Sclk_Offset_t AVFS_SclkOffset = { {0} };
   1572	uint32_t tmp, i;
   1573
   1574	struct phm_ppt_v1_information *table_info =
   1575			(struct phm_ppt_v1_information *)hwmgr->pptable;
   1576	struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
   1577			table_info->vdd_dep_on_sclk;
   1578
   1579	if (!hwmgr->avfs_supported)
   1580		return 0;
   1581
   1582	result = atomctrl_get_avfs_information(hwmgr, &avfs_params);
   1583
   1584	if (0 == result) {
   1585		table->BTCGB_VDROOP_TABLE[0].a0 =
   1586				PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a0);
   1587		table->BTCGB_VDROOP_TABLE[0].a1 =
   1588				PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a1);
   1589		table->BTCGB_VDROOP_TABLE[0].a2 =
   1590				PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a2);
   1591		table->BTCGB_VDROOP_TABLE[1].a0 =
   1592				PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a0);
   1593		table->BTCGB_VDROOP_TABLE[1].a1 =
   1594				PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a1);
   1595		table->BTCGB_VDROOP_TABLE[1].a2 =
   1596				PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a2);
   1597		table->AVFSGB_FUSE_TABLE[0].m1 =
   1598				PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_m1);
   1599		table->AVFSGB_FUSE_TABLE[0].m2 =
   1600				PP_HOST_TO_SMC_US(avfs_params.usAVFSGB_FUSE_TABLE_CKSON_m2);
   1601		table->AVFSGB_FUSE_TABLE[0].b =
   1602				PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_b);
   1603		table->AVFSGB_FUSE_TABLE[0].m1_shift = 24;
   1604		table->AVFSGB_FUSE_TABLE[0].m2_shift = 12;
   1605		table->AVFSGB_FUSE_TABLE[1].m1 =
   1606				PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_m1);
   1607		table->AVFSGB_FUSE_TABLE[1].m2 =
   1608				PP_HOST_TO_SMC_US(avfs_params.usAVFSGB_FUSE_TABLE_CKSOFF_m2);
   1609		table->AVFSGB_FUSE_TABLE[1].b =
   1610				PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_b);
   1611		table->AVFSGB_FUSE_TABLE[1].m1_shift = 24;
   1612		table->AVFSGB_FUSE_TABLE[1].m2_shift = 12;
   1613		table->MaxVoltage = PP_HOST_TO_SMC_US(avfs_params.usMaxVoltage_0_25mv);
   1614		AVFS_meanNsigma.Aconstant[0] =
   1615				PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant0);
   1616		AVFS_meanNsigma.Aconstant[1] =
   1617				PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant1);
   1618		AVFS_meanNsigma.Aconstant[2] =
   1619				PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant2);
   1620		AVFS_meanNsigma.DC_tol_sigma =
   1621				PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_DC_tol_sigma);
   1622		AVFS_meanNsigma.Platform_mean =
   1623				PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_Platform_mean);
   1624		AVFS_meanNsigma.PSM_Age_CompFactor =
   1625				PP_HOST_TO_SMC_US(avfs_params.usPSM_Age_ComFactor);
   1626		AVFS_meanNsigma.Platform_sigma =
   1627				PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_Platform_sigma);
   1628
   1629		for (i = 0; i < sclk_table->count; i++) {
   1630			AVFS_meanNsigma.Static_Voltage_Offset[i] =
   1631					(uint8_t)(sclk_table->entries[i].cks_voffset * 100 / 625);
   1632			AVFS_SclkOffset.Sclk_Offset[i] =
   1633					PP_HOST_TO_SMC_US((uint16_t)
   1634							(sclk_table->entries[i].sclk_offset) / 100);
   1635		}
   1636
   1637		result = smu7_read_smc_sram_dword(hwmgr,
   1638				SMU7_FIRMWARE_HEADER_LOCATION +
   1639				offsetof(SMU75_Firmware_Header, AvfsMeanNSigma),
   1640				&tmp, SMC_RAM_END);
   1641		smu7_copy_bytes_to_smc(hwmgr,
   1642					tmp,
   1643					(uint8_t *)&AVFS_meanNsigma,
   1644					sizeof(AVFS_meanNsigma_t),
   1645					SMC_RAM_END);
   1646
   1647		result = smu7_read_smc_sram_dword(hwmgr,
   1648				SMU7_FIRMWARE_HEADER_LOCATION +
   1649				offsetof(SMU75_Firmware_Header, AvfsSclkOffsetTable),
   1650				&tmp, SMC_RAM_END);
   1651		smu7_copy_bytes_to_smc(hwmgr,
   1652					tmp,
   1653					(uint8_t *)&AVFS_SclkOffset,
   1654					sizeof(AVFS_Sclk_Offset_t),
   1655					SMC_RAM_END);
   1656
   1657		data->avfs_vdroop_override_setting =
   1658				(avfs_params.ucEnableGB_VDROOP_TABLE_CKSON << BTCGB0_Vdroop_Enable_SHIFT) |
   1659				(avfs_params.ucEnableGB_VDROOP_TABLE_CKSOFF << BTCGB1_Vdroop_Enable_SHIFT) |
   1660				(avfs_params.ucEnableGB_FUSE_TABLE_CKSON << AVFSGB0_Vdroop_Enable_SHIFT) |
   1661				(avfs_params.ucEnableGB_FUSE_TABLE_CKSOFF << AVFSGB1_Vdroop_Enable_SHIFT);
   1662		data->apply_avfs_cks_off_voltage =
   1663				(avfs_params.ucEnableApplyAVFS_CKS_OFF_Voltage == 1) ? true : false;
   1664	}
   1665	return result;
   1666}
   1667
   1668static int vegam_populate_vr_config(struct pp_hwmgr *hwmgr,
   1669		struct SMU75_Discrete_DpmTable *table)
   1670{
   1671	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   1672	struct vegam_smumgr *smu_data =
   1673			(struct vegam_smumgr *)(hwmgr->smu_backend);
   1674	uint16_t config;
   1675
   1676	config = VR_MERGED_WITH_VDDC;
   1677	table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT);
   1678
   1679	/* Set Vddc Voltage Controller */
   1680	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
   1681		config = VR_SVI2_PLANE_1;
   1682		table->VRConfig |= config;
   1683	} else {
   1684		PP_ASSERT_WITH_CODE(false,
   1685				"VDDC should be on SVI2 control in merged mode!",
   1686				);
   1687	}
   1688	/* Set Vddci Voltage Controller */
   1689	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
   1690		config = VR_SVI2_PLANE_2;  /* only in merged mode */
   1691		table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
   1692	} else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
   1693		config = VR_SMIO_PATTERN_1;
   1694		table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
   1695	} else {
   1696		config = VR_STATIC_VOLTAGE;
   1697		table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
   1698	}
   1699	/* Set Mvdd Voltage Controller */
   1700	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
   1701		if (config != VR_SVI2_PLANE_2) {
   1702			config = VR_SVI2_PLANE_2;
   1703			table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
   1704			cgs_write_ind_register(hwmgr->device,
   1705					CGS_IND_REG__SMC,
   1706					smu_data->smu7_data.soft_regs_start +
   1707					offsetof(SMU75_SoftRegisters, AllowMvddSwitch),
   1708					0x1);
   1709		} else {
   1710			PP_ASSERT_WITH_CODE(false,
   1711					"SVI2 Plane 2 is already taken, set MVDD as Static",);
   1712			config = VR_STATIC_VOLTAGE;
   1713			table->VRConfig = (config << VRCONF_MVDD_SHIFT);
   1714		}
   1715	} else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
   1716		config = VR_SMIO_PATTERN_2;
   1717		table->VRConfig = (config << VRCONF_MVDD_SHIFT);
   1718		cgs_write_ind_register(hwmgr->device,
   1719				CGS_IND_REG__SMC,
   1720				smu_data->smu7_data.soft_regs_start +
   1721				offsetof(SMU75_SoftRegisters, AllowMvddSwitch),
   1722				0x1);
   1723	} else {
   1724		config = VR_STATIC_VOLTAGE;
   1725		table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
   1726	}
   1727
   1728	return 0;
   1729}
   1730
   1731static int vegam_populate_svi_load_line(struct pp_hwmgr *hwmgr)
   1732{
   1733	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
   1734	const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults;
   1735
   1736	smu_data->power_tune_table.SviLoadLineEn = defaults->SviLoadLineEn;
   1737	smu_data->power_tune_table.SviLoadLineVddC = defaults->SviLoadLineVddC;
   1738	smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
   1739	smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
   1740
   1741	return 0;
   1742}
   1743
   1744static int vegam_populate_tdc_limit(struct pp_hwmgr *hwmgr)
   1745{
   1746	uint16_t tdc_limit;
   1747	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
   1748	struct phm_ppt_v1_information *table_info =
   1749			(struct phm_ppt_v1_information *)(hwmgr->pptable);
   1750	const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults;
   1751
   1752	tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 128);
   1753	smu_data->power_tune_table.TDC_VDDC_PkgLimit =
   1754			CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
   1755	smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
   1756			defaults->TDC_VDDC_ThrottleReleaseLimitPerc;
   1757	smu_data->power_tune_table.TDC_MAWt = defaults->TDC_MAWt;
   1758
   1759	return 0;
   1760}
   1761
   1762static int vegam_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
   1763{
   1764	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
   1765	const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults;
   1766	uint32_t temp;
   1767
   1768	if (smu7_read_smc_sram_dword(hwmgr,
   1769			fuse_table_offset +
   1770			offsetof(SMU75_Discrete_PmFuses, TdcWaterfallCtl),
   1771			(uint32_t *)&temp, SMC_RAM_END))
   1772		PP_ASSERT_WITH_CODE(false,
   1773				"Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
   1774				return -EINVAL);
   1775	else {
   1776		smu_data->power_tune_table.TdcWaterfallCtl = defaults->TdcWaterfallCtl;
   1777		smu_data->power_tune_table.LPMLTemperatureMin =
   1778				(uint8_t)((temp >> 16) & 0xff);
   1779		smu_data->power_tune_table.LPMLTemperatureMax =
   1780				(uint8_t)((temp >> 8) & 0xff);
   1781		smu_data->power_tune_table.Reserved = (uint8_t)(temp & 0xff);
   1782	}
   1783	return 0;
   1784}
   1785
   1786static int vegam_populate_temperature_scaler(struct pp_hwmgr *hwmgr)
   1787{
   1788	int i;
   1789	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
   1790
   1791	/* Currently not used. Set all to zero. */
   1792	for (i = 0; i < 16; i++)
   1793		smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0;
   1794
   1795	return 0;
   1796}
   1797
   1798static int vegam_populate_fuzzy_fan(struct pp_hwmgr *hwmgr)
   1799{
   1800	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
   1801
   1802/* TO DO move to hwmgr */
   1803	if ((hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity & (1 << 15))
   1804		|| 0 == hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity)
   1805		hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity =
   1806			hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity;
   1807
   1808	smu_data->power_tune_table.FuzzyFan_PwmSetDelta = PP_HOST_TO_SMC_US(
   1809				hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity);
   1810	return 0;
   1811}
   1812
   1813static int vegam_populate_gnb_lpml(struct pp_hwmgr *hwmgr)
   1814{
   1815	int i;
   1816	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
   1817
   1818	/* Currently not used. Set all to zero. */
   1819	for (i = 0; i < 16; i++)
   1820		smu_data->power_tune_table.GnbLPML[i] = 0;
   1821
   1822	return 0;
   1823}
   1824
   1825static int vegam_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
   1826{
   1827	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
   1828	struct phm_ppt_v1_information *table_info =
   1829			(struct phm_ppt_v1_information *)(hwmgr->pptable);
   1830	uint16_t hi_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd;
   1831	uint16_t lo_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd;
   1832	struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table;
   1833
   1834	hi_sidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
   1835	lo_sidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
   1836
   1837	smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
   1838			CONVERT_FROM_HOST_TO_SMC_US(hi_sidd);
   1839	smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
   1840			CONVERT_FROM_HOST_TO_SMC_US(lo_sidd);
   1841
   1842	return 0;
   1843}
   1844
   1845static int vegam_populate_pm_fuses(struct pp_hwmgr *hwmgr)
   1846{
   1847	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
   1848	uint32_t pm_fuse_table_offset;
   1849
   1850	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
   1851			PHM_PlatformCaps_PowerContainment)) {
   1852		if (smu7_read_smc_sram_dword(hwmgr,
   1853				SMU7_FIRMWARE_HEADER_LOCATION +
   1854				offsetof(SMU75_Firmware_Header, PmFuseTable),
   1855				&pm_fuse_table_offset, SMC_RAM_END))
   1856			PP_ASSERT_WITH_CODE(false,
   1857					"Attempt to get pm_fuse_table_offset Failed!",
   1858					return -EINVAL);
   1859
   1860		if (vegam_populate_svi_load_line(hwmgr))
   1861			PP_ASSERT_WITH_CODE(false,
   1862					"Attempt to populate SviLoadLine Failed!",
   1863					return -EINVAL);
   1864
   1865		if (vegam_populate_tdc_limit(hwmgr))
   1866			PP_ASSERT_WITH_CODE(false,
   1867					"Attempt to populate TDCLimit Failed!", return -EINVAL);
   1868
   1869		if (vegam_populate_dw8(hwmgr, pm_fuse_table_offset))
   1870			PP_ASSERT_WITH_CODE(false,
   1871					"Attempt to populate TdcWaterfallCtl, "
   1872					"LPMLTemperature Min and Max Failed!",
   1873					return -EINVAL);
   1874
   1875		if (0 != vegam_populate_temperature_scaler(hwmgr))
   1876			PP_ASSERT_WITH_CODE(false,
   1877					"Attempt to populate LPMLTemperatureScaler Failed!",
   1878					return -EINVAL);
   1879
   1880		if (vegam_populate_fuzzy_fan(hwmgr))
   1881			PP_ASSERT_WITH_CODE(false,
   1882					"Attempt to populate Fuzzy Fan Control parameters Failed!",
   1883					return -EINVAL);
   1884
   1885		if (vegam_populate_gnb_lpml(hwmgr))
   1886			PP_ASSERT_WITH_CODE(false,
   1887					"Attempt to populate GnbLPML Failed!",
   1888					return -EINVAL);
   1889
   1890		if (vegam_populate_bapm_vddc_base_leakage_sidd(hwmgr))
   1891			PP_ASSERT_WITH_CODE(false,
   1892					"Attempt to populate BapmVddCBaseLeakage Hi and Lo "
   1893					"Sidd Failed!", return -EINVAL);
   1894
   1895		if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
   1896				(uint8_t *)&smu_data->power_tune_table,
   1897				(sizeof(struct SMU75_Discrete_PmFuses) - PMFUSES_AVFSSIZE),
   1898				SMC_RAM_END))
   1899			PP_ASSERT_WITH_CODE(false,
   1900					"Attempt to download PmFuseTable Failed!",
   1901					return -EINVAL);
   1902	}
   1903	return 0;
   1904}
   1905
   1906static int vegam_enable_reconfig_cus(struct pp_hwmgr *hwmgr)
   1907{
   1908	struct amdgpu_device *adev = hwmgr->adev;
   1909
   1910	smum_send_msg_to_smc_with_parameter(hwmgr,
   1911					    PPSMC_MSG_EnableModeSwitchRLCNotification,
   1912					    adev->gfx.cu_info.number,
   1913					    NULL);
   1914
   1915	return 0;
   1916}
   1917
   1918static int vegam_init_smc_table(struct pp_hwmgr *hwmgr)
   1919{
   1920	int result;
   1921	struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
   1922	struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
   1923
   1924	struct phm_ppt_v1_information *table_info =
   1925			(struct phm_ppt_v1_information *)(hwmgr->pptable);
   1926	struct SMU75_Discrete_DpmTable *table = &(smu_data->smc_state_table);
   1927	uint8_t i;
   1928	struct pp_atomctrl_gpio_pin_assignment gpio_pin;
   1929	struct phm_ppt_v1_gpio_table *gpio_table =
   1930			(struct phm_ppt_v1_gpio_table *)table_info->gpio_table;
   1931	pp_atomctrl_clock_dividers_vi dividers;
   1932
   1933	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
   1934			PHM_PlatformCaps_AutomaticDCTransition);
   1935
   1936	vegam_initialize_power_tune_defaults(hwmgr);
   1937
   1938	if (SMU7_VOLTAGE_CONTROL_NONE != hw_data->voltage_control)
   1939		vegam_populate_smc_voltage_tables(hwmgr, table);
   1940
   1941	table->SystemFlags = 0;
   1942	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
   1943			PHM_PlatformCaps_AutomaticDCTransition))
   1944		table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
   1945
   1946	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
   1947			PHM_PlatformCaps_StepVddc))
   1948		table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
   1949
   1950	if (hw_data->is_memory_gddr5)
   1951		table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
   1952
   1953	if (hw_data->ulv_supported && table_info->us_ulv_voltage_offset) {
   1954		result = vegam_populate_ulv_state(hwmgr, table);
   1955		PP_ASSERT_WITH_CODE(!result,
   1956				"Failed to initialize ULV state!", return result);
   1957		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
   1958				ixCG_ULV_PARAMETER, SMU7_CGULVPARAMETER_DFLT);
   1959	}
   1960
   1961	result = vegam_populate_smc_link_level(hwmgr, table);
   1962	PP_ASSERT_WITH_CODE(!result,
   1963			"Failed to initialize Link Level!", return result);
   1964
   1965	result = vegam_populate_all_graphic_levels(hwmgr);
   1966	PP_ASSERT_WITH_CODE(!result,
   1967			"Failed to initialize Graphics Level!", return result);
   1968
   1969	result = vegam_populate_all_memory_levels(hwmgr);
   1970	PP_ASSERT_WITH_CODE(!result,
   1971			"Failed to initialize Memory Level!", return result);
   1972
   1973	result = vegam_populate_smc_acpi_level(hwmgr, table);
   1974	PP_ASSERT_WITH_CODE(!result,
   1975			"Failed to initialize ACPI Level!", return result);
   1976
   1977	result = vegam_populate_smc_vce_level(hwmgr, table);
   1978	PP_ASSERT_WITH_CODE(!result,
   1979			"Failed to initialize VCE Level!", return result);
   1980
   1981	/* Since only the initial state is completely set up at this point
   1982	 * (the other states are just copies of the boot state) we only
   1983	 * need to populate the  ARB settings for the initial state.
   1984	 */
   1985	result = vegam_program_memory_timing_parameters(hwmgr);
   1986	PP_ASSERT_WITH_CODE(!result,
   1987			"Failed to Write ARB settings for the initial state.", return result);
   1988
   1989	result = vegam_populate_smc_uvd_level(hwmgr, table);
   1990	PP_ASSERT_WITH_CODE(!result,
   1991			"Failed to initialize UVD Level!", return result);
   1992
   1993	result = vegam_populate_smc_boot_level(hwmgr, table);
   1994	PP_ASSERT_WITH_CODE(!result,
   1995			"Failed to initialize Boot Level!", return result);
   1996
   1997	result = vegam_populate_smc_initial_state(hwmgr);
   1998	PP_ASSERT_WITH_CODE(!result,
   1999			"Failed to initialize Boot State!", return result);
   2000
   2001	result = vegam_populate_bapm_parameters_in_dpm_table(hwmgr);
   2002	PP_ASSERT_WITH_CODE(!result,
   2003			"Failed to populate BAPM Parameters!", return result);
   2004
   2005	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
   2006			PHM_PlatformCaps_ClockStretcher)) {
   2007		result = vegam_populate_clock_stretcher_data_table(hwmgr);
   2008		PP_ASSERT_WITH_CODE(!result,
   2009				"Failed to populate Clock Stretcher Data Table!",
   2010				return result);
   2011	}
   2012
   2013	result = vegam_populate_avfs_parameters(hwmgr);
   2014	PP_ASSERT_WITH_CODE(!result,
   2015			"Failed to populate AVFS Parameters!", return result;);
   2016
   2017	table->CurrSclkPllRange = 0xff;
   2018	table->GraphicsVoltageChangeEnable  = 1;
   2019	table->GraphicsThermThrottleEnable  = 1;
   2020	table->GraphicsInterval = 1;
   2021	table->VoltageInterval  = 1;
   2022	table->ThermalInterval  = 1;
   2023	table->TemperatureLimitHigh =
   2024			table_info->cac_dtp_table->usTargetOperatingTemp *
   2025			SMU7_Q88_FORMAT_CONVERSION_UNIT;
   2026	table->TemperatureLimitLow  =
   2027			(table_info->cac_dtp_table->usTargetOperatingTemp - 1) *
   2028			SMU7_Q88_FORMAT_CONVERSION_UNIT;
   2029	table->MemoryVoltageChangeEnable = 1;
   2030	table->MemoryInterval = 1;
   2031	table->VoltageResponseTime = 0;
   2032	table->PhaseResponseTime = 0;
   2033	table->MemoryThermThrottleEnable = 1;
   2034
   2035	PP_ASSERT_WITH_CODE(hw_data->dpm_table.pcie_speed_table.count >= 1,
   2036			"There must be 1 or more PCIE levels defined in PPTable.",
   2037			return -EINVAL);
   2038	table->PCIeBootLinkLevel =
   2039			hw_data->dpm_table.pcie_speed_table.count;
   2040	table->PCIeGenInterval = 1;
   2041	table->VRConfig = 0;
   2042
   2043	result = vegam_populate_vr_config(hwmgr, table);
   2044	PP_ASSERT_WITH_CODE(!result,
   2045			"Failed to populate VRConfig setting!", return result);
   2046
   2047	table->ThermGpio = 17;
   2048	table->SclkStepSize = 0x4000;
   2049
   2050	if (atomctrl_get_pp_assign_pin(hwmgr,
   2051			VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
   2052		table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
   2053		if (gpio_table)
   2054			table->VRHotLevel =
   2055					table_info->gpio_table->vrhot_triggered_sclk_dpm_index;
   2056	} else {
   2057		table->VRHotGpio = SMU7_UNUSED_GPIO_PIN;
   2058		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
   2059				PHM_PlatformCaps_RegulatorHot);
   2060	}
   2061
   2062	if (atomctrl_get_pp_assign_pin(hwmgr,
   2063			PP_AC_DC_SWITCH_GPIO_PINID,	&gpio_pin)) {
   2064		table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift;
   2065		if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
   2066				PHM_PlatformCaps_AutomaticDCTransition) &&
   2067				!smum_send_msg_to_smc(hwmgr, PPSMC_MSG_UseNewGPIOScheme, NULL))
   2068			phm_cap_set(hwmgr->platform_descriptor.platformCaps,
   2069					PHM_PlatformCaps_SMCtoPPLIBAcdcGpioScheme);
   2070	} else {
   2071		table->AcDcGpio = SMU7_UNUSED_GPIO_PIN;
   2072		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
   2073				PHM_PlatformCaps_AutomaticDCTransition);
   2074	}
   2075
   2076	/* Thermal Output GPIO */
   2077	if (atomctrl_get_pp_assign_pin(hwmgr,
   2078			THERMAL_INT_OUTPUT_GPIO_PINID, &gpio_pin)) {
   2079		table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift;
   2080
   2081		/* For porlarity read GPIOPAD_A with assigned Gpio pin
   2082		 * since VBIOS will program this register to set 'inactive state',
   2083		 * driver can then determine 'active state' from this and
   2084		 * program SMU with correct polarity
   2085		 */
   2086		table->ThermOutPolarity =
   2087				(0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) &
   2088				(1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0;
   2089		table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
   2090
   2091		/* if required, combine VRHot/PCC with thermal out GPIO */
   2092		if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
   2093				PHM_PlatformCaps_RegulatorHot) &&
   2094			phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
   2095				PHM_PlatformCaps_CombinePCCWithThermalSignal))
   2096			table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
   2097	} else {
   2098		table->ThermOutGpio = 17;
   2099		table->ThermOutPolarity = 1;
   2100		table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
   2101	}
   2102
   2103	/* Populate BIF_SCLK levels into SMC DPM table */
   2104	for (i = 0; i <= hw_data->dpm_table.pcie_speed_table.count; i++) {
   2105		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
   2106				smu_data->bif_sclk_table[i], &dividers);
   2107		PP_ASSERT_WITH_CODE(!result,
   2108				"Can not find DFS divide id for Sclk",
   2109				return result);
   2110
   2111		if (i == 0)
   2112			table->Ulv.BifSclkDfs =
   2113					PP_HOST_TO_SMC_US((uint16_t)(dividers.pll_post_divider));
   2114		else
   2115			table->LinkLevel[i - 1].BifSclkDfs =
   2116					PP_HOST_TO_SMC_US((uint16_t)(dividers.pll_post_divider));
   2117	}
   2118
   2119	for (i = 0; i < SMU75_MAX_ENTRIES_SMIO; i++)
   2120		table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
   2121
   2122	CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
   2123	CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
   2124	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
   2125	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
   2126	CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
   2127	CONVERT_FROM_HOST_TO_SMC_UL(table->CurrSclkPllRange);
   2128	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
   2129	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
   2130	CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
   2131	CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
   2132
   2133	/* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
   2134	result = smu7_copy_bytes_to_smc(hwmgr,
   2135			smu_data->smu7_data.dpm_table_start +
   2136			offsetof(SMU75_Discrete_DpmTable, SystemFlags),
   2137			(uint8_t *)&(table->SystemFlags),
   2138			sizeof(SMU75_Discrete_DpmTable) - 3 * sizeof(SMU75_PIDController),
   2139			SMC_RAM_END);
   2140	PP_ASSERT_WITH_CODE(!result,
   2141			"Failed to upload dpm data to SMC memory!", return result);
   2142
   2143	result = vegam_populate_pm_fuses(hwmgr);
   2144	PP_ASSERT_WITH_CODE(!result,
   2145			"Failed to  populate PM fuses to SMC memory!", return result);
   2146
   2147	result = vegam_enable_reconfig_cus(hwmgr);
   2148	PP_ASSERT_WITH_CODE(!result,
   2149			"Failed to enable reconfigurable CUs!", return result);
   2150
   2151	return 0;
   2152}
   2153
   2154static uint32_t vegam_get_offsetof(uint32_t type, uint32_t member)
   2155{
   2156	switch (type) {
   2157	case SMU_SoftRegisters:
   2158		switch (member) {
   2159		case HandshakeDisables:
   2160			return offsetof(SMU75_SoftRegisters, HandshakeDisables);
   2161		case VoltageChangeTimeout:
   2162			return offsetof(SMU75_SoftRegisters, VoltageChangeTimeout);
   2163		case AverageGraphicsActivity:
   2164			return offsetof(SMU75_SoftRegisters, AverageGraphicsActivity);
   2165		case AverageMemoryActivity:
   2166			return offsetof(SMU75_SoftRegisters, AverageMemoryActivity);
   2167		case PreVBlankGap:
   2168			return offsetof(SMU75_SoftRegisters, PreVBlankGap);
   2169		case VBlankTimeout:
   2170			return offsetof(SMU75_SoftRegisters, VBlankTimeout);
   2171		case UcodeLoadStatus:
   2172			return offsetof(SMU75_SoftRegisters, UcodeLoadStatus);
   2173		case DRAM_LOG_ADDR_H:
   2174			return offsetof(SMU75_SoftRegisters, DRAM_LOG_ADDR_H);
   2175		case DRAM_LOG_ADDR_L:
   2176			return offsetof(SMU75_SoftRegisters, DRAM_LOG_ADDR_L);
   2177		case DRAM_LOG_PHY_ADDR_H:
   2178			return offsetof(SMU75_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
   2179		case DRAM_LOG_PHY_ADDR_L:
   2180			return offsetof(SMU75_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
   2181		case DRAM_LOG_BUFF_SIZE:
   2182			return offsetof(SMU75_SoftRegisters, DRAM_LOG_BUFF_SIZE);
   2183		}
   2184		break;
   2185	case SMU_Discrete_DpmTable:
   2186		switch (member) {
   2187		case UvdBootLevel:
   2188			return offsetof(SMU75_Discrete_DpmTable, UvdBootLevel);
   2189		case VceBootLevel:
   2190			return offsetof(SMU75_Discrete_DpmTable, VceBootLevel);
   2191		case LowSclkInterruptThreshold:
   2192			return offsetof(SMU75_Discrete_DpmTable, LowSclkInterruptThreshold);
   2193		}
   2194		break;
   2195	}
   2196	pr_warn("can't get the offset of type %x member %x\n", type, member);
   2197	return 0;
   2198}
   2199
   2200static int vegam_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
   2201{
   2202	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   2203
   2204	if (data->need_update_smu7_dpm_table &
   2205		(DPMTABLE_OD_UPDATE_SCLK +
   2206		DPMTABLE_UPDATE_SCLK +
   2207		DPMTABLE_UPDATE_MCLK))
   2208		return vegam_program_memory_timing_parameters(hwmgr);
   2209
   2210	return 0;
   2211}
   2212
   2213static int vegam_update_sclk_threshold(struct pp_hwmgr *hwmgr)
   2214{
   2215	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   2216	struct vegam_smumgr *smu_data =
   2217			(struct vegam_smumgr *)(hwmgr->smu_backend);
   2218	int result = 0;
   2219	uint32_t low_sclk_interrupt_threshold = 0;
   2220
   2221	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
   2222			PHM_PlatformCaps_SclkThrottleLowNotification)
   2223	    && (data->low_sclk_interrupt_threshold != 0)) {
   2224		low_sclk_interrupt_threshold =
   2225				data->low_sclk_interrupt_threshold;
   2226
   2227		CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
   2228
   2229		result = smu7_copy_bytes_to_smc(
   2230				hwmgr,
   2231				smu_data->smu7_data.dpm_table_start +
   2232				offsetof(SMU75_Discrete_DpmTable,
   2233					LowSclkInterruptThreshold),
   2234				(uint8_t *)&low_sclk_interrupt_threshold,
   2235				sizeof(uint32_t),
   2236				SMC_RAM_END);
   2237	}
   2238	PP_ASSERT_WITH_CODE((result == 0),
   2239			"Failed to update SCLK threshold!", return result);
   2240
   2241	result = vegam_program_mem_timing_parameters(hwmgr);
   2242	PP_ASSERT_WITH_CODE((result == 0),
   2243			"Failed to program memory timing parameters!",
   2244			);
   2245
   2246	return result;
   2247}
   2248
   2249static int vegam_thermal_avfs_enable(struct pp_hwmgr *hwmgr)
   2250{
   2251	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
   2252	int ret;
   2253
   2254	if (!hwmgr->avfs_supported)
   2255		return 0;
   2256
   2257	ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableAvfs, NULL);
   2258	if (!ret) {
   2259		if (data->apply_avfs_cks_off_voltage)
   2260			ret = smum_send_msg_to_smc(hwmgr,
   2261					PPSMC_MSG_ApplyAvfsCksOffVoltage,
   2262					NULL);
   2263	}
   2264
   2265	return ret;
   2266}
   2267
   2268static int vegam_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
   2269{
   2270	PP_ASSERT_WITH_CODE(hwmgr->thermal_controller.fanInfo.bNoFan,
   2271			"VBIOS fan info is not correct!",
   2272			);
   2273	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
   2274			PHM_PlatformCaps_MicrocodeFanControl);
   2275	return 0;
   2276}
   2277
   2278const struct pp_smumgr_func vegam_smu_funcs = {
   2279	.name = "vegam_smu",
   2280	.smu_init = vegam_smu_init,
   2281	.smu_fini = smu7_smu_fini,
   2282	.start_smu = vegam_start_smu,
   2283	.check_fw_load_finish = smu7_check_fw_load_finish,
   2284	.request_smu_load_fw = smu7_reload_firmware,
   2285	.request_smu_load_specific_fw = NULL,
   2286	.send_msg_to_smc = smu7_send_msg_to_smc,
   2287	.send_msg_to_smc_with_parameter = smu7_send_msg_to_smc_with_parameter,
   2288	.get_argument = smu7_get_argument,
   2289	.process_firmware_header = vegam_process_firmware_header,
   2290	.is_dpm_running = vegam_is_dpm_running,
   2291	.get_mac_definition = vegam_get_mac_definition,
   2292	.update_smc_table = vegam_update_smc_table,
   2293	.init_smc_table = vegam_init_smc_table,
   2294	.get_offsetof = vegam_get_offsetof,
   2295	.populate_all_graphic_levels = vegam_populate_all_graphic_levels,
   2296	.populate_all_memory_levels = vegam_populate_all_memory_levels,
   2297	.update_sclk_threshold = vegam_update_sclk_threshold,
   2298	.is_hw_avfs_present = vegam_is_hw_avfs_present,
   2299	.thermal_avfs_enable = vegam_thermal_avfs_enable,
   2300	.thermal_setup_fan_table = vegam_thermal_setup_fan_table,
   2301};