cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

komeda_crtc.c (17778B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * (C) COPYRIGHT 2018 ARM Limited. All rights reserved.
      4 * Author: James.Qian.Wang <james.qian.wang@arm.com>
      5 *
      6 */
      7#include <linux/clk.h>
      8#include <linux/pm_runtime.h>
      9#include <linux/spinlock.h>
     10
     11#include <drm/drm_atomic.h>
     12#include <drm/drm_atomic_helper.h>
     13#include <drm/drm_crtc_helper.h>
     14#include <drm/drm_plane_helper.h>
     15#include <drm/drm_print.h>
     16#include <drm/drm_vblank.h>
     17
     18#include "komeda_dev.h"
     19#include "komeda_kms.h"
     20
     21void komeda_crtc_get_color_config(struct drm_crtc_state *crtc_st,
     22				  u32 *color_depths, u32 *color_formats)
     23{
     24	struct drm_connector *conn;
     25	struct drm_connector_state *conn_st;
     26	u32 conn_color_formats = ~0u;
     27	int i, min_bpc = 31, conn_bpc = 0;
     28
     29	for_each_new_connector_in_state(crtc_st->state, conn, conn_st, i) {
     30		if (conn_st->crtc != crtc_st->crtc)
     31			continue;
     32
     33		conn_bpc = conn->display_info.bpc ? conn->display_info.bpc : 8;
     34		conn_color_formats &= conn->display_info.color_formats;
     35
     36		if (conn_bpc < min_bpc)
     37			min_bpc = conn_bpc;
     38	}
     39
     40	/* connector doesn't config any color_format, use RGB444 as default */
     41	if (!conn_color_formats)
     42		conn_color_formats = DRM_COLOR_FORMAT_RGB444;
     43
     44	*color_depths = GENMASK(min_bpc, 0);
     45	*color_formats = conn_color_formats;
     46}
     47
     48static void komeda_crtc_update_clock_ratio(struct komeda_crtc_state *kcrtc_st)
     49{
     50	u64 pxlclk, aclk;
     51
     52	if (!kcrtc_st->base.active) {
     53		kcrtc_st->clock_ratio = 0;
     54		return;
     55	}
     56
     57	pxlclk = kcrtc_st->base.adjusted_mode.crtc_clock * 1000ULL;
     58	aclk = komeda_crtc_get_aclk(kcrtc_st);
     59
     60	kcrtc_st->clock_ratio = div64_u64(aclk << 32, pxlclk);
     61}
     62
     63/**
     64 * komeda_crtc_atomic_check - build display output data flow
     65 * @crtc: DRM crtc
     66 * @state: the crtc state object
     67 *
     68 * crtc_atomic_check is the final check stage, so beside build a display data
     69 * pipeline according to the crtc_state, but still needs to release or disable
     70 * the unclaimed pipeline resources.
     71 *
     72 * RETURNS:
     73 * Zero for success or -errno
     74 */
     75static int
     76komeda_crtc_atomic_check(struct drm_crtc *crtc,
     77			 struct drm_atomic_state *state)
     78{
     79	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
     80									  crtc);
     81	struct komeda_crtc *kcrtc = to_kcrtc(crtc);
     82	struct komeda_crtc_state *kcrtc_st = to_kcrtc_st(crtc_state);
     83	int err;
     84
     85	if (drm_atomic_crtc_needs_modeset(crtc_state))
     86		komeda_crtc_update_clock_ratio(kcrtc_st);
     87
     88	if (crtc_state->active) {
     89		err = komeda_build_display_data_flow(kcrtc, kcrtc_st);
     90		if (err)
     91			return err;
     92	}
     93
     94	/* release unclaimed pipeline resources */
     95	err = komeda_release_unclaimed_resources(kcrtc->slave, kcrtc_st);
     96	if (err)
     97		return err;
     98
     99	err = komeda_release_unclaimed_resources(kcrtc->master, kcrtc_st);
    100	if (err)
    101		return err;
    102
    103	return 0;
    104}
    105
    106/* For active a crtc, mainly need two parts of preparation
    107 * 1. adjust display operation mode.
    108 * 2. enable needed clk
    109 */
    110static int
    111komeda_crtc_prepare(struct komeda_crtc *kcrtc)
    112{
    113	struct komeda_dev *mdev = kcrtc->base.dev->dev_private;
    114	struct komeda_pipeline *master = kcrtc->master;
    115	struct komeda_crtc_state *kcrtc_st = to_kcrtc_st(kcrtc->base.state);
    116	struct drm_display_mode *mode = &kcrtc_st->base.adjusted_mode;
    117	u32 new_mode;
    118	int err;
    119
    120	mutex_lock(&mdev->lock);
    121
    122	new_mode = mdev->dpmode | BIT(master->id);
    123	if (WARN_ON(new_mode == mdev->dpmode)) {
    124		err = 0;
    125		goto unlock;
    126	}
    127
    128	err = mdev->funcs->change_opmode(mdev, new_mode);
    129	if (err) {
    130		DRM_ERROR("failed to change opmode: 0x%x -> 0x%x.\n,",
    131			  mdev->dpmode, new_mode);
    132		goto unlock;
    133	}
    134
    135	mdev->dpmode = new_mode;
    136	/* Only need to enable aclk on single display mode, but no need to
    137	 * enable aclk it on dual display mode, since the dual mode always
    138	 * switch from single display mode, the aclk already enabled, no need
    139	 * to enable it again.
    140	 */
    141	if (new_mode != KOMEDA_MODE_DUAL_DISP) {
    142		err = clk_set_rate(mdev->aclk, komeda_crtc_get_aclk(kcrtc_st));
    143		if (err)
    144			DRM_ERROR("failed to set aclk.\n");
    145		err = clk_prepare_enable(mdev->aclk);
    146		if (err)
    147			DRM_ERROR("failed to enable aclk.\n");
    148	}
    149
    150	err = clk_set_rate(master->pxlclk, mode->crtc_clock * 1000);
    151	if (err)
    152		DRM_ERROR("failed to set pxlclk for pipe%d\n", master->id);
    153	err = clk_prepare_enable(master->pxlclk);
    154	if (err)
    155		DRM_ERROR("failed to enable pxl clk for pipe%d.\n", master->id);
    156
    157unlock:
    158	mutex_unlock(&mdev->lock);
    159
    160	return err;
    161}
    162
    163static int
    164komeda_crtc_unprepare(struct komeda_crtc *kcrtc)
    165{
    166	struct komeda_dev *mdev = kcrtc->base.dev->dev_private;
    167	struct komeda_pipeline *master = kcrtc->master;
    168	u32 new_mode;
    169	int err;
    170
    171	mutex_lock(&mdev->lock);
    172
    173	new_mode = mdev->dpmode & (~BIT(master->id));
    174
    175	if (WARN_ON(new_mode == mdev->dpmode)) {
    176		err = 0;
    177		goto unlock;
    178	}
    179
    180	err = mdev->funcs->change_opmode(mdev, new_mode);
    181	if (err) {
    182		DRM_ERROR("failed to change opmode: 0x%x -> 0x%x.\n,",
    183			  mdev->dpmode, new_mode);
    184		goto unlock;
    185	}
    186
    187	mdev->dpmode = new_mode;
    188
    189	clk_disable_unprepare(master->pxlclk);
    190	if (new_mode == KOMEDA_MODE_INACTIVE)
    191		clk_disable_unprepare(mdev->aclk);
    192
    193unlock:
    194	mutex_unlock(&mdev->lock);
    195
    196	return err;
    197}
    198
    199void komeda_crtc_handle_event(struct komeda_crtc   *kcrtc,
    200			      struct komeda_events *evts)
    201{
    202	struct drm_crtc *crtc = &kcrtc->base;
    203	u32 events = evts->pipes[kcrtc->master->id];
    204
    205	if (events & KOMEDA_EVENT_VSYNC)
    206		drm_crtc_handle_vblank(crtc);
    207
    208	if (events & KOMEDA_EVENT_EOW) {
    209		struct komeda_wb_connector *wb_conn = kcrtc->wb_conn;
    210
    211		if (wb_conn)
    212			drm_writeback_signal_completion(&wb_conn->base, 0);
    213		else
    214			DRM_WARN("CRTC[%d]: EOW happen but no wb_connector.\n",
    215				 drm_crtc_index(&kcrtc->base));
    216	}
    217	/* will handle it together with the write back support */
    218	if (events & KOMEDA_EVENT_EOW)
    219		DRM_DEBUG("EOW.\n");
    220
    221	if (events & KOMEDA_EVENT_FLIP) {
    222		unsigned long flags;
    223		struct drm_pending_vblank_event *event;
    224
    225		spin_lock_irqsave(&crtc->dev->event_lock, flags);
    226		if (kcrtc->disable_done) {
    227			complete_all(kcrtc->disable_done);
    228			kcrtc->disable_done = NULL;
    229		} else if (crtc->state->event) {
    230			event = crtc->state->event;
    231			/*
    232			 * Consume event before notifying drm core that flip
    233			 * happened.
    234			 */
    235			crtc->state->event = NULL;
    236			drm_crtc_send_vblank_event(crtc, event);
    237		} else {
    238			DRM_WARN("CRTC[%d]: FLIP happen but no pending commit.\n",
    239				 drm_crtc_index(&kcrtc->base));
    240		}
    241		spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
    242	}
    243}
    244
    245static void
    246komeda_crtc_do_flush(struct drm_crtc *crtc,
    247		     struct drm_crtc_state *old)
    248{
    249	struct komeda_crtc *kcrtc = to_kcrtc(crtc);
    250	struct komeda_crtc_state *kcrtc_st = to_kcrtc_st(crtc->state);
    251	struct komeda_dev *mdev = kcrtc->base.dev->dev_private;
    252	struct komeda_pipeline *master = kcrtc->master;
    253	struct komeda_pipeline *slave = kcrtc->slave;
    254	struct komeda_wb_connector *wb_conn = kcrtc->wb_conn;
    255	struct drm_connector_state *conn_st;
    256
    257	DRM_DEBUG_ATOMIC("CRTC%d_FLUSH: active_pipes: 0x%x, affected: 0x%x.\n",
    258			 drm_crtc_index(crtc),
    259			 kcrtc_st->active_pipes, kcrtc_st->affected_pipes);
    260
    261	/* step 1: update the pipeline/component state to HW */
    262	if (has_bit(master->id, kcrtc_st->affected_pipes))
    263		komeda_pipeline_update(master, old->state);
    264
    265	if (slave && has_bit(slave->id, kcrtc_st->affected_pipes))
    266		komeda_pipeline_update(slave, old->state);
    267
    268	conn_st = wb_conn ? wb_conn->base.base.state : NULL;
    269	if (conn_st && conn_st->writeback_job)
    270		drm_writeback_queue_job(&wb_conn->base, conn_st);
    271
    272	/* step 2: notify the HW to kickoff the update */
    273	mdev->funcs->flush(mdev, master->id, kcrtc_st->active_pipes);
    274}
    275
    276static void
    277komeda_crtc_atomic_enable(struct drm_crtc *crtc,
    278			  struct drm_atomic_state *state)
    279{
    280	struct drm_crtc_state *old = drm_atomic_get_old_crtc_state(state,
    281								   crtc);
    282	pm_runtime_get_sync(crtc->dev->dev);
    283	komeda_crtc_prepare(to_kcrtc(crtc));
    284	drm_crtc_vblank_on(crtc);
    285	WARN_ON(drm_crtc_vblank_get(crtc));
    286	komeda_crtc_do_flush(crtc, old);
    287}
    288
    289static void
    290komeda_crtc_flush_and_wait_for_flip_done(struct komeda_crtc *kcrtc,
    291					 struct completion *input_flip_done)
    292{
    293	struct drm_device *drm = kcrtc->base.dev;
    294	struct komeda_dev *mdev = kcrtc->master->mdev;
    295	struct completion *flip_done;
    296	struct completion temp;
    297	int timeout;
    298
    299	/* if caller doesn't send a flip_done, use a private flip_done */
    300	if (input_flip_done) {
    301		flip_done = input_flip_done;
    302	} else {
    303		init_completion(&temp);
    304		kcrtc->disable_done = &temp;
    305		flip_done = &temp;
    306	}
    307
    308	mdev->funcs->flush(mdev, kcrtc->master->id, 0);
    309
    310	/* wait the flip take affect.*/
    311	timeout = wait_for_completion_timeout(flip_done, HZ);
    312	if (timeout == 0) {
    313		DRM_ERROR("wait pipe%d flip done timeout\n", kcrtc->master->id);
    314		if (!input_flip_done) {
    315			unsigned long flags;
    316
    317			spin_lock_irqsave(&drm->event_lock, flags);
    318			kcrtc->disable_done = NULL;
    319			spin_unlock_irqrestore(&drm->event_lock, flags);
    320		}
    321	}
    322}
    323
    324static void
    325komeda_crtc_atomic_disable(struct drm_crtc *crtc,
    326			   struct drm_atomic_state *state)
    327{
    328	struct drm_crtc_state *old = drm_atomic_get_old_crtc_state(state,
    329								   crtc);
    330	struct komeda_crtc *kcrtc = to_kcrtc(crtc);
    331	struct komeda_crtc_state *old_st = to_kcrtc_st(old);
    332	struct komeda_pipeline *master = kcrtc->master;
    333	struct komeda_pipeline *slave  = kcrtc->slave;
    334	struct completion *disable_done;
    335	bool needs_phase2 = false;
    336
    337	DRM_DEBUG_ATOMIC("CRTC%d_DISABLE: active_pipes: 0x%x, affected: 0x%x\n",
    338			 drm_crtc_index(crtc),
    339			 old_st->active_pipes, old_st->affected_pipes);
    340
    341	if (slave && has_bit(slave->id, old_st->active_pipes))
    342		komeda_pipeline_disable(slave, old->state);
    343
    344	if (has_bit(master->id, old_st->active_pipes))
    345		needs_phase2 = komeda_pipeline_disable(master, old->state);
    346
    347	/* crtc_disable has two scenarios according to the state->active switch.
    348	 * 1. active -> inactive
    349	 *    this commit is a disable commit. and the commit will be finished
    350	 *    or done after the disable operation. on this case we can directly
    351	 *    use the crtc->state->event to tracking the HW disable operation.
    352	 * 2. active -> active
    353	 *    the crtc->commit is not for disable, but a modeset operation when
    354	 *    crtc is active, such commit actually has been completed by 3
    355	 *    DRM operations:
    356	 *    crtc_disable, update_planes(crtc_flush), crtc_enable
    357	 *    so on this case the crtc->commit is for the whole process.
    358	 *    we can not use it for tracing the disable, we need a temporary
    359	 *    flip_done for tracing the disable. and crtc->state->event for
    360	 *    the crtc_enable operation.
    361	 *    That's also the reason why skip modeset commit in
    362	 *    komeda_crtc_atomic_flush()
    363	 */
    364	disable_done = (needs_phase2 || crtc->state->active) ?
    365		       NULL : &crtc->state->commit->flip_done;
    366
    367	/* wait phase 1 disable done */
    368	komeda_crtc_flush_and_wait_for_flip_done(kcrtc, disable_done);
    369
    370	/* phase 2 */
    371	if (needs_phase2) {
    372		komeda_pipeline_disable(kcrtc->master, old->state);
    373
    374		disable_done = crtc->state->active ?
    375			       NULL : &crtc->state->commit->flip_done;
    376
    377		komeda_crtc_flush_and_wait_for_flip_done(kcrtc, disable_done);
    378	}
    379
    380	drm_crtc_vblank_put(crtc);
    381	drm_crtc_vblank_off(crtc);
    382	komeda_crtc_unprepare(kcrtc);
    383	pm_runtime_put(crtc->dev->dev);
    384}
    385
    386static void
    387komeda_crtc_atomic_flush(struct drm_crtc *crtc,
    388			 struct drm_atomic_state *state)
    389{
    390	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
    391									  crtc);
    392	struct drm_crtc_state *old = drm_atomic_get_old_crtc_state(state,
    393								   crtc);
    394	/* commit with modeset will be handled in enable/disable */
    395	if (drm_atomic_crtc_needs_modeset(crtc_state))
    396		return;
    397
    398	komeda_crtc_do_flush(crtc, old);
    399}
    400
    401/* Returns the minimum frequency of the aclk rate (main engine clock) in Hz */
    402static unsigned long
    403komeda_calc_min_aclk_rate(struct komeda_crtc *kcrtc,
    404			  unsigned long pxlclk)
    405{
    406	/* Once dual-link one display pipeline drives two display outputs,
    407	 * the aclk needs run on the double rate of pxlclk
    408	 */
    409	if (kcrtc->master->dual_link)
    410		return pxlclk * 2;
    411	else
    412		return pxlclk;
    413}
    414
    415/* Get current aclk rate that specified by state */
    416unsigned long komeda_crtc_get_aclk(struct komeda_crtc_state *kcrtc_st)
    417{
    418	struct drm_crtc *crtc = kcrtc_st->base.crtc;
    419	struct komeda_dev *mdev = crtc->dev->dev_private;
    420	unsigned long pxlclk = kcrtc_st->base.adjusted_mode.crtc_clock * 1000;
    421	unsigned long min_aclk;
    422
    423	min_aclk = komeda_calc_min_aclk_rate(to_kcrtc(crtc), pxlclk);
    424
    425	return clk_round_rate(mdev->aclk, min_aclk);
    426}
    427
    428static enum drm_mode_status
    429komeda_crtc_mode_valid(struct drm_crtc *crtc, const struct drm_display_mode *m)
    430{
    431	struct komeda_dev *mdev = crtc->dev->dev_private;
    432	struct komeda_crtc *kcrtc = to_kcrtc(crtc);
    433	struct komeda_pipeline *master = kcrtc->master;
    434	unsigned long min_pxlclk, min_aclk;
    435
    436	if (m->flags & DRM_MODE_FLAG_INTERLACE)
    437		return MODE_NO_INTERLACE;
    438
    439	min_pxlclk = m->clock * 1000;
    440	if (master->dual_link)
    441		min_pxlclk /= 2;
    442
    443	if (min_pxlclk != clk_round_rate(master->pxlclk, min_pxlclk)) {
    444		DRM_DEBUG_ATOMIC("pxlclk doesn't support %lu Hz\n", min_pxlclk);
    445
    446		return MODE_NOCLOCK;
    447	}
    448
    449	min_aclk = komeda_calc_min_aclk_rate(to_kcrtc(crtc), min_pxlclk);
    450	if (clk_round_rate(mdev->aclk, min_aclk) < min_aclk) {
    451		DRM_DEBUG_ATOMIC("engine clk can't satisfy the requirement of %s-clk: %lu.\n",
    452				 m->name, min_pxlclk);
    453
    454		return MODE_CLOCK_HIGH;
    455	}
    456
    457	return MODE_OK;
    458}
    459
    460static bool komeda_crtc_mode_fixup(struct drm_crtc *crtc,
    461				   const struct drm_display_mode *m,
    462				   struct drm_display_mode *adjusted_mode)
    463{
    464	struct komeda_crtc *kcrtc = to_kcrtc(crtc);
    465	unsigned long clk_rate;
    466
    467	drm_mode_set_crtcinfo(adjusted_mode, 0);
    468	/* In dual link half the horizontal settings */
    469	if (kcrtc->master->dual_link) {
    470		adjusted_mode->crtc_clock /= 2;
    471		adjusted_mode->crtc_hdisplay /= 2;
    472		adjusted_mode->crtc_hsync_start /= 2;
    473		adjusted_mode->crtc_hsync_end /= 2;
    474		adjusted_mode->crtc_htotal /= 2;
    475	}
    476
    477	clk_rate = adjusted_mode->crtc_clock * 1000;
    478	/* crtc_clock will be used as the komeda output pixel clock */
    479	adjusted_mode->crtc_clock = clk_round_rate(kcrtc->master->pxlclk,
    480						   clk_rate) / 1000;
    481
    482	return true;
    483}
    484
    485static const struct drm_crtc_helper_funcs komeda_crtc_helper_funcs = {
    486	.atomic_check	= komeda_crtc_atomic_check,
    487	.atomic_flush	= komeda_crtc_atomic_flush,
    488	.atomic_enable	= komeda_crtc_atomic_enable,
    489	.atomic_disable	= komeda_crtc_atomic_disable,
    490	.mode_valid	= komeda_crtc_mode_valid,
    491	.mode_fixup	= komeda_crtc_mode_fixup,
    492};
    493
    494static void komeda_crtc_reset(struct drm_crtc *crtc)
    495{
    496	struct komeda_crtc_state *state;
    497
    498	if (crtc->state)
    499		__drm_atomic_helper_crtc_destroy_state(crtc->state);
    500
    501	kfree(to_kcrtc_st(crtc->state));
    502	crtc->state = NULL;
    503
    504	state = kzalloc(sizeof(*state), GFP_KERNEL);
    505	if (state)
    506		__drm_atomic_helper_crtc_reset(crtc, &state->base);
    507}
    508
    509static struct drm_crtc_state *
    510komeda_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
    511{
    512	struct komeda_crtc_state *old = to_kcrtc_st(crtc->state);
    513	struct komeda_crtc_state *new;
    514
    515	new = kzalloc(sizeof(*new), GFP_KERNEL);
    516	if (!new)
    517		return NULL;
    518
    519	__drm_atomic_helper_crtc_duplicate_state(crtc, &new->base);
    520
    521	new->affected_pipes = old->active_pipes;
    522	new->clock_ratio = old->clock_ratio;
    523	new->max_slave_zorder = old->max_slave_zorder;
    524
    525	return &new->base;
    526}
    527
    528static void komeda_crtc_atomic_destroy_state(struct drm_crtc *crtc,
    529					     struct drm_crtc_state *state)
    530{
    531	__drm_atomic_helper_crtc_destroy_state(state);
    532	kfree(to_kcrtc_st(state));
    533}
    534
    535static int komeda_crtc_vblank_enable(struct drm_crtc *crtc)
    536{
    537	struct komeda_dev *mdev = crtc->dev->dev_private;
    538	struct komeda_crtc *kcrtc = to_kcrtc(crtc);
    539
    540	mdev->funcs->on_off_vblank(mdev, kcrtc->master->id, true);
    541	return 0;
    542}
    543
    544static void komeda_crtc_vblank_disable(struct drm_crtc *crtc)
    545{
    546	struct komeda_dev *mdev = crtc->dev->dev_private;
    547	struct komeda_crtc *kcrtc = to_kcrtc(crtc);
    548
    549	mdev->funcs->on_off_vblank(mdev, kcrtc->master->id, false);
    550}
    551
    552static const struct drm_crtc_funcs komeda_crtc_funcs = {
    553	.destroy		= drm_crtc_cleanup,
    554	.set_config		= drm_atomic_helper_set_config,
    555	.page_flip		= drm_atomic_helper_page_flip,
    556	.reset			= komeda_crtc_reset,
    557	.atomic_duplicate_state	= komeda_crtc_atomic_duplicate_state,
    558	.atomic_destroy_state	= komeda_crtc_atomic_destroy_state,
    559	.enable_vblank		= komeda_crtc_vblank_enable,
    560	.disable_vblank		= komeda_crtc_vblank_disable,
    561};
    562
    563int komeda_kms_setup_crtcs(struct komeda_kms_dev *kms,
    564			   struct komeda_dev *mdev)
    565{
    566	struct komeda_crtc *crtc;
    567	struct komeda_pipeline *master;
    568	char str[16];
    569	int i;
    570
    571	kms->n_crtcs = 0;
    572
    573	for (i = 0; i < mdev->n_pipelines; i++) {
    574		crtc = &kms->crtcs[kms->n_crtcs];
    575		master = mdev->pipelines[i];
    576
    577		crtc->master = master;
    578		crtc->slave  = komeda_pipeline_get_slave(master);
    579
    580		if (crtc->slave)
    581			sprintf(str, "pipe-%d", crtc->slave->id);
    582		else
    583			sprintf(str, "None");
    584
    585		DRM_INFO("CRTC-%d: master(pipe-%d) slave(%s).\n",
    586			 kms->n_crtcs, master->id, str);
    587
    588		kms->n_crtcs++;
    589	}
    590
    591	return 0;
    592}
    593
    594static struct drm_plane *
    595get_crtc_primary(struct komeda_kms_dev *kms, struct komeda_crtc *crtc)
    596{
    597	struct komeda_plane *kplane;
    598	struct drm_plane *plane;
    599
    600	drm_for_each_plane(plane, &kms->base) {
    601		if (plane->type != DRM_PLANE_TYPE_PRIMARY)
    602			continue;
    603
    604		kplane = to_kplane(plane);
    605		/* only master can be primary */
    606		if (kplane->layer->base.pipeline == crtc->master)
    607			return plane;
    608	}
    609
    610	return NULL;
    611}
    612
    613static int komeda_crtc_add(struct komeda_kms_dev *kms,
    614			   struct komeda_crtc *kcrtc)
    615{
    616	struct drm_crtc *crtc = &kcrtc->base;
    617	int err;
    618
    619	err = drm_crtc_init_with_planes(&kms->base, crtc,
    620					get_crtc_primary(kms, kcrtc), NULL,
    621					&komeda_crtc_funcs, NULL);
    622	if (err)
    623		return err;
    624
    625	drm_crtc_helper_add(crtc, &komeda_crtc_helper_funcs);
    626
    627	crtc->port = kcrtc->master->of_output_port;
    628
    629	drm_crtc_enable_color_mgmt(crtc, 0, true, KOMEDA_COLOR_LUT_SIZE);
    630
    631	return err;
    632}
    633
    634int komeda_kms_add_crtcs(struct komeda_kms_dev *kms, struct komeda_dev *mdev)
    635{
    636	int i, err;
    637
    638	for (i = 0; i < kms->n_crtcs; i++) {
    639		err = komeda_crtc_add(kms, &kms->crtcs[i]);
    640		if (err)
    641			return err;
    642	}
    643
    644	return 0;
    645}