cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

drm_mm.c (31190B)


      1/**************************************************************************
      2 *
      3 * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA.
      4 * Copyright 2016 Intel Corporation
      5 * All Rights Reserved.
      6 *
      7 * Permission is hereby granted, free of charge, to any person obtaining a
      8 * copy of this software and associated documentation files (the
      9 * "Software"), to deal in the Software without restriction, including
     10 * without limitation the rights to use, copy, modify, merge, publish,
     11 * distribute, sub license, and/or sell copies of the Software, and to
     12 * permit persons to whom the Software is furnished to do so, subject to
     13 * the following conditions:
     14 *
     15 * The above copyright notice and this permission notice (including the
     16 * next paragraph) shall be included in all copies or substantial portions
     17 * of the Software.
     18 *
     19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
     22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
     23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
     24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
     25 * USE OR OTHER DEALINGS IN THE SOFTWARE.
     26 *
     27 *
     28 **************************************************************************/
     29
     30/*
     31 * Generic simple memory manager implementation. Intended to be used as a base
     32 * class implementation for more advanced memory managers.
     33 *
     34 * Note that the algorithm used is quite simple and there might be substantial
     35 * performance gains if a smarter free list is implemented. Currently it is
     36 * just an unordered stack of free regions. This could easily be improved if
     37 * an RB-tree is used instead. At least if we expect heavy fragmentation.
     38 *
     39 * Aligned allocations can also see improvement.
     40 *
     41 * Authors:
     42 * Thomas Hellström <thomas-at-tungstengraphics-dot-com>
     43 */
     44
     45#include <linux/export.h>
     46#include <linux/interval_tree_generic.h>
     47#include <linux/seq_file.h>
     48#include <linux/slab.h>
     49#include <linux/stacktrace.h>
     50
     51#include <drm/drm_mm.h>
     52
     53/**
     54 * DOC: Overview
     55 *
     56 * drm_mm provides a simple range allocator. The drivers are free to use the
     57 * resource allocator from the linux core if it suits them, the upside of drm_mm
     58 * is that it's in the DRM core. Which means that it's easier to extend for
     59 * some of the crazier special purpose needs of gpus.
     60 *
     61 * The main data struct is &drm_mm, allocations are tracked in &drm_mm_node.
     62 * Drivers are free to embed either of them into their own suitable
     63 * datastructures. drm_mm itself will not do any memory allocations of its own,
     64 * so if drivers choose not to embed nodes they need to still allocate them
     65 * themselves.
     66 *
     67 * The range allocator also supports reservation of preallocated blocks. This is
     68 * useful for taking over initial mode setting configurations from the firmware,
     69 * where an object needs to be created which exactly matches the firmware's
     70 * scanout target. As long as the range is still free it can be inserted anytime
     71 * after the allocator is initialized, which helps with avoiding looped
     72 * dependencies in the driver load sequence.
     73 *
     74 * drm_mm maintains a stack of most recently freed holes, which of all
     75 * simplistic datastructures seems to be a fairly decent approach to clustering
     76 * allocations and avoiding too much fragmentation. This means free space
     77 * searches are O(num_holes). Given that all the fancy features drm_mm supports
     78 * something better would be fairly complex and since gfx thrashing is a fairly
     79 * steep cliff not a real concern. Removing a node again is O(1).
     80 *
     81 * drm_mm supports a few features: Alignment and range restrictions can be
     82 * supplied. Furthermore every &drm_mm_node has a color value (which is just an
     83 * opaque unsigned long) which in conjunction with a driver callback can be used
     84 * to implement sophisticated placement restrictions. The i915 DRM driver uses
     85 * this to implement guard pages between incompatible caching domains in the
     86 * graphics TT.
     87 *
     88 * Two behaviors are supported for searching and allocating: bottom-up and
     89 * top-down. The default is bottom-up. Top-down allocation can be used if the
     90 * memory area has different restrictions, or just to reduce fragmentation.
     91 *
     92 * Finally iteration helpers to walk all nodes and all holes are provided as are
     93 * some basic allocator dumpers for debugging.
     94 *
     95 * Note that this range allocator is not thread-safe, drivers need to protect
     96 * modifications with their own locking. The idea behind this is that for a full
     97 * memory manager additional data needs to be protected anyway, hence internal
     98 * locking would be fully redundant.
     99 */
    100
    101#ifdef CONFIG_DRM_DEBUG_MM
    102#include <linux/stackdepot.h>
    103
    104#define STACKDEPTH 32
    105#define BUFSZ 4096
    106
    107static noinline void save_stack(struct drm_mm_node *node)
    108{
    109	unsigned long entries[STACKDEPTH];
    110	unsigned int n;
    111
    112	n = stack_trace_save(entries, ARRAY_SIZE(entries), 1);
    113
    114	/* May be called under spinlock, so avoid sleeping */
    115	node->stack = stack_depot_save(entries, n, GFP_NOWAIT);
    116}
    117
    118static void show_leaks(struct drm_mm *mm)
    119{
    120	struct drm_mm_node *node;
    121	char *buf;
    122
    123	buf = kmalloc(BUFSZ, GFP_KERNEL);
    124	if (!buf)
    125		return;
    126
    127	list_for_each_entry(node, drm_mm_nodes(mm), node_list) {
    128		if (!node->stack) {
    129			DRM_ERROR("node [%08llx + %08llx]: unknown owner\n",
    130				  node->start, node->size);
    131			continue;
    132		}
    133
    134		stack_depot_snprint(node->stack, buf, BUFSZ, 0);
    135		DRM_ERROR("node [%08llx + %08llx]: inserted at\n%s",
    136			  node->start, node->size, buf);
    137	}
    138
    139	kfree(buf);
    140}
    141
    142#undef STACKDEPTH
    143#undef BUFSZ
    144#else
    145static void save_stack(struct drm_mm_node *node) { }
    146static void show_leaks(struct drm_mm *mm) { }
    147#endif
    148
    149#define START(node) ((node)->start)
    150#define LAST(node)  ((node)->start + (node)->size - 1)
    151
    152INTERVAL_TREE_DEFINE(struct drm_mm_node, rb,
    153		     u64, __subtree_last,
    154		     START, LAST, static inline, drm_mm_interval_tree)
    155
    156struct drm_mm_node *
    157__drm_mm_interval_first(const struct drm_mm *mm, u64 start, u64 last)
    158{
    159	return drm_mm_interval_tree_iter_first((struct rb_root_cached *)&mm->interval_tree,
    160					       start, last) ?: (struct drm_mm_node *)&mm->head_node;
    161}
    162EXPORT_SYMBOL(__drm_mm_interval_first);
    163
    164static void drm_mm_interval_tree_add_node(struct drm_mm_node *hole_node,
    165					  struct drm_mm_node *node)
    166{
    167	struct drm_mm *mm = hole_node->mm;
    168	struct rb_node **link, *rb;
    169	struct drm_mm_node *parent;
    170	bool leftmost;
    171
    172	node->__subtree_last = LAST(node);
    173
    174	if (drm_mm_node_allocated(hole_node)) {
    175		rb = &hole_node->rb;
    176		while (rb) {
    177			parent = rb_entry(rb, struct drm_mm_node, rb);
    178			if (parent->__subtree_last >= node->__subtree_last)
    179				break;
    180
    181			parent->__subtree_last = node->__subtree_last;
    182			rb = rb_parent(rb);
    183		}
    184
    185		rb = &hole_node->rb;
    186		link = &hole_node->rb.rb_right;
    187		leftmost = false;
    188	} else {
    189		rb = NULL;
    190		link = &mm->interval_tree.rb_root.rb_node;
    191		leftmost = true;
    192	}
    193
    194	while (*link) {
    195		rb = *link;
    196		parent = rb_entry(rb, struct drm_mm_node, rb);
    197		if (parent->__subtree_last < node->__subtree_last)
    198			parent->__subtree_last = node->__subtree_last;
    199		if (node->start < parent->start) {
    200			link = &parent->rb.rb_left;
    201		} else {
    202			link = &parent->rb.rb_right;
    203			leftmost = false;
    204		}
    205	}
    206
    207	rb_link_node(&node->rb, rb, link);
    208	rb_insert_augmented_cached(&node->rb, &mm->interval_tree, leftmost,
    209				   &drm_mm_interval_tree_augment);
    210}
    211
    212#define HOLE_SIZE(NODE) ((NODE)->hole_size)
    213#define HOLE_ADDR(NODE) (__drm_mm_hole_node_start(NODE))
    214
    215static u64 rb_to_hole_size(struct rb_node *rb)
    216{
    217	return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size;
    218}
    219
    220static void insert_hole_size(struct rb_root_cached *root,
    221			     struct drm_mm_node *node)
    222{
    223	struct rb_node **link = &root->rb_root.rb_node, *rb = NULL;
    224	u64 x = node->hole_size;
    225	bool first = true;
    226
    227	while (*link) {
    228		rb = *link;
    229		if (x > rb_to_hole_size(rb)) {
    230			link = &rb->rb_left;
    231		} else {
    232			link = &rb->rb_right;
    233			first = false;
    234		}
    235	}
    236
    237	rb_link_node(&node->rb_hole_size, rb, link);
    238	rb_insert_color_cached(&node->rb_hole_size, root, first);
    239}
    240
    241RB_DECLARE_CALLBACKS_MAX(static, augment_callbacks,
    242			 struct drm_mm_node, rb_hole_addr,
    243			 u64, subtree_max_hole, HOLE_SIZE)
    244
    245static void insert_hole_addr(struct rb_root *root, struct drm_mm_node *node)
    246{
    247	struct rb_node **link = &root->rb_node, *rb_parent = NULL;
    248	u64 start = HOLE_ADDR(node), subtree_max_hole = node->subtree_max_hole;
    249	struct drm_mm_node *parent;
    250
    251	while (*link) {
    252		rb_parent = *link;
    253		parent = rb_entry(rb_parent, struct drm_mm_node, rb_hole_addr);
    254		if (parent->subtree_max_hole < subtree_max_hole)
    255			parent->subtree_max_hole = subtree_max_hole;
    256		if (start < HOLE_ADDR(parent))
    257			link = &parent->rb_hole_addr.rb_left;
    258		else
    259			link = &parent->rb_hole_addr.rb_right;
    260	}
    261
    262	rb_link_node(&node->rb_hole_addr, rb_parent, link);
    263	rb_insert_augmented(&node->rb_hole_addr, root, &augment_callbacks);
    264}
    265
    266static void add_hole(struct drm_mm_node *node)
    267{
    268	struct drm_mm *mm = node->mm;
    269
    270	node->hole_size =
    271		__drm_mm_hole_node_end(node) - __drm_mm_hole_node_start(node);
    272	node->subtree_max_hole = node->hole_size;
    273	DRM_MM_BUG_ON(!drm_mm_hole_follows(node));
    274
    275	insert_hole_size(&mm->holes_size, node);
    276	insert_hole_addr(&mm->holes_addr, node);
    277
    278	list_add(&node->hole_stack, &mm->hole_stack);
    279}
    280
    281static void rm_hole(struct drm_mm_node *node)
    282{
    283	DRM_MM_BUG_ON(!drm_mm_hole_follows(node));
    284
    285	list_del(&node->hole_stack);
    286	rb_erase_cached(&node->rb_hole_size, &node->mm->holes_size);
    287	rb_erase_augmented(&node->rb_hole_addr, &node->mm->holes_addr,
    288			   &augment_callbacks);
    289	node->hole_size = 0;
    290	node->subtree_max_hole = 0;
    291
    292	DRM_MM_BUG_ON(drm_mm_hole_follows(node));
    293}
    294
    295static inline struct drm_mm_node *rb_hole_size_to_node(struct rb_node *rb)
    296{
    297	return rb_entry_safe(rb, struct drm_mm_node, rb_hole_size);
    298}
    299
    300static inline struct drm_mm_node *rb_hole_addr_to_node(struct rb_node *rb)
    301{
    302	return rb_entry_safe(rb, struct drm_mm_node, rb_hole_addr);
    303}
    304
    305static struct drm_mm_node *best_hole(struct drm_mm *mm, u64 size)
    306{
    307	struct rb_node *rb = mm->holes_size.rb_root.rb_node;
    308	struct drm_mm_node *best = NULL;
    309
    310	do {
    311		struct drm_mm_node *node =
    312			rb_entry(rb, struct drm_mm_node, rb_hole_size);
    313
    314		if (size <= node->hole_size) {
    315			best = node;
    316			rb = rb->rb_right;
    317		} else {
    318			rb = rb->rb_left;
    319		}
    320	} while (rb);
    321
    322	return best;
    323}
    324
    325static bool usable_hole_addr(struct rb_node *rb, u64 size)
    326{
    327	return rb && rb_hole_addr_to_node(rb)->subtree_max_hole >= size;
    328}
    329
    330static struct drm_mm_node *find_hole_addr(struct drm_mm *mm, u64 addr, u64 size)
    331{
    332	struct rb_node *rb = mm->holes_addr.rb_node;
    333	struct drm_mm_node *node = NULL;
    334
    335	while (rb) {
    336		u64 hole_start;
    337
    338		if (!usable_hole_addr(rb, size))
    339			break;
    340
    341		node = rb_hole_addr_to_node(rb);
    342		hole_start = __drm_mm_hole_node_start(node);
    343
    344		if (addr < hole_start)
    345			rb = node->rb_hole_addr.rb_left;
    346		else if (addr > hole_start + node->hole_size)
    347			rb = node->rb_hole_addr.rb_right;
    348		else
    349			break;
    350	}
    351
    352	return node;
    353}
    354
    355static struct drm_mm_node *
    356first_hole(struct drm_mm *mm,
    357	   u64 start, u64 end, u64 size,
    358	   enum drm_mm_insert_mode mode)
    359{
    360	switch (mode) {
    361	default:
    362	case DRM_MM_INSERT_BEST:
    363		return best_hole(mm, size);
    364
    365	case DRM_MM_INSERT_LOW:
    366		return find_hole_addr(mm, start, size);
    367
    368	case DRM_MM_INSERT_HIGH:
    369		return find_hole_addr(mm, end, size);
    370
    371	case DRM_MM_INSERT_EVICT:
    372		return list_first_entry_or_null(&mm->hole_stack,
    373						struct drm_mm_node,
    374						hole_stack);
    375	}
    376}
    377
    378/**
    379 * DECLARE_NEXT_HOLE_ADDR - macro to declare next hole functions
    380 * @name: name of function to declare
    381 * @first: first rb member to traverse (either rb_left or rb_right).
    382 * @last: last rb member to traverse (either rb_right or rb_left).
    383 *
    384 * This macro declares a function to return the next hole of the addr rb tree.
    385 * While traversing the tree we take the searched size into account and only
    386 * visit branches with potential big enough holes.
    387 */
    388
    389#define DECLARE_NEXT_HOLE_ADDR(name, first, last)			\
    390static struct drm_mm_node *name(struct drm_mm_node *entry, u64 size)	\
    391{									\
    392	struct rb_node *parent, *node = &entry->rb_hole_addr;		\
    393									\
    394	if (!entry || RB_EMPTY_NODE(node))				\
    395		return NULL;						\
    396									\
    397	if (usable_hole_addr(node->first, size)) {			\
    398		node = node->first;					\
    399		while (usable_hole_addr(node->last, size))		\
    400			node = node->last;				\
    401		return rb_hole_addr_to_node(node);			\
    402	}								\
    403									\
    404	while ((parent = rb_parent(node)) && node == parent->first)	\
    405		node = parent;						\
    406									\
    407	return rb_hole_addr_to_node(parent);				\
    408}
    409
    410DECLARE_NEXT_HOLE_ADDR(next_hole_high_addr, rb_left, rb_right)
    411DECLARE_NEXT_HOLE_ADDR(next_hole_low_addr, rb_right, rb_left)
    412
    413static struct drm_mm_node *
    414next_hole(struct drm_mm *mm,
    415	  struct drm_mm_node *node,
    416	  u64 size,
    417	  enum drm_mm_insert_mode mode)
    418{
    419	switch (mode) {
    420	default:
    421	case DRM_MM_INSERT_BEST:
    422		return rb_hole_size_to_node(rb_prev(&node->rb_hole_size));
    423
    424	case DRM_MM_INSERT_LOW:
    425		return next_hole_low_addr(node, size);
    426
    427	case DRM_MM_INSERT_HIGH:
    428		return next_hole_high_addr(node, size);
    429
    430	case DRM_MM_INSERT_EVICT:
    431		node = list_next_entry(node, hole_stack);
    432		return &node->hole_stack == &mm->hole_stack ? NULL : node;
    433	}
    434}
    435
    436/**
    437 * drm_mm_reserve_node - insert an pre-initialized node
    438 * @mm: drm_mm allocator to insert @node into
    439 * @node: drm_mm_node to insert
    440 *
    441 * This functions inserts an already set-up &drm_mm_node into the allocator,
    442 * meaning that start, size and color must be set by the caller. All other
    443 * fields must be cleared to 0. This is useful to initialize the allocator with
    444 * preallocated objects which must be set-up before the range allocator can be
    445 * set-up, e.g. when taking over a firmware framebuffer.
    446 *
    447 * Returns:
    448 * 0 on success, -ENOSPC if there's no hole where @node is.
    449 */
    450int drm_mm_reserve_node(struct drm_mm *mm, struct drm_mm_node *node)
    451{
    452	struct drm_mm_node *hole;
    453	u64 hole_start, hole_end;
    454	u64 adj_start, adj_end;
    455	u64 end;
    456
    457	end = node->start + node->size;
    458	if (unlikely(end <= node->start))
    459		return -ENOSPC;
    460
    461	/* Find the relevant hole to add our node to */
    462	hole = find_hole_addr(mm, node->start, 0);
    463	if (!hole)
    464		return -ENOSPC;
    465
    466	adj_start = hole_start = __drm_mm_hole_node_start(hole);
    467	adj_end = hole_end = hole_start + hole->hole_size;
    468
    469	if (mm->color_adjust)
    470		mm->color_adjust(hole, node->color, &adj_start, &adj_end);
    471
    472	if (adj_start > node->start || adj_end < end)
    473		return -ENOSPC;
    474
    475	node->mm = mm;
    476
    477	__set_bit(DRM_MM_NODE_ALLOCATED_BIT, &node->flags);
    478	list_add(&node->node_list, &hole->node_list);
    479	drm_mm_interval_tree_add_node(hole, node);
    480	node->hole_size = 0;
    481
    482	rm_hole(hole);
    483	if (node->start > hole_start)
    484		add_hole(hole);
    485	if (end < hole_end)
    486		add_hole(node);
    487
    488	save_stack(node);
    489	return 0;
    490}
    491EXPORT_SYMBOL(drm_mm_reserve_node);
    492
    493static u64 rb_to_hole_size_or_zero(struct rb_node *rb)
    494{
    495	return rb ? rb_to_hole_size(rb) : 0;
    496}
    497
    498/**
    499 * drm_mm_insert_node_in_range - ranged search for space and insert @node
    500 * @mm: drm_mm to allocate from
    501 * @node: preallocate node to insert
    502 * @size: size of the allocation
    503 * @alignment: alignment of the allocation
    504 * @color: opaque tag value to use for this node
    505 * @range_start: start of the allowed range for this node
    506 * @range_end: end of the allowed range for this node
    507 * @mode: fine-tune the allocation search and placement
    508 *
    509 * The preallocated @node must be cleared to 0.
    510 *
    511 * Returns:
    512 * 0 on success, -ENOSPC if there's no suitable hole.
    513 */
    514int drm_mm_insert_node_in_range(struct drm_mm * const mm,
    515				struct drm_mm_node * const node,
    516				u64 size, u64 alignment,
    517				unsigned long color,
    518				u64 range_start, u64 range_end,
    519				enum drm_mm_insert_mode mode)
    520{
    521	struct drm_mm_node *hole;
    522	u64 remainder_mask;
    523	bool once;
    524
    525	DRM_MM_BUG_ON(range_start > range_end);
    526
    527	if (unlikely(size == 0 || range_end - range_start < size))
    528		return -ENOSPC;
    529
    530	if (rb_to_hole_size_or_zero(rb_first_cached(&mm->holes_size)) < size)
    531		return -ENOSPC;
    532
    533	if (alignment <= 1)
    534		alignment = 0;
    535
    536	once = mode & DRM_MM_INSERT_ONCE;
    537	mode &= ~DRM_MM_INSERT_ONCE;
    538
    539	remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0;
    540	for (hole = first_hole(mm, range_start, range_end, size, mode);
    541	     hole;
    542	     hole = once ? NULL : next_hole(mm, hole, size, mode)) {
    543		u64 hole_start = __drm_mm_hole_node_start(hole);
    544		u64 hole_end = hole_start + hole->hole_size;
    545		u64 adj_start, adj_end;
    546		u64 col_start, col_end;
    547
    548		if (mode == DRM_MM_INSERT_LOW && hole_start >= range_end)
    549			break;
    550
    551		if (mode == DRM_MM_INSERT_HIGH && hole_end <= range_start)
    552			break;
    553
    554		col_start = hole_start;
    555		col_end = hole_end;
    556		if (mm->color_adjust)
    557			mm->color_adjust(hole, color, &col_start, &col_end);
    558
    559		adj_start = max(col_start, range_start);
    560		adj_end = min(col_end, range_end);
    561
    562		if (adj_end <= adj_start || adj_end - adj_start < size)
    563			continue;
    564
    565		if (mode == DRM_MM_INSERT_HIGH)
    566			adj_start = adj_end - size;
    567
    568		if (alignment) {
    569			u64 rem;
    570
    571			if (likely(remainder_mask))
    572				rem = adj_start & remainder_mask;
    573			else
    574				div64_u64_rem(adj_start, alignment, &rem);
    575			if (rem) {
    576				adj_start -= rem;
    577				if (mode != DRM_MM_INSERT_HIGH)
    578					adj_start += alignment;
    579
    580				if (adj_start < max(col_start, range_start) ||
    581				    min(col_end, range_end) - adj_start < size)
    582					continue;
    583
    584				if (adj_end <= adj_start ||
    585				    adj_end - adj_start < size)
    586					continue;
    587			}
    588		}
    589
    590		node->mm = mm;
    591		node->size = size;
    592		node->start = adj_start;
    593		node->color = color;
    594		node->hole_size = 0;
    595
    596		__set_bit(DRM_MM_NODE_ALLOCATED_BIT, &node->flags);
    597		list_add(&node->node_list, &hole->node_list);
    598		drm_mm_interval_tree_add_node(hole, node);
    599
    600		rm_hole(hole);
    601		if (adj_start > hole_start)
    602			add_hole(hole);
    603		if (adj_start + size < hole_end)
    604			add_hole(node);
    605
    606		save_stack(node);
    607		return 0;
    608	}
    609
    610	return -ENOSPC;
    611}
    612EXPORT_SYMBOL(drm_mm_insert_node_in_range);
    613
    614static inline bool drm_mm_node_scanned_block(const struct drm_mm_node *node)
    615{
    616	return test_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags);
    617}
    618
    619/**
    620 * drm_mm_remove_node - Remove a memory node from the allocator.
    621 * @node: drm_mm_node to remove
    622 *
    623 * This just removes a node from its drm_mm allocator. The node does not need to
    624 * be cleared again before it can be re-inserted into this or any other drm_mm
    625 * allocator. It is a bug to call this function on a unallocated node.
    626 */
    627void drm_mm_remove_node(struct drm_mm_node *node)
    628{
    629	struct drm_mm *mm = node->mm;
    630	struct drm_mm_node *prev_node;
    631
    632	DRM_MM_BUG_ON(!drm_mm_node_allocated(node));
    633	DRM_MM_BUG_ON(drm_mm_node_scanned_block(node));
    634
    635	prev_node = list_prev_entry(node, node_list);
    636
    637	if (drm_mm_hole_follows(node))
    638		rm_hole(node);
    639
    640	drm_mm_interval_tree_remove(node, &mm->interval_tree);
    641	list_del(&node->node_list);
    642
    643	if (drm_mm_hole_follows(prev_node))
    644		rm_hole(prev_node);
    645	add_hole(prev_node);
    646
    647	clear_bit_unlock(DRM_MM_NODE_ALLOCATED_BIT, &node->flags);
    648}
    649EXPORT_SYMBOL(drm_mm_remove_node);
    650
    651/**
    652 * drm_mm_replace_node - move an allocation from @old to @new
    653 * @old: drm_mm_node to remove from the allocator
    654 * @new: drm_mm_node which should inherit @old's allocation
    655 *
    656 * This is useful for when drivers embed the drm_mm_node structure and hence
    657 * can't move allocations by reassigning pointers. It's a combination of remove
    658 * and insert with the guarantee that the allocation start will match.
    659 */
    660void drm_mm_replace_node(struct drm_mm_node *old, struct drm_mm_node *new)
    661{
    662	struct drm_mm *mm = old->mm;
    663
    664	DRM_MM_BUG_ON(!drm_mm_node_allocated(old));
    665
    666	*new = *old;
    667
    668	__set_bit(DRM_MM_NODE_ALLOCATED_BIT, &new->flags);
    669	list_replace(&old->node_list, &new->node_list);
    670	rb_replace_node_cached(&old->rb, &new->rb, &mm->interval_tree);
    671
    672	if (drm_mm_hole_follows(old)) {
    673		list_replace(&old->hole_stack, &new->hole_stack);
    674		rb_replace_node_cached(&old->rb_hole_size,
    675				       &new->rb_hole_size,
    676				       &mm->holes_size);
    677		rb_replace_node(&old->rb_hole_addr,
    678				&new->rb_hole_addr,
    679				&mm->holes_addr);
    680	}
    681
    682	clear_bit_unlock(DRM_MM_NODE_ALLOCATED_BIT, &old->flags);
    683}
    684EXPORT_SYMBOL(drm_mm_replace_node);
    685
    686/**
    687 * DOC: lru scan roster
    688 *
    689 * Very often GPUs need to have continuous allocations for a given object. When
    690 * evicting objects to make space for a new one it is therefore not most
    691 * efficient when we simply start to select all objects from the tail of an LRU
    692 * until there's a suitable hole: Especially for big objects or nodes that
    693 * otherwise have special allocation constraints there's a good chance we evict
    694 * lots of (smaller) objects unnecessarily.
    695 *
    696 * The DRM range allocator supports this use-case through the scanning
    697 * interfaces. First a scan operation needs to be initialized with
    698 * drm_mm_scan_init() or drm_mm_scan_init_with_range(). The driver adds
    699 * objects to the roster, probably by walking an LRU list, but this can be
    700 * freely implemented. Eviction candidates are added using
    701 * drm_mm_scan_add_block() until a suitable hole is found or there are no
    702 * further evictable objects. Eviction roster metadata is tracked in &struct
    703 * drm_mm_scan.
    704 *
    705 * The driver must walk through all objects again in exactly the reverse
    706 * order to restore the allocator state. Note that while the allocator is used
    707 * in the scan mode no other operation is allowed.
    708 *
    709 * Finally the driver evicts all objects selected (drm_mm_scan_remove_block()
    710 * reported true) in the scan, and any overlapping nodes after color adjustment
    711 * (drm_mm_scan_color_evict()). Adding and removing an object is O(1), and
    712 * since freeing a node is also O(1) the overall complexity is
    713 * O(scanned_objects). So like the free stack which needs to be walked before a
    714 * scan operation even begins this is linear in the number of objects. It
    715 * doesn't seem to hurt too badly.
    716 */
    717
    718/**
    719 * drm_mm_scan_init_with_range - initialize range-restricted lru scanning
    720 * @scan: scan state
    721 * @mm: drm_mm to scan
    722 * @size: size of the allocation
    723 * @alignment: alignment of the allocation
    724 * @color: opaque tag value to use for the allocation
    725 * @start: start of the allowed range for the allocation
    726 * @end: end of the allowed range for the allocation
    727 * @mode: fine-tune the allocation search and placement
    728 *
    729 * This simply sets up the scanning routines with the parameters for the desired
    730 * hole.
    731 *
    732 * Warning:
    733 * As long as the scan list is non-empty, no other operations than
    734 * adding/removing nodes to/from the scan list are allowed.
    735 */
    736void drm_mm_scan_init_with_range(struct drm_mm_scan *scan,
    737				 struct drm_mm *mm,
    738				 u64 size,
    739				 u64 alignment,
    740				 unsigned long color,
    741				 u64 start,
    742				 u64 end,
    743				 enum drm_mm_insert_mode mode)
    744{
    745	DRM_MM_BUG_ON(start >= end);
    746	DRM_MM_BUG_ON(!size || size > end - start);
    747	DRM_MM_BUG_ON(mm->scan_active);
    748
    749	scan->mm = mm;
    750
    751	if (alignment <= 1)
    752		alignment = 0;
    753
    754	scan->color = color;
    755	scan->alignment = alignment;
    756	scan->remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0;
    757	scan->size = size;
    758	scan->mode = mode;
    759
    760	DRM_MM_BUG_ON(end <= start);
    761	scan->range_start = start;
    762	scan->range_end = end;
    763
    764	scan->hit_start = U64_MAX;
    765	scan->hit_end = 0;
    766}
    767EXPORT_SYMBOL(drm_mm_scan_init_with_range);
    768
    769/**
    770 * drm_mm_scan_add_block - add a node to the scan list
    771 * @scan: the active drm_mm scanner
    772 * @node: drm_mm_node to add
    773 *
    774 * Add a node to the scan list that might be freed to make space for the desired
    775 * hole.
    776 *
    777 * Returns:
    778 * True if a hole has been found, false otherwise.
    779 */
    780bool drm_mm_scan_add_block(struct drm_mm_scan *scan,
    781			   struct drm_mm_node *node)
    782{
    783	struct drm_mm *mm = scan->mm;
    784	struct drm_mm_node *hole;
    785	u64 hole_start, hole_end;
    786	u64 col_start, col_end;
    787	u64 adj_start, adj_end;
    788
    789	DRM_MM_BUG_ON(node->mm != mm);
    790	DRM_MM_BUG_ON(!drm_mm_node_allocated(node));
    791	DRM_MM_BUG_ON(drm_mm_node_scanned_block(node));
    792	__set_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags);
    793	mm->scan_active++;
    794
    795	/* Remove this block from the node_list so that we enlarge the hole
    796	 * (distance between the end of our previous node and the start of
    797	 * or next), without poisoning the link so that we can restore it
    798	 * later in drm_mm_scan_remove_block().
    799	 */
    800	hole = list_prev_entry(node, node_list);
    801	DRM_MM_BUG_ON(list_next_entry(hole, node_list) != node);
    802	__list_del_entry(&node->node_list);
    803
    804	hole_start = __drm_mm_hole_node_start(hole);
    805	hole_end = __drm_mm_hole_node_end(hole);
    806
    807	col_start = hole_start;
    808	col_end = hole_end;
    809	if (mm->color_adjust)
    810		mm->color_adjust(hole, scan->color, &col_start, &col_end);
    811
    812	adj_start = max(col_start, scan->range_start);
    813	adj_end = min(col_end, scan->range_end);
    814	if (adj_end <= adj_start || adj_end - adj_start < scan->size)
    815		return false;
    816
    817	if (scan->mode == DRM_MM_INSERT_HIGH)
    818		adj_start = adj_end - scan->size;
    819
    820	if (scan->alignment) {
    821		u64 rem;
    822
    823		if (likely(scan->remainder_mask))
    824			rem = adj_start & scan->remainder_mask;
    825		else
    826			div64_u64_rem(adj_start, scan->alignment, &rem);
    827		if (rem) {
    828			adj_start -= rem;
    829			if (scan->mode != DRM_MM_INSERT_HIGH)
    830				adj_start += scan->alignment;
    831			if (adj_start < max(col_start, scan->range_start) ||
    832			    min(col_end, scan->range_end) - adj_start < scan->size)
    833				return false;
    834
    835			if (adj_end <= adj_start ||
    836			    adj_end - adj_start < scan->size)
    837				return false;
    838		}
    839	}
    840
    841	scan->hit_start = adj_start;
    842	scan->hit_end = adj_start + scan->size;
    843
    844	DRM_MM_BUG_ON(scan->hit_start >= scan->hit_end);
    845	DRM_MM_BUG_ON(scan->hit_start < hole_start);
    846	DRM_MM_BUG_ON(scan->hit_end > hole_end);
    847
    848	return true;
    849}
    850EXPORT_SYMBOL(drm_mm_scan_add_block);
    851
    852/**
    853 * drm_mm_scan_remove_block - remove a node from the scan list
    854 * @scan: the active drm_mm scanner
    855 * @node: drm_mm_node to remove
    856 *
    857 * Nodes **must** be removed in exactly the reverse order from the scan list as
    858 * they have been added (e.g. using list_add() as they are added and then
    859 * list_for_each() over that eviction list to remove), otherwise the internal
    860 * state of the memory manager will be corrupted.
    861 *
    862 * When the scan list is empty, the selected memory nodes can be freed. An
    863 * immediately following drm_mm_insert_node_in_range_generic() or one of the
    864 * simpler versions of that function with !DRM_MM_SEARCH_BEST will then return
    865 * the just freed block (because it's at the top of the free_stack list).
    866 *
    867 * Returns:
    868 * True if this block should be evicted, false otherwise. Will always
    869 * return false when no hole has been found.
    870 */
    871bool drm_mm_scan_remove_block(struct drm_mm_scan *scan,
    872			      struct drm_mm_node *node)
    873{
    874	struct drm_mm_node *prev_node;
    875
    876	DRM_MM_BUG_ON(node->mm != scan->mm);
    877	DRM_MM_BUG_ON(!drm_mm_node_scanned_block(node));
    878	__clear_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags);
    879
    880	DRM_MM_BUG_ON(!node->mm->scan_active);
    881	node->mm->scan_active--;
    882
    883	/* During drm_mm_scan_add_block() we decoupled this node leaving
    884	 * its pointers intact. Now that the caller is walking back along
    885	 * the eviction list we can restore this block into its rightful
    886	 * place on the full node_list. To confirm that the caller is walking
    887	 * backwards correctly we check that prev_node->next == node->next,
    888	 * i.e. both believe the same node should be on the other side of the
    889	 * hole.
    890	 */
    891	prev_node = list_prev_entry(node, node_list);
    892	DRM_MM_BUG_ON(list_next_entry(prev_node, node_list) !=
    893		      list_next_entry(node, node_list));
    894	list_add(&node->node_list, &prev_node->node_list);
    895
    896	return (node->start + node->size > scan->hit_start &&
    897		node->start < scan->hit_end);
    898}
    899EXPORT_SYMBOL(drm_mm_scan_remove_block);
    900
    901/**
    902 * drm_mm_scan_color_evict - evict overlapping nodes on either side of hole
    903 * @scan: drm_mm scan with target hole
    904 *
    905 * After completing an eviction scan and removing the selected nodes, we may
    906 * need to remove a few more nodes from either side of the target hole if
    907 * mm.color_adjust is being used.
    908 *
    909 * Returns:
    910 * A node to evict, or NULL if there are no overlapping nodes.
    911 */
    912struct drm_mm_node *drm_mm_scan_color_evict(struct drm_mm_scan *scan)
    913{
    914	struct drm_mm *mm = scan->mm;
    915	struct drm_mm_node *hole;
    916	u64 hole_start, hole_end;
    917
    918	DRM_MM_BUG_ON(list_empty(&mm->hole_stack));
    919
    920	if (!mm->color_adjust)
    921		return NULL;
    922
    923	/*
    924	 * The hole found during scanning should ideally be the first element
    925	 * in the hole_stack list, but due to side-effects in the driver it
    926	 * may not be.
    927	 */
    928	list_for_each_entry(hole, &mm->hole_stack, hole_stack) {
    929		hole_start = __drm_mm_hole_node_start(hole);
    930		hole_end = hole_start + hole->hole_size;
    931
    932		if (hole_start <= scan->hit_start &&
    933		    hole_end >= scan->hit_end)
    934			break;
    935	}
    936
    937	/* We should only be called after we found the hole previously */
    938	DRM_MM_BUG_ON(&hole->hole_stack == &mm->hole_stack);
    939	if (unlikely(&hole->hole_stack == &mm->hole_stack))
    940		return NULL;
    941
    942	DRM_MM_BUG_ON(hole_start > scan->hit_start);
    943	DRM_MM_BUG_ON(hole_end < scan->hit_end);
    944
    945	mm->color_adjust(hole, scan->color, &hole_start, &hole_end);
    946	if (hole_start > scan->hit_start)
    947		return hole;
    948	if (hole_end < scan->hit_end)
    949		return list_next_entry(hole, node_list);
    950
    951	return NULL;
    952}
    953EXPORT_SYMBOL(drm_mm_scan_color_evict);
    954
    955/**
    956 * drm_mm_init - initialize a drm-mm allocator
    957 * @mm: the drm_mm structure to initialize
    958 * @start: start of the range managed by @mm
    959 * @size: end of the range managed by @mm
    960 *
    961 * Note that @mm must be cleared to 0 before calling this function.
    962 */
    963void drm_mm_init(struct drm_mm *mm, u64 start, u64 size)
    964{
    965	DRM_MM_BUG_ON(start + size <= start);
    966
    967	mm->color_adjust = NULL;
    968
    969	INIT_LIST_HEAD(&mm->hole_stack);
    970	mm->interval_tree = RB_ROOT_CACHED;
    971	mm->holes_size = RB_ROOT_CACHED;
    972	mm->holes_addr = RB_ROOT;
    973
    974	/* Clever trick to avoid a special case in the free hole tracking. */
    975	INIT_LIST_HEAD(&mm->head_node.node_list);
    976	mm->head_node.flags = 0;
    977	mm->head_node.mm = mm;
    978	mm->head_node.start = start + size;
    979	mm->head_node.size = -size;
    980	add_hole(&mm->head_node);
    981
    982	mm->scan_active = 0;
    983
    984#ifdef CONFIG_DRM_DEBUG_MM
    985	stack_depot_init();
    986#endif
    987}
    988EXPORT_SYMBOL(drm_mm_init);
    989
    990/**
    991 * drm_mm_takedown - clean up a drm_mm allocator
    992 * @mm: drm_mm allocator to clean up
    993 *
    994 * Note that it is a bug to call this function on an allocator which is not
    995 * clean.
    996 */
    997void drm_mm_takedown(struct drm_mm *mm)
    998{
    999	if (WARN(!drm_mm_clean(mm),
   1000		 "Memory manager not clean during takedown.\n"))
   1001		show_leaks(mm);
   1002}
   1003EXPORT_SYMBOL(drm_mm_takedown);
   1004
   1005static u64 drm_mm_dump_hole(struct drm_printer *p, const struct drm_mm_node *entry)
   1006{
   1007	u64 start, size;
   1008
   1009	size = entry->hole_size;
   1010	if (size) {
   1011		start = drm_mm_hole_node_start(entry);
   1012		drm_printf(p, "%#018llx-%#018llx: %llu: free\n",
   1013			   start, start + size, size);
   1014	}
   1015
   1016	return size;
   1017}
   1018/**
   1019 * drm_mm_print - print allocator state
   1020 * @mm: drm_mm allocator to print
   1021 * @p: DRM printer to use
   1022 */
   1023void drm_mm_print(const struct drm_mm *mm, struct drm_printer *p)
   1024{
   1025	const struct drm_mm_node *entry;
   1026	u64 total_used = 0, total_free = 0, total = 0;
   1027
   1028	total_free += drm_mm_dump_hole(p, &mm->head_node);
   1029
   1030	drm_mm_for_each_node(entry, mm) {
   1031		drm_printf(p, "%#018llx-%#018llx: %llu: used\n", entry->start,
   1032			   entry->start + entry->size, entry->size);
   1033		total_used += entry->size;
   1034		total_free += drm_mm_dump_hole(p, entry);
   1035	}
   1036	total = total_free + total_used;
   1037
   1038	drm_printf(p, "total: %llu, used %llu free %llu\n", total,
   1039		   total_used, total_free);
   1040}
   1041EXPORT_SYMBOL(drm_mm_print);