cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

drm_prime.c (30943B)


      1/*
      2 * Copyright © 2012 Red Hat
      3 *
      4 * Permission is hereby granted, free of charge, to any person obtaining a
      5 * copy of this software and associated documentation files (the "Software"),
      6 * to deal in the Software without restriction, including without limitation
      7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8 * and/or sell copies of the Software, and to permit persons to whom the
      9 * Software is furnished to do so, subject to the following conditions:
     10 *
     11 * The above copyright notice and this permission notice (including the next
     12 * paragraph) shall be included in all copies or substantial portions of the
     13 * Software.
     14 *
     15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     21 * IN THE SOFTWARE.
     22 *
     23 * Authors:
     24 *      Dave Airlie <airlied@redhat.com>
     25 *      Rob Clark <rob.clark@linaro.org>
     26 *
     27 */
     28
     29#include <linux/export.h>
     30#include <linux/dma-buf.h>
     31#include <linux/rbtree.h>
     32#include <linux/module.h>
     33
     34#include <drm/drm.h>
     35#include <drm/drm_drv.h>
     36#include <drm/drm_file.h>
     37#include <drm/drm_framebuffer.h>
     38#include <drm/drm_gem.h>
     39#include <drm/drm_prime.h>
     40
     41#include "drm_internal.h"
     42
     43MODULE_IMPORT_NS(DMA_BUF);
     44
     45/**
     46 * DOC: overview and lifetime rules
     47 *
     48 * Similar to GEM global names, PRIME file descriptors are also used to share
     49 * buffer objects across processes. They offer additional security: as file
     50 * descriptors must be explicitly sent over UNIX domain sockets to be shared
     51 * between applications, they can't be guessed like the globally unique GEM
     52 * names.
     53 *
     54 * Drivers that support the PRIME API implement the
     55 * &drm_driver.prime_handle_to_fd and &drm_driver.prime_fd_to_handle operations.
     56 * GEM based drivers must use drm_gem_prime_handle_to_fd() and
     57 * drm_gem_prime_fd_to_handle() to implement these. For GEM based drivers the
     58 * actual driver interfaces is provided through the &drm_gem_object_funcs.export
     59 * and &drm_driver.gem_prime_import hooks.
     60 *
     61 * &dma_buf_ops implementations for GEM drivers are all individually exported
     62 * for drivers which need to overwrite or reimplement some of them.
     63 *
     64 * Reference Counting for GEM Drivers
     65 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
     66 *
     67 * On the export the &dma_buf holds a reference to the exported buffer object,
     68 * usually a &drm_gem_object. It takes this reference in the PRIME_HANDLE_TO_FD
     69 * IOCTL, when it first calls &drm_gem_object_funcs.export
     70 * and stores the exporting GEM object in the &dma_buf.priv field. This
     71 * reference needs to be released when the final reference to the &dma_buf
     72 * itself is dropped and its &dma_buf_ops.release function is called.  For
     73 * GEM-based drivers, the &dma_buf should be exported using
     74 * drm_gem_dmabuf_export() and then released by drm_gem_dmabuf_release().
     75 *
     76 * Thus the chain of references always flows in one direction, avoiding loops:
     77 * importing GEM object -> dma-buf -> exported GEM bo. A further complication
     78 * are the lookup caches for import and export. These are required to guarantee
     79 * that any given object will always have only one unique userspace handle. This
     80 * is required to allow userspace to detect duplicated imports, since some GEM
     81 * drivers do fail command submissions if a given buffer object is listed more
     82 * than once. These import and export caches in &drm_prime_file_private only
     83 * retain a weak reference, which is cleaned up when the corresponding object is
     84 * released.
     85 *
     86 * Self-importing: If userspace is using PRIME as a replacement for flink then
     87 * it will get a fd->handle request for a GEM object that it created.  Drivers
     88 * should detect this situation and return back the underlying object from the
     89 * dma-buf private. For GEM based drivers this is handled in
     90 * drm_gem_prime_import() already.
     91 */
     92
     93struct drm_prime_member {
     94	struct dma_buf *dma_buf;
     95	uint32_t handle;
     96
     97	struct rb_node dmabuf_rb;
     98	struct rb_node handle_rb;
     99};
    100
    101static int drm_prime_add_buf_handle(struct drm_prime_file_private *prime_fpriv,
    102				    struct dma_buf *dma_buf, uint32_t handle)
    103{
    104	struct drm_prime_member *member;
    105	struct rb_node **p, *rb;
    106
    107	member = kmalloc(sizeof(*member), GFP_KERNEL);
    108	if (!member)
    109		return -ENOMEM;
    110
    111	get_dma_buf(dma_buf);
    112	member->dma_buf = dma_buf;
    113	member->handle = handle;
    114
    115	rb = NULL;
    116	p = &prime_fpriv->dmabufs.rb_node;
    117	while (*p) {
    118		struct drm_prime_member *pos;
    119
    120		rb = *p;
    121		pos = rb_entry(rb, struct drm_prime_member, dmabuf_rb);
    122		if (dma_buf > pos->dma_buf)
    123			p = &rb->rb_right;
    124		else
    125			p = &rb->rb_left;
    126	}
    127	rb_link_node(&member->dmabuf_rb, rb, p);
    128	rb_insert_color(&member->dmabuf_rb, &prime_fpriv->dmabufs);
    129
    130	rb = NULL;
    131	p = &prime_fpriv->handles.rb_node;
    132	while (*p) {
    133		struct drm_prime_member *pos;
    134
    135		rb = *p;
    136		pos = rb_entry(rb, struct drm_prime_member, handle_rb);
    137		if (handle > pos->handle)
    138			p = &rb->rb_right;
    139		else
    140			p = &rb->rb_left;
    141	}
    142	rb_link_node(&member->handle_rb, rb, p);
    143	rb_insert_color(&member->handle_rb, &prime_fpriv->handles);
    144
    145	return 0;
    146}
    147
    148static struct dma_buf *drm_prime_lookup_buf_by_handle(struct drm_prime_file_private *prime_fpriv,
    149						      uint32_t handle)
    150{
    151	struct rb_node *rb;
    152
    153	rb = prime_fpriv->handles.rb_node;
    154	while (rb) {
    155		struct drm_prime_member *member;
    156
    157		member = rb_entry(rb, struct drm_prime_member, handle_rb);
    158		if (member->handle == handle)
    159			return member->dma_buf;
    160		else if (member->handle < handle)
    161			rb = rb->rb_right;
    162		else
    163			rb = rb->rb_left;
    164	}
    165
    166	return NULL;
    167}
    168
    169static int drm_prime_lookup_buf_handle(struct drm_prime_file_private *prime_fpriv,
    170				       struct dma_buf *dma_buf,
    171				       uint32_t *handle)
    172{
    173	struct rb_node *rb;
    174
    175	rb = prime_fpriv->dmabufs.rb_node;
    176	while (rb) {
    177		struct drm_prime_member *member;
    178
    179		member = rb_entry(rb, struct drm_prime_member, dmabuf_rb);
    180		if (member->dma_buf == dma_buf) {
    181			*handle = member->handle;
    182			return 0;
    183		} else if (member->dma_buf < dma_buf) {
    184			rb = rb->rb_right;
    185		} else {
    186			rb = rb->rb_left;
    187		}
    188	}
    189
    190	return -ENOENT;
    191}
    192
    193void drm_prime_remove_buf_handle_locked(struct drm_prime_file_private *prime_fpriv,
    194					struct dma_buf *dma_buf)
    195{
    196	struct rb_node *rb;
    197
    198	rb = prime_fpriv->dmabufs.rb_node;
    199	while (rb) {
    200		struct drm_prime_member *member;
    201
    202		member = rb_entry(rb, struct drm_prime_member, dmabuf_rb);
    203		if (member->dma_buf == dma_buf) {
    204			rb_erase(&member->handle_rb, &prime_fpriv->handles);
    205			rb_erase(&member->dmabuf_rb, &prime_fpriv->dmabufs);
    206
    207			dma_buf_put(dma_buf);
    208			kfree(member);
    209			return;
    210		} else if (member->dma_buf < dma_buf) {
    211			rb = rb->rb_right;
    212		} else {
    213			rb = rb->rb_left;
    214		}
    215	}
    216}
    217
    218void drm_prime_init_file_private(struct drm_prime_file_private *prime_fpriv)
    219{
    220	mutex_init(&prime_fpriv->lock);
    221	prime_fpriv->dmabufs = RB_ROOT;
    222	prime_fpriv->handles = RB_ROOT;
    223}
    224
    225void drm_prime_destroy_file_private(struct drm_prime_file_private *prime_fpriv)
    226{
    227	/* by now drm_gem_release should've made sure the list is empty */
    228	WARN_ON(!RB_EMPTY_ROOT(&prime_fpriv->dmabufs));
    229}
    230
    231/**
    232 * drm_gem_dmabuf_export - &dma_buf export implementation for GEM
    233 * @dev: parent device for the exported dmabuf
    234 * @exp_info: the export information used by dma_buf_export()
    235 *
    236 * This wraps dma_buf_export() for use by generic GEM drivers that are using
    237 * drm_gem_dmabuf_release(). In addition to calling dma_buf_export(), we take
    238 * a reference to the &drm_device and the exported &drm_gem_object (stored in
    239 * &dma_buf_export_info.priv) which is released by drm_gem_dmabuf_release().
    240 *
    241 * Returns the new dmabuf.
    242 */
    243struct dma_buf *drm_gem_dmabuf_export(struct drm_device *dev,
    244				      struct dma_buf_export_info *exp_info)
    245{
    246	struct drm_gem_object *obj = exp_info->priv;
    247	struct dma_buf *dma_buf;
    248
    249	dma_buf = dma_buf_export(exp_info);
    250	if (IS_ERR(dma_buf))
    251		return dma_buf;
    252
    253	drm_dev_get(dev);
    254	drm_gem_object_get(obj);
    255	dma_buf->file->f_mapping = obj->dev->anon_inode->i_mapping;
    256
    257	return dma_buf;
    258}
    259EXPORT_SYMBOL(drm_gem_dmabuf_export);
    260
    261/**
    262 * drm_gem_dmabuf_release - &dma_buf release implementation for GEM
    263 * @dma_buf: buffer to be released
    264 *
    265 * Generic release function for dma_bufs exported as PRIME buffers. GEM drivers
    266 * must use this in their &dma_buf_ops structure as the release callback.
    267 * drm_gem_dmabuf_release() should be used in conjunction with
    268 * drm_gem_dmabuf_export().
    269 */
    270void drm_gem_dmabuf_release(struct dma_buf *dma_buf)
    271{
    272	struct drm_gem_object *obj = dma_buf->priv;
    273	struct drm_device *dev = obj->dev;
    274
    275	/* drop the reference on the export fd holds */
    276	drm_gem_object_put(obj);
    277
    278	drm_dev_put(dev);
    279}
    280EXPORT_SYMBOL(drm_gem_dmabuf_release);
    281
    282/**
    283 * drm_gem_prime_fd_to_handle - PRIME import function for GEM drivers
    284 * @dev: dev to export the buffer from
    285 * @file_priv: drm file-private structure
    286 * @prime_fd: fd id of the dma-buf which should be imported
    287 * @handle: pointer to storage for the handle of the imported buffer object
    288 *
    289 * This is the PRIME import function which must be used mandatorily by GEM
    290 * drivers to ensure correct lifetime management of the underlying GEM object.
    291 * The actual importing of GEM object from the dma-buf is done through the
    292 * &drm_driver.gem_prime_import driver callback.
    293 *
    294 * Returns 0 on success or a negative error code on failure.
    295 */
    296int drm_gem_prime_fd_to_handle(struct drm_device *dev,
    297			       struct drm_file *file_priv, int prime_fd,
    298			       uint32_t *handle)
    299{
    300	struct dma_buf *dma_buf;
    301	struct drm_gem_object *obj;
    302	int ret;
    303
    304	dma_buf = dma_buf_get(prime_fd);
    305	if (IS_ERR(dma_buf))
    306		return PTR_ERR(dma_buf);
    307
    308	mutex_lock(&file_priv->prime.lock);
    309
    310	ret = drm_prime_lookup_buf_handle(&file_priv->prime,
    311			dma_buf, handle);
    312	if (ret == 0)
    313		goto out_put;
    314
    315	/* never seen this one, need to import */
    316	mutex_lock(&dev->object_name_lock);
    317	if (dev->driver->gem_prime_import)
    318		obj = dev->driver->gem_prime_import(dev, dma_buf);
    319	else
    320		obj = drm_gem_prime_import(dev, dma_buf);
    321	if (IS_ERR(obj)) {
    322		ret = PTR_ERR(obj);
    323		goto out_unlock;
    324	}
    325
    326	if (obj->dma_buf) {
    327		WARN_ON(obj->dma_buf != dma_buf);
    328	} else {
    329		obj->dma_buf = dma_buf;
    330		get_dma_buf(dma_buf);
    331	}
    332
    333	/* _handle_create_tail unconditionally unlocks dev->object_name_lock. */
    334	ret = drm_gem_handle_create_tail(file_priv, obj, handle);
    335	drm_gem_object_put(obj);
    336	if (ret)
    337		goto out_put;
    338
    339	ret = drm_prime_add_buf_handle(&file_priv->prime,
    340			dma_buf, *handle);
    341	mutex_unlock(&file_priv->prime.lock);
    342	if (ret)
    343		goto fail;
    344
    345	dma_buf_put(dma_buf);
    346
    347	return 0;
    348
    349fail:
    350	/* hmm, if driver attached, we are relying on the free-object path
    351	 * to detach.. which seems ok..
    352	 */
    353	drm_gem_handle_delete(file_priv, *handle);
    354	dma_buf_put(dma_buf);
    355	return ret;
    356
    357out_unlock:
    358	mutex_unlock(&dev->object_name_lock);
    359out_put:
    360	mutex_unlock(&file_priv->prime.lock);
    361	dma_buf_put(dma_buf);
    362	return ret;
    363}
    364EXPORT_SYMBOL(drm_gem_prime_fd_to_handle);
    365
    366int drm_prime_fd_to_handle_ioctl(struct drm_device *dev, void *data,
    367				 struct drm_file *file_priv)
    368{
    369	struct drm_prime_handle *args = data;
    370
    371	if (!dev->driver->prime_fd_to_handle)
    372		return -ENOSYS;
    373
    374	return dev->driver->prime_fd_to_handle(dev, file_priv,
    375			args->fd, &args->handle);
    376}
    377
    378static struct dma_buf *export_and_register_object(struct drm_device *dev,
    379						  struct drm_gem_object *obj,
    380						  uint32_t flags)
    381{
    382	struct dma_buf *dmabuf;
    383
    384	/* prevent races with concurrent gem_close. */
    385	if (obj->handle_count == 0) {
    386		dmabuf = ERR_PTR(-ENOENT);
    387		return dmabuf;
    388	}
    389
    390	if (obj->funcs && obj->funcs->export)
    391		dmabuf = obj->funcs->export(obj, flags);
    392	else
    393		dmabuf = drm_gem_prime_export(obj, flags);
    394	if (IS_ERR(dmabuf)) {
    395		/* normally the created dma-buf takes ownership of the ref,
    396		 * but if that fails then drop the ref
    397		 */
    398		return dmabuf;
    399	}
    400
    401	/*
    402	 * Note that callers do not need to clean up the export cache
    403	 * since the check for obj->handle_count guarantees that someone
    404	 * will clean it up.
    405	 */
    406	obj->dma_buf = dmabuf;
    407	get_dma_buf(obj->dma_buf);
    408
    409	return dmabuf;
    410}
    411
    412/**
    413 * drm_gem_prime_handle_to_fd - PRIME export function for GEM drivers
    414 * @dev: dev to export the buffer from
    415 * @file_priv: drm file-private structure
    416 * @handle: buffer handle to export
    417 * @flags: flags like DRM_CLOEXEC
    418 * @prime_fd: pointer to storage for the fd id of the create dma-buf
    419 *
    420 * This is the PRIME export function which must be used mandatorily by GEM
    421 * drivers to ensure correct lifetime management of the underlying GEM object.
    422 * The actual exporting from GEM object to a dma-buf is done through the
    423 * &drm_gem_object_funcs.export callback.
    424 */
    425int drm_gem_prime_handle_to_fd(struct drm_device *dev,
    426			       struct drm_file *file_priv, uint32_t handle,
    427			       uint32_t flags,
    428			       int *prime_fd)
    429{
    430	struct drm_gem_object *obj;
    431	int ret = 0;
    432	struct dma_buf *dmabuf;
    433
    434	mutex_lock(&file_priv->prime.lock);
    435	obj = drm_gem_object_lookup(file_priv, handle);
    436	if (!obj)  {
    437		ret = -ENOENT;
    438		goto out_unlock;
    439	}
    440
    441	dmabuf = drm_prime_lookup_buf_by_handle(&file_priv->prime, handle);
    442	if (dmabuf) {
    443		get_dma_buf(dmabuf);
    444		goto out_have_handle;
    445	}
    446
    447	mutex_lock(&dev->object_name_lock);
    448	/* re-export the original imported object */
    449	if (obj->import_attach) {
    450		dmabuf = obj->import_attach->dmabuf;
    451		get_dma_buf(dmabuf);
    452		goto out_have_obj;
    453	}
    454
    455	if (obj->dma_buf) {
    456		get_dma_buf(obj->dma_buf);
    457		dmabuf = obj->dma_buf;
    458		goto out_have_obj;
    459	}
    460
    461	dmabuf = export_and_register_object(dev, obj, flags);
    462	if (IS_ERR(dmabuf)) {
    463		/* normally the created dma-buf takes ownership of the ref,
    464		 * but if that fails then drop the ref
    465		 */
    466		ret = PTR_ERR(dmabuf);
    467		mutex_unlock(&dev->object_name_lock);
    468		goto out;
    469	}
    470
    471out_have_obj:
    472	/*
    473	 * If we've exported this buffer then cheat and add it to the import list
    474	 * so we get the correct handle back. We must do this under the
    475	 * protection of dev->object_name_lock to ensure that a racing gem close
    476	 * ioctl doesn't miss to remove this buffer handle from the cache.
    477	 */
    478	ret = drm_prime_add_buf_handle(&file_priv->prime,
    479				       dmabuf, handle);
    480	mutex_unlock(&dev->object_name_lock);
    481	if (ret)
    482		goto fail_put_dmabuf;
    483
    484out_have_handle:
    485	ret = dma_buf_fd(dmabuf, flags);
    486	/*
    487	 * We must _not_ remove the buffer from the handle cache since the newly
    488	 * created dma buf is already linked in the global obj->dma_buf pointer,
    489	 * and that is invariant as long as a userspace gem handle exists.
    490	 * Closing the handle will clean out the cache anyway, so we don't leak.
    491	 */
    492	if (ret < 0) {
    493		goto fail_put_dmabuf;
    494	} else {
    495		*prime_fd = ret;
    496		ret = 0;
    497	}
    498
    499	goto out;
    500
    501fail_put_dmabuf:
    502	dma_buf_put(dmabuf);
    503out:
    504	drm_gem_object_put(obj);
    505out_unlock:
    506	mutex_unlock(&file_priv->prime.lock);
    507
    508	return ret;
    509}
    510EXPORT_SYMBOL(drm_gem_prime_handle_to_fd);
    511
    512int drm_prime_handle_to_fd_ioctl(struct drm_device *dev, void *data,
    513				 struct drm_file *file_priv)
    514{
    515	struct drm_prime_handle *args = data;
    516
    517	if (!dev->driver->prime_handle_to_fd)
    518		return -ENOSYS;
    519
    520	/* check flags are valid */
    521	if (args->flags & ~(DRM_CLOEXEC | DRM_RDWR))
    522		return -EINVAL;
    523
    524	return dev->driver->prime_handle_to_fd(dev, file_priv,
    525			args->handle, args->flags, &args->fd);
    526}
    527
    528/**
    529 * DOC: PRIME Helpers
    530 *
    531 * Drivers can implement &drm_gem_object_funcs.export and
    532 * &drm_driver.gem_prime_import in terms of simpler APIs by using the helper
    533 * functions drm_gem_prime_export() and drm_gem_prime_import(). These functions
    534 * implement dma-buf support in terms of some lower-level helpers, which are
    535 * again exported for drivers to use individually:
    536 *
    537 * Exporting buffers
    538 * ~~~~~~~~~~~~~~~~~
    539 *
    540 * Optional pinning of buffers is handled at dma-buf attach and detach time in
    541 * drm_gem_map_attach() and drm_gem_map_detach(). Backing storage itself is
    542 * handled by drm_gem_map_dma_buf() and drm_gem_unmap_dma_buf(), which relies on
    543 * &drm_gem_object_funcs.get_sg_table.
    544 *
    545 * For kernel-internal access there's drm_gem_dmabuf_vmap() and
    546 * drm_gem_dmabuf_vunmap(). Userspace mmap support is provided by
    547 * drm_gem_dmabuf_mmap().
    548 *
    549 * Note that these export helpers can only be used if the underlying backing
    550 * storage is fully coherent and either permanently pinned, or it is safe to pin
    551 * it indefinitely.
    552 *
    553 * FIXME: The underlying helper functions are named rather inconsistently.
    554 *
    555 * Importing buffers
    556 * ~~~~~~~~~~~~~~~~~
    557 *
    558 * Importing dma-bufs using drm_gem_prime_import() relies on
    559 * &drm_driver.gem_prime_import_sg_table.
    560 *
    561 * Note that similarly to the export helpers this permanently pins the
    562 * underlying backing storage. Which is ok for scanout, but is not the best
    563 * option for sharing lots of buffers for rendering.
    564 */
    565
    566/**
    567 * drm_gem_map_attach - dma_buf attach implementation for GEM
    568 * @dma_buf: buffer to attach device to
    569 * @attach: buffer attachment data
    570 *
    571 * Calls &drm_gem_object_funcs.pin for device specific handling. This can be
    572 * used as the &dma_buf_ops.attach callback. Must be used together with
    573 * drm_gem_map_detach().
    574 *
    575 * Returns 0 on success, negative error code on failure.
    576 */
    577int drm_gem_map_attach(struct dma_buf *dma_buf,
    578		       struct dma_buf_attachment *attach)
    579{
    580	struct drm_gem_object *obj = dma_buf->priv;
    581
    582	return drm_gem_pin(obj);
    583}
    584EXPORT_SYMBOL(drm_gem_map_attach);
    585
    586/**
    587 * drm_gem_map_detach - dma_buf detach implementation for GEM
    588 * @dma_buf: buffer to detach from
    589 * @attach: attachment to be detached
    590 *
    591 * Calls &drm_gem_object_funcs.pin for device specific handling.  Cleans up
    592 * &dma_buf_attachment from drm_gem_map_attach(). This can be used as the
    593 * &dma_buf_ops.detach callback.
    594 */
    595void drm_gem_map_detach(struct dma_buf *dma_buf,
    596			struct dma_buf_attachment *attach)
    597{
    598	struct drm_gem_object *obj = dma_buf->priv;
    599
    600	drm_gem_unpin(obj);
    601}
    602EXPORT_SYMBOL(drm_gem_map_detach);
    603
    604/**
    605 * drm_gem_map_dma_buf - map_dma_buf implementation for GEM
    606 * @attach: attachment whose scatterlist is to be returned
    607 * @dir: direction of DMA transfer
    608 *
    609 * Calls &drm_gem_object_funcs.get_sg_table and then maps the scatterlist. This
    610 * can be used as the &dma_buf_ops.map_dma_buf callback. Should be used together
    611 * with drm_gem_unmap_dma_buf().
    612 *
    613 * Returns:sg_table containing the scatterlist to be returned; returns ERR_PTR
    614 * on error. May return -EINTR if it is interrupted by a signal.
    615 */
    616struct sg_table *drm_gem_map_dma_buf(struct dma_buf_attachment *attach,
    617				     enum dma_data_direction dir)
    618{
    619	struct drm_gem_object *obj = attach->dmabuf->priv;
    620	struct sg_table *sgt;
    621	int ret;
    622
    623	if (WARN_ON(dir == DMA_NONE))
    624		return ERR_PTR(-EINVAL);
    625
    626	if (WARN_ON(!obj->funcs->get_sg_table))
    627		return ERR_PTR(-ENOSYS);
    628
    629	sgt = obj->funcs->get_sg_table(obj);
    630	if (IS_ERR(sgt))
    631		return sgt;
    632
    633	ret = dma_map_sgtable(attach->dev, sgt, dir,
    634			      DMA_ATTR_SKIP_CPU_SYNC);
    635	if (ret) {
    636		sg_free_table(sgt);
    637		kfree(sgt);
    638		sgt = ERR_PTR(ret);
    639	}
    640
    641	return sgt;
    642}
    643EXPORT_SYMBOL(drm_gem_map_dma_buf);
    644
    645/**
    646 * drm_gem_unmap_dma_buf - unmap_dma_buf implementation for GEM
    647 * @attach: attachment to unmap buffer from
    648 * @sgt: scatterlist info of the buffer to unmap
    649 * @dir: direction of DMA transfer
    650 *
    651 * This can be used as the &dma_buf_ops.unmap_dma_buf callback.
    652 */
    653void drm_gem_unmap_dma_buf(struct dma_buf_attachment *attach,
    654			   struct sg_table *sgt,
    655			   enum dma_data_direction dir)
    656{
    657	if (!sgt)
    658		return;
    659
    660	dma_unmap_sgtable(attach->dev, sgt, dir, DMA_ATTR_SKIP_CPU_SYNC);
    661	sg_free_table(sgt);
    662	kfree(sgt);
    663}
    664EXPORT_SYMBOL(drm_gem_unmap_dma_buf);
    665
    666/**
    667 * drm_gem_dmabuf_vmap - dma_buf vmap implementation for GEM
    668 * @dma_buf: buffer to be mapped
    669 * @map: the virtual address of the buffer
    670 *
    671 * Sets up a kernel virtual mapping. This can be used as the &dma_buf_ops.vmap
    672 * callback. Calls into &drm_gem_object_funcs.vmap for device specific handling.
    673 * The kernel virtual address is returned in map.
    674 *
    675 * Returns 0 on success or a negative errno code otherwise.
    676 */
    677int drm_gem_dmabuf_vmap(struct dma_buf *dma_buf, struct iosys_map *map)
    678{
    679	struct drm_gem_object *obj = dma_buf->priv;
    680
    681	return drm_gem_vmap(obj, map);
    682}
    683EXPORT_SYMBOL(drm_gem_dmabuf_vmap);
    684
    685/**
    686 * drm_gem_dmabuf_vunmap - dma_buf vunmap implementation for GEM
    687 * @dma_buf: buffer to be unmapped
    688 * @map: the virtual address of the buffer
    689 *
    690 * Releases a kernel virtual mapping. This can be used as the
    691 * &dma_buf_ops.vunmap callback. Calls into &drm_gem_object_funcs.vunmap for device specific handling.
    692 */
    693void drm_gem_dmabuf_vunmap(struct dma_buf *dma_buf, struct iosys_map *map)
    694{
    695	struct drm_gem_object *obj = dma_buf->priv;
    696
    697	drm_gem_vunmap(obj, map);
    698}
    699EXPORT_SYMBOL(drm_gem_dmabuf_vunmap);
    700
    701/**
    702 * drm_gem_prime_mmap - PRIME mmap function for GEM drivers
    703 * @obj: GEM object
    704 * @vma: Virtual address range
    705 *
    706 * This function sets up a userspace mapping for PRIME exported buffers using
    707 * the same codepath that is used for regular GEM buffer mapping on the DRM fd.
    708 * The fake GEM offset is added to vma->vm_pgoff and &drm_driver->fops->mmap is
    709 * called to set up the mapping.
    710 *
    711 * Drivers can use this as their &drm_driver.gem_prime_mmap callback.
    712 */
    713int drm_gem_prime_mmap(struct drm_gem_object *obj, struct vm_area_struct *vma)
    714{
    715	struct drm_file *priv;
    716	struct file *fil;
    717	int ret;
    718
    719	/* Add the fake offset */
    720	vma->vm_pgoff += drm_vma_node_start(&obj->vma_node);
    721
    722	if (obj->funcs && obj->funcs->mmap) {
    723		vma->vm_ops = obj->funcs->vm_ops;
    724
    725		drm_gem_object_get(obj);
    726		ret = obj->funcs->mmap(obj, vma);
    727		if (ret) {
    728			drm_gem_object_put(obj);
    729			return ret;
    730		}
    731		vma->vm_private_data = obj;
    732		return 0;
    733	}
    734
    735	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
    736	fil = kzalloc(sizeof(*fil), GFP_KERNEL);
    737	if (!priv || !fil) {
    738		ret = -ENOMEM;
    739		goto out;
    740	}
    741
    742	/* Used by drm_gem_mmap() to lookup the GEM object */
    743	priv->minor = obj->dev->primary;
    744	fil->private_data = priv;
    745
    746	ret = drm_vma_node_allow(&obj->vma_node, priv);
    747	if (ret)
    748		goto out;
    749
    750	ret = obj->dev->driver->fops->mmap(fil, vma);
    751
    752	drm_vma_node_revoke(&obj->vma_node, priv);
    753out:
    754	kfree(priv);
    755	kfree(fil);
    756
    757	return ret;
    758}
    759EXPORT_SYMBOL(drm_gem_prime_mmap);
    760
    761/**
    762 * drm_gem_dmabuf_mmap - dma_buf mmap implementation for GEM
    763 * @dma_buf: buffer to be mapped
    764 * @vma: virtual address range
    765 *
    766 * Provides memory mapping for the buffer. This can be used as the
    767 * &dma_buf_ops.mmap callback. It just forwards to &drm_driver.gem_prime_mmap,
    768 * which should be set to drm_gem_prime_mmap().
    769 *
    770 * FIXME: There's really no point to this wrapper, drivers which need anything
    771 * else but drm_gem_prime_mmap can roll their own &dma_buf_ops.mmap callback.
    772 *
    773 * Returns 0 on success or a negative error code on failure.
    774 */
    775int drm_gem_dmabuf_mmap(struct dma_buf *dma_buf, struct vm_area_struct *vma)
    776{
    777	struct drm_gem_object *obj = dma_buf->priv;
    778	struct drm_device *dev = obj->dev;
    779
    780	if (!dev->driver->gem_prime_mmap)
    781		return -ENOSYS;
    782
    783	return dev->driver->gem_prime_mmap(obj, vma);
    784}
    785EXPORT_SYMBOL(drm_gem_dmabuf_mmap);
    786
    787static const struct dma_buf_ops drm_gem_prime_dmabuf_ops =  {
    788	.cache_sgt_mapping = true,
    789	.attach = drm_gem_map_attach,
    790	.detach = drm_gem_map_detach,
    791	.map_dma_buf = drm_gem_map_dma_buf,
    792	.unmap_dma_buf = drm_gem_unmap_dma_buf,
    793	.release = drm_gem_dmabuf_release,
    794	.mmap = drm_gem_dmabuf_mmap,
    795	.vmap = drm_gem_dmabuf_vmap,
    796	.vunmap = drm_gem_dmabuf_vunmap,
    797};
    798
    799/**
    800 * drm_prime_pages_to_sg - converts a page array into an sg list
    801 * @dev: DRM device
    802 * @pages: pointer to the array of page pointers to convert
    803 * @nr_pages: length of the page vector
    804 *
    805 * This helper creates an sg table object from a set of pages
    806 * the driver is responsible for mapping the pages into the
    807 * importers address space for use with dma_buf itself.
    808 *
    809 * This is useful for implementing &drm_gem_object_funcs.get_sg_table.
    810 */
    811struct sg_table *drm_prime_pages_to_sg(struct drm_device *dev,
    812				       struct page **pages, unsigned int nr_pages)
    813{
    814	struct sg_table *sg;
    815	size_t max_segment = 0;
    816	int err;
    817
    818	sg = kmalloc(sizeof(struct sg_table), GFP_KERNEL);
    819	if (!sg)
    820		return ERR_PTR(-ENOMEM);
    821
    822	if (dev)
    823		max_segment = dma_max_mapping_size(dev->dev);
    824	if (max_segment == 0)
    825		max_segment = UINT_MAX;
    826	err = sg_alloc_table_from_pages_segment(sg, pages, nr_pages, 0,
    827						nr_pages << PAGE_SHIFT,
    828						max_segment, GFP_KERNEL);
    829	if (err) {
    830		kfree(sg);
    831		sg = ERR_PTR(err);
    832	}
    833	return sg;
    834}
    835EXPORT_SYMBOL(drm_prime_pages_to_sg);
    836
    837/**
    838 * drm_prime_get_contiguous_size - returns the contiguous size of the buffer
    839 * @sgt: sg_table describing the buffer to check
    840 *
    841 * This helper calculates the contiguous size in the DMA address space
    842 * of the the buffer described by the provided sg_table.
    843 *
    844 * This is useful for implementing
    845 * &drm_gem_object_funcs.gem_prime_import_sg_table.
    846 */
    847unsigned long drm_prime_get_contiguous_size(struct sg_table *sgt)
    848{
    849	dma_addr_t expected = sg_dma_address(sgt->sgl);
    850	struct scatterlist *sg;
    851	unsigned long size = 0;
    852	int i;
    853
    854	for_each_sgtable_dma_sg(sgt, sg, i) {
    855		unsigned int len = sg_dma_len(sg);
    856
    857		if (!len)
    858			break;
    859		if (sg_dma_address(sg) != expected)
    860			break;
    861		expected += len;
    862		size += len;
    863	}
    864	return size;
    865}
    866EXPORT_SYMBOL(drm_prime_get_contiguous_size);
    867
    868/**
    869 * drm_gem_prime_export - helper library implementation of the export callback
    870 * @obj: GEM object to export
    871 * @flags: flags like DRM_CLOEXEC and DRM_RDWR
    872 *
    873 * This is the implementation of the &drm_gem_object_funcs.export functions for GEM drivers
    874 * using the PRIME helpers. It is used as the default in
    875 * drm_gem_prime_handle_to_fd().
    876 */
    877struct dma_buf *drm_gem_prime_export(struct drm_gem_object *obj,
    878				     int flags)
    879{
    880	struct drm_device *dev = obj->dev;
    881	struct dma_buf_export_info exp_info = {
    882		.exp_name = KBUILD_MODNAME, /* white lie for debug */
    883		.owner = dev->driver->fops->owner,
    884		.ops = &drm_gem_prime_dmabuf_ops,
    885		.size = obj->size,
    886		.flags = flags,
    887		.priv = obj,
    888		.resv = obj->resv,
    889	};
    890
    891	return drm_gem_dmabuf_export(dev, &exp_info);
    892}
    893EXPORT_SYMBOL(drm_gem_prime_export);
    894
    895/**
    896 * drm_gem_prime_import_dev - core implementation of the import callback
    897 * @dev: drm_device to import into
    898 * @dma_buf: dma-buf object to import
    899 * @attach_dev: struct device to dma_buf attach
    900 *
    901 * This is the core of drm_gem_prime_import(). It's designed to be called by
    902 * drivers who want to use a different device structure than &drm_device.dev for
    903 * attaching via dma_buf. This function calls
    904 * &drm_driver.gem_prime_import_sg_table internally.
    905 *
    906 * Drivers must arrange to call drm_prime_gem_destroy() from their
    907 * &drm_gem_object_funcs.free hook when using this function.
    908 */
    909struct drm_gem_object *drm_gem_prime_import_dev(struct drm_device *dev,
    910					    struct dma_buf *dma_buf,
    911					    struct device *attach_dev)
    912{
    913	struct dma_buf_attachment *attach;
    914	struct sg_table *sgt;
    915	struct drm_gem_object *obj;
    916	int ret;
    917
    918	if (dma_buf->ops == &drm_gem_prime_dmabuf_ops) {
    919		obj = dma_buf->priv;
    920		if (obj->dev == dev) {
    921			/*
    922			 * Importing dmabuf exported from out own gem increases
    923			 * refcount on gem itself instead of f_count of dmabuf.
    924			 */
    925			drm_gem_object_get(obj);
    926			return obj;
    927		}
    928	}
    929
    930	if (!dev->driver->gem_prime_import_sg_table)
    931		return ERR_PTR(-EINVAL);
    932
    933	attach = dma_buf_attach(dma_buf, attach_dev);
    934	if (IS_ERR(attach))
    935		return ERR_CAST(attach);
    936
    937	get_dma_buf(dma_buf);
    938
    939	sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
    940	if (IS_ERR(sgt)) {
    941		ret = PTR_ERR(sgt);
    942		goto fail_detach;
    943	}
    944
    945	obj = dev->driver->gem_prime_import_sg_table(dev, attach, sgt);
    946	if (IS_ERR(obj)) {
    947		ret = PTR_ERR(obj);
    948		goto fail_unmap;
    949	}
    950
    951	obj->import_attach = attach;
    952	obj->resv = dma_buf->resv;
    953
    954	return obj;
    955
    956fail_unmap:
    957	dma_buf_unmap_attachment(attach, sgt, DMA_BIDIRECTIONAL);
    958fail_detach:
    959	dma_buf_detach(dma_buf, attach);
    960	dma_buf_put(dma_buf);
    961
    962	return ERR_PTR(ret);
    963}
    964EXPORT_SYMBOL(drm_gem_prime_import_dev);
    965
    966/**
    967 * drm_gem_prime_import - helper library implementation of the import callback
    968 * @dev: drm_device to import into
    969 * @dma_buf: dma-buf object to import
    970 *
    971 * This is the implementation of the gem_prime_import functions for GEM drivers
    972 * using the PRIME helpers. Drivers can use this as their
    973 * &drm_driver.gem_prime_import implementation. It is used as the default
    974 * implementation in drm_gem_prime_fd_to_handle().
    975 *
    976 * Drivers must arrange to call drm_prime_gem_destroy() from their
    977 * &drm_gem_object_funcs.free hook when using this function.
    978 */
    979struct drm_gem_object *drm_gem_prime_import(struct drm_device *dev,
    980					    struct dma_buf *dma_buf)
    981{
    982	return drm_gem_prime_import_dev(dev, dma_buf, dev->dev);
    983}
    984EXPORT_SYMBOL(drm_gem_prime_import);
    985
    986/**
    987 * drm_prime_sg_to_page_array - convert an sg table into a page array
    988 * @sgt: scatter-gather table to convert
    989 * @pages: array of page pointers to store the pages in
    990 * @max_entries: size of the passed-in array
    991 *
    992 * Exports an sg table into an array of pages.
    993 *
    994 * This function is deprecated and strongly discouraged to be used.
    995 * The page array is only useful for page faults and those can corrupt fields
    996 * in the struct page if they are not handled by the exporting driver.
    997 */
    998int __deprecated drm_prime_sg_to_page_array(struct sg_table *sgt,
    999					    struct page **pages,
   1000					    int max_entries)
   1001{
   1002	struct sg_page_iter page_iter;
   1003	struct page **p = pages;
   1004
   1005	for_each_sgtable_page(sgt, &page_iter, 0) {
   1006		if (WARN_ON(p - pages >= max_entries))
   1007			return -1;
   1008		*p++ = sg_page_iter_page(&page_iter);
   1009	}
   1010	return 0;
   1011}
   1012EXPORT_SYMBOL(drm_prime_sg_to_page_array);
   1013
   1014/**
   1015 * drm_prime_sg_to_dma_addr_array - convert an sg table into a dma addr array
   1016 * @sgt: scatter-gather table to convert
   1017 * @addrs: array to store the dma bus address of each page
   1018 * @max_entries: size of both the passed-in arrays
   1019 *
   1020 * Exports an sg table into an array of addresses.
   1021 *
   1022 * Drivers should use this in their &drm_driver.gem_prime_import_sg_table
   1023 * implementation.
   1024 */
   1025int drm_prime_sg_to_dma_addr_array(struct sg_table *sgt, dma_addr_t *addrs,
   1026				   int max_entries)
   1027{
   1028	struct sg_dma_page_iter dma_iter;
   1029	dma_addr_t *a = addrs;
   1030
   1031	for_each_sgtable_dma_page(sgt, &dma_iter, 0) {
   1032		if (WARN_ON(a - addrs >= max_entries))
   1033			return -1;
   1034		*a++ = sg_page_iter_dma_address(&dma_iter);
   1035	}
   1036	return 0;
   1037}
   1038EXPORT_SYMBOL(drm_prime_sg_to_dma_addr_array);
   1039
   1040/**
   1041 * drm_prime_gem_destroy - helper to clean up a PRIME-imported GEM object
   1042 * @obj: GEM object which was created from a dma-buf
   1043 * @sg: the sg-table which was pinned at import time
   1044 *
   1045 * This is the cleanup functions which GEM drivers need to call when they use
   1046 * drm_gem_prime_import() or drm_gem_prime_import_dev() to import dma-bufs.
   1047 */
   1048void drm_prime_gem_destroy(struct drm_gem_object *obj, struct sg_table *sg)
   1049{
   1050	struct dma_buf_attachment *attach;
   1051	struct dma_buf *dma_buf;
   1052
   1053	attach = obj->import_attach;
   1054	if (sg)
   1055		dma_buf_unmap_attachment(attach, sg, DMA_BIDIRECTIONAL);
   1056	dma_buf = attach->dmabuf;
   1057	dma_buf_detach(attach->dmabuf, attach);
   1058	/* remove the reference */
   1059	dma_buf_put(dma_buf);
   1060}
   1061EXPORT_SYMBOL(drm_prime_gem_destroy);