cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

drm_vblank.c (69361B)


      1/*
      2 * drm_irq.c IRQ and vblank support
      3 *
      4 * \author Rickard E. (Rik) Faith <faith@valinux.com>
      5 * \author Gareth Hughes <gareth@valinux.com>
      6 *
      7 * Permission is hereby granted, free of charge, to any person obtaining a
      8 * copy of this software and associated documentation files (the "Software"),
      9 * to deal in the Software without restriction, including without limitation
     10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     11 * and/or sell copies of the Software, and to permit persons to whom the
     12 * Software is furnished to do so, subject to the following conditions:
     13 *
     14 * The above copyright notice and this permission notice (including the next
     15 * paragraph) shall be included in all copies or substantial portions of the
     16 * Software.
     17 *
     18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     21 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
     22 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
     23 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
     24 * OTHER DEALINGS IN THE SOFTWARE.
     25 */
     26
     27#include <linux/export.h>
     28#include <linux/kthread.h>
     29#include <linux/moduleparam.h>
     30
     31#include <drm/drm_crtc.h>
     32#include <drm/drm_drv.h>
     33#include <drm/drm_framebuffer.h>
     34#include <drm/drm_managed.h>
     35#include <drm/drm_modeset_helper_vtables.h>
     36#include <drm/drm_print.h>
     37#include <drm/drm_vblank.h>
     38
     39#include "drm_internal.h"
     40#include "drm_trace.h"
     41
     42/**
     43 * DOC: vblank handling
     44 *
     45 * From the computer's perspective, every time the monitor displays
     46 * a new frame the scanout engine has "scanned out" the display image
     47 * from top to bottom, one row of pixels at a time. The current row
     48 * of pixels is referred to as the current scanline.
     49 *
     50 * In addition to the display's visible area, there's usually a couple of
     51 * extra scanlines which aren't actually displayed on the screen.
     52 * These extra scanlines don't contain image data and are occasionally used
     53 * for features like audio and infoframes. The region made up of these
     54 * scanlines is referred to as the vertical blanking region, or vblank for
     55 * short.
     56 *
     57 * For historical reference, the vertical blanking period was designed to
     58 * give the electron gun (on CRTs) enough time to move back to the top of
     59 * the screen to start scanning out the next frame. Similar for horizontal
     60 * blanking periods. They were designed to give the electron gun enough
     61 * time to move back to the other side of the screen to start scanning the
     62 * next scanline.
     63 *
     64 * ::
     65 *
     66 *
     67 *    physical →   ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽
     68 *    top of      |                                        |
     69 *    display     |                                        |
     70 *                |               New frame                |
     71 *                |                                        |
     72 *                |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓|
     73 *                |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~| ← Scanline,
     74 *                |↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓|   updates the
     75 *                |                                        |   frame as it
     76 *                |                                        |   travels down
     77 *                |                                        |   ("scan out")
     78 *                |               Old frame                |
     79 *                |                                        |
     80 *                |                                        |
     81 *                |                                        |
     82 *                |                                        |   physical
     83 *                |                                        |   bottom of
     84 *    vertical    |⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽| ← display
     85 *    blanking    ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆
     86 *    region   →  ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆
     87 *                ┆xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx┆
     88 *    start of →   ⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽
     89 *    new frame
     90 *
     91 * "Physical top of display" is the reference point for the high-precision/
     92 * corrected timestamp.
     93 *
     94 * On a lot of display hardware, programming needs to take effect during the
     95 * vertical blanking period so that settings like gamma, the image buffer
     96 * buffer to be scanned out, etc. can safely be changed without showing
     97 * any visual artifacts on the screen. In some unforgiving hardware, some of
     98 * this programming has to both start and end in the same vblank. To help
     99 * with the timing of the hardware programming, an interrupt is usually
    100 * available to notify the driver when it can start the updating of registers.
    101 * The interrupt is in this context named the vblank interrupt.
    102 *
    103 * The vblank interrupt may be fired at different points depending on the
    104 * hardware. Some hardware implementations will fire the interrupt when the
    105 * new frame start, other implementations will fire the interrupt at different
    106 * points in time.
    107 *
    108 * Vertical blanking plays a major role in graphics rendering. To achieve
    109 * tear-free display, users must synchronize page flips and/or rendering to
    110 * vertical blanking. The DRM API offers ioctls to perform page flips
    111 * synchronized to vertical blanking and wait for vertical blanking.
    112 *
    113 * The DRM core handles most of the vertical blanking management logic, which
    114 * involves filtering out spurious interrupts, keeping race-free blanking
    115 * counters, coping with counter wrap-around and resets and keeping use counts.
    116 * It relies on the driver to generate vertical blanking interrupts and
    117 * optionally provide a hardware vertical blanking counter.
    118 *
    119 * Drivers must initialize the vertical blanking handling core with a call to
    120 * drm_vblank_init(). Minimally, a driver needs to implement
    121 * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call
    122 * drm_crtc_handle_vblank() in its vblank interrupt handler for working vblank
    123 * support.
    124 *
    125 * Vertical blanking interrupts can be enabled by the DRM core or by drivers
    126 * themselves (for instance to handle page flipping operations).  The DRM core
    127 * maintains a vertical blanking use count to ensure that the interrupts are not
    128 * disabled while a user still needs them. To increment the use count, drivers
    129 * call drm_crtc_vblank_get() and release the vblank reference again with
    130 * drm_crtc_vblank_put(). In between these two calls vblank interrupts are
    131 * guaranteed to be enabled.
    132 *
    133 * On many hardware disabling the vblank interrupt cannot be done in a race-free
    134 * manner, see &drm_driver.vblank_disable_immediate and
    135 * &drm_driver.max_vblank_count. In that case the vblank core only disables the
    136 * vblanks after a timer has expired, which can be configured through the
    137 * ``vblankoffdelay`` module parameter.
    138 *
    139 * Drivers for hardware without support for vertical-blanking interrupts
    140 * must not call drm_vblank_init(). For such drivers, atomic helpers will
    141 * automatically generate fake vblank events as part of the display update.
    142 * This functionality also can be controlled by the driver by enabling and
    143 * disabling struct drm_crtc_state.no_vblank.
    144 */
    145
    146/* Retry timestamp calculation up to 3 times to satisfy
    147 * drm_timestamp_precision before giving up.
    148 */
    149#define DRM_TIMESTAMP_MAXRETRIES 3
    150
    151/* Threshold in nanoseconds for detection of redundant
    152 * vblank irq in drm_handle_vblank(). 1 msec should be ok.
    153 */
    154#define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000
    155
    156static bool
    157drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
    158			  ktime_t *tvblank, bool in_vblank_irq);
    159
    160static unsigned int drm_timestamp_precision = 20;  /* Default to 20 usecs. */
    161
    162static int drm_vblank_offdelay = 5000;    /* Default to 5000 msecs. */
    163
    164module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600);
    165module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600);
    166MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)");
    167MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]");
    168
    169static void store_vblank(struct drm_device *dev, unsigned int pipe,
    170			 u32 vblank_count_inc,
    171			 ktime_t t_vblank, u32 last)
    172{
    173	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
    174
    175	assert_spin_locked(&dev->vblank_time_lock);
    176
    177	vblank->last = last;
    178
    179	write_seqlock(&vblank->seqlock);
    180	vblank->time = t_vblank;
    181	atomic64_add(vblank_count_inc, &vblank->count);
    182	write_sequnlock(&vblank->seqlock);
    183}
    184
    185static u32 drm_max_vblank_count(struct drm_device *dev, unsigned int pipe)
    186{
    187	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
    188
    189	return vblank->max_vblank_count ?: dev->max_vblank_count;
    190}
    191
    192/*
    193 * "No hw counter" fallback implementation of .get_vblank_counter() hook,
    194 * if there is no usable hardware frame counter available.
    195 */
    196static u32 drm_vblank_no_hw_counter(struct drm_device *dev, unsigned int pipe)
    197{
    198	drm_WARN_ON_ONCE(dev, drm_max_vblank_count(dev, pipe) != 0);
    199	return 0;
    200}
    201
    202static u32 __get_vblank_counter(struct drm_device *dev, unsigned int pipe)
    203{
    204	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
    205		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
    206
    207		if (drm_WARN_ON(dev, !crtc))
    208			return 0;
    209
    210		if (crtc->funcs->get_vblank_counter)
    211			return crtc->funcs->get_vblank_counter(crtc);
    212	}
    213#ifdef CONFIG_DRM_LEGACY
    214	else if (dev->driver->get_vblank_counter) {
    215		return dev->driver->get_vblank_counter(dev, pipe);
    216	}
    217#endif
    218
    219	return drm_vblank_no_hw_counter(dev, pipe);
    220}
    221
    222/*
    223 * Reset the stored timestamp for the current vblank count to correspond
    224 * to the last vblank occurred.
    225 *
    226 * Only to be called from drm_crtc_vblank_on().
    227 *
    228 * Note: caller must hold &drm_device.vbl_lock since this reads & writes
    229 * device vblank fields.
    230 */
    231static void drm_reset_vblank_timestamp(struct drm_device *dev, unsigned int pipe)
    232{
    233	u32 cur_vblank;
    234	bool rc;
    235	ktime_t t_vblank;
    236	int count = DRM_TIMESTAMP_MAXRETRIES;
    237
    238	spin_lock(&dev->vblank_time_lock);
    239
    240	/*
    241	 * sample the current counter to avoid random jumps
    242	 * when drm_vblank_enable() applies the diff
    243	 */
    244	do {
    245		cur_vblank = __get_vblank_counter(dev, pipe);
    246		rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
    247	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
    248
    249	/*
    250	 * Only reinitialize corresponding vblank timestamp if high-precision query
    251	 * available and didn't fail. Otherwise reinitialize delayed at next vblank
    252	 * interrupt and assign 0 for now, to mark the vblanktimestamp as invalid.
    253	 */
    254	if (!rc)
    255		t_vblank = 0;
    256
    257	/*
    258	 * +1 to make sure user will never see the same
    259	 * vblank counter value before and after a modeset
    260	 */
    261	store_vblank(dev, pipe, 1, t_vblank, cur_vblank);
    262
    263	spin_unlock(&dev->vblank_time_lock);
    264}
    265
    266/*
    267 * Call back into the driver to update the appropriate vblank counter
    268 * (specified by @pipe).  Deal with wraparound, if it occurred, and
    269 * update the last read value so we can deal with wraparound on the next
    270 * call if necessary.
    271 *
    272 * Only necessary when going from off->on, to account for frames we
    273 * didn't get an interrupt for.
    274 *
    275 * Note: caller must hold &drm_device.vbl_lock since this reads & writes
    276 * device vblank fields.
    277 */
    278static void drm_update_vblank_count(struct drm_device *dev, unsigned int pipe,
    279				    bool in_vblank_irq)
    280{
    281	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
    282	u32 cur_vblank, diff;
    283	bool rc;
    284	ktime_t t_vblank;
    285	int count = DRM_TIMESTAMP_MAXRETRIES;
    286	int framedur_ns = vblank->framedur_ns;
    287	u32 max_vblank_count = drm_max_vblank_count(dev, pipe);
    288
    289	/*
    290	 * Interrupts were disabled prior to this call, so deal with counter
    291	 * wrap if needed.
    292	 * NOTE!  It's possible we lost a full dev->max_vblank_count + 1 events
    293	 * here if the register is small or we had vblank interrupts off for
    294	 * a long time.
    295	 *
    296	 * We repeat the hardware vblank counter & timestamp query until
    297	 * we get consistent results. This to prevent races between gpu
    298	 * updating its hardware counter while we are retrieving the
    299	 * corresponding vblank timestamp.
    300	 */
    301	do {
    302		cur_vblank = __get_vblank_counter(dev, pipe);
    303		rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, in_vblank_irq);
    304	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
    305
    306	if (max_vblank_count) {
    307		/* trust the hw counter when it's around */
    308		diff = (cur_vblank - vblank->last) & max_vblank_count;
    309	} else if (rc && framedur_ns) {
    310		u64 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
    311
    312		/*
    313		 * Figure out how many vblanks we've missed based
    314		 * on the difference in the timestamps and the
    315		 * frame/field duration.
    316		 */
    317
    318		drm_dbg_vbl(dev, "crtc %u: Calculating number of vblanks."
    319			    " diff_ns = %lld, framedur_ns = %d)\n",
    320			    pipe, (long long)diff_ns, framedur_ns);
    321
    322		diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
    323
    324		if (diff == 0 && in_vblank_irq)
    325			drm_dbg_vbl(dev, "crtc %u: Redundant vblirq ignored\n",
    326				    pipe);
    327	} else {
    328		/* some kind of default for drivers w/o accurate vbl timestamping */
    329		diff = in_vblank_irq ? 1 : 0;
    330	}
    331
    332	/*
    333	 * Within a drm_vblank_pre_modeset - drm_vblank_post_modeset
    334	 * interval? If so then vblank irqs keep running and it will likely
    335	 * happen that the hardware vblank counter is not trustworthy as it
    336	 * might reset at some point in that interval and vblank timestamps
    337	 * are not trustworthy either in that interval. Iow. this can result
    338	 * in a bogus diff >> 1 which must be avoided as it would cause
    339	 * random large forward jumps of the software vblank counter.
    340	 */
    341	if (diff > 1 && (vblank->inmodeset & 0x2)) {
    342		drm_dbg_vbl(dev,
    343			    "clamping vblank bump to 1 on crtc %u: diffr=%u"
    344			    " due to pre-modeset.\n", pipe, diff);
    345		diff = 1;
    346	}
    347
    348	drm_dbg_vbl(dev, "updating vblank count on crtc %u:"
    349		    " current=%llu, diff=%u, hw=%u hw_last=%u\n",
    350		    pipe, (unsigned long long)atomic64_read(&vblank->count),
    351		    diff, cur_vblank, vblank->last);
    352
    353	if (diff == 0) {
    354		drm_WARN_ON_ONCE(dev, cur_vblank != vblank->last);
    355		return;
    356	}
    357
    358	/*
    359	 * Only reinitialize corresponding vblank timestamp if high-precision query
    360	 * available and didn't fail, or we were called from the vblank interrupt.
    361	 * Otherwise reinitialize delayed at next vblank interrupt and assign 0
    362	 * for now, to mark the vblanktimestamp as invalid.
    363	 */
    364	if (!rc && !in_vblank_irq)
    365		t_vblank = 0;
    366
    367	store_vblank(dev, pipe, diff, t_vblank, cur_vblank);
    368}
    369
    370u64 drm_vblank_count(struct drm_device *dev, unsigned int pipe)
    371{
    372	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
    373	u64 count;
    374
    375	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
    376		return 0;
    377
    378	count = atomic64_read(&vblank->count);
    379
    380	/*
    381	 * This read barrier corresponds to the implicit write barrier of the
    382	 * write seqlock in store_vblank(). Note that this is the only place
    383	 * where we need an explicit barrier, since all other access goes
    384	 * through drm_vblank_count_and_time(), which already has the required
    385	 * read barrier curtesy of the read seqlock.
    386	 */
    387	smp_rmb();
    388
    389	return count;
    390}
    391
    392/**
    393 * drm_crtc_accurate_vblank_count - retrieve the master vblank counter
    394 * @crtc: which counter to retrieve
    395 *
    396 * This function is similar to drm_crtc_vblank_count() but this function
    397 * interpolates to handle a race with vblank interrupts using the high precision
    398 * timestamping support.
    399 *
    400 * This is mostly useful for hardware that can obtain the scanout position, but
    401 * doesn't have a hardware frame counter.
    402 */
    403u64 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc)
    404{
    405	struct drm_device *dev = crtc->dev;
    406	unsigned int pipe = drm_crtc_index(crtc);
    407	u64 vblank;
    408	unsigned long flags;
    409
    410	drm_WARN_ONCE(dev, drm_debug_enabled(DRM_UT_VBL) &&
    411		      !crtc->funcs->get_vblank_timestamp,
    412		      "This function requires support for accurate vblank timestamps.");
    413
    414	spin_lock_irqsave(&dev->vblank_time_lock, flags);
    415
    416	drm_update_vblank_count(dev, pipe, false);
    417	vblank = drm_vblank_count(dev, pipe);
    418
    419	spin_unlock_irqrestore(&dev->vblank_time_lock, flags);
    420
    421	return vblank;
    422}
    423EXPORT_SYMBOL(drm_crtc_accurate_vblank_count);
    424
    425static void __disable_vblank(struct drm_device *dev, unsigned int pipe)
    426{
    427	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
    428		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
    429
    430		if (drm_WARN_ON(dev, !crtc))
    431			return;
    432
    433		if (crtc->funcs->disable_vblank)
    434			crtc->funcs->disable_vblank(crtc);
    435	}
    436#ifdef CONFIG_DRM_LEGACY
    437	else {
    438		dev->driver->disable_vblank(dev, pipe);
    439	}
    440#endif
    441}
    442
    443/*
    444 * Disable vblank irq's on crtc, make sure that last vblank count
    445 * of hardware and corresponding consistent software vblank counter
    446 * are preserved, even if there are any spurious vblank irq's after
    447 * disable.
    448 */
    449void drm_vblank_disable_and_save(struct drm_device *dev, unsigned int pipe)
    450{
    451	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
    452	unsigned long irqflags;
    453
    454	assert_spin_locked(&dev->vbl_lock);
    455
    456	/* Prevent vblank irq processing while disabling vblank irqs,
    457	 * so no updates of timestamps or count can happen after we've
    458	 * disabled. Needed to prevent races in case of delayed irq's.
    459	 */
    460	spin_lock_irqsave(&dev->vblank_time_lock, irqflags);
    461
    462	/*
    463	 * Update vblank count and disable vblank interrupts only if the
    464	 * interrupts were enabled. This avoids calling the ->disable_vblank()
    465	 * operation in atomic context with the hardware potentially runtime
    466	 * suspended.
    467	 */
    468	if (!vblank->enabled)
    469		goto out;
    470
    471	/*
    472	 * Update the count and timestamp to maintain the
    473	 * appearance that the counter has been ticking all along until
    474	 * this time. This makes the count account for the entire time
    475	 * between drm_crtc_vblank_on() and drm_crtc_vblank_off().
    476	 */
    477	drm_update_vblank_count(dev, pipe, false);
    478	__disable_vblank(dev, pipe);
    479	vblank->enabled = false;
    480
    481out:
    482	spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags);
    483}
    484
    485static void vblank_disable_fn(struct timer_list *t)
    486{
    487	struct drm_vblank_crtc *vblank = from_timer(vblank, t, disable_timer);
    488	struct drm_device *dev = vblank->dev;
    489	unsigned int pipe = vblank->pipe;
    490	unsigned long irqflags;
    491
    492	spin_lock_irqsave(&dev->vbl_lock, irqflags);
    493	if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) {
    494		drm_dbg_core(dev, "disabling vblank on crtc %u\n", pipe);
    495		drm_vblank_disable_and_save(dev, pipe);
    496	}
    497	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
    498}
    499
    500static void drm_vblank_init_release(struct drm_device *dev, void *ptr)
    501{
    502	struct drm_vblank_crtc *vblank = ptr;
    503
    504	drm_WARN_ON(dev, READ_ONCE(vblank->enabled) &&
    505		    drm_core_check_feature(dev, DRIVER_MODESET));
    506
    507	drm_vblank_destroy_worker(vblank);
    508	del_timer_sync(&vblank->disable_timer);
    509}
    510
    511/**
    512 * drm_vblank_init - initialize vblank support
    513 * @dev: DRM device
    514 * @num_crtcs: number of CRTCs supported by @dev
    515 *
    516 * This function initializes vblank support for @num_crtcs display pipelines.
    517 * Cleanup is handled automatically through a cleanup function added with
    518 * drmm_add_action_or_reset().
    519 *
    520 * Returns:
    521 * Zero on success or a negative error code on failure.
    522 */
    523int drm_vblank_init(struct drm_device *dev, unsigned int num_crtcs)
    524{
    525	int ret;
    526	unsigned int i;
    527
    528	spin_lock_init(&dev->vbl_lock);
    529	spin_lock_init(&dev->vblank_time_lock);
    530
    531	dev->vblank = drmm_kcalloc(dev, num_crtcs, sizeof(*dev->vblank), GFP_KERNEL);
    532	if (!dev->vblank)
    533		return -ENOMEM;
    534
    535	dev->num_crtcs = num_crtcs;
    536
    537	for (i = 0; i < num_crtcs; i++) {
    538		struct drm_vblank_crtc *vblank = &dev->vblank[i];
    539
    540		vblank->dev = dev;
    541		vblank->pipe = i;
    542		init_waitqueue_head(&vblank->queue);
    543		timer_setup(&vblank->disable_timer, vblank_disable_fn, 0);
    544		seqlock_init(&vblank->seqlock);
    545
    546		ret = drmm_add_action_or_reset(dev, drm_vblank_init_release,
    547					       vblank);
    548		if (ret)
    549			return ret;
    550
    551		ret = drm_vblank_worker_init(vblank);
    552		if (ret)
    553			return ret;
    554	}
    555
    556	return 0;
    557}
    558EXPORT_SYMBOL(drm_vblank_init);
    559
    560/**
    561 * drm_dev_has_vblank - test if vblanking has been initialized for
    562 *                      a device
    563 * @dev: the device
    564 *
    565 * Drivers may call this function to test if vblank support is
    566 * initialized for a device. For most hardware this means that vblanking
    567 * can also be enabled.
    568 *
    569 * Atomic helpers use this function to initialize
    570 * &drm_crtc_state.no_vblank. See also drm_atomic_helper_check_modeset().
    571 *
    572 * Returns:
    573 * True if vblanking has been initialized for the given device, false
    574 * otherwise.
    575 */
    576bool drm_dev_has_vblank(const struct drm_device *dev)
    577{
    578	return dev->num_crtcs != 0;
    579}
    580EXPORT_SYMBOL(drm_dev_has_vblank);
    581
    582/**
    583 * drm_crtc_vblank_waitqueue - get vblank waitqueue for the CRTC
    584 * @crtc: which CRTC's vblank waitqueue to retrieve
    585 *
    586 * This function returns a pointer to the vblank waitqueue for the CRTC.
    587 * Drivers can use this to implement vblank waits using wait_event() and related
    588 * functions.
    589 */
    590wait_queue_head_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc)
    591{
    592	return &crtc->dev->vblank[drm_crtc_index(crtc)].queue;
    593}
    594EXPORT_SYMBOL(drm_crtc_vblank_waitqueue);
    595
    596
    597/**
    598 * drm_calc_timestamping_constants - calculate vblank timestamp constants
    599 * @crtc: drm_crtc whose timestamp constants should be updated.
    600 * @mode: display mode containing the scanout timings
    601 *
    602 * Calculate and store various constants which are later needed by vblank and
    603 * swap-completion timestamping, e.g, by
    604 * drm_crtc_vblank_helper_get_vblank_timestamp(). They are derived from
    605 * CRTC's true scanout timing, so they take things like panel scaling or
    606 * other adjustments into account.
    607 */
    608void drm_calc_timestamping_constants(struct drm_crtc *crtc,
    609				     const struct drm_display_mode *mode)
    610{
    611	struct drm_device *dev = crtc->dev;
    612	unsigned int pipe = drm_crtc_index(crtc);
    613	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
    614	int linedur_ns = 0, framedur_ns = 0;
    615	int dotclock = mode->crtc_clock;
    616
    617	if (!drm_dev_has_vblank(dev))
    618		return;
    619
    620	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
    621		return;
    622
    623	/* Valid dotclock? */
    624	if (dotclock > 0) {
    625		int frame_size = mode->crtc_htotal * mode->crtc_vtotal;
    626
    627		/*
    628		 * Convert scanline length in pixels and video
    629		 * dot clock to line duration and frame duration
    630		 * in nanoseconds:
    631		 */
    632		linedur_ns  = div_u64((u64) mode->crtc_htotal * 1000000, dotclock);
    633		framedur_ns = div_u64((u64) frame_size * 1000000, dotclock);
    634
    635		/*
    636		 * Fields of interlaced scanout modes are only half a frame duration.
    637		 */
    638		if (mode->flags & DRM_MODE_FLAG_INTERLACE)
    639			framedur_ns /= 2;
    640	} else {
    641		drm_err(dev, "crtc %u: Can't calculate constants, dotclock = 0!\n",
    642			crtc->base.id);
    643	}
    644
    645	vblank->linedur_ns  = linedur_ns;
    646	vblank->framedur_ns = framedur_ns;
    647	drm_mode_copy(&vblank->hwmode, mode);
    648
    649	drm_dbg_core(dev,
    650		     "crtc %u: hwmode: htotal %d, vtotal %d, vdisplay %d\n",
    651		     crtc->base.id, mode->crtc_htotal,
    652		     mode->crtc_vtotal, mode->crtc_vdisplay);
    653	drm_dbg_core(dev, "crtc %u: clock %d kHz framedur %d linedur %d\n",
    654		     crtc->base.id, dotclock, framedur_ns, linedur_ns);
    655}
    656EXPORT_SYMBOL(drm_calc_timestamping_constants);
    657
    658/**
    659 * drm_crtc_vblank_helper_get_vblank_timestamp_internal - precise vblank
    660 *                                                        timestamp helper
    661 * @crtc: CRTC whose vblank timestamp to retrieve
    662 * @max_error: Desired maximum allowable error in timestamps (nanosecs)
    663 *             On return contains true maximum error of timestamp
    664 * @vblank_time: Pointer to time which should receive the timestamp
    665 * @in_vblank_irq:
    666 *     True when called from drm_crtc_handle_vblank().  Some drivers
    667 *     need to apply some workarounds for gpu-specific vblank irq quirks
    668 *     if flag is set.
    669 * @get_scanout_position:
    670 *     Callback function to retrieve the scanout position. See
    671 *     @struct drm_crtc_helper_funcs.get_scanout_position.
    672 *
    673 * Implements calculation of exact vblank timestamps from given drm_display_mode
    674 * timings and current video scanout position of a CRTC.
    675 *
    676 * The current implementation only handles standard video modes. For double scan
    677 * and interlaced modes the driver is supposed to adjust the hardware mode
    678 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to
    679 * match the scanout position reported.
    680 *
    681 * Note that atomic drivers must call drm_calc_timestamping_constants() before
    682 * enabling a CRTC. The atomic helpers already take care of that in
    683 * drm_atomic_helper_calc_timestamping_constants().
    684 *
    685 * Returns:
    686 *
    687 * Returns true on success, and false on failure, i.e. when no accurate
    688 * timestamp could be acquired.
    689 */
    690bool
    691drm_crtc_vblank_helper_get_vblank_timestamp_internal(
    692	struct drm_crtc *crtc, int *max_error, ktime_t *vblank_time,
    693	bool in_vblank_irq,
    694	drm_vblank_get_scanout_position_func get_scanout_position)
    695{
    696	struct drm_device *dev = crtc->dev;
    697	unsigned int pipe = crtc->index;
    698	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
    699	struct timespec64 ts_etime, ts_vblank_time;
    700	ktime_t stime, etime;
    701	bool vbl_status;
    702	const struct drm_display_mode *mode;
    703	int vpos, hpos, i;
    704	int delta_ns, duration_ns;
    705
    706	if (pipe >= dev->num_crtcs) {
    707		drm_err(dev, "Invalid crtc %u\n", pipe);
    708		return false;
    709	}
    710
    711	/* Scanout position query not supported? Should not happen. */
    712	if (!get_scanout_position) {
    713		drm_err(dev, "Called from CRTC w/o get_scanout_position()!?\n");
    714		return false;
    715	}
    716
    717	if (drm_drv_uses_atomic_modeset(dev))
    718		mode = &vblank->hwmode;
    719	else
    720		mode = &crtc->hwmode;
    721
    722	/* If mode timing undefined, just return as no-op:
    723	 * Happens during initial modesetting of a crtc.
    724	 */
    725	if (mode->crtc_clock == 0) {
    726		drm_dbg_core(dev, "crtc %u: Noop due to uninitialized mode.\n",
    727			     pipe);
    728		drm_WARN_ON_ONCE(dev, drm_drv_uses_atomic_modeset(dev));
    729		return false;
    730	}
    731
    732	/* Get current scanout position with system timestamp.
    733	 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times
    734	 * if single query takes longer than max_error nanoseconds.
    735	 *
    736	 * This guarantees a tight bound on maximum error if
    737	 * code gets preempted or delayed for some reason.
    738	 */
    739	for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) {
    740		/*
    741		 * Get vertical and horizontal scanout position vpos, hpos,
    742		 * and bounding timestamps stime, etime, pre/post query.
    743		 */
    744		vbl_status = get_scanout_position(crtc, in_vblank_irq,
    745						  &vpos, &hpos,
    746						  &stime, &etime,
    747						  mode);
    748
    749		/* Return as no-op if scanout query unsupported or failed. */
    750		if (!vbl_status) {
    751			drm_dbg_core(dev,
    752				     "crtc %u : scanoutpos query failed.\n",
    753				     pipe);
    754			return false;
    755		}
    756
    757		/* Compute uncertainty in timestamp of scanout position query. */
    758		duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime);
    759
    760		/* Accept result with <  max_error nsecs timing uncertainty. */
    761		if (duration_ns <= *max_error)
    762			break;
    763	}
    764
    765	/* Noisy system timing? */
    766	if (i == DRM_TIMESTAMP_MAXRETRIES) {
    767		drm_dbg_core(dev,
    768			     "crtc %u: Noisy timestamp %d us > %d us [%d reps].\n",
    769			     pipe, duration_ns / 1000, *max_error / 1000, i);
    770	}
    771
    772	/* Return upper bound of timestamp precision error. */
    773	*max_error = duration_ns;
    774
    775	/* Convert scanout position into elapsed time at raw_time query
    776	 * since start of scanout at first display scanline. delta_ns
    777	 * can be negative if start of scanout hasn't happened yet.
    778	 */
    779	delta_ns = div_s64(1000000LL * (vpos * mode->crtc_htotal + hpos),
    780			   mode->crtc_clock);
    781
    782	/* Subtract time delta from raw timestamp to get final
    783	 * vblank_time timestamp for end of vblank.
    784	 */
    785	*vblank_time = ktime_sub_ns(etime, delta_ns);
    786
    787	if (!drm_debug_enabled(DRM_UT_VBL))
    788		return true;
    789
    790	ts_etime = ktime_to_timespec64(etime);
    791	ts_vblank_time = ktime_to_timespec64(*vblank_time);
    792
    793	drm_dbg_vbl(dev,
    794		    "crtc %u : v p(%d,%d)@ %lld.%06ld -> %lld.%06ld [e %d us, %d rep]\n",
    795		    pipe, hpos, vpos,
    796		    (u64)ts_etime.tv_sec, ts_etime.tv_nsec / 1000,
    797		    (u64)ts_vblank_time.tv_sec, ts_vblank_time.tv_nsec / 1000,
    798		    duration_ns / 1000, i);
    799
    800	return true;
    801}
    802EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp_internal);
    803
    804/**
    805 * drm_crtc_vblank_helper_get_vblank_timestamp - precise vblank timestamp
    806 *                                               helper
    807 * @crtc: CRTC whose vblank timestamp to retrieve
    808 * @max_error: Desired maximum allowable error in timestamps (nanosecs)
    809 *             On return contains true maximum error of timestamp
    810 * @vblank_time: Pointer to time which should receive the timestamp
    811 * @in_vblank_irq:
    812 *     True when called from drm_crtc_handle_vblank().  Some drivers
    813 *     need to apply some workarounds for gpu-specific vblank irq quirks
    814 *     if flag is set.
    815 *
    816 * Implements calculation of exact vblank timestamps from given drm_display_mode
    817 * timings and current video scanout position of a CRTC. This can be directly
    818 * used as the &drm_crtc_funcs.get_vblank_timestamp implementation of a kms
    819 * driver if &drm_crtc_helper_funcs.get_scanout_position is implemented.
    820 *
    821 * The current implementation only handles standard video modes. For double scan
    822 * and interlaced modes the driver is supposed to adjust the hardware mode
    823 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to
    824 * match the scanout position reported.
    825 *
    826 * Note that atomic drivers must call drm_calc_timestamping_constants() before
    827 * enabling a CRTC. The atomic helpers already take care of that in
    828 * drm_atomic_helper_calc_timestamping_constants().
    829 *
    830 * Returns:
    831 *
    832 * Returns true on success, and false on failure, i.e. when no accurate
    833 * timestamp could be acquired.
    834 */
    835bool drm_crtc_vblank_helper_get_vblank_timestamp(struct drm_crtc *crtc,
    836						 int *max_error,
    837						 ktime_t *vblank_time,
    838						 bool in_vblank_irq)
    839{
    840	return drm_crtc_vblank_helper_get_vblank_timestamp_internal(
    841		crtc, max_error, vblank_time, in_vblank_irq,
    842		crtc->helper_private->get_scanout_position);
    843}
    844EXPORT_SYMBOL(drm_crtc_vblank_helper_get_vblank_timestamp);
    845
    846/**
    847 * drm_get_last_vbltimestamp - retrieve raw timestamp for the most recent
    848 *                             vblank interval
    849 * @dev: DRM device
    850 * @pipe: index of CRTC whose vblank timestamp to retrieve
    851 * @tvblank: Pointer to target time which should receive the timestamp
    852 * @in_vblank_irq:
    853 *     True when called from drm_crtc_handle_vblank().  Some drivers
    854 *     need to apply some workarounds for gpu-specific vblank irq quirks
    855 *     if flag is set.
    856 *
    857 * Fetches the system timestamp corresponding to the time of the most recent
    858 * vblank interval on specified CRTC. May call into kms-driver to
    859 * compute the timestamp with a high-precision GPU specific method.
    860 *
    861 * Returns zero if timestamp originates from uncorrected do_gettimeofday()
    862 * call, i.e., it isn't very precisely locked to the true vblank.
    863 *
    864 * Returns:
    865 * True if timestamp is considered to be very precise, false otherwise.
    866 */
    867static bool
    868drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
    869			  ktime_t *tvblank, bool in_vblank_irq)
    870{
    871	struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
    872	bool ret = false;
    873
    874	/* Define requested maximum error on timestamps (nanoseconds). */
    875	int max_error = (int) drm_timestamp_precision * 1000;
    876
    877	/* Query driver if possible and precision timestamping enabled. */
    878	if (crtc && crtc->funcs->get_vblank_timestamp && max_error > 0) {
    879		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
    880
    881		ret = crtc->funcs->get_vblank_timestamp(crtc, &max_error,
    882							tvblank, in_vblank_irq);
    883	}
    884
    885	/* GPU high precision timestamp query unsupported or failed.
    886	 * Return current monotonic/gettimeofday timestamp as best estimate.
    887	 */
    888	if (!ret)
    889		*tvblank = ktime_get();
    890
    891	return ret;
    892}
    893
    894/**
    895 * drm_crtc_vblank_count - retrieve "cooked" vblank counter value
    896 * @crtc: which counter to retrieve
    897 *
    898 * Fetches the "cooked" vblank count value that represents the number of
    899 * vblank events since the system was booted, including lost events due to
    900 * modesetting activity. Note that this timer isn't correct against a racing
    901 * vblank interrupt (since it only reports the software vblank counter), see
    902 * drm_crtc_accurate_vblank_count() for such use-cases.
    903 *
    904 * Note that for a given vblank counter value drm_crtc_handle_vblank()
    905 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
    906 * provide a barrier: Any writes done before calling
    907 * drm_crtc_handle_vblank() will be visible to callers of the later
    908 * functions, if the vblank count is the same or a later one.
    909 *
    910 * See also &drm_vblank_crtc.count.
    911 *
    912 * Returns:
    913 * The software vblank counter.
    914 */
    915u64 drm_crtc_vblank_count(struct drm_crtc *crtc)
    916{
    917	return drm_vblank_count(crtc->dev, drm_crtc_index(crtc));
    918}
    919EXPORT_SYMBOL(drm_crtc_vblank_count);
    920
    921/**
    922 * drm_vblank_count_and_time - retrieve "cooked" vblank counter value and the
    923 *     system timestamp corresponding to that vblank counter value.
    924 * @dev: DRM device
    925 * @pipe: index of CRTC whose counter to retrieve
    926 * @vblanktime: Pointer to ktime_t to receive the vblank timestamp.
    927 *
    928 * Fetches the "cooked" vblank count value that represents the number of
    929 * vblank events since the system was booted, including lost events due to
    930 * modesetting activity. Returns corresponding system timestamp of the time
    931 * of the vblank interval that corresponds to the current vblank counter value.
    932 *
    933 * This is the legacy version of drm_crtc_vblank_count_and_time().
    934 */
    935static u64 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe,
    936				     ktime_t *vblanktime)
    937{
    938	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
    939	u64 vblank_count;
    940	unsigned int seq;
    941
    942	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs)) {
    943		*vblanktime = 0;
    944		return 0;
    945	}
    946
    947	do {
    948		seq = read_seqbegin(&vblank->seqlock);
    949		vblank_count = atomic64_read(&vblank->count);
    950		*vblanktime = vblank->time;
    951	} while (read_seqretry(&vblank->seqlock, seq));
    952
    953	return vblank_count;
    954}
    955
    956/**
    957 * drm_crtc_vblank_count_and_time - retrieve "cooked" vblank counter value
    958 *     and the system timestamp corresponding to that vblank counter value
    959 * @crtc: which counter to retrieve
    960 * @vblanktime: Pointer to time to receive the vblank timestamp.
    961 *
    962 * Fetches the "cooked" vblank count value that represents the number of
    963 * vblank events since the system was booted, including lost events due to
    964 * modesetting activity. Returns corresponding system timestamp of the time
    965 * of the vblank interval that corresponds to the current vblank counter value.
    966 *
    967 * Note that for a given vblank counter value drm_crtc_handle_vblank()
    968 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
    969 * provide a barrier: Any writes done before calling
    970 * drm_crtc_handle_vblank() will be visible to callers of the later
    971 * functions, if the vblank count is the same or a later one.
    972 *
    973 * See also &drm_vblank_crtc.count.
    974 */
    975u64 drm_crtc_vblank_count_and_time(struct drm_crtc *crtc,
    976				   ktime_t *vblanktime)
    977{
    978	return drm_vblank_count_and_time(crtc->dev, drm_crtc_index(crtc),
    979					 vblanktime);
    980}
    981EXPORT_SYMBOL(drm_crtc_vblank_count_and_time);
    982
    983static void send_vblank_event(struct drm_device *dev,
    984		struct drm_pending_vblank_event *e,
    985		u64 seq, ktime_t now)
    986{
    987	struct timespec64 tv;
    988
    989	switch (e->event.base.type) {
    990	case DRM_EVENT_VBLANK:
    991	case DRM_EVENT_FLIP_COMPLETE:
    992		tv = ktime_to_timespec64(now);
    993		e->event.vbl.sequence = seq;
    994		/*
    995		 * e->event is a user space structure, with hardcoded unsigned
    996		 * 32-bit seconds/microseconds. This is safe as we always use
    997		 * monotonic timestamps since linux-4.15
    998		 */
    999		e->event.vbl.tv_sec = tv.tv_sec;
   1000		e->event.vbl.tv_usec = tv.tv_nsec / 1000;
   1001		break;
   1002	case DRM_EVENT_CRTC_SEQUENCE:
   1003		if (seq)
   1004			e->event.seq.sequence = seq;
   1005		e->event.seq.time_ns = ktime_to_ns(now);
   1006		break;
   1007	}
   1008	trace_drm_vblank_event_delivered(e->base.file_priv, e->pipe, seq);
   1009	/*
   1010	 * Use the same timestamp for any associated fence signal to avoid
   1011	 * mismatch in timestamps for vsync & fence events triggered by the
   1012	 * same HW event. Frameworks like SurfaceFlinger in Android expects the
   1013	 * retire-fence timestamp to match exactly with HW vsync as it uses it
   1014	 * for its software vsync modeling.
   1015	 */
   1016	drm_send_event_timestamp_locked(dev, &e->base, now);
   1017}
   1018
   1019/**
   1020 * drm_crtc_arm_vblank_event - arm vblank event after pageflip
   1021 * @crtc: the source CRTC of the vblank event
   1022 * @e: the event to send
   1023 *
   1024 * A lot of drivers need to generate vblank events for the very next vblank
   1025 * interrupt. For example when the page flip interrupt happens when the page
   1026 * flip gets armed, but not when it actually executes within the next vblank
   1027 * period. This helper function implements exactly the required vblank arming
   1028 * behaviour.
   1029 *
   1030 * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an
   1031 * atomic commit must ensure that the next vblank happens at exactly the same
   1032 * time as the atomic commit is committed to the hardware. This function itself
   1033 * does **not** protect against the next vblank interrupt racing with either this
   1034 * function call or the atomic commit operation. A possible sequence could be:
   1035 *
   1036 * 1. Driver commits new hardware state into vblank-synchronized registers.
   1037 * 2. A vblank happens, committing the hardware state. Also the corresponding
   1038 *    vblank interrupt is fired off and fully processed by the interrupt
   1039 *    handler.
   1040 * 3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event().
   1041 * 4. The event is only send out for the next vblank, which is wrong.
   1042 *
   1043 * An equivalent race can happen when the driver calls
   1044 * drm_crtc_arm_vblank_event() before writing out the new hardware state.
   1045 *
   1046 * The only way to make this work safely is to prevent the vblank from firing
   1047 * (and the hardware from committing anything else) until the entire atomic
   1048 * commit sequence has run to completion. If the hardware does not have such a
   1049 * feature (e.g. using a "go" bit), then it is unsafe to use this functions.
   1050 * Instead drivers need to manually send out the event from their interrupt
   1051 * handler by calling drm_crtc_send_vblank_event() and make sure that there's no
   1052 * possible race with the hardware committing the atomic update.
   1053 *
   1054 * Caller must hold a vblank reference for the event @e acquired by a
   1055 * drm_crtc_vblank_get(), which will be dropped when the next vblank arrives.
   1056 */
   1057void drm_crtc_arm_vblank_event(struct drm_crtc *crtc,
   1058			       struct drm_pending_vblank_event *e)
   1059{
   1060	struct drm_device *dev = crtc->dev;
   1061	unsigned int pipe = drm_crtc_index(crtc);
   1062
   1063	assert_spin_locked(&dev->event_lock);
   1064
   1065	e->pipe = pipe;
   1066	e->sequence = drm_crtc_accurate_vblank_count(crtc) + 1;
   1067	list_add_tail(&e->base.link, &dev->vblank_event_list);
   1068}
   1069EXPORT_SYMBOL(drm_crtc_arm_vblank_event);
   1070
   1071/**
   1072 * drm_crtc_send_vblank_event - helper to send vblank event after pageflip
   1073 * @crtc: the source CRTC of the vblank event
   1074 * @e: the event to send
   1075 *
   1076 * Updates sequence # and timestamp on event for the most recently processed
   1077 * vblank, and sends it to userspace.  Caller must hold event lock.
   1078 *
   1079 * See drm_crtc_arm_vblank_event() for a helper which can be used in certain
   1080 * situation, especially to send out events for atomic commit operations.
   1081 */
   1082void drm_crtc_send_vblank_event(struct drm_crtc *crtc,
   1083				struct drm_pending_vblank_event *e)
   1084{
   1085	struct drm_device *dev = crtc->dev;
   1086	u64 seq;
   1087	unsigned int pipe = drm_crtc_index(crtc);
   1088	ktime_t now;
   1089
   1090	if (drm_dev_has_vblank(dev)) {
   1091		seq = drm_vblank_count_and_time(dev, pipe, &now);
   1092	} else {
   1093		seq = 0;
   1094
   1095		now = ktime_get();
   1096	}
   1097	e->pipe = pipe;
   1098	send_vblank_event(dev, e, seq, now);
   1099}
   1100EXPORT_SYMBOL(drm_crtc_send_vblank_event);
   1101
   1102static int __enable_vblank(struct drm_device *dev, unsigned int pipe)
   1103{
   1104	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
   1105		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
   1106
   1107		if (drm_WARN_ON(dev, !crtc))
   1108			return 0;
   1109
   1110		if (crtc->funcs->enable_vblank)
   1111			return crtc->funcs->enable_vblank(crtc);
   1112	}
   1113#ifdef CONFIG_DRM_LEGACY
   1114	else if (dev->driver->enable_vblank) {
   1115		return dev->driver->enable_vblank(dev, pipe);
   1116	}
   1117#endif
   1118
   1119	return -EINVAL;
   1120}
   1121
   1122static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe)
   1123{
   1124	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
   1125	int ret = 0;
   1126
   1127	assert_spin_locked(&dev->vbl_lock);
   1128
   1129	spin_lock(&dev->vblank_time_lock);
   1130
   1131	if (!vblank->enabled) {
   1132		/*
   1133		 * Enable vblank irqs under vblank_time_lock protection.
   1134		 * All vblank count & timestamp updates are held off
   1135		 * until we are done reinitializing master counter and
   1136		 * timestamps. Filtercode in drm_handle_vblank() will
   1137		 * prevent double-accounting of same vblank interval.
   1138		 */
   1139		ret = __enable_vblank(dev, pipe);
   1140		drm_dbg_core(dev, "enabling vblank on crtc %u, ret: %d\n",
   1141			     pipe, ret);
   1142		if (ret) {
   1143			atomic_dec(&vblank->refcount);
   1144		} else {
   1145			drm_update_vblank_count(dev, pipe, 0);
   1146			/* drm_update_vblank_count() includes a wmb so we just
   1147			 * need to ensure that the compiler emits the write
   1148			 * to mark the vblank as enabled after the call
   1149			 * to drm_update_vblank_count().
   1150			 */
   1151			WRITE_ONCE(vblank->enabled, true);
   1152		}
   1153	}
   1154
   1155	spin_unlock(&dev->vblank_time_lock);
   1156
   1157	return ret;
   1158}
   1159
   1160int drm_vblank_get(struct drm_device *dev, unsigned int pipe)
   1161{
   1162	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
   1163	unsigned long irqflags;
   1164	int ret = 0;
   1165
   1166	if (!drm_dev_has_vblank(dev))
   1167		return -EINVAL;
   1168
   1169	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
   1170		return -EINVAL;
   1171
   1172	spin_lock_irqsave(&dev->vbl_lock, irqflags);
   1173	/* Going from 0->1 means we have to enable interrupts again */
   1174	if (atomic_add_return(1, &vblank->refcount) == 1) {
   1175		ret = drm_vblank_enable(dev, pipe);
   1176	} else {
   1177		if (!vblank->enabled) {
   1178			atomic_dec(&vblank->refcount);
   1179			ret = -EINVAL;
   1180		}
   1181	}
   1182	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
   1183
   1184	return ret;
   1185}
   1186
   1187/**
   1188 * drm_crtc_vblank_get - get a reference count on vblank events
   1189 * @crtc: which CRTC to own
   1190 *
   1191 * Acquire a reference count on vblank events to avoid having them disabled
   1192 * while in use.
   1193 *
   1194 * Returns:
   1195 * Zero on success or a negative error code on failure.
   1196 */
   1197int drm_crtc_vblank_get(struct drm_crtc *crtc)
   1198{
   1199	return drm_vblank_get(crtc->dev, drm_crtc_index(crtc));
   1200}
   1201EXPORT_SYMBOL(drm_crtc_vblank_get);
   1202
   1203void drm_vblank_put(struct drm_device *dev, unsigned int pipe)
   1204{
   1205	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
   1206
   1207	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
   1208		return;
   1209
   1210	if (drm_WARN_ON(dev, atomic_read(&vblank->refcount) == 0))
   1211		return;
   1212
   1213	/* Last user schedules interrupt disable */
   1214	if (atomic_dec_and_test(&vblank->refcount)) {
   1215		if (drm_vblank_offdelay == 0)
   1216			return;
   1217		else if (drm_vblank_offdelay < 0)
   1218			vblank_disable_fn(&vblank->disable_timer);
   1219		else if (!dev->vblank_disable_immediate)
   1220			mod_timer(&vblank->disable_timer,
   1221				  jiffies + ((drm_vblank_offdelay * HZ)/1000));
   1222	}
   1223}
   1224
   1225/**
   1226 * drm_crtc_vblank_put - give up ownership of vblank events
   1227 * @crtc: which counter to give up
   1228 *
   1229 * Release ownership of a given vblank counter, turning off interrupts
   1230 * if possible. Disable interrupts after drm_vblank_offdelay milliseconds.
   1231 */
   1232void drm_crtc_vblank_put(struct drm_crtc *crtc)
   1233{
   1234	drm_vblank_put(crtc->dev, drm_crtc_index(crtc));
   1235}
   1236EXPORT_SYMBOL(drm_crtc_vblank_put);
   1237
   1238/**
   1239 * drm_wait_one_vblank - wait for one vblank
   1240 * @dev: DRM device
   1241 * @pipe: CRTC index
   1242 *
   1243 * This waits for one vblank to pass on @pipe, using the irq driver interfaces.
   1244 * It is a failure to call this when the vblank irq for @pipe is disabled, e.g.
   1245 * due to lack of driver support or because the crtc is off.
   1246 *
   1247 * This is the legacy version of drm_crtc_wait_one_vblank().
   1248 */
   1249void drm_wait_one_vblank(struct drm_device *dev, unsigned int pipe)
   1250{
   1251	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
   1252	int ret;
   1253	u64 last;
   1254
   1255	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
   1256		return;
   1257
   1258	ret = drm_vblank_get(dev, pipe);
   1259	if (drm_WARN(dev, ret, "vblank not available on crtc %i, ret=%i\n",
   1260		     pipe, ret))
   1261		return;
   1262
   1263	last = drm_vblank_count(dev, pipe);
   1264
   1265	ret = wait_event_timeout(vblank->queue,
   1266				 last != drm_vblank_count(dev, pipe),
   1267				 msecs_to_jiffies(100));
   1268
   1269	drm_WARN(dev, ret == 0, "vblank wait timed out on crtc %i\n", pipe);
   1270
   1271	drm_vblank_put(dev, pipe);
   1272}
   1273EXPORT_SYMBOL(drm_wait_one_vblank);
   1274
   1275/**
   1276 * drm_crtc_wait_one_vblank - wait for one vblank
   1277 * @crtc: DRM crtc
   1278 *
   1279 * This waits for one vblank to pass on @crtc, using the irq driver interfaces.
   1280 * It is a failure to call this when the vblank irq for @crtc is disabled, e.g.
   1281 * due to lack of driver support or because the crtc is off.
   1282 */
   1283void drm_crtc_wait_one_vblank(struct drm_crtc *crtc)
   1284{
   1285	drm_wait_one_vblank(crtc->dev, drm_crtc_index(crtc));
   1286}
   1287EXPORT_SYMBOL(drm_crtc_wait_one_vblank);
   1288
   1289/**
   1290 * drm_crtc_vblank_off - disable vblank events on a CRTC
   1291 * @crtc: CRTC in question
   1292 *
   1293 * Drivers can use this function to shut down the vblank interrupt handling when
   1294 * disabling a crtc. This function ensures that the latest vblank frame count is
   1295 * stored so that drm_vblank_on can restore it again.
   1296 *
   1297 * Drivers must use this function when the hardware vblank counter can get
   1298 * reset, e.g. when suspending or disabling the @crtc in general.
   1299 */
   1300void drm_crtc_vblank_off(struct drm_crtc *crtc)
   1301{
   1302	struct drm_device *dev = crtc->dev;
   1303	unsigned int pipe = drm_crtc_index(crtc);
   1304	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
   1305	struct drm_pending_vblank_event *e, *t;
   1306	ktime_t now;
   1307	u64 seq;
   1308
   1309	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
   1310		return;
   1311
   1312	/*
   1313	 * Grab event_lock early to prevent vblank work from being scheduled
   1314	 * while we're in the middle of shutting down vblank interrupts
   1315	 */
   1316	spin_lock_irq(&dev->event_lock);
   1317
   1318	spin_lock(&dev->vbl_lock);
   1319	drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n",
   1320		    pipe, vblank->enabled, vblank->inmodeset);
   1321
   1322	/* Avoid redundant vblank disables without previous
   1323	 * drm_crtc_vblank_on(). */
   1324	if (drm_core_check_feature(dev, DRIVER_ATOMIC) || !vblank->inmodeset)
   1325		drm_vblank_disable_and_save(dev, pipe);
   1326
   1327	wake_up(&vblank->queue);
   1328
   1329	/*
   1330	 * Prevent subsequent drm_vblank_get() from re-enabling
   1331	 * the vblank interrupt by bumping the refcount.
   1332	 */
   1333	if (!vblank->inmodeset) {
   1334		atomic_inc(&vblank->refcount);
   1335		vblank->inmodeset = 1;
   1336	}
   1337	spin_unlock(&dev->vbl_lock);
   1338
   1339	/* Send any queued vblank events, lest the natives grow disquiet */
   1340	seq = drm_vblank_count_and_time(dev, pipe, &now);
   1341
   1342	list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
   1343		if (e->pipe != pipe)
   1344			continue;
   1345		drm_dbg_core(dev, "Sending premature vblank event on disable: "
   1346			     "wanted %llu, current %llu\n",
   1347			     e->sequence, seq);
   1348		list_del(&e->base.link);
   1349		drm_vblank_put(dev, pipe);
   1350		send_vblank_event(dev, e, seq, now);
   1351	}
   1352
   1353	/* Cancel any leftover pending vblank work */
   1354	drm_vblank_cancel_pending_works(vblank);
   1355
   1356	spin_unlock_irq(&dev->event_lock);
   1357
   1358	/* Will be reset by the modeset helpers when re-enabling the crtc by
   1359	 * calling drm_calc_timestamping_constants(). */
   1360	vblank->hwmode.crtc_clock = 0;
   1361
   1362	/* Wait for any vblank work that's still executing to finish */
   1363	drm_vblank_flush_worker(vblank);
   1364}
   1365EXPORT_SYMBOL(drm_crtc_vblank_off);
   1366
   1367/**
   1368 * drm_crtc_vblank_reset - reset vblank state to off on a CRTC
   1369 * @crtc: CRTC in question
   1370 *
   1371 * Drivers can use this function to reset the vblank state to off at load time.
   1372 * Drivers should use this together with the drm_crtc_vblank_off() and
   1373 * drm_crtc_vblank_on() functions. The difference compared to
   1374 * drm_crtc_vblank_off() is that this function doesn't save the vblank counter
   1375 * and hence doesn't need to call any driver hooks.
   1376 *
   1377 * This is useful for recovering driver state e.g. on driver load, or on resume.
   1378 */
   1379void drm_crtc_vblank_reset(struct drm_crtc *crtc)
   1380{
   1381	struct drm_device *dev = crtc->dev;
   1382	unsigned int pipe = drm_crtc_index(crtc);
   1383	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
   1384
   1385	spin_lock_irq(&dev->vbl_lock);
   1386	/*
   1387	 * Prevent subsequent drm_vblank_get() from enabling the vblank
   1388	 * interrupt by bumping the refcount.
   1389	 */
   1390	if (!vblank->inmodeset) {
   1391		atomic_inc(&vblank->refcount);
   1392		vblank->inmodeset = 1;
   1393	}
   1394	spin_unlock_irq(&dev->vbl_lock);
   1395
   1396	drm_WARN_ON(dev, !list_empty(&dev->vblank_event_list));
   1397	drm_WARN_ON(dev, !list_empty(&vblank->pending_work));
   1398}
   1399EXPORT_SYMBOL(drm_crtc_vblank_reset);
   1400
   1401/**
   1402 * drm_crtc_set_max_vblank_count - configure the hw max vblank counter value
   1403 * @crtc: CRTC in question
   1404 * @max_vblank_count: max hardware vblank counter value
   1405 *
   1406 * Update the maximum hardware vblank counter value for @crtc
   1407 * at runtime. Useful for hardware where the operation of the
   1408 * hardware vblank counter depends on the currently active
   1409 * display configuration.
   1410 *
   1411 * For example, if the hardware vblank counter does not work
   1412 * when a specific connector is active the maximum can be set
   1413 * to zero. And when that specific connector isn't active the
   1414 * maximum can again be set to the appropriate non-zero value.
   1415 *
   1416 * If used, must be called before drm_vblank_on().
   1417 */
   1418void drm_crtc_set_max_vblank_count(struct drm_crtc *crtc,
   1419				   u32 max_vblank_count)
   1420{
   1421	struct drm_device *dev = crtc->dev;
   1422	unsigned int pipe = drm_crtc_index(crtc);
   1423	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
   1424
   1425	drm_WARN_ON(dev, dev->max_vblank_count);
   1426	drm_WARN_ON(dev, !READ_ONCE(vblank->inmodeset));
   1427
   1428	vblank->max_vblank_count = max_vblank_count;
   1429}
   1430EXPORT_SYMBOL(drm_crtc_set_max_vblank_count);
   1431
   1432/**
   1433 * drm_crtc_vblank_on - enable vblank events on a CRTC
   1434 * @crtc: CRTC in question
   1435 *
   1436 * This functions restores the vblank interrupt state captured with
   1437 * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note
   1438 * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be
   1439 * unbalanced and so can also be unconditionally called in driver load code to
   1440 * reflect the current hardware state of the crtc.
   1441 */
   1442void drm_crtc_vblank_on(struct drm_crtc *crtc)
   1443{
   1444	struct drm_device *dev = crtc->dev;
   1445	unsigned int pipe = drm_crtc_index(crtc);
   1446	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
   1447
   1448	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
   1449		return;
   1450
   1451	spin_lock_irq(&dev->vbl_lock);
   1452	drm_dbg_vbl(dev, "crtc %d, vblank enabled %d, inmodeset %d\n",
   1453		    pipe, vblank->enabled, vblank->inmodeset);
   1454
   1455	/* Drop our private "prevent drm_vblank_get" refcount */
   1456	if (vblank->inmodeset) {
   1457		atomic_dec(&vblank->refcount);
   1458		vblank->inmodeset = 0;
   1459	}
   1460
   1461	drm_reset_vblank_timestamp(dev, pipe);
   1462
   1463	/*
   1464	 * re-enable interrupts if there are users left, or the
   1465	 * user wishes vblank interrupts to be enabled all the time.
   1466	 */
   1467	if (atomic_read(&vblank->refcount) != 0 || drm_vblank_offdelay == 0)
   1468		drm_WARN_ON(dev, drm_vblank_enable(dev, pipe));
   1469	spin_unlock_irq(&dev->vbl_lock);
   1470}
   1471EXPORT_SYMBOL(drm_crtc_vblank_on);
   1472
   1473static void drm_vblank_restore(struct drm_device *dev, unsigned int pipe)
   1474{
   1475	ktime_t t_vblank;
   1476	struct drm_vblank_crtc *vblank;
   1477	int framedur_ns;
   1478	u64 diff_ns;
   1479	u32 cur_vblank, diff = 1;
   1480	int count = DRM_TIMESTAMP_MAXRETRIES;
   1481	u32 max_vblank_count = drm_max_vblank_count(dev, pipe);
   1482
   1483	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
   1484		return;
   1485
   1486	assert_spin_locked(&dev->vbl_lock);
   1487	assert_spin_locked(&dev->vblank_time_lock);
   1488
   1489	vblank = &dev->vblank[pipe];
   1490	drm_WARN_ONCE(dev,
   1491		      drm_debug_enabled(DRM_UT_VBL) && !vblank->framedur_ns,
   1492		      "Cannot compute missed vblanks without frame duration\n");
   1493	framedur_ns = vblank->framedur_ns;
   1494
   1495	do {
   1496		cur_vblank = __get_vblank_counter(dev, pipe);
   1497		drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
   1498	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
   1499
   1500	diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
   1501	if (framedur_ns)
   1502		diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
   1503
   1504
   1505	drm_dbg_vbl(dev,
   1506		    "missed %d vblanks in %lld ns, frame duration=%d ns, hw_diff=%d\n",
   1507		    diff, diff_ns, framedur_ns, cur_vblank - vblank->last);
   1508	vblank->last = (cur_vblank - diff) & max_vblank_count;
   1509}
   1510
   1511/**
   1512 * drm_crtc_vblank_restore - estimate missed vblanks and update vblank count.
   1513 * @crtc: CRTC in question
   1514 *
   1515 * Power manamement features can cause frame counter resets between vblank
   1516 * disable and enable. Drivers can use this function in their
   1517 * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since
   1518 * the last &drm_crtc_funcs.disable_vblank using timestamps and update the
   1519 * vblank counter.
   1520 *
   1521 * Note that drivers must have race-free high-precision timestamping support,
   1522 * i.e.  &drm_crtc_funcs.get_vblank_timestamp must be hooked up and
   1523 * &drm_driver.vblank_disable_immediate must be set to indicate the
   1524 * time-stamping functions are race-free against vblank hardware counter
   1525 * increments.
   1526 */
   1527void drm_crtc_vblank_restore(struct drm_crtc *crtc)
   1528{
   1529	WARN_ON_ONCE(!crtc->funcs->get_vblank_timestamp);
   1530	WARN_ON_ONCE(!crtc->dev->vblank_disable_immediate);
   1531
   1532	drm_vblank_restore(crtc->dev, drm_crtc_index(crtc));
   1533}
   1534EXPORT_SYMBOL(drm_crtc_vblank_restore);
   1535
   1536static void drm_legacy_vblank_pre_modeset(struct drm_device *dev,
   1537					  unsigned int pipe)
   1538{
   1539	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
   1540
   1541	/* vblank is not initialized (IRQ not installed ?), or has been freed */
   1542	if (!drm_dev_has_vblank(dev))
   1543		return;
   1544
   1545	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
   1546		return;
   1547
   1548	/*
   1549	 * To avoid all the problems that might happen if interrupts
   1550	 * were enabled/disabled around or between these calls, we just
   1551	 * have the kernel take a reference on the CRTC (just once though
   1552	 * to avoid corrupting the count if multiple, mismatch calls occur),
   1553	 * so that interrupts remain enabled in the interim.
   1554	 */
   1555	if (!vblank->inmodeset) {
   1556		vblank->inmodeset = 0x1;
   1557		if (drm_vblank_get(dev, pipe) == 0)
   1558			vblank->inmodeset |= 0x2;
   1559	}
   1560}
   1561
   1562static void drm_legacy_vblank_post_modeset(struct drm_device *dev,
   1563					   unsigned int pipe)
   1564{
   1565	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
   1566
   1567	/* vblank is not initialized (IRQ not installed ?), or has been freed */
   1568	if (!drm_dev_has_vblank(dev))
   1569		return;
   1570
   1571	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
   1572		return;
   1573
   1574	if (vblank->inmodeset) {
   1575		spin_lock_irq(&dev->vbl_lock);
   1576		drm_reset_vblank_timestamp(dev, pipe);
   1577		spin_unlock_irq(&dev->vbl_lock);
   1578
   1579		if (vblank->inmodeset & 0x2)
   1580			drm_vblank_put(dev, pipe);
   1581
   1582		vblank->inmodeset = 0;
   1583	}
   1584}
   1585
   1586int drm_legacy_modeset_ctl_ioctl(struct drm_device *dev, void *data,
   1587				 struct drm_file *file_priv)
   1588{
   1589	struct drm_modeset_ctl *modeset = data;
   1590	unsigned int pipe;
   1591
   1592	/* If drm_vblank_init() hasn't been called yet, just no-op */
   1593	if (!drm_dev_has_vblank(dev))
   1594		return 0;
   1595
   1596	/* KMS drivers handle this internally */
   1597	if (!drm_core_check_feature(dev, DRIVER_LEGACY))
   1598		return 0;
   1599
   1600	pipe = modeset->crtc;
   1601	if (pipe >= dev->num_crtcs)
   1602		return -EINVAL;
   1603
   1604	switch (modeset->cmd) {
   1605	case _DRM_PRE_MODESET:
   1606		drm_legacy_vblank_pre_modeset(dev, pipe);
   1607		break;
   1608	case _DRM_POST_MODESET:
   1609		drm_legacy_vblank_post_modeset(dev, pipe);
   1610		break;
   1611	default:
   1612		return -EINVAL;
   1613	}
   1614
   1615	return 0;
   1616}
   1617
   1618static int drm_queue_vblank_event(struct drm_device *dev, unsigned int pipe,
   1619				  u64 req_seq,
   1620				  union drm_wait_vblank *vblwait,
   1621				  struct drm_file *file_priv)
   1622{
   1623	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
   1624	struct drm_pending_vblank_event *e;
   1625	ktime_t now;
   1626	u64 seq;
   1627	int ret;
   1628
   1629	e = kzalloc(sizeof(*e), GFP_KERNEL);
   1630	if (e == NULL) {
   1631		ret = -ENOMEM;
   1632		goto err_put;
   1633	}
   1634
   1635	e->pipe = pipe;
   1636	e->event.base.type = DRM_EVENT_VBLANK;
   1637	e->event.base.length = sizeof(e->event.vbl);
   1638	e->event.vbl.user_data = vblwait->request.signal;
   1639	e->event.vbl.crtc_id = 0;
   1640	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
   1641		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
   1642
   1643		if (crtc)
   1644			e->event.vbl.crtc_id = crtc->base.id;
   1645	}
   1646
   1647	spin_lock_irq(&dev->event_lock);
   1648
   1649	/*
   1650	 * drm_crtc_vblank_off() might have been called after we called
   1651	 * drm_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
   1652	 * vblank disable, so no need for further locking.  The reference from
   1653	 * drm_vblank_get() protects against vblank disable from another source.
   1654	 */
   1655	if (!READ_ONCE(vblank->enabled)) {
   1656		ret = -EINVAL;
   1657		goto err_unlock;
   1658	}
   1659
   1660	ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
   1661					    &e->event.base);
   1662
   1663	if (ret)
   1664		goto err_unlock;
   1665
   1666	seq = drm_vblank_count_and_time(dev, pipe, &now);
   1667
   1668	drm_dbg_core(dev, "event on vblank count %llu, current %llu, crtc %u\n",
   1669		     req_seq, seq, pipe);
   1670
   1671	trace_drm_vblank_event_queued(file_priv, pipe, req_seq);
   1672
   1673	e->sequence = req_seq;
   1674	if (drm_vblank_passed(seq, req_seq)) {
   1675		drm_vblank_put(dev, pipe);
   1676		send_vblank_event(dev, e, seq, now);
   1677		vblwait->reply.sequence = seq;
   1678	} else {
   1679		/* drm_handle_vblank_events will call drm_vblank_put */
   1680		list_add_tail(&e->base.link, &dev->vblank_event_list);
   1681		vblwait->reply.sequence = req_seq;
   1682	}
   1683
   1684	spin_unlock_irq(&dev->event_lock);
   1685
   1686	return 0;
   1687
   1688err_unlock:
   1689	spin_unlock_irq(&dev->event_lock);
   1690	kfree(e);
   1691err_put:
   1692	drm_vblank_put(dev, pipe);
   1693	return ret;
   1694}
   1695
   1696static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait)
   1697{
   1698	if (vblwait->request.sequence)
   1699		return false;
   1700
   1701	return _DRM_VBLANK_RELATIVE ==
   1702		(vblwait->request.type & (_DRM_VBLANK_TYPES_MASK |
   1703					  _DRM_VBLANK_EVENT |
   1704					  _DRM_VBLANK_NEXTONMISS));
   1705}
   1706
   1707/*
   1708 * Widen a 32-bit param to 64-bits.
   1709 *
   1710 * \param narrow 32-bit value (missing upper 32 bits)
   1711 * \param near 64-bit value that should be 'close' to near
   1712 *
   1713 * This function returns a 64-bit value using the lower 32-bits from
   1714 * 'narrow' and constructing the upper 32-bits so that the result is
   1715 * as close as possible to 'near'.
   1716 */
   1717
   1718static u64 widen_32_to_64(u32 narrow, u64 near)
   1719{
   1720	return near + (s32) (narrow - near);
   1721}
   1722
   1723static void drm_wait_vblank_reply(struct drm_device *dev, unsigned int pipe,
   1724				  struct drm_wait_vblank_reply *reply)
   1725{
   1726	ktime_t now;
   1727	struct timespec64 ts;
   1728
   1729	/*
   1730	 * drm_wait_vblank_reply is a UAPI structure that uses 'long'
   1731	 * to store the seconds. This is safe as we always use monotonic
   1732	 * timestamps since linux-4.15.
   1733	 */
   1734	reply->sequence = drm_vblank_count_and_time(dev, pipe, &now);
   1735	ts = ktime_to_timespec64(now);
   1736	reply->tval_sec = (u32)ts.tv_sec;
   1737	reply->tval_usec = ts.tv_nsec / 1000;
   1738}
   1739
   1740static bool drm_wait_vblank_supported(struct drm_device *dev)
   1741{
   1742#if IS_ENABLED(CONFIG_DRM_LEGACY)
   1743	if (unlikely(drm_core_check_feature(dev, DRIVER_LEGACY)))
   1744		return dev->irq_enabled;
   1745#endif
   1746	return drm_dev_has_vblank(dev);
   1747}
   1748
   1749int drm_wait_vblank_ioctl(struct drm_device *dev, void *data,
   1750			  struct drm_file *file_priv)
   1751{
   1752	struct drm_crtc *crtc;
   1753	struct drm_vblank_crtc *vblank;
   1754	union drm_wait_vblank *vblwait = data;
   1755	int ret;
   1756	u64 req_seq, seq;
   1757	unsigned int pipe_index;
   1758	unsigned int flags, pipe, high_pipe;
   1759
   1760	if (!drm_wait_vblank_supported(dev))
   1761		return -EOPNOTSUPP;
   1762
   1763	if (vblwait->request.type & _DRM_VBLANK_SIGNAL)
   1764		return -EINVAL;
   1765
   1766	if (vblwait->request.type &
   1767	    ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
   1768	      _DRM_VBLANK_HIGH_CRTC_MASK)) {
   1769		drm_dbg_core(dev,
   1770			     "Unsupported type value 0x%x, supported mask 0x%x\n",
   1771			     vblwait->request.type,
   1772			     (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
   1773			      _DRM_VBLANK_HIGH_CRTC_MASK));
   1774		return -EINVAL;
   1775	}
   1776
   1777	flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK;
   1778	high_pipe = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK);
   1779	if (high_pipe)
   1780		pipe_index = high_pipe >> _DRM_VBLANK_HIGH_CRTC_SHIFT;
   1781	else
   1782		pipe_index = flags & _DRM_VBLANK_SECONDARY ? 1 : 0;
   1783
   1784	/* Convert lease-relative crtc index into global crtc index */
   1785	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
   1786		pipe = 0;
   1787		drm_for_each_crtc(crtc, dev) {
   1788			if (drm_lease_held(file_priv, crtc->base.id)) {
   1789				if (pipe_index == 0)
   1790					break;
   1791				pipe_index--;
   1792			}
   1793			pipe++;
   1794		}
   1795	} else {
   1796		pipe = pipe_index;
   1797	}
   1798
   1799	if (pipe >= dev->num_crtcs)
   1800		return -EINVAL;
   1801
   1802	vblank = &dev->vblank[pipe];
   1803
   1804	/* If the counter is currently enabled and accurate, short-circuit
   1805	 * queries to return the cached timestamp of the last vblank.
   1806	 */
   1807	if (dev->vblank_disable_immediate &&
   1808	    drm_wait_vblank_is_query(vblwait) &&
   1809	    READ_ONCE(vblank->enabled)) {
   1810		drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
   1811		return 0;
   1812	}
   1813
   1814	ret = drm_vblank_get(dev, pipe);
   1815	if (ret) {
   1816		drm_dbg_core(dev,
   1817			     "crtc %d failed to acquire vblank counter, %d\n",
   1818			     pipe, ret);
   1819		return ret;
   1820	}
   1821	seq = drm_vblank_count(dev, pipe);
   1822
   1823	switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) {
   1824	case _DRM_VBLANK_RELATIVE:
   1825		req_seq = seq + vblwait->request.sequence;
   1826		vblwait->request.sequence = req_seq;
   1827		vblwait->request.type &= ~_DRM_VBLANK_RELATIVE;
   1828		break;
   1829	case _DRM_VBLANK_ABSOLUTE:
   1830		req_seq = widen_32_to_64(vblwait->request.sequence, seq);
   1831		break;
   1832	default:
   1833		ret = -EINVAL;
   1834		goto done;
   1835	}
   1836
   1837	if ((flags & _DRM_VBLANK_NEXTONMISS) &&
   1838	    drm_vblank_passed(seq, req_seq)) {
   1839		req_seq = seq + 1;
   1840		vblwait->request.type &= ~_DRM_VBLANK_NEXTONMISS;
   1841		vblwait->request.sequence = req_seq;
   1842	}
   1843
   1844	if (flags & _DRM_VBLANK_EVENT) {
   1845		/* must hold on to the vblank ref until the event fires
   1846		 * drm_vblank_put will be called asynchronously
   1847		 */
   1848		return drm_queue_vblank_event(dev, pipe, req_seq, vblwait, file_priv);
   1849	}
   1850
   1851	if (req_seq != seq) {
   1852		int wait;
   1853
   1854		drm_dbg_core(dev, "waiting on vblank count %llu, crtc %u\n",
   1855			     req_seq, pipe);
   1856		wait = wait_event_interruptible_timeout(vblank->queue,
   1857			drm_vblank_passed(drm_vblank_count(dev, pipe), req_seq) ||
   1858				      !READ_ONCE(vblank->enabled),
   1859			msecs_to_jiffies(3000));
   1860
   1861		switch (wait) {
   1862		case 0:
   1863			/* timeout */
   1864			ret = -EBUSY;
   1865			break;
   1866		case -ERESTARTSYS:
   1867			/* interrupted by signal */
   1868			ret = -EINTR;
   1869			break;
   1870		default:
   1871			ret = 0;
   1872			break;
   1873		}
   1874	}
   1875
   1876	if (ret != -EINTR) {
   1877		drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
   1878
   1879		drm_dbg_core(dev, "crtc %d returning %u to client\n",
   1880			     pipe, vblwait->reply.sequence);
   1881	} else {
   1882		drm_dbg_core(dev, "crtc %d vblank wait interrupted by signal\n",
   1883			     pipe);
   1884	}
   1885
   1886done:
   1887	drm_vblank_put(dev, pipe);
   1888	return ret;
   1889}
   1890
   1891static void drm_handle_vblank_events(struct drm_device *dev, unsigned int pipe)
   1892{
   1893	struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
   1894	bool high_prec = false;
   1895	struct drm_pending_vblank_event *e, *t;
   1896	ktime_t now;
   1897	u64 seq;
   1898
   1899	assert_spin_locked(&dev->event_lock);
   1900
   1901	seq = drm_vblank_count_and_time(dev, pipe, &now);
   1902
   1903	list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
   1904		if (e->pipe != pipe)
   1905			continue;
   1906		if (!drm_vblank_passed(seq, e->sequence))
   1907			continue;
   1908
   1909		drm_dbg_core(dev, "vblank event on %llu, current %llu\n",
   1910			     e->sequence, seq);
   1911
   1912		list_del(&e->base.link);
   1913		drm_vblank_put(dev, pipe);
   1914		send_vblank_event(dev, e, seq, now);
   1915	}
   1916
   1917	if (crtc && crtc->funcs->get_vblank_timestamp)
   1918		high_prec = true;
   1919
   1920	trace_drm_vblank_event(pipe, seq, now, high_prec);
   1921}
   1922
   1923/**
   1924 * drm_handle_vblank - handle a vblank event
   1925 * @dev: DRM device
   1926 * @pipe: index of CRTC where this event occurred
   1927 *
   1928 * Drivers should call this routine in their vblank interrupt handlers to
   1929 * update the vblank counter and send any signals that may be pending.
   1930 *
   1931 * This is the legacy version of drm_crtc_handle_vblank().
   1932 */
   1933bool drm_handle_vblank(struct drm_device *dev, unsigned int pipe)
   1934{
   1935	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
   1936	unsigned long irqflags;
   1937	bool disable_irq;
   1938
   1939	if (drm_WARN_ON_ONCE(dev, !drm_dev_has_vblank(dev)))
   1940		return false;
   1941
   1942	if (drm_WARN_ON(dev, pipe >= dev->num_crtcs))
   1943		return false;
   1944
   1945	spin_lock_irqsave(&dev->event_lock, irqflags);
   1946
   1947	/* Need timestamp lock to prevent concurrent execution with
   1948	 * vblank enable/disable, as this would cause inconsistent
   1949	 * or corrupted timestamps and vblank counts.
   1950	 */
   1951	spin_lock(&dev->vblank_time_lock);
   1952
   1953	/* Vblank irq handling disabled. Nothing to do. */
   1954	if (!vblank->enabled) {
   1955		spin_unlock(&dev->vblank_time_lock);
   1956		spin_unlock_irqrestore(&dev->event_lock, irqflags);
   1957		return false;
   1958	}
   1959
   1960	drm_update_vblank_count(dev, pipe, true);
   1961
   1962	spin_unlock(&dev->vblank_time_lock);
   1963
   1964	wake_up(&vblank->queue);
   1965
   1966	/* With instant-off, we defer disabling the interrupt until after
   1967	 * we finish processing the following vblank after all events have
   1968	 * been signaled. The disable has to be last (after
   1969	 * drm_handle_vblank_events) so that the timestamp is always accurate.
   1970	 */
   1971	disable_irq = (dev->vblank_disable_immediate &&
   1972		       drm_vblank_offdelay > 0 &&
   1973		       !atomic_read(&vblank->refcount));
   1974
   1975	drm_handle_vblank_events(dev, pipe);
   1976	drm_handle_vblank_works(vblank);
   1977
   1978	spin_unlock_irqrestore(&dev->event_lock, irqflags);
   1979
   1980	if (disable_irq)
   1981		vblank_disable_fn(&vblank->disable_timer);
   1982
   1983	return true;
   1984}
   1985EXPORT_SYMBOL(drm_handle_vblank);
   1986
   1987/**
   1988 * drm_crtc_handle_vblank - handle a vblank event
   1989 * @crtc: where this event occurred
   1990 *
   1991 * Drivers should call this routine in their vblank interrupt handlers to
   1992 * update the vblank counter and send any signals that may be pending.
   1993 *
   1994 * This is the native KMS version of drm_handle_vblank().
   1995 *
   1996 * Note that for a given vblank counter value drm_crtc_handle_vblank()
   1997 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
   1998 * provide a barrier: Any writes done before calling
   1999 * drm_crtc_handle_vblank() will be visible to callers of the later
   2000 * functions, if the vblank count is the same or a later one.
   2001 *
   2002 * See also &drm_vblank_crtc.count.
   2003 *
   2004 * Returns:
   2005 * True if the event was successfully handled, false on failure.
   2006 */
   2007bool drm_crtc_handle_vblank(struct drm_crtc *crtc)
   2008{
   2009	return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc));
   2010}
   2011EXPORT_SYMBOL(drm_crtc_handle_vblank);
   2012
   2013/*
   2014 * Get crtc VBLANK count.
   2015 *
   2016 * \param dev DRM device
   2017 * \param data user argument, pointing to a drm_crtc_get_sequence structure.
   2018 * \param file_priv drm file private for the user's open file descriptor
   2019 */
   2020
   2021int drm_crtc_get_sequence_ioctl(struct drm_device *dev, void *data,
   2022				struct drm_file *file_priv)
   2023{
   2024	struct drm_crtc *crtc;
   2025	struct drm_vblank_crtc *vblank;
   2026	int pipe;
   2027	struct drm_crtc_get_sequence *get_seq = data;
   2028	ktime_t now;
   2029	bool vblank_enabled;
   2030	int ret;
   2031
   2032	if (!drm_core_check_feature(dev, DRIVER_MODESET))
   2033		return -EOPNOTSUPP;
   2034
   2035	if (!drm_dev_has_vblank(dev))
   2036		return -EOPNOTSUPP;
   2037
   2038	crtc = drm_crtc_find(dev, file_priv, get_seq->crtc_id);
   2039	if (!crtc)
   2040		return -ENOENT;
   2041
   2042	pipe = drm_crtc_index(crtc);
   2043
   2044	vblank = &dev->vblank[pipe];
   2045	vblank_enabled = dev->vblank_disable_immediate && READ_ONCE(vblank->enabled);
   2046
   2047	if (!vblank_enabled) {
   2048		ret = drm_crtc_vblank_get(crtc);
   2049		if (ret) {
   2050			drm_dbg_core(dev,
   2051				     "crtc %d failed to acquire vblank counter, %d\n",
   2052				     pipe, ret);
   2053			return ret;
   2054		}
   2055	}
   2056	drm_modeset_lock(&crtc->mutex, NULL);
   2057	if (crtc->state)
   2058		get_seq->active = crtc->state->enable;
   2059	else
   2060		get_seq->active = crtc->enabled;
   2061	drm_modeset_unlock(&crtc->mutex);
   2062	get_seq->sequence = drm_vblank_count_and_time(dev, pipe, &now);
   2063	get_seq->sequence_ns = ktime_to_ns(now);
   2064	if (!vblank_enabled)
   2065		drm_crtc_vblank_put(crtc);
   2066	return 0;
   2067}
   2068
   2069/*
   2070 * Queue a event for VBLANK sequence
   2071 *
   2072 * \param dev DRM device
   2073 * \param data user argument, pointing to a drm_crtc_queue_sequence structure.
   2074 * \param file_priv drm file private for the user's open file descriptor
   2075 */
   2076
   2077int drm_crtc_queue_sequence_ioctl(struct drm_device *dev, void *data,
   2078				  struct drm_file *file_priv)
   2079{
   2080	struct drm_crtc *crtc;
   2081	struct drm_vblank_crtc *vblank;
   2082	int pipe;
   2083	struct drm_crtc_queue_sequence *queue_seq = data;
   2084	ktime_t now;
   2085	struct drm_pending_vblank_event *e;
   2086	u32 flags;
   2087	u64 seq;
   2088	u64 req_seq;
   2089	int ret;
   2090
   2091	if (!drm_core_check_feature(dev, DRIVER_MODESET))
   2092		return -EOPNOTSUPP;
   2093
   2094	if (!drm_dev_has_vblank(dev))
   2095		return -EOPNOTSUPP;
   2096
   2097	crtc = drm_crtc_find(dev, file_priv, queue_seq->crtc_id);
   2098	if (!crtc)
   2099		return -ENOENT;
   2100
   2101	flags = queue_seq->flags;
   2102	/* Check valid flag bits */
   2103	if (flags & ~(DRM_CRTC_SEQUENCE_RELATIVE|
   2104		      DRM_CRTC_SEQUENCE_NEXT_ON_MISS))
   2105		return -EINVAL;
   2106
   2107	pipe = drm_crtc_index(crtc);
   2108
   2109	vblank = &dev->vblank[pipe];
   2110
   2111	e = kzalloc(sizeof(*e), GFP_KERNEL);
   2112	if (e == NULL)
   2113		return -ENOMEM;
   2114
   2115	ret = drm_crtc_vblank_get(crtc);
   2116	if (ret) {
   2117		drm_dbg_core(dev,
   2118			     "crtc %d failed to acquire vblank counter, %d\n",
   2119			     pipe, ret);
   2120		goto err_free;
   2121	}
   2122
   2123	seq = drm_vblank_count_and_time(dev, pipe, &now);
   2124	req_seq = queue_seq->sequence;
   2125
   2126	if (flags & DRM_CRTC_SEQUENCE_RELATIVE)
   2127		req_seq += seq;
   2128
   2129	if ((flags & DRM_CRTC_SEQUENCE_NEXT_ON_MISS) && drm_vblank_passed(seq, req_seq))
   2130		req_seq = seq + 1;
   2131
   2132	e->pipe = pipe;
   2133	e->event.base.type = DRM_EVENT_CRTC_SEQUENCE;
   2134	e->event.base.length = sizeof(e->event.seq);
   2135	e->event.seq.user_data = queue_seq->user_data;
   2136
   2137	spin_lock_irq(&dev->event_lock);
   2138
   2139	/*
   2140	 * drm_crtc_vblank_off() might have been called after we called
   2141	 * drm_crtc_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
   2142	 * vblank disable, so no need for further locking.  The reference from
   2143	 * drm_crtc_vblank_get() protects against vblank disable from another source.
   2144	 */
   2145	if (!READ_ONCE(vblank->enabled)) {
   2146		ret = -EINVAL;
   2147		goto err_unlock;
   2148	}
   2149
   2150	ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
   2151					    &e->event.base);
   2152
   2153	if (ret)
   2154		goto err_unlock;
   2155
   2156	e->sequence = req_seq;
   2157
   2158	if (drm_vblank_passed(seq, req_seq)) {
   2159		drm_crtc_vblank_put(crtc);
   2160		send_vblank_event(dev, e, seq, now);
   2161		queue_seq->sequence = seq;
   2162	} else {
   2163		/* drm_handle_vblank_events will call drm_vblank_put */
   2164		list_add_tail(&e->base.link, &dev->vblank_event_list);
   2165		queue_seq->sequence = req_seq;
   2166	}
   2167
   2168	spin_unlock_irq(&dev->event_lock);
   2169	return 0;
   2170
   2171err_unlock:
   2172	spin_unlock_irq(&dev->event_lock);
   2173	drm_crtc_vblank_put(crtc);
   2174err_free:
   2175	kfree(e);
   2176	return ret;
   2177}
   2178