cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

drm_vma_manager.c (12653B)


      1// SPDX-License-Identifier: GPL-2.0 OR MIT
      2/*
      3 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
      4 * Copyright (c) 2012 David Airlie <airlied@linux.ie>
      5 * Copyright (c) 2013 David Herrmann <dh.herrmann@gmail.com>
      6 *
      7 * Permission is hereby granted, free of charge, to any person obtaining a
      8 * copy of this software and associated documentation files (the "Software"),
      9 * to deal in the Software without restriction, including without limitation
     10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     11 * and/or sell copies of the Software, and to permit persons to whom the
     12 * Software is furnished to do so, subject to the following conditions:
     13 *
     14 * The above copyright notice and this permission notice shall be included in
     15 * all copies or substantial portions of the Software.
     16 *
     17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     20 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
     21 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
     22 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
     23 * OTHER DEALINGS IN THE SOFTWARE.
     24 */
     25
     26#include <linux/mm.h>
     27#include <linux/module.h>
     28#include <linux/rbtree.h>
     29#include <linux/slab.h>
     30#include <linux/spinlock.h>
     31#include <linux/types.h>
     32
     33#include <drm/drm_mm.h>
     34#include <drm/drm_vma_manager.h>
     35
     36/**
     37 * DOC: vma offset manager
     38 *
     39 * The vma-manager is responsible to map arbitrary driver-dependent memory
     40 * regions into the linear user address-space. It provides offsets to the
     41 * caller which can then be used on the address_space of the drm-device. It
     42 * takes care to not overlap regions, size them appropriately and to not
     43 * confuse mm-core by inconsistent fake vm_pgoff fields.
     44 * Drivers shouldn't use this for object placement in VMEM. This manager should
     45 * only be used to manage mappings into linear user-space VMs.
     46 *
     47 * We use drm_mm as backend to manage object allocations. But it is highly
     48 * optimized for alloc/free calls, not lookups. Hence, we use an rb-tree to
     49 * speed up offset lookups.
     50 *
     51 * You must not use multiple offset managers on a single address_space.
     52 * Otherwise, mm-core will be unable to tear down memory mappings as the VM will
     53 * no longer be linear.
     54 *
     55 * This offset manager works on page-based addresses. That is, every argument
     56 * and return code (with the exception of drm_vma_node_offset_addr()) is given
     57 * in number of pages, not number of bytes. That means, object sizes and offsets
     58 * must always be page-aligned (as usual).
     59 * If you want to get a valid byte-based user-space address for a given offset,
     60 * please see drm_vma_node_offset_addr().
     61 *
     62 * Additionally to offset management, the vma offset manager also handles access
     63 * management. For every open-file context that is allowed to access a given
     64 * node, you must call drm_vma_node_allow(). Otherwise, an mmap() call on this
     65 * open-file with the offset of the node will fail with -EACCES. To revoke
     66 * access again, use drm_vma_node_revoke(). However, the caller is responsible
     67 * for destroying already existing mappings, if required.
     68 */
     69
     70/**
     71 * drm_vma_offset_manager_init - Initialize new offset-manager
     72 * @mgr: Manager object
     73 * @page_offset: Offset of available memory area (page-based)
     74 * @size: Size of available address space range (page-based)
     75 *
     76 * Initialize a new offset-manager. The offset and area size available for the
     77 * manager are given as @page_offset and @size. Both are interpreted as
     78 * page-numbers, not bytes.
     79 *
     80 * Adding/removing nodes from the manager is locked internally and protected
     81 * against concurrent access. However, node allocation and destruction is left
     82 * for the caller. While calling into the vma-manager, a given node must
     83 * always be guaranteed to be referenced.
     84 */
     85void drm_vma_offset_manager_init(struct drm_vma_offset_manager *mgr,
     86				 unsigned long page_offset, unsigned long size)
     87{
     88	rwlock_init(&mgr->vm_lock);
     89	drm_mm_init(&mgr->vm_addr_space_mm, page_offset, size);
     90}
     91EXPORT_SYMBOL(drm_vma_offset_manager_init);
     92
     93/**
     94 * drm_vma_offset_manager_destroy() - Destroy offset manager
     95 * @mgr: Manager object
     96 *
     97 * Destroy an object manager which was previously created via
     98 * drm_vma_offset_manager_init(). The caller must remove all allocated nodes
     99 * before destroying the manager. Otherwise, drm_mm will refuse to free the
    100 * requested resources.
    101 *
    102 * The manager must not be accessed after this function is called.
    103 */
    104void drm_vma_offset_manager_destroy(struct drm_vma_offset_manager *mgr)
    105{
    106	drm_mm_takedown(&mgr->vm_addr_space_mm);
    107}
    108EXPORT_SYMBOL(drm_vma_offset_manager_destroy);
    109
    110/**
    111 * drm_vma_offset_lookup_locked() - Find node in offset space
    112 * @mgr: Manager object
    113 * @start: Start address for object (page-based)
    114 * @pages: Size of object (page-based)
    115 *
    116 * Find a node given a start address and object size. This returns the _best_
    117 * match for the given node. That is, @start may point somewhere into a valid
    118 * region and the given node will be returned, as long as the node spans the
    119 * whole requested area (given the size in number of pages as @pages).
    120 *
    121 * Note that before lookup the vma offset manager lookup lock must be acquired
    122 * with drm_vma_offset_lock_lookup(). See there for an example. This can then be
    123 * used to implement weakly referenced lookups using kref_get_unless_zero().
    124 *
    125 * Example:
    126 *
    127 * ::
    128 *
    129 *     drm_vma_offset_lock_lookup(mgr);
    130 *     node = drm_vma_offset_lookup_locked(mgr);
    131 *     if (node)
    132 *         kref_get_unless_zero(container_of(node, sth, entr));
    133 *     drm_vma_offset_unlock_lookup(mgr);
    134 *
    135 * RETURNS:
    136 * Returns NULL if no suitable node can be found. Otherwise, the best match
    137 * is returned. It's the caller's responsibility to make sure the node doesn't
    138 * get destroyed before the caller can access it.
    139 */
    140struct drm_vma_offset_node *drm_vma_offset_lookup_locked(struct drm_vma_offset_manager *mgr,
    141							 unsigned long start,
    142							 unsigned long pages)
    143{
    144	struct drm_mm_node *node, *best;
    145	struct rb_node *iter;
    146	unsigned long offset;
    147
    148	iter = mgr->vm_addr_space_mm.interval_tree.rb_root.rb_node;
    149	best = NULL;
    150
    151	while (likely(iter)) {
    152		node = rb_entry(iter, struct drm_mm_node, rb);
    153		offset = node->start;
    154		if (start >= offset) {
    155			iter = iter->rb_right;
    156			best = node;
    157			if (start == offset)
    158				break;
    159		} else {
    160			iter = iter->rb_left;
    161		}
    162	}
    163
    164	/* verify that the node spans the requested area */
    165	if (best) {
    166		offset = best->start + best->size;
    167		if (offset < start + pages)
    168			best = NULL;
    169	}
    170
    171	if (!best)
    172		return NULL;
    173
    174	return container_of(best, struct drm_vma_offset_node, vm_node);
    175}
    176EXPORT_SYMBOL(drm_vma_offset_lookup_locked);
    177
    178/**
    179 * drm_vma_offset_add() - Add offset node to manager
    180 * @mgr: Manager object
    181 * @node: Node to be added
    182 * @pages: Allocation size visible to user-space (in number of pages)
    183 *
    184 * Add a node to the offset-manager. If the node was already added, this does
    185 * nothing and return 0. @pages is the size of the object given in number of
    186 * pages.
    187 * After this call succeeds, you can access the offset of the node until it
    188 * is removed again.
    189 *
    190 * If this call fails, it is safe to retry the operation or call
    191 * drm_vma_offset_remove(), anyway. However, no cleanup is required in that
    192 * case.
    193 *
    194 * @pages is not required to be the same size as the underlying memory object
    195 * that you want to map. It only limits the size that user-space can map into
    196 * their address space.
    197 *
    198 * RETURNS:
    199 * 0 on success, negative error code on failure.
    200 */
    201int drm_vma_offset_add(struct drm_vma_offset_manager *mgr,
    202		       struct drm_vma_offset_node *node, unsigned long pages)
    203{
    204	int ret = 0;
    205
    206	write_lock(&mgr->vm_lock);
    207
    208	if (!drm_mm_node_allocated(&node->vm_node))
    209		ret = drm_mm_insert_node(&mgr->vm_addr_space_mm,
    210					 &node->vm_node, pages);
    211
    212	write_unlock(&mgr->vm_lock);
    213
    214	return ret;
    215}
    216EXPORT_SYMBOL(drm_vma_offset_add);
    217
    218/**
    219 * drm_vma_offset_remove() - Remove offset node from manager
    220 * @mgr: Manager object
    221 * @node: Node to be removed
    222 *
    223 * Remove a node from the offset manager. If the node wasn't added before, this
    224 * does nothing. After this call returns, the offset and size will be 0 until a
    225 * new offset is allocated via drm_vma_offset_add() again. Helper functions like
    226 * drm_vma_node_start() and drm_vma_node_offset_addr() will return 0 if no
    227 * offset is allocated.
    228 */
    229void drm_vma_offset_remove(struct drm_vma_offset_manager *mgr,
    230			   struct drm_vma_offset_node *node)
    231{
    232	write_lock(&mgr->vm_lock);
    233
    234	if (drm_mm_node_allocated(&node->vm_node)) {
    235		drm_mm_remove_node(&node->vm_node);
    236		memset(&node->vm_node, 0, sizeof(node->vm_node));
    237	}
    238
    239	write_unlock(&mgr->vm_lock);
    240}
    241EXPORT_SYMBOL(drm_vma_offset_remove);
    242
    243/**
    244 * drm_vma_node_allow - Add open-file to list of allowed users
    245 * @node: Node to modify
    246 * @tag: Tag of file to remove
    247 *
    248 * Add @tag to the list of allowed open-files for this node. If @tag is
    249 * already on this list, the ref-count is incremented.
    250 *
    251 * The list of allowed-users is preserved across drm_vma_offset_add() and
    252 * drm_vma_offset_remove() calls. You may even call it if the node is currently
    253 * not added to any offset-manager.
    254 *
    255 * You must remove all open-files the same number of times as you added them
    256 * before destroying the node. Otherwise, you will leak memory.
    257 *
    258 * This is locked against concurrent access internally.
    259 *
    260 * RETURNS:
    261 * 0 on success, negative error code on internal failure (out-of-mem)
    262 */
    263int drm_vma_node_allow(struct drm_vma_offset_node *node, struct drm_file *tag)
    264{
    265	struct rb_node **iter;
    266	struct rb_node *parent = NULL;
    267	struct drm_vma_offset_file *new, *entry;
    268	int ret = 0;
    269
    270	/* Preallocate entry to avoid atomic allocations below. It is quite
    271	 * unlikely that an open-file is added twice to a single node so we
    272	 * don't optimize for this case. OOM is checked below only if the entry
    273	 * is actually used. */
    274	new = kmalloc(sizeof(*entry), GFP_KERNEL);
    275
    276	write_lock(&node->vm_lock);
    277
    278	iter = &node->vm_files.rb_node;
    279
    280	while (likely(*iter)) {
    281		parent = *iter;
    282		entry = rb_entry(*iter, struct drm_vma_offset_file, vm_rb);
    283
    284		if (tag == entry->vm_tag) {
    285			entry->vm_count++;
    286			goto unlock;
    287		} else if (tag > entry->vm_tag) {
    288			iter = &(*iter)->rb_right;
    289		} else {
    290			iter = &(*iter)->rb_left;
    291		}
    292	}
    293
    294	if (!new) {
    295		ret = -ENOMEM;
    296		goto unlock;
    297	}
    298
    299	new->vm_tag = tag;
    300	new->vm_count = 1;
    301	rb_link_node(&new->vm_rb, parent, iter);
    302	rb_insert_color(&new->vm_rb, &node->vm_files);
    303	new = NULL;
    304
    305unlock:
    306	write_unlock(&node->vm_lock);
    307	kfree(new);
    308	return ret;
    309}
    310EXPORT_SYMBOL(drm_vma_node_allow);
    311
    312/**
    313 * drm_vma_node_revoke - Remove open-file from list of allowed users
    314 * @node: Node to modify
    315 * @tag: Tag of file to remove
    316 *
    317 * Decrement the ref-count of @tag in the list of allowed open-files on @node.
    318 * If the ref-count drops to zero, remove @tag from the list. You must call
    319 * this once for every drm_vma_node_allow() on @tag.
    320 *
    321 * This is locked against concurrent access internally.
    322 *
    323 * If @tag is not on the list, nothing is done.
    324 */
    325void drm_vma_node_revoke(struct drm_vma_offset_node *node,
    326			 struct drm_file *tag)
    327{
    328	struct drm_vma_offset_file *entry;
    329	struct rb_node *iter;
    330
    331	write_lock(&node->vm_lock);
    332
    333	iter = node->vm_files.rb_node;
    334	while (likely(iter)) {
    335		entry = rb_entry(iter, struct drm_vma_offset_file, vm_rb);
    336		if (tag == entry->vm_tag) {
    337			if (!--entry->vm_count) {
    338				rb_erase(&entry->vm_rb, &node->vm_files);
    339				kfree(entry);
    340			}
    341			break;
    342		} else if (tag > entry->vm_tag) {
    343			iter = iter->rb_right;
    344		} else {
    345			iter = iter->rb_left;
    346		}
    347	}
    348
    349	write_unlock(&node->vm_lock);
    350}
    351EXPORT_SYMBOL(drm_vma_node_revoke);
    352
    353/**
    354 * drm_vma_node_is_allowed - Check whether an open-file is granted access
    355 * @node: Node to check
    356 * @tag: Tag of file to remove
    357 *
    358 * Search the list in @node whether @tag is currently on the list of allowed
    359 * open-files (see drm_vma_node_allow()).
    360 *
    361 * This is locked against concurrent access internally.
    362 *
    363 * RETURNS:
    364 * true if @filp is on the list
    365 */
    366bool drm_vma_node_is_allowed(struct drm_vma_offset_node *node,
    367			     struct drm_file *tag)
    368{
    369	struct drm_vma_offset_file *entry;
    370	struct rb_node *iter;
    371
    372	read_lock(&node->vm_lock);
    373
    374	iter = node->vm_files.rb_node;
    375	while (likely(iter)) {
    376		entry = rb_entry(iter, struct drm_vma_offset_file, vm_rb);
    377		if (tag == entry->vm_tag)
    378			break;
    379		else if (tag > entry->vm_tag)
    380			iter = iter->rb_right;
    381		else
    382			iter = iter->rb_left;
    383	}
    384
    385	read_unlock(&node->vm_lock);
    386
    387	return iter;
    388}
    389EXPORT_SYMBOL(drm_vma_node_is_allowed);