cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

cdv_intel_display.c (25620B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Copyright © 2006-2011 Intel Corporation
      4 *
      5 * Authors:
      6 *	Eric Anholt <eric@anholt.net>
      7 */
      8
      9#include <linux/delay.h>
     10#include <linux/i2c.h>
     11
     12#include <drm/drm_crtc.h>
     13
     14#include "cdv_device.h"
     15#include "framebuffer.h"
     16#include "gma_display.h"
     17#include "power.h"
     18#include "psb_drv.h"
     19#include "psb_intel_drv.h"
     20#include "psb_intel_reg.h"
     21
     22static bool cdv_intel_find_dp_pll(const struct gma_limit_t *limit,
     23				  struct drm_crtc *crtc, int target,
     24				  int refclk, struct gma_clock_t *best_clock);
     25
     26
     27#define CDV_LIMIT_SINGLE_LVDS_96	0
     28#define CDV_LIMIT_SINGLE_LVDS_100	1
     29#define CDV_LIMIT_DAC_HDMI_27		2
     30#define CDV_LIMIT_DAC_HDMI_96		3
     31#define CDV_LIMIT_DP_27			4
     32#define CDV_LIMIT_DP_100		5
     33
     34static const struct gma_limit_t cdv_intel_limits[] = {
     35	{			/* CDV_SINGLE_LVDS_96MHz */
     36	 .dot = {.min = 20000, .max = 115500},
     37	 .vco = {.min = 1800000, .max = 3600000},
     38	 .n = {.min = 2, .max = 6},
     39	 .m = {.min = 60, .max = 160},
     40	 .m1 = {.min = 0, .max = 0},
     41	 .m2 = {.min = 58, .max = 158},
     42	 .p = {.min = 28, .max = 140},
     43	 .p1 = {.min = 2, .max = 10},
     44	 .p2 = {.dot_limit = 200000, .p2_slow = 14, .p2_fast = 14},
     45	 .find_pll = gma_find_best_pll,
     46	 },
     47	{			/* CDV_SINGLE_LVDS_100MHz */
     48	 .dot = {.min = 20000, .max = 115500},
     49	 .vco = {.min = 1800000, .max = 3600000},
     50	 .n = {.min = 2, .max = 6},
     51	 .m = {.min = 60, .max = 160},
     52	 .m1 = {.min = 0, .max = 0},
     53	 .m2 = {.min = 58, .max = 158},
     54	 .p = {.min = 28, .max = 140},
     55	 .p1 = {.min = 2, .max = 10},
     56	 /* The single-channel range is 25-112Mhz, and dual-channel
     57	  * is 80-224Mhz.  Prefer single channel as much as possible.
     58	  */
     59	 .p2 = {.dot_limit = 200000, .p2_slow = 14, .p2_fast = 14},
     60	 .find_pll = gma_find_best_pll,
     61	 },
     62	{			/* CDV_DAC_HDMI_27MHz */
     63	 .dot = {.min = 20000, .max = 400000},
     64	 .vco = {.min = 1809000, .max = 3564000},
     65	 .n = {.min = 1, .max = 1},
     66	 .m = {.min = 67, .max = 132},
     67	 .m1 = {.min = 0, .max = 0},
     68	 .m2 = {.min = 65, .max = 130},
     69	 .p = {.min = 5, .max = 90},
     70	 .p1 = {.min = 1, .max = 9},
     71	 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 5},
     72	 .find_pll = gma_find_best_pll,
     73	 },
     74	{			/* CDV_DAC_HDMI_96MHz */
     75	 .dot = {.min = 20000, .max = 400000},
     76	 .vco = {.min = 1800000, .max = 3600000},
     77	 .n = {.min = 2, .max = 6},
     78	 .m = {.min = 60, .max = 160},
     79	 .m1 = {.min = 0, .max = 0},
     80	 .m2 = {.min = 58, .max = 158},
     81	 .p = {.min = 5, .max = 100},
     82	 .p1 = {.min = 1, .max = 10},
     83	 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 5},
     84	 .find_pll = gma_find_best_pll,
     85	 },
     86	{			/* CDV_DP_27MHz */
     87	 .dot = {.min = 160000, .max = 272000},
     88	 .vco = {.min = 1809000, .max = 3564000},
     89	 .n = {.min = 1, .max = 1},
     90	 .m = {.min = 67, .max = 132},
     91	 .m1 = {.min = 0, .max = 0},
     92	 .m2 = {.min = 65, .max = 130},
     93	 .p = {.min = 5, .max = 90},
     94	 .p1 = {.min = 1, .max = 9},
     95	 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 10},
     96	 .find_pll = cdv_intel_find_dp_pll,
     97	 },
     98	{			/* CDV_DP_100MHz */
     99	 .dot = {.min = 160000, .max = 272000},
    100	 .vco = {.min = 1800000, .max = 3600000},
    101	 .n = {.min = 2, .max = 6},
    102	 .m = {.min = 60, .max = 164},
    103	 .m1 = {.min = 0, .max = 0},
    104	 .m2 = {.min = 58, .max = 162},
    105	 .p = {.min = 5, .max = 100},
    106	 .p1 = {.min = 1, .max = 10},
    107	 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 10},
    108	 .find_pll = cdv_intel_find_dp_pll,
    109	}
    110};
    111
    112#define _wait_for(COND, MS, W) ({ \
    113	unsigned long timeout__ = jiffies + msecs_to_jiffies(MS);	\
    114	int ret__ = 0;							\
    115	while (!(COND)) {						\
    116		if (time_after(jiffies, timeout__)) {			\
    117			ret__ = -ETIMEDOUT;				\
    118			break;						\
    119		}							\
    120		if (W && !in_dbg_master())				\
    121			msleep(W);					\
    122	}								\
    123	ret__;								\
    124})
    125
    126#define wait_for(COND, MS) _wait_for(COND, MS, 1)
    127
    128
    129int cdv_sb_read(struct drm_device *dev, u32 reg, u32 *val)
    130{
    131	int ret;
    132
    133	ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
    134	if (ret) {
    135		DRM_ERROR("timeout waiting for SB to idle before read\n");
    136		return ret;
    137	}
    138
    139	REG_WRITE(SB_ADDR, reg);
    140	REG_WRITE(SB_PCKT,
    141		   SET_FIELD(SB_OPCODE_READ, SB_OPCODE) |
    142		   SET_FIELD(SB_DEST_DPLL, SB_DEST) |
    143		   SET_FIELD(0xf, SB_BYTE_ENABLE));
    144
    145	ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
    146	if (ret) {
    147		DRM_ERROR("timeout waiting for SB to idle after read\n");
    148		return ret;
    149	}
    150
    151	*val = REG_READ(SB_DATA);
    152
    153	return 0;
    154}
    155
    156int cdv_sb_write(struct drm_device *dev, u32 reg, u32 val)
    157{
    158	int ret;
    159	static bool dpio_debug = true;
    160	u32 temp;
    161
    162	if (dpio_debug) {
    163		if (cdv_sb_read(dev, reg, &temp) == 0)
    164			DRM_DEBUG_KMS("0x%08x: 0x%08x (before)\n", reg, temp);
    165		DRM_DEBUG_KMS("0x%08x: 0x%08x\n", reg, val);
    166	}
    167
    168	ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
    169	if (ret) {
    170		DRM_ERROR("timeout waiting for SB to idle before write\n");
    171		return ret;
    172	}
    173
    174	REG_WRITE(SB_ADDR, reg);
    175	REG_WRITE(SB_DATA, val);
    176	REG_WRITE(SB_PCKT,
    177		   SET_FIELD(SB_OPCODE_WRITE, SB_OPCODE) |
    178		   SET_FIELD(SB_DEST_DPLL, SB_DEST) |
    179		   SET_FIELD(0xf, SB_BYTE_ENABLE));
    180
    181	ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
    182	if (ret) {
    183		DRM_ERROR("timeout waiting for SB to idle after write\n");
    184		return ret;
    185	}
    186
    187	if (dpio_debug) {
    188		if (cdv_sb_read(dev, reg, &temp) == 0)
    189			DRM_DEBUG_KMS("0x%08x: 0x%08x (after)\n", reg, temp);
    190	}
    191
    192	return 0;
    193}
    194
    195/* Reset the DPIO configuration register.  The BIOS does this at every
    196 * mode set.
    197 */
    198void cdv_sb_reset(struct drm_device *dev)
    199{
    200
    201	REG_WRITE(DPIO_CFG, 0);
    202	REG_READ(DPIO_CFG);
    203	REG_WRITE(DPIO_CFG, DPIO_MODE_SELECT_0 | DPIO_CMN_RESET_N);
    204}
    205
    206/* Unlike most Intel display engines, on Cedarview the DPLL registers
    207 * are behind this sideband bus.  They must be programmed while the
    208 * DPLL reference clock is on in the DPLL control register, but before
    209 * the DPLL is enabled in the DPLL control register.
    210 */
    211static int
    212cdv_dpll_set_clock_cdv(struct drm_device *dev, struct drm_crtc *crtc,
    213		       struct gma_clock_t *clock, bool is_lvds, u32 ddi_select)
    214{
    215	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
    216	int pipe = gma_crtc->pipe;
    217	u32 m, n_vco, p;
    218	int ret = 0;
    219	int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
    220	int ref_sfr = (pipe == 0) ? SB_REF_DPLLA : SB_REF_DPLLB;
    221	u32 ref_value;
    222	u32 lane_reg, lane_value;
    223
    224	cdv_sb_reset(dev);
    225
    226	REG_WRITE(dpll_reg, DPLL_SYNCLOCK_ENABLE | DPLL_VGA_MODE_DIS);
    227
    228	udelay(100);
    229
    230	/* Follow the BIOS and write the REF/SFR Register. Hardcoded value */
    231	ref_value = 0x68A701;
    232
    233	cdv_sb_write(dev, SB_REF_SFR(pipe), ref_value);
    234
    235	/* We don't know what the other fields of these regs are, so
    236	 * leave them in place.
    237	 */
    238	/*
    239	 * The BIT 14:13 of 0x8010/0x8030 is used to select the ref clk
    240	 * for the pipe A/B. Display spec 1.06 has wrong definition.
    241	 * Correct definition is like below:
    242	 *
    243	 * refclka mean use clock from same PLL
    244	 *
    245	 * if DPLLA sets 01 and DPLLB sets 01, they use clock from their pll
    246	 *
    247	 * if DPLLA sets 01 and DPLLB sets 02, both use clk from DPLLA
    248	 *
    249	 */
    250	ret = cdv_sb_read(dev, ref_sfr, &ref_value);
    251	if (ret)
    252		return ret;
    253	ref_value &= ~(REF_CLK_MASK);
    254
    255	/* use DPLL_A for pipeB on CRT/HDMI */
    256	if (pipe == 1 && !is_lvds && !(ddi_select & DP_MASK)) {
    257		DRM_DEBUG_KMS("use DPLLA for pipe B\n");
    258		ref_value |= REF_CLK_DPLLA;
    259	} else {
    260		DRM_DEBUG_KMS("use their DPLL for pipe A/B\n");
    261		ref_value |= REF_CLK_DPLL;
    262	}
    263	ret = cdv_sb_write(dev, ref_sfr, ref_value);
    264	if (ret)
    265		return ret;
    266
    267	ret = cdv_sb_read(dev, SB_M(pipe), &m);
    268	if (ret)
    269		return ret;
    270	m &= ~SB_M_DIVIDER_MASK;
    271	m |= ((clock->m2) << SB_M_DIVIDER_SHIFT);
    272	ret = cdv_sb_write(dev, SB_M(pipe), m);
    273	if (ret)
    274		return ret;
    275
    276	ret = cdv_sb_read(dev, SB_N_VCO(pipe), &n_vco);
    277	if (ret)
    278		return ret;
    279
    280	/* Follow the BIOS to program the N_DIVIDER REG */
    281	n_vco &= 0xFFFF;
    282	n_vco |= 0x107;
    283	n_vco &= ~(SB_N_VCO_SEL_MASK |
    284		   SB_N_DIVIDER_MASK |
    285		   SB_N_CB_TUNE_MASK);
    286
    287	n_vco |= ((clock->n) << SB_N_DIVIDER_SHIFT);
    288
    289	if (clock->vco < 2250000) {
    290		n_vco |= (2 << SB_N_CB_TUNE_SHIFT);
    291		n_vco |= (0 << SB_N_VCO_SEL_SHIFT);
    292	} else if (clock->vco < 2750000) {
    293		n_vco |= (1 << SB_N_CB_TUNE_SHIFT);
    294		n_vco |= (1 << SB_N_VCO_SEL_SHIFT);
    295	} else if (clock->vco < 3300000) {
    296		n_vco |= (0 << SB_N_CB_TUNE_SHIFT);
    297		n_vco |= (2 << SB_N_VCO_SEL_SHIFT);
    298	} else {
    299		n_vco |= (0 << SB_N_CB_TUNE_SHIFT);
    300		n_vco |= (3 << SB_N_VCO_SEL_SHIFT);
    301	}
    302
    303	ret = cdv_sb_write(dev, SB_N_VCO(pipe), n_vco);
    304	if (ret)
    305		return ret;
    306
    307	ret = cdv_sb_read(dev, SB_P(pipe), &p);
    308	if (ret)
    309		return ret;
    310	p &= ~(SB_P2_DIVIDER_MASK | SB_P1_DIVIDER_MASK);
    311	p |= SET_FIELD(clock->p1, SB_P1_DIVIDER);
    312	switch (clock->p2) {
    313	case 5:
    314		p |= SET_FIELD(SB_P2_5, SB_P2_DIVIDER);
    315		break;
    316	case 10:
    317		p |= SET_FIELD(SB_P2_10, SB_P2_DIVIDER);
    318		break;
    319	case 14:
    320		p |= SET_FIELD(SB_P2_14, SB_P2_DIVIDER);
    321		break;
    322	case 7:
    323		p |= SET_FIELD(SB_P2_7, SB_P2_DIVIDER);
    324		break;
    325	default:
    326		DRM_ERROR("Bad P2 clock: %d\n", clock->p2);
    327		return -EINVAL;
    328	}
    329	ret = cdv_sb_write(dev, SB_P(pipe), p);
    330	if (ret)
    331		return ret;
    332
    333	if (ddi_select) {
    334		if ((ddi_select & DDI_MASK) == DDI0_SELECT) {
    335			lane_reg = PSB_LANE0;
    336			cdv_sb_read(dev, lane_reg, &lane_value);
    337			lane_value &= ~(LANE_PLL_MASK);
    338			lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
    339			cdv_sb_write(dev, lane_reg, lane_value);
    340
    341			lane_reg = PSB_LANE1;
    342			cdv_sb_read(dev, lane_reg, &lane_value);
    343			lane_value &= ~(LANE_PLL_MASK);
    344			lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
    345			cdv_sb_write(dev, lane_reg, lane_value);
    346		} else {
    347			lane_reg = PSB_LANE2;
    348			cdv_sb_read(dev, lane_reg, &lane_value);
    349			lane_value &= ~(LANE_PLL_MASK);
    350			lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
    351			cdv_sb_write(dev, lane_reg, lane_value);
    352
    353			lane_reg = PSB_LANE3;
    354			cdv_sb_read(dev, lane_reg, &lane_value);
    355			lane_value &= ~(LANE_PLL_MASK);
    356			lane_value |= LANE_PLL_ENABLE | LANE_PLL_PIPE(pipe);
    357			cdv_sb_write(dev, lane_reg, lane_value);
    358		}
    359	}
    360	return 0;
    361}
    362
    363static const struct gma_limit_t *cdv_intel_limit(struct drm_crtc *crtc,
    364						 int refclk)
    365{
    366	const struct gma_limit_t *limit;
    367	if (gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
    368		/*
    369		 * Now only single-channel LVDS is supported on CDV. If it is
    370		 * incorrect, please add the dual-channel LVDS.
    371		 */
    372		if (refclk == 96000)
    373			limit = &cdv_intel_limits[CDV_LIMIT_SINGLE_LVDS_96];
    374		else
    375			limit = &cdv_intel_limits[CDV_LIMIT_SINGLE_LVDS_100];
    376	} else if (gma_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
    377			gma_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
    378		if (refclk == 27000)
    379			limit = &cdv_intel_limits[CDV_LIMIT_DP_27];
    380		else
    381			limit = &cdv_intel_limits[CDV_LIMIT_DP_100];
    382	} else {
    383		if (refclk == 27000)
    384			limit = &cdv_intel_limits[CDV_LIMIT_DAC_HDMI_27];
    385		else
    386			limit = &cdv_intel_limits[CDV_LIMIT_DAC_HDMI_96];
    387	}
    388	return limit;
    389}
    390
    391/* m1 is reserved as 0 in CDV, n is a ring counter */
    392static void cdv_intel_clock(int refclk, struct gma_clock_t *clock)
    393{
    394	clock->m = clock->m2 + 2;
    395	clock->p = clock->p1 * clock->p2;
    396	clock->vco = (refclk * clock->m) / clock->n;
    397	clock->dot = clock->vco / clock->p;
    398}
    399
    400static bool cdv_intel_find_dp_pll(const struct gma_limit_t *limit,
    401				  struct drm_crtc *crtc, int target,
    402				  int refclk,
    403				  struct gma_clock_t *best_clock)
    404{
    405	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
    406	struct gma_clock_t clock;
    407
    408	memset(&clock, 0, sizeof(clock));
    409
    410	switch (refclk) {
    411	case 27000:
    412		if (target < 200000) {
    413			clock.p1 = 2;
    414			clock.p2 = 10;
    415			clock.n = 1;
    416			clock.m1 = 0;
    417			clock.m2 = 118;
    418		} else {
    419			clock.p1 = 1;
    420			clock.p2 = 10;
    421			clock.n = 1;
    422			clock.m1 = 0;
    423			clock.m2 = 98;
    424		}
    425		break;
    426
    427	case 100000:
    428		if (target < 200000) {
    429			clock.p1 = 2;
    430			clock.p2 = 10;
    431			clock.n = 5;
    432			clock.m1 = 0;
    433			clock.m2 = 160;
    434		} else {
    435			clock.p1 = 1;
    436			clock.p2 = 10;
    437			clock.n = 5;
    438			clock.m1 = 0;
    439			clock.m2 = 133;
    440		}
    441		break;
    442
    443	default:
    444		return false;
    445	}
    446
    447	gma_crtc->clock_funcs->clock(refclk, &clock);
    448	memcpy(best_clock, &clock, sizeof(struct gma_clock_t));
    449	return true;
    450}
    451
    452#define		FIFO_PIPEA		(1 << 0)
    453#define		FIFO_PIPEB		(1 << 1)
    454
    455static bool cdv_intel_pipe_enabled(struct drm_device *dev, int pipe)
    456{
    457	struct drm_crtc *crtc;
    458	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
    459	struct gma_crtc *gma_crtc = NULL;
    460
    461	crtc = dev_priv->pipe_to_crtc_mapping[pipe];
    462	gma_crtc = to_gma_crtc(crtc);
    463
    464	if (crtc->primary->fb == NULL || !gma_crtc->active)
    465		return false;
    466	return true;
    467}
    468
    469void cdv_disable_sr(struct drm_device *dev)
    470{
    471	if (REG_READ(FW_BLC_SELF) & FW_BLC_SELF_EN) {
    472
    473		/* Disable self-refresh before adjust WM */
    474		REG_WRITE(FW_BLC_SELF, (REG_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN));
    475		REG_READ(FW_BLC_SELF);
    476
    477		gma_wait_for_vblank(dev);
    478
    479		/* Cedarview workaround to write ovelay plane, which force to leave
    480		 * MAX_FIFO state.
    481		 */
    482		REG_WRITE(OV_OVADD, 0/*dev_priv->ovl_offset*/);
    483		REG_READ(OV_OVADD);
    484
    485		gma_wait_for_vblank(dev);
    486	}
    487
    488}
    489
    490void cdv_update_wm(struct drm_device *dev, struct drm_crtc *crtc)
    491{
    492	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
    493	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
    494
    495	/* Is only one pipe enabled? */
    496	if (cdv_intel_pipe_enabled(dev, 0) ^ cdv_intel_pipe_enabled(dev, 1)) {
    497		u32 fw;
    498
    499		fw = REG_READ(DSPFW1);
    500		fw &= ~DSP_FIFO_SR_WM_MASK;
    501		fw |= (0x7e << DSP_FIFO_SR_WM_SHIFT);
    502		fw &= ~CURSOR_B_FIFO_WM_MASK;
    503		fw |= (0x4 << CURSOR_B_FIFO_WM_SHIFT);
    504		REG_WRITE(DSPFW1, fw);
    505
    506		fw = REG_READ(DSPFW2);
    507		fw &= ~CURSOR_A_FIFO_WM_MASK;
    508		fw |= (0x6 << CURSOR_A_FIFO_WM_SHIFT);
    509		fw &= ~DSP_PLANE_C_FIFO_WM_MASK;
    510		fw |= (0x8 << DSP_PLANE_C_FIFO_WM_SHIFT);
    511		REG_WRITE(DSPFW2, fw);
    512
    513		REG_WRITE(DSPFW3, 0x36000000);
    514
    515		/* ignore FW4 */
    516
    517		/* Is pipe b lvds ? */
    518		if (gma_crtc->pipe == 1 &&
    519		    gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
    520			REG_WRITE(DSPFW5, 0x00040330);
    521		} else {
    522			fw = (3 << DSP_PLANE_B_FIFO_WM1_SHIFT) |
    523			     (4 << DSP_PLANE_A_FIFO_WM1_SHIFT) |
    524			     (3 << CURSOR_B_FIFO_WM1_SHIFT) |
    525			     (4 << CURSOR_FIFO_SR_WM1_SHIFT);
    526			REG_WRITE(DSPFW5, fw);
    527		}
    528
    529		REG_WRITE(DSPFW6, 0x10);
    530
    531		gma_wait_for_vblank(dev);
    532
    533		/* enable self-refresh for single pipe active */
    534		REG_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
    535		REG_READ(FW_BLC_SELF);
    536		gma_wait_for_vblank(dev);
    537
    538	} else {
    539
    540		/* HW team suggested values... */
    541		REG_WRITE(DSPFW1, 0x3f880808);
    542		REG_WRITE(DSPFW2, 0x0b020202);
    543		REG_WRITE(DSPFW3, 0x24000000);
    544		REG_WRITE(DSPFW4, 0x08030202);
    545		REG_WRITE(DSPFW5, 0x01010101);
    546		REG_WRITE(DSPFW6, 0x1d0);
    547
    548		gma_wait_for_vblank(dev);
    549
    550		dev_priv->ops->disable_sr(dev);
    551	}
    552}
    553
    554/*
    555 * Return the pipe currently connected to the panel fitter,
    556 * or -1 if the panel fitter is not present or not in use
    557 */
    558static int cdv_intel_panel_fitter_pipe(struct drm_device *dev)
    559{
    560	u32 pfit_control;
    561
    562	pfit_control = REG_READ(PFIT_CONTROL);
    563
    564	/* See if the panel fitter is in use */
    565	if ((pfit_control & PFIT_ENABLE) == 0)
    566		return -1;
    567	return (pfit_control >> 29) & 0x3;
    568}
    569
    570static int cdv_intel_crtc_mode_set(struct drm_crtc *crtc,
    571			       struct drm_display_mode *mode,
    572			       struct drm_display_mode *adjusted_mode,
    573			       int x, int y,
    574			       struct drm_framebuffer *old_fb)
    575{
    576	struct drm_device *dev = crtc->dev;
    577	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
    578	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
    579	int pipe = gma_crtc->pipe;
    580	const struct psb_offset *map = &dev_priv->regmap[pipe];
    581	int refclk;
    582	struct gma_clock_t clock;
    583	u32 dpll = 0, dspcntr, pipeconf;
    584	bool ok;
    585	bool is_lvds = false;
    586	bool is_dp = false;
    587	struct drm_connector_list_iter conn_iter;
    588	struct drm_connector *connector;
    589	const struct gma_limit_t *limit;
    590	u32 ddi_select = 0;
    591	bool is_edp = false;
    592
    593	drm_connector_list_iter_begin(dev, &conn_iter);
    594	drm_for_each_connector_iter(connector, &conn_iter) {
    595		struct gma_encoder *gma_encoder =
    596					gma_attached_encoder(connector);
    597
    598		if (!connector->encoder
    599		    || connector->encoder->crtc != crtc)
    600			continue;
    601
    602		ddi_select = gma_encoder->ddi_select;
    603		switch (gma_encoder->type) {
    604		case INTEL_OUTPUT_LVDS:
    605			is_lvds = true;
    606			break;
    607		case INTEL_OUTPUT_ANALOG:
    608		case INTEL_OUTPUT_HDMI:
    609			break;
    610		case INTEL_OUTPUT_DISPLAYPORT:
    611			is_dp = true;
    612			break;
    613		case INTEL_OUTPUT_EDP:
    614			is_edp = true;
    615			break;
    616		default:
    617			drm_connector_list_iter_end(&conn_iter);
    618			DRM_ERROR("invalid output type.\n");
    619			return 0;
    620		}
    621
    622		break;
    623	}
    624	drm_connector_list_iter_end(&conn_iter);
    625
    626	if (dev_priv->dplla_96mhz)
    627		/* low-end sku, 96/100 mhz */
    628		refclk = 96000;
    629	else
    630		/* high-end sku, 27/100 mhz */
    631		refclk = 27000;
    632	if (is_dp || is_edp) {
    633		/*
    634		 * Based on the spec the low-end SKU has only CRT/LVDS. So it is
    635		 * unnecessary to consider it for DP/eDP.
    636		 * On the high-end SKU, it will use the 27/100M reference clk
    637		 * for DP/eDP. When using SSC clock, the ref clk is 100MHz.Otherwise
    638		 * it will be 27MHz. From the VBIOS code it seems that the pipe A choose
    639		 * 27MHz for DP/eDP while the Pipe B chooses the 100MHz.
    640		 */
    641		if (pipe == 0)
    642			refclk = 27000;
    643		else
    644			refclk = 100000;
    645	}
    646
    647	if (is_lvds && dev_priv->lvds_use_ssc) {
    648		refclk = dev_priv->lvds_ssc_freq * 1000;
    649		DRM_DEBUG_KMS("Use SSC reference clock %d Mhz\n", dev_priv->lvds_ssc_freq);
    650	}
    651
    652	drm_mode_debug_printmodeline(adjusted_mode);
    653
    654	limit = gma_crtc->clock_funcs->limit(crtc, refclk);
    655
    656	ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk,
    657				 &clock);
    658	if (!ok) {
    659		DRM_ERROR("Couldn't find PLL settings for mode! target: %d, actual: %d",
    660			  adjusted_mode->clock, clock.dot);
    661		return 0;
    662	}
    663
    664	dpll = DPLL_VGA_MODE_DIS;
    665
    666	if (is_dp || is_edp) {
    667		cdv_intel_dp_set_m_n(crtc, mode, adjusted_mode);
    668	} else {
    669		REG_WRITE(PIPE_GMCH_DATA_M(pipe), 0);
    670		REG_WRITE(PIPE_GMCH_DATA_N(pipe), 0);
    671		REG_WRITE(PIPE_DP_LINK_M(pipe), 0);
    672		REG_WRITE(PIPE_DP_LINK_N(pipe), 0);
    673	}
    674
    675	dpll |= DPLL_SYNCLOCK_ENABLE;
    676/*	if (is_lvds)
    677		dpll |= DPLLB_MODE_LVDS;
    678	else
    679		dpll |= DPLLB_MODE_DAC_SERIAL; */
    680	/* dpll |= (2 << 11); */
    681
    682	/* setup pipeconf */
    683	pipeconf = REG_READ(map->conf);
    684
    685	pipeconf &= ~(PIPE_BPC_MASK);
    686	if (is_edp) {
    687		switch (dev_priv->edp.bpp) {
    688		case 24:
    689			pipeconf |= PIPE_8BPC;
    690			break;
    691		case 18:
    692			pipeconf |= PIPE_6BPC;
    693			break;
    694		case 30:
    695			pipeconf |= PIPE_10BPC;
    696			break;
    697		default:
    698			pipeconf |= PIPE_8BPC;
    699			break;
    700		}
    701	} else if (is_lvds) {
    702		/* the BPC will be 6 if it is 18-bit LVDS panel */
    703		if ((REG_READ(LVDS) & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
    704			pipeconf |= PIPE_8BPC;
    705		else
    706			pipeconf |= PIPE_6BPC;
    707	} else
    708		pipeconf |= PIPE_8BPC;
    709
    710	/* Set up the display plane register */
    711	dspcntr = DISPPLANE_GAMMA_ENABLE;
    712
    713	if (pipe == 0)
    714		dspcntr |= DISPPLANE_SEL_PIPE_A;
    715	else
    716		dspcntr |= DISPPLANE_SEL_PIPE_B;
    717
    718	dspcntr |= DISPLAY_PLANE_ENABLE;
    719	pipeconf |= PIPEACONF_ENABLE;
    720
    721	REG_WRITE(map->dpll, dpll | DPLL_VGA_MODE_DIS | DPLL_SYNCLOCK_ENABLE);
    722	REG_READ(map->dpll);
    723
    724	cdv_dpll_set_clock_cdv(dev, crtc, &clock, is_lvds, ddi_select);
    725
    726	udelay(150);
    727
    728
    729	/* The LVDS pin pair needs to be on before the DPLLs are enabled.
    730	 * This is an exception to the general rule that mode_set doesn't turn
    731	 * things on.
    732	 */
    733	if (is_lvds) {
    734		u32 lvds = REG_READ(LVDS);
    735
    736		lvds |=
    737		    LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP |
    738		    LVDS_PIPEB_SELECT;
    739		/* Set the B0-B3 data pairs corresponding to
    740		 * whether we're going to
    741		 * set the DPLLs for dual-channel mode or not.
    742		 */
    743		if (clock.p2 == 7)
    744			lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
    745		else
    746			lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
    747
    748		/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
    749		 * appropriately here, but we need to look more
    750		 * thoroughly into how panels behave in the two modes.
    751		 */
    752
    753		REG_WRITE(LVDS, lvds);
    754		REG_READ(LVDS);
    755	}
    756
    757	dpll |= DPLL_VCO_ENABLE;
    758
    759	/* Disable the panel fitter if it was on our pipe */
    760	if (cdv_intel_panel_fitter_pipe(dev) == pipe)
    761		REG_WRITE(PFIT_CONTROL, 0);
    762
    763	DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
    764	drm_mode_debug_printmodeline(mode);
    765
    766	REG_WRITE(map->dpll,
    767		(REG_READ(map->dpll) & ~DPLL_LOCK) | DPLL_VCO_ENABLE);
    768	REG_READ(map->dpll);
    769	/* Wait for the clocks to stabilize. */
    770	udelay(150); /* 42 usec w/o calibration, 110 with.  rounded up. */
    771
    772	if (!(REG_READ(map->dpll) & DPLL_LOCK)) {
    773		dev_err(dev->dev, "Failed to get DPLL lock\n");
    774		return -EBUSY;
    775	}
    776
    777	{
    778		int sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
    779		REG_WRITE(map->dpll_md, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) | ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
    780	}
    781
    782	REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) |
    783		  ((adjusted_mode->crtc_htotal - 1) << 16));
    784	REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) |
    785		  ((adjusted_mode->crtc_hblank_end - 1) << 16));
    786	REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) |
    787		  ((adjusted_mode->crtc_hsync_end - 1) << 16));
    788	REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) |
    789		  ((adjusted_mode->crtc_vtotal - 1) << 16));
    790	REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) |
    791		  ((adjusted_mode->crtc_vblank_end - 1) << 16));
    792	REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) |
    793		  ((adjusted_mode->crtc_vsync_end - 1) << 16));
    794	/* pipesrc and dspsize control the size that is scaled from,
    795	 * which should always be the user's requested size.
    796	 */
    797	REG_WRITE(map->size,
    798		  ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
    799	REG_WRITE(map->pos, 0);
    800	REG_WRITE(map->src,
    801		  ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
    802	REG_WRITE(map->conf, pipeconf);
    803	REG_READ(map->conf);
    804
    805	gma_wait_for_vblank(dev);
    806
    807	REG_WRITE(map->cntr, dspcntr);
    808
    809	/* Flush the plane changes */
    810	{
    811		const struct drm_crtc_helper_funcs *crtc_funcs =
    812		    crtc->helper_private;
    813		crtc_funcs->mode_set_base(crtc, x, y, old_fb);
    814	}
    815
    816	gma_wait_for_vblank(dev);
    817
    818	return 0;
    819}
    820
    821/** Derive the pixel clock for the given refclk and divisors for 8xx chips. */
    822
    823/* FIXME: why are we using this, should it be cdv_ in this tree ? */
    824
    825static void i8xx_clock(int refclk, struct gma_clock_t *clock)
    826{
    827	clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
    828	clock->p = clock->p1 * clock->p2;
    829	clock->vco = refclk * clock->m / (clock->n + 2);
    830	clock->dot = clock->vco / clock->p;
    831}
    832
    833/* Returns the clock of the currently programmed mode of the given pipe. */
    834static int cdv_intel_crtc_clock_get(struct drm_device *dev,
    835				struct drm_crtc *crtc)
    836{
    837	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
    838	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
    839	int pipe = gma_crtc->pipe;
    840	const struct psb_offset *map = &dev_priv->regmap[pipe];
    841	u32 dpll;
    842	u32 fp;
    843	struct gma_clock_t clock;
    844	bool is_lvds;
    845	struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
    846
    847	if (gma_power_begin(dev, false)) {
    848		dpll = REG_READ(map->dpll);
    849		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
    850			fp = REG_READ(map->fp0);
    851		else
    852			fp = REG_READ(map->fp1);
    853		is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN);
    854		gma_power_end(dev);
    855	} else {
    856		dpll = p->dpll;
    857		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
    858			fp = p->fp0;
    859		else
    860			fp = p->fp1;
    861
    862		is_lvds = (pipe == 1) &&
    863				(dev_priv->regs.psb.saveLVDS & LVDS_PORT_EN);
    864	}
    865
    866	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
    867	clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
    868	clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
    869
    870	if (is_lvds) {
    871		clock.p1 =
    872		    ffs((dpll &
    873			 DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
    874			DPLL_FPA01_P1_POST_DIV_SHIFT);
    875		if (clock.p1 == 0) {
    876			clock.p1 = 4;
    877			dev_err(dev->dev, "PLL %d\n", dpll);
    878		}
    879		clock.p2 = 14;
    880
    881		if ((dpll & PLL_REF_INPUT_MASK) ==
    882		    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
    883			/* XXX: might not be 66MHz */
    884			i8xx_clock(66000, &clock);
    885		} else
    886			i8xx_clock(48000, &clock);
    887	} else {
    888		if (dpll & PLL_P1_DIVIDE_BY_TWO)
    889			clock.p1 = 2;
    890		else {
    891			clock.p1 =
    892			    ((dpll &
    893			      DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
    894			     DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
    895		}
    896		if (dpll & PLL_P2_DIVIDE_BY_4)
    897			clock.p2 = 4;
    898		else
    899			clock.p2 = 2;
    900
    901		i8xx_clock(48000, &clock);
    902	}
    903
    904	/* XXX: It would be nice to validate the clocks, but we can't reuse
    905	 * i830PllIsValid() because it relies on the xf86_config connector
    906	 * configuration being accurate, which it isn't necessarily.
    907	 */
    908
    909	return clock.dot;
    910}
    911
    912/** Returns the currently programmed mode of the given pipe. */
    913struct drm_display_mode *cdv_intel_crtc_mode_get(struct drm_device *dev,
    914					     struct drm_crtc *crtc)
    915{
    916	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
    917	int pipe = gma_crtc->pipe;
    918	struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
    919	struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
    920	const struct psb_offset *map = &dev_priv->regmap[pipe];
    921	struct drm_display_mode *mode;
    922	int htot;
    923	int hsync;
    924	int vtot;
    925	int vsync;
    926
    927	if (gma_power_begin(dev, false)) {
    928		htot = REG_READ(map->htotal);
    929		hsync = REG_READ(map->hsync);
    930		vtot = REG_READ(map->vtotal);
    931		vsync = REG_READ(map->vsync);
    932		gma_power_end(dev);
    933	} else {
    934		htot = p->htotal;
    935		hsync = p->hsync;
    936		vtot = p->vtotal;
    937		vsync = p->vsync;
    938	}
    939
    940	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
    941	if (!mode)
    942		return NULL;
    943
    944	mode->clock = cdv_intel_crtc_clock_get(dev, crtc);
    945	mode->hdisplay = (htot & 0xffff) + 1;
    946	mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
    947	mode->hsync_start = (hsync & 0xffff) + 1;
    948	mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
    949	mode->vdisplay = (vtot & 0xffff) + 1;
    950	mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
    951	mode->vsync_start = (vsync & 0xffff) + 1;
    952	mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
    953
    954	drm_mode_set_name(mode);
    955	drm_mode_set_crtcinfo(mode, 0);
    956
    957	return mode;
    958}
    959
    960const struct drm_crtc_helper_funcs cdv_intel_helper_funcs = {
    961	.dpms = gma_crtc_dpms,
    962	.mode_set = cdv_intel_crtc_mode_set,
    963	.mode_set_base = gma_pipe_set_base,
    964	.prepare = gma_crtc_prepare,
    965	.commit = gma_crtc_commit,
    966	.disable = gma_crtc_disable,
    967};
    968
    969const struct gma_clock_funcs cdv_clock_funcs = {
    970	.clock = cdv_intel_clock,
    971	.limit = cdv_intel_limit,
    972	.pll_is_valid = gma_pll_is_valid,
    973};