cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

intel_frontbuffer.c (10881B)


      1/*
      2 * Copyright © 2014 Intel Corporation
      3 *
      4 * Permission is hereby granted, free of charge, to any person obtaining a
      5 * copy of this software and associated documentation files (the "Software"),
      6 * to deal in the Software without restriction, including without limitation
      7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8 * and/or sell copies of the Software, and to permit persons to whom the
      9 * Software is furnished to do so, subject to the following conditions:
     10 *
     11 * The above copyright notice and this permission notice (including the next
     12 * paragraph) shall be included in all copies or substantial portions of the
     13 * Software.
     14 *
     15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
     21 * DEALINGS IN THE SOFTWARE.
     22 *
     23 * Authors:
     24 *	Daniel Vetter <daniel.vetter@ffwll.ch>
     25 */
     26
     27/**
     28 * DOC: frontbuffer tracking
     29 *
     30 * Many features require us to track changes to the currently active
     31 * frontbuffer, especially rendering targeted at the frontbuffer.
     32 *
     33 * To be able to do so we track frontbuffers using a bitmask for all possible
     34 * frontbuffer slots through intel_frontbuffer_track(). The functions in this
     35 * file are then called when the contents of the frontbuffer are invalidated,
     36 * when frontbuffer rendering has stopped again to flush out all the changes
     37 * and when the frontbuffer is exchanged with a flip. Subsystems interested in
     38 * frontbuffer changes (e.g. PSR, FBC, DRRS) should directly put their callbacks
     39 * into the relevant places and filter for the frontbuffer slots that they are
     40 * interested int.
     41 *
     42 * On a high level there are two types of powersaving features. The first one
     43 * work like a special cache (FBC and PSR) and are interested when they should
     44 * stop caching and when to restart caching. This is done by placing callbacks
     45 * into the invalidate and the flush functions: At invalidate the caching must
     46 * be stopped and at flush time it can be restarted. And maybe they need to know
     47 * when the frontbuffer changes (e.g. when the hw doesn't initiate an invalidate
     48 * and flush on its own) which can be achieved with placing callbacks into the
     49 * flip functions.
     50 *
     51 * The other type of display power saving feature only cares about busyness
     52 * (e.g. DRRS). In that case all three (invalidate, flush and flip) indicate
     53 * busyness. There is no direct way to detect idleness. Instead an idle timer
     54 * work delayed work should be started from the flush and flip functions and
     55 * cancelled as soon as busyness is detected.
     56 */
     57
     58#include "i915_drv.h"
     59#include "intel_display_trace.h"
     60#include "intel_display_types.h"
     61#include "intel_dp.h"
     62#include "intel_drrs.h"
     63#include "intel_fbc.h"
     64#include "intel_frontbuffer.h"
     65#include "intel_psr.h"
     66
     67/**
     68 * frontbuffer_flush - flush frontbuffer
     69 * @i915: i915 device
     70 * @frontbuffer_bits: frontbuffer plane tracking bits
     71 * @origin: which operation caused the flush
     72 *
     73 * This function gets called every time rendering on the given planes has
     74 * completed and frontbuffer caching can be started again. Flushes will get
     75 * delayed if they're blocked by some outstanding asynchronous rendering.
     76 *
     77 * Can be called without any locks held.
     78 */
     79static void frontbuffer_flush(struct drm_i915_private *i915,
     80			      unsigned int frontbuffer_bits,
     81			      enum fb_op_origin origin)
     82{
     83	/* Delay flushing when rings are still busy.*/
     84	spin_lock(&i915->fb_tracking.lock);
     85	frontbuffer_bits &= ~i915->fb_tracking.busy_bits;
     86	spin_unlock(&i915->fb_tracking.lock);
     87
     88	if (!frontbuffer_bits)
     89		return;
     90
     91	trace_intel_frontbuffer_flush(frontbuffer_bits, origin);
     92
     93	might_sleep();
     94	intel_drrs_flush(i915, frontbuffer_bits);
     95	intel_psr_flush(i915, frontbuffer_bits, origin);
     96	intel_fbc_flush(i915, frontbuffer_bits, origin);
     97}
     98
     99/**
    100 * intel_frontbuffer_flip_prepare - prepare asynchronous frontbuffer flip
    101 * @i915: i915 device
    102 * @frontbuffer_bits: frontbuffer plane tracking bits
    103 *
    104 * This function gets called after scheduling a flip on @obj. The actual
    105 * frontbuffer flushing will be delayed until completion is signalled with
    106 * intel_frontbuffer_flip_complete. If an invalidate happens in between this
    107 * flush will be cancelled.
    108 *
    109 * Can be called without any locks held.
    110 */
    111void intel_frontbuffer_flip_prepare(struct drm_i915_private *i915,
    112				    unsigned frontbuffer_bits)
    113{
    114	spin_lock(&i915->fb_tracking.lock);
    115	i915->fb_tracking.flip_bits |= frontbuffer_bits;
    116	/* Remove stale busy bits due to the old buffer. */
    117	i915->fb_tracking.busy_bits &= ~frontbuffer_bits;
    118	spin_unlock(&i915->fb_tracking.lock);
    119}
    120
    121/**
    122 * intel_frontbuffer_flip_complete - complete asynchronous frontbuffer flip
    123 * @i915: i915 device
    124 * @frontbuffer_bits: frontbuffer plane tracking bits
    125 *
    126 * This function gets called after the flip has been latched and will complete
    127 * on the next vblank. It will execute the flush if it hasn't been cancelled yet.
    128 *
    129 * Can be called without any locks held.
    130 */
    131void intel_frontbuffer_flip_complete(struct drm_i915_private *i915,
    132				     unsigned frontbuffer_bits)
    133{
    134	spin_lock(&i915->fb_tracking.lock);
    135	/* Mask any cancelled flips. */
    136	frontbuffer_bits &= i915->fb_tracking.flip_bits;
    137	i915->fb_tracking.flip_bits &= ~frontbuffer_bits;
    138	spin_unlock(&i915->fb_tracking.lock);
    139
    140	if (frontbuffer_bits)
    141		frontbuffer_flush(i915, frontbuffer_bits, ORIGIN_FLIP);
    142}
    143
    144/**
    145 * intel_frontbuffer_flip - synchronous frontbuffer flip
    146 * @i915: i915 device
    147 * @frontbuffer_bits: frontbuffer plane tracking bits
    148 *
    149 * This function gets called after scheduling a flip on @obj. This is for
    150 * synchronous plane updates which will happen on the next vblank and which will
    151 * not get delayed by pending gpu rendering.
    152 *
    153 * Can be called without any locks held.
    154 */
    155void intel_frontbuffer_flip(struct drm_i915_private *i915,
    156			    unsigned frontbuffer_bits)
    157{
    158	spin_lock(&i915->fb_tracking.lock);
    159	/* Remove stale busy bits due to the old buffer. */
    160	i915->fb_tracking.busy_bits &= ~frontbuffer_bits;
    161	spin_unlock(&i915->fb_tracking.lock);
    162
    163	frontbuffer_flush(i915, frontbuffer_bits, ORIGIN_FLIP);
    164}
    165
    166void __intel_fb_invalidate(struct intel_frontbuffer *front,
    167			   enum fb_op_origin origin,
    168			   unsigned int frontbuffer_bits)
    169{
    170	struct drm_i915_private *i915 = to_i915(front->obj->base.dev);
    171
    172	if (origin == ORIGIN_CS) {
    173		spin_lock(&i915->fb_tracking.lock);
    174		i915->fb_tracking.busy_bits |= frontbuffer_bits;
    175		i915->fb_tracking.flip_bits &= ~frontbuffer_bits;
    176		spin_unlock(&i915->fb_tracking.lock);
    177	}
    178
    179	trace_intel_frontbuffer_invalidate(frontbuffer_bits, origin);
    180
    181	might_sleep();
    182	intel_psr_invalidate(i915, frontbuffer_bits, origin);
    183	intel_drrs_invalidate(i915, frontbuffer_bits);
    184	intel_fbc_invalidate(i915, frontbuffer_bits, origin);
    185}
    186
    187void __intel_fb_flush(struct intel_frontbuffer *front,
    188		      enum fb_op_origin origin,
    189		      unsigned int frontbuffer_bits)
    190{
    191	struct drm_i915_private *i915 = to_i915(front->obj->base.dev);
    192
    193	if (origin == ORIGIN_CS) {
    194		spin_lock(&i915->fb_tracking.lock);
    195		/* Filter out new bits since rendering started. */
    196		frontbuffer_bits &= i915->fb_tracking.busy_bits;
    197		i915->fb_tracking.busy_bits &= ~frontbuffer_bits;
    198		spin_unlock(&i915->fb_tracking.lock);
    199	}
    200
    201	if (frontbuffer_bits)
    202		frontbuffer_flush(i915, frontbuffer_bits, origin);
    203}
    204
    205static int frontbuffer_active(struct i915_active *ref)
    206{
    207	struct intel_frontbuffer *front =
    208		container_of(ref, typeof(*front), write);
    209
    210	kref_get(&front->ref);
    211	return 0;
    212}
    213
    214static void frontbuffer_retire(struct i915_active *ref)
    215{
    216	struct intel_frontbuffer *front =
    217		container_of(ref, typeof(*front), write);
    218
    219	intel_frontbuffer_flush(front, ORIGIN_CS);
    220	intel_frontbuffer_put(front);
    221}
    222
    223static void frontbuffer_release(struct kref *ref)
    224	__releases(&to_i915(front->obj->base.dev)->fb_tracking.lock)
    225{
    226	struct intel_frontbuffer *front =
    227		container_of(ref, typeof(*front), ref);
    228	struct drm_i915_gem_object *obj = front->obj;
    229	struct i915_vma *vma;
    230
    231	drm_WARN_ON(obj->base.dev, atomic_read(&front->bits));
    232
    233	spin_lock(&obj->vma.lock);
    234	for_each_ggtt_vma(vma, obj) {
    235		i915_vma_clear_scanout(vma);
    236		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
    237	}
    238	spin_unlock(&obj->vma.lock);
    239
    240	RCU_INIT_POINTER(obj->frontbuffer, NULL);
    241	spin_unlock(&to_i915(obj->base.dev)->fb_tracking.lock);
    242
    243	i915_active_fini(&front->write);
    244
    245	i915_gem_object_put(obj);
    246	kfree_rcu(front, rcu);
    247}
    248
    249struct intel_frontbuffer *
    250intel_frontbuffer_get(struct drm_i915_gem_object *obj)
    251{
    252	struct drm_i915_private *i915 = to_i915(obj->base.dev);
    253	struct intel_frontbuffer *front;
    254
    255	front = __intel_frontbuffer_get(obj);
    256	if (front)
    257		return front;
    258
    259	front = kmalloc(sizeof(*front), GFP_KERNEL);
    260	if (!front)
    261		return NULL;
    262
    263	front->obj = obj;
    264	kref_init(&front->ref);
    265	atomic_set(&front->bits, 0);
    266	i915_active_init(&front->write,
    267			 frontbuffer_active,
    268			 frontbuffer_retire,
    269			 I915_ACTIVE_RETIRE_SLEEPS);
    270
    271	spin_lock(&i915->fb_tracking.lock);
    272	if (rcu_access_pointer(obj->frontbuffer)) {
    273		kfree(front);
    274		front = rcu_dereference_protected(obj->frontbuffer, true);
    275		kref_get(&front->ref);
    276	} else {
    277		i915_gem_object_get(obj);
    278		rcu_assign_pointer(obj->frontbuffer, front);
    279	}
    280	spin_unlock(&i915->fb_tracking.lock);
    281
    282	return front;
    283}
    284
    285void intel_frontbuffer_put(struct intel_frontbuffer *front)
    286{
    287	kref_put_lock(&front->ref,
    288		      frontbuffer_release,
    289		      &to_i915(front->obj->base.dev)->fb_tracking.lock);
    290}
    291
    292/**
    293 * intel_frontbuffer_track - update frontbuffer tracking
    294 * @old: current buffer for the frontbuffer slots
    295 * @new: new buffer for the frontbuffer slots
    296 * @frontbuffer_bits: bitmask of frontbuffer slots
    297 *
    298 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
    299 * from @old and setting them in @new. Both @old and @new can be NULL.
    300 */
    301void intel_frontbuffer_track(struct intel_frontbuffer *old,
    302			     struct intel_frontbuffer *new,
    303			     unsigned int frontbuffer_bits)
    304{
    305	/*
    306	 * Control of individual bits within the mask are guarded by
    307	 * the owning plane->mutex, i.e. we can never see concurrent
    308	 * manipulation of individual bits. But since the bitfield as a whole
    309	 * is updated using RMW, we need to use atomics in order to update
    310	 * the bits.
    311	 */
    312	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
    313		     BITS_PER_TYPE(atomic_t));
    314
    315	if (old) {
    316		drm_WARN_ON(old->obj->base.dev,
    317			    !(atomic_read(&old->bits) & frontbuffer_bits));
    318		atomic_andnot(frontbuffer_bits, &old->bits);
    319	}
    320
    321	if (new) {
    322		drm_WARN_ON(new->obj->base.dev,
    323			    atomic_read(&new->bits) & frontbuffer_bits);
    324		atomic_or(frontbuffer_bits, &new->bits);
    325	}
    326}