cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

i915_gem_ttm.c (35013B)


      1// SPDX-License-Identifier: MIT
      2/*
      3 * Copyright © 2021 Intel Corporation
      4 */
      5
      6#include <linux/shmem_fs.h>
      7
      8#include <drm/ttm/ttm_bo_driver.h>
      9#include <drm/ttm/ttm_placement.h>
     10#include <drm/drm_buddy.h>
     11
     12#include "i915_drv.h"
     13#include "i915_ttm_buddy_manager.h"
     14#include "intel_memory_region.h"
     15#include "intel_region_ttm.h"
     16
     17#include "gem/i915_gem_mman.h"
     18#include "gem/i915_gem_object.h"
     19#include "gem/i915_gem_region.h"
     20#include "gem/i915_gem_ttm.h"
     21#include "gem/i915_gem_ttm_move.h"
     22#include "gem/i915_gem_ttm_pm.h"
     23#include "gt/intel_gpu_commands.h"
     24
     25#define I915_TTM_PRIO_PURGE     0
     26#define I915_TTM_PRIO_NO_PAGES  1
     27#define I915_TTM_PRIO_HAS_PAGES 2
     28#define I915_TTM_PRIO_NEEDS_CPU_ACCESS 3
     29
     30/*
     31 * Size of struct ttm_place vector in on-stack struct ttm_placement allocs
     32 */
     33#define I915_TTM_MAX_PLACEMENTS INTEL_REGION_UNKNOWN
     34
     35/**
     36 * struct i915_ttm_tt - TTM page vector with additional private information
     37 * @ttm: The base TTM page vector.
     38 * @dev: The struct device used for dma mapping and unmapping.
     39 * @cached_rsgt: The cached scatter-gather table.
     40 * @is_shmem: Set if using shmem.
     41 * @filp: The shmem file, if using shmem backend.
     42 *
     43 * Note that DMA may be going on right up to the point where the page-
     44 * vector is unpopulated in delayed destroy. Hence keep the
     45 * scatter-gather table mapped and cached up to that point. This is
     46 * different from the cached gem object io scatter-gather table which
     47 * doesn't have an associated dma mapping.
     48 */
     49struct i915_ttm_tt {
     50	struct ttm_tt ttm;
     51	struct device *dev;
     52	struct i915_refct_sgt cached_rsgt;
     53
     54	bool is_shmem;
     55	struct file *filp;
     56};
     57
     58static const struct ttm_place sys_placement_flags = {
     59	.fpfn = 0,
     60	.lpfn = 0,
     61	.mem_type = I915_PL_SYSTEM,
     62	.flags = 0,
     63};
     64
     65static struct ttm_placement i915_sys_placement = {
     66	.num_placement = 1,
     67	.placement = &sys_placement_flags,
     68	.num_busy_placement = 1,
     69	.busy_placement = &sys_placement_flags,
     70};
     71
     72/**
     73 * i915_ttm_sys_placement - Return the struct ttm_placement to be
     74 * used for an object in system memory.
     75 *
     76 * Rather than making the struct extern, use this
     77 * function.
     78 *
     79 * Return: A pointer to a static variable for sys placement.
     80 */
     81struct ttm_placement *i915_ttm_sys_placement(void)
     82{
     83	return &i915_sys_placement;
     84}
     85
     86static int i915_ttm_err_to_gem(int err)
     87{
     88	/* Fastpath */
     89	if (likely(!err))
     90		return 0;
     91
     92	switch (err) {
     93	case -EBUSY:
     94		/*
     95		 * TTM likes to convert -EDEADLK to -EBUSY, and wants us to
     96		 * restart the operation, since we don't record the contending
     97		 * lock. We use -EAGAIN to restart.
     98		 */
     99		return -EAGAIN;
    100	case -ENOSPC:
    101		/*
    102		 * Memory type / region is full, and we can't evict.
    103		 * Except possibly system, that returns -ENOMEM;
    104		 */
    105		return -ENXIO;
    106	default:
    107		break;
    108	}
    109
    110	return err;
    111}
    112
    113static enum ttm_caching
    114i915_ttm_select_tt_caching(const struct drm_i915_gem_object *obj)
    115{
    116	/*
    117	 * Objects only allowed in system get cached cpu-mappings, or when
    118	 * evicting lmem-only buffers to system for swapping. Other objects get
    119	 * WC mapping for now. Even if in system.
    120	 */
    121	if (obj->mm.n_placements <= 1)
    122		return ttm_cached;
    123
    124	return ttm_write_combined;
    125}
    126
    127static void
    128i915_ttm_place_from_region(const struct intel_memory_region *mr,
    129			   struct ttm_place *place,
    130			   resource_size_t offset,
    131			   resource_size_t size,
    132			   unsigned int flags)
    133{
    134	memset(place, 0, sizeof(*place));
    135	place->mem_type = intel_region_to_ttm_type(mr);
    136
    137	if (mr->type == INTEL_MEMORY_SYSTEM)
    138		return;
    139
    140	if (flags & I915_BO_ALLOC_CONTIGUOUS)
    141		place->flags |= TTM_PL_FLAG_CONTIGUOUS;
    142	if (offset != I915_BO_INVALID_OFFSET) {
    143		place->fpfn = offset >> PAGE_SHIFT;
    144		place->lpfn = place->fpfn + (size >> PAGE_SHIFT);
    145	} else if (mr->io_size && mr->io_size < mr->total) {
    146		if (flags & I915_BO_ALLOC_GPU_ONLY) {
    147			place->flags |= TTM_PL_FLAG_TOPDOWN;
    148		} else {
    149			place->fpfn = 0;
    150			place->lpfn = mr->io_size >> PAGE_SHIFT;
    151		}
    152	}
    153}
    154
    155static void
    156i915_ttm_placement_from_obj(const struct drm_i915_gem_object *obj,
    157			    struct ttm_place *requested,
    158			    struct ttm_place *busy,
    159			    struct ttm_placement *placement)
    160{
    161	unsigned int num_allowed = obj->mm.n_placements;
    162	unsigned int flags = obj->flags;
    163	unsigned int i;
    164
    165	placement->num_placement = 1;
    166	i915_ttm_place_from_region(num_allowed ? obj->mm.placements[0] :
    167				   obj->mm.region, requested, obj->bo_offset,
    168				   obj->base.size, flags);
    169
    170	/* Cache this on object? */
    171	placement->num_busy_placement = num_allowed;
    172	for (i = 0; i < placement->num_busy_placement; ++i)
    173		i915_ttm_place_from_region(obj->mm.placements[i], busy + i,
    174					   obj->bo_offset, obj->base.size, flags);
    175
    176	if (num_allowed == 0) {
    177		*busy = *requested;
    178		placement->num_busy_placement = 1;
    179	}
    180
    181	placement->placement = requested;
    182	placement->busy_placement = busy;
    183}
    184
    185static int i915_ttm_tt_shmem_populate(struct ttm_device *bdev,
    186				      struct ttm_tt *ttm,
    187				      struct ttm_operation_ctx *ctx)
    188{
    189	struct drm_i915_private *i915 = container_of(bdev, typeof(*i915), bdev);
    190	struct intel_memory_region *mr = i915->mm.regions[INTEL_MEMORY_SYSTEM];
    191	struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
    192	const unsigned int max_segment = i915_sg_segment_size();
    193	const size_t size = (size_t)ttm->num_pages << PAGE_SHIFT;
    194	struct file *filp = i915_tt->filp;
    195	struct sgt_iter sgt_iter;
    196	struct sg_table *st;
    197	struct page *page;
    198	unsigned long i;
    199	int err;
    200
    201	if (!filp) {
    202		struct address_space *mapping;
    203		gfp_t mask;
    204
    205		filp = shmem_file_setup("i915-shmem-tt", size, VM_NORESERVE);
    206		if (IS_ERR(filp))
    207			return PTR_ERR(filp);
    208
    209		mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
    210
    211		mapping = filp->f_mapping;
    212		mapping_set_gfp_mask(mapping, mask);
    213		GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
    214
    215		i915_tt->filp = filp;
    216	}
    217
    218	st = &i915_tt->cached_rsgt.table;
    219	err = shmem_sg_alloc_table(i915, st, size, mr, filp->f_mapping,
    220				   max_segment);
    221	if (err)
    222		return err;
    223
    224	err = dma_map_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL,
    225			      DMA_ATTR_SKIP_CPU_SYNC);
    226	if (err)
    227		goto err_free_st;
    228
    229	i = 0;
    230	for_each_sgt_page(page, sgt_iter, st)
    231		ttm->pages[i++] = page;
    232
    233	if (ttm->page_flags & TTM_TT_FLAG_SWAPPED)
    234		ttm->page_flags &= ~TTM_TT_FLAG_SWAPPED;
    235
    236	return 0;
    237
    238err_free_st:
    239	shmem_sg_free_table(st, filp->f_mapping, false, false);
    240
    241	return err;
    242}
    243
    244static void i915_ttm_tt_shmem_unpopulate(struct ttm_tt *ttm)
    245{
    246	struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
    247	bool backup = ttm->page_flags & TTM_TT_FLAG_SWAPPED;
    248	struct sg_table *st = &i915_tt->cached_rsgt.table;
    249
    250	shmem_sg_free_table(st, file_inode(i915_tt->filp)->i_mapping,
    251			    backup, backup);
    252}
    253
    254static void i915_ttm_tt_release(struct kref *ref)
    255{
    256	struct i915_ttm_tt *i915_tt =
    257		container_of(ref, typeof(*i915_tt), cached_rsgt.kref);
    258	struct sg_table *st = &i915_tt->cached_rsgt.table;
    259
    260	GEM_WARN_ON(st->sgl);
    261
    262	kfree(i915_tt);
    263}
    264
    265static const struct i915_refct_sgt_ops tt_rsgt_ops = {
    266	.release = i915_ttm_tt_release
    267};
    268
    269static inline bool
    270i915_gem_object_needs_ccs_pages(struct drm_i915_gem_object *obj)
    271{
    272	bool lmem_placement = false;
    273	int i;
    274
    275	for (i = 0; i < obj->mm.n_placements; i++) {
    276		/* Compression is not allowed for the objects with smem placement */
    277		if (obj->mm.placements[i]->type == INTEL_MEMORY_SYSTEM)
    278			return false;
    279		if (!lmem_placement &&
    280		    obj->mm.placements[i]->type == INTEL_MEMORY_LOCAL)
    281			lmem_placement = true;
    282	}
    283
    284	return lmem_placement;
    285}
    286
    287static struct ttm_tt *i915_ttm_tt_create(struct ttm_buffer_object *bo,
    288					 uint32_t page_flags)
    289{
    290	struct drm_i915_private *i915 = container_of(bo->bdev, typeof(*i915),
    291						     bdev);
    292	struct ttm_resource_manager *man =
    293		ttm_manager_type(bo->bdev, bo->resource->mem_type);
    294	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
    295	unsigned long ccs_pages = 0;
    296	enum ttm_caching caching;
    297	struct i915_ttm_tt *i915_tt;
    298	int ret;
    299
    300	if (!obj)
    301		return NULL;
    302
    303	i915_tt = kzalloc(sizeof(*i915_tt), GFP_KERNEL);
    304	if (!i915_tt)
    305		return NULL;
    306
    307	if (obj->flags & I915_BO_ALLOC_CPU_CLEAR &&
    308	    man->use_tt)
    309		page_flags |= TTM_TT_FLAG_ZERO_ALLOC;
    310
    311	caching = i915_ttm_select_tt_caching(obj);
    312	if (i915_gem_object_is_shrinkable(obj) && caching == ttm_cached) {
    313		page_flags |= TTM_TT_FLAG_EXTERNAL |
    314			      TTM_TT_FLAG_EXTERNAL_MAPPABLE;
    315		i915_tt->is_shmem = true;
    316	}
    317
    318	if (HAS_FLAT_CCS(i915) && i915_gem_object_needs_ccs_pages(obj))
    319		ccs_pages = DIV_ROUND_UP(DIV_ROUND_UP(bo->base.size,
    320						      NUM_BYTES_PER_CCS_BYTE),
    321					 PAGE_SIZE);
    322
    323	ret = ttm_tt_init(&i915_tt->ttm, bo, page_flags, caching, ccs_pages);
    324	if (ret)
    325		goto err_free;
    326
    327	__i915_refct_sgt_init(&i915_tt->cached_rsgt, bo->base.size,
    328			      &tt_rsgt_ops);
    329
    330	i915_tt->dev = obj->base.dev->dev;
    331
    332	return &i915_tt->ttm;
    333
    334err_free:
    335	kfree(i915_tt);
    336	return NULL;
    337}
    338
    339static int i915_ttm_tt_populate(struct ttm_device *bdev,
    340				struct ttm_tt *ttm,
    341				struct ttm_operation_ctx *ctx)
    342{
    343	struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
    344
    345	if (i915_tt->is_shmem)
    346		return i915_ttm_tt_shmem_populate(bdev, ttm, ctx);
    347
    348	return ttm_pool_alloc(&bdev->pool, ttm, ctx);
    349}
    350
    351static void i915_ttm_tt_unpopulate(struct ttm_device *bdev, struct ttm_tt *ttm)
    352{
    353	struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
    354	struct sg_table *st = &i915_tt->cached_rsgt.table;
    355
    356	if (st->sgl)
    357		dma_unmap_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL, 0);
    358
    359	if (i915_tt->is_shmem) {
    360		i915_ttm_tt_shmem_unpopulate(ttm);
    361	} else {
    362		sg_free_table(st);
    363		ttm_pool_free(&bdev->pool, ttm);
    364	}
    365}
    366
    367static void i915_ttm_tt_destroy(struct ttm_device *bdev, struct ttm_tt *ttm)
    368{
    369	struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
    370
    371	if (i915_tt->filp)
    372		fput(i915_tt->filp);
    373
    374	ttm_tt_fini(ttm);
    375	i915_refct_sgt_put(&i915_tt->cached_rsgt);
    376}
    377
    378static bool i915_ttm_eviction_valuable(struct ttm_buffer_object *bo,
    379				       const struct ttm_place *place)
    380{
    381	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
    382	struct ttm_resource *res = bo->resource;
    383
    384	if (!obj)
    385		return false;
    386
    387	/*
    388	 * EXTERNAL objects should never be swapped out by TTM, instead we need
    389	 * to handle that ourselves. TTM will already skip such objects for us,
    390	 * but we would like to avoid grabbing locks for no good reason.
    391	 */
    392	if (bo->ttm && bo->ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
    393		return false;
    394
    395	/* Will do for now. Our pinned objects are still on TTM's LRU lists */
    396	if (!i915_gem_object_evictable(obj))
    397		return false;
    398
    399	switch (res->mem_type) {
    400	case I915_PL_LMEM0: {
    401		struct ttm_resource_manager *man =
    402			ttm_manager_type(bo->bdev, res->mem_type);
    403		struct i915_ttm_buddy_resource *bman_res =
    404			to_ttm_buddy_resource(res);
    405		struct drm_buddy *mm = bman_res->mm;
    406		struct drm_buddy_block *block;
    407
    408		if (!place->fpfn && !place->lpfn)
    409			return true;
    410
    411		GEM_BUG_ON(!place->lpfn);
    412
    413		/*
    414		 * If we just want something mappable then we can quickly check
    415		 * if the current victim resource is using any of the CPU
    416		 * visible portion.
    417		 */
    418		if (!place->fpfn &&
    419		    place->lpfn == i915_ttm_buddy_man_visible_size(man))
    420			return bman_res->used_visible_size > 0;
    421
    422		/* Real range allocation */
    423		list_for_each_entry(block, &bman_res->blocks, link) {
    424			unsigned long fpfn =
    425				drm_buddy_block_offset(block) >> PAGE_SHIFT;
    426			unsigned long lpfn = fpfn +
    427				(drm_buddy_block_size(mm, block) >> PAGE_SHIFT);
    428
    429			if (place->fpfn < lpfn && place->lpfn > fpfn)
    430				return true;
    431		}
    432		return false;
    433	} default:
    434		break;
    435	}
    436
    437	return true;
    438}
    439
    440static void i915_ttm_evict_flags(struct ttm_buffer_object *bo,
    441				 struct ttm_placement *placement)
    442{
    443	*placement = i915_sys_placement;
    444}
    445
    446/**
    447 * i915_ttm_free_cached_io_rsgt - Free object cached LMEM information
    448 * @obj: The GEM object
    449 * This function frees any LMEM-related information that is cached on
    450 * the object. For example the radix tree for fast page lookup and the
    451 * cached refcounted sg-table
    452 */
    453void i915_ttm_free_cached_io_rsgt(struct drm_i915_gem_object *obj)
    454{
    455	struct radix_tree_iter iter;
    456	void __rcu **slot;
    457
    458	if (!obj->ttm.cached_io_rsgt)
    459		return;
    460
    461	rcu_read_lock();
    462	radix_tree_for_each_slot(slot, &obj->ttm.get_io_page.radix, &iter, 0)
    463		radix_tree_delete(&obj->ttm.get_io_page.radix, iter.index);
    464	rcu_read_unlock();
    465
    466	i915_refct_sgt_put(obj->ttm.cached_io_rsgt);
    467	obj->ttm.cached_io_rsgt = NULL;
    468}
    469
    470/**
    471 * i915_ttm_purge - Clear an object of its memory
    472 * @obj: The object
    473 *
    474 * This function is called to clear an object of it's memory when it is
    475 * marked as not needed anymore.
    476 *
    477 * Return: 0 on success, negative error code on failure.
    478 */
    479int i915_ttm_purge(struct drm_i915_gem_object *obj)
    480{
    481	struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
    482	struct i915_ttm_tt *i915_tt =
    483		container_of(bo->ttm, typeof(*i915_tt), ttm);
    484	struct ttm_operation_ctx ctx = {
    485		.interruptible = true,
    486		.no_wait_gpu = false,
    487	};
    488	struct ttm_placement place = {};
    489	int ret;
    490
    491	if (obj->mm.madv == __I915_MADV_PURGED)
    492		return 0;
    493
    494	ret = ttm_bo_validate(bo, &place, &ctx);
    495	if (ret)
    496		return ret;
    497
    498	if (bo->ttm && i915_tt->filp) {
    499		/*
    500		 * The below fput(which eventually calls shmem_truncate) might
    501		 * be delayed by worker, so when directly called to purge the
    502		 * pages(like by the shrinker) we should try to be more
    503		 * aggressive and release the pages immediately.
    504		 */
    505		shmem_truncate_range(file_inode(i915_tt->filp),
    506				     0, (loff_t)-1);
    507		fput(fetch_and_zero(&i915_tt->filp));
    508	}
    509
    510	obj->write_domain = 0;
    511	obj->read_domains = 0;
    512	i915_ttm_adjust_gem_after_move(obj);
    513	i915_ttm_free_cached_io_rsgt(obj);
    514	obj->mm.madv = __I915_MADV_PURGED;
    515
    516	return 0;
    517}
    518
    519static int i915_ttm_shrink(struct drm_i915_gem_object *obj, unsigned int flags)
    520{
    521	struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
    522	struct i915_ttm_tt *i915_tt =
    523		container_of(bo->ttm, typeof(*i915_tt), ttm);
    524	struct ttm_operation_ctx ctx = {
    525		.interruptible = true,
    526		.no_wait_gpu = flags & I915_GEM_OBJECT_SHRINK_NO_GPU_WAIT,
    527	};
    528	struct ttm_placement place = {};
    529	int ret;
    530
    531	if (!bo->ttm || bo->resource->mem_type != TTM_PL_SYSTEM)
    532		return 0;
    533
    534	GEM_BUG_ON(!i915_tt->is_shmem);
    535
    536	if (!i915_tt->filp)
    537		return 0;
    538
    539	ret = ttm_bo_wait_ctx(bo, &ctx);
    540	if (ret)
    541		return ret;
    542
    543	switch (obj->mm.madv) {
    544	case I915_MADV_DONTNEED:
    545		return i915_ttm_purge(obj);
    546	case __I915_MADV_PURGED:
    547		return 0;
    548	}
    549
    550	if (bo->ttm->page_flags & TTM_TT_FLAG_SWAPPED)
    551		return 0;
    552
    553	bo->ttm->page_flags |= TTM_TT_FLAG_SWAPPED;
    554	ret = ttm_bo_validate(bo, &place, &ctx);
    555	if (ret) {
    556		bo->ttm->page_flags &= ~TTM_TT_FLAG_SWAPPED;
    557		return ret;
    558	}
    559
    560	if (flags & I915_GEM_OBJECT_SHRINK_WRITEBACK)
    561		__shmem_writeback(obj->base.size, i915_tt->filp->f_mapping);
    562
    563	return 0;
    564}
    565
    566static void i915_ttm_delete_mem_notify(struct ttm_buffer_object *bo)
    567{
    568	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
    569
    570	if (likely(obj)) {
    571		__i915_gem_object_pages_fini(obj);
    572		i915_ttm_free_cached_io_rsgt(obj);
    573	}
    574}
    575
    576static struct i915_refct_sgt *i915_ttm_tt_get_st(struct ttm_tt *ttm)
    577{
    578	struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
    579	struct sg_table *st;
    580	int ret;
    581
    582	if (i915_tt->cached_rsgt.table.sgl)
    583		return i915_refct_sgt_get(&i915_tt->cached_rsgt);
    584
    585	st = &i915_tt->cached_rsgt.table;
    586	ret = sg_alloc_table_from_pages_segment(st,
    587			ttm->pages, ttm->num_pages,
    588			0, (unsigned long)ttm->num_pages << PAGE_SHIFT,
    589			i915_sg_segment_size(), GFP_KERNEL);
    590	if (ret) {
    591		st->sgl = NULL;
    592		return ERR_PTR(ret);
    593	}
    594
    595	ret = dma_map_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL, 0);
    596	if (ret) {
    597		sg_free_table(st);
    598		return ERR_PTR(ret);
    599	}
    600
    601	return i915_refct_sgt_get(&i915_tt->cached_rsgt);
    602}
    603
    604/**
    605 * i915_ttm_resource_get_st - Get a refcounted sg-table pointing to the
    606 * resource memory
    607 * @obj: The GEM object used for sg-table caching
    608 * @res: The struct ttm_resource for which an sg-table is requested.
    609 *
    610 * This function returns a refcounted sg-table representing the memory
    611 * pointed to by @res. If @res is the object's current resource it may also
    612 * cache the sg_table on the object or attempt to access an already cached
    613 * sg-table. The refcounted sg-table needs to be put when no-longer in use.
    614 *
    615 * Return: A valid pointer to a struct i915_refct_sgt or error pointer on
    616 * failure.
    617 */
    618struct i915_refct_sgt *
    619i915_ttm_resource_get_st(struct drm_i915_gem_object *obj,
    620			 struct ttm_resource *res)
    621{
    622	struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
    623
    624	if (!i915_ttm_gtt_binds_lmem(res))
    625		return i915_ttm_tt_get_st(bo->ttm);
    626
    627	/*
    628	 * If CPU mapping differs, we need to add the ttm_tt pages to
    629	 * the resulting st. Might make sense for GGTT.
    630	 */
    631	GEM_WARN_ON(!i915_ttm_cpu_maps_iomem(res));
    632	if (bo->resource == res) {
    633		if (!obj->ttm.cached_io_rsgt) {
    634			struct i915_refct_sgt *rsgt;
    635
    636			rsgt = intel_region_ttm_resource_to_rsgt(obj->mm.region,
    637								 res);
    638			if (IS_ERR(rsgt))
    639				return rsgt;
    640
    641			obj->ttm.cached_io_rsgt = rsgt;
    642		}
    643		return i915_refct_sgt_get(obj->ttm.cached_io_rsgt);
    644	}
    645
    646	return intel_region_ttm_resource_to_rsgt(obj->mm.region, res);
    647}
    648
    649static int i915_ttm_truncate(struct drm_i915_gem_object *obj)
    650{
    651	struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
    652	int err;
    653
    654	WARN_ON_ONCE(obj->mm.madv == I915_MADV_WILLNEED);
    655
    656	err = i915_ttm_move_notify(bo);
    657	if (err)
    658		return err;
    659
    660	return i915_ttm_purge(obj);
    661}
    662
    663static void i915_ttm_swap_notify(struct ttm_buffer_object *bo)
    664{
    665	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
    666	int ret;
    667
    668	if (!obj)
    669		return;
    670
    671	ret = i915_ttm_move_notify(bo);
    672	GEM_WARN_ON(ret);
    673	GEM_WARN_ON(obj->ttm.cached_io_rsgt);
    674	if (!ret && obj->mm.madv != I915_MADV_WILLNEED)
    675		i915_ttm_purge(obj);
    676}
    677
    678static bool i915_ttm_resource_mappable(struct ttm_resource *res)
    679{
    680	struct i915_ttm_buddy_resource *bman_res = to_ttm_buddy_resource(res);
    681
    682	if (!i915_ttm_cpu_maps_iomem(res))
    683		return true;
    684
    685	return bman_res->used_visible_size == bman_res->base.num_pages;
    686}
    687
    688static int i915_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *mem)
    689{
    690	if (!i915_ttm_cpu_maps_iomem(mem))
    691		return 0;
    692
    693	if (!i915_ttm_resource_mappable(mem))
    694		return -EINVAL;
    695
    696	mem->bus.caching = ttm_write_combined;
    697	mem->bus.is_iomem = true;
    698
    699	return 0;
    700}
    701
    702static unsigned long i915_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
    703					 unsigned long page_offset)
    704{
    705	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
    706	struct scatterlist *sg;
    707	unsigned long base;
    708	unsigned int ofs;
    709
    710	GEM_BUG_ON(!obj);
    711	GEM_WARN_ON(bo->ttm);
    712
    713	base = obj->mm.region->iomap.base - obj->mm.region->region.start;
    714	sg = __i915_gem_object_get_sg(obj, &obj->ttm.get_io_page, page_offset, &ofs, true);
    715
    716	return ((base + sg_dma_address(sg)) >> PAGE_SHIFT) + ofs;
    717}
    718
    719/*
    720 * All callbacks need to take care not to downcast a struct ttm_buffer_object
    721 * without checking its subclass, since it might be a TTM ghost object.
    722 */
    723static struct ttm_device_funcs i915_ttm_bo_driver = {
    724	.ttm_tt_create = i915_ttm_tt_create,
    725	.ttm_tt_populate = i915_ttm_tt_populate,
    726	.ttm_tt_unpopulate = i915_ttm_tt_unpopulate,
    727	.ttm_tt_destroy = i915_ttm_tt_destroy,
    728	.eviction_valuable = i915_ttm_eviction_valuable,
    729	.evict_flags = i915_ttm_evict_flags,
    730	.move = i915_ttm_move,
    731	.swap_notify = i915_ttm_swap_notify,
    732	.delete_mem_notify = i915_ttm_delete_mem_notify,
    733	.io_mem_reserve = i915_ttm_io_mem_reserve,
    734	.io_mem_pfn = i915_ttm_io_mem_pfn,
    735};
    736
    737/**
    738 * i915_ttm_driver - Return a pointer to the TTM device funcs
    739 *
    740 * Return: Pointer to statically allocated TTM device funcs.
    741 */
    742struct ttm_device_funcs *i915_ttm_driver(void)
    743{
    744	return &i915_ttm_bo_driver;
    745}
    746
    747static int __i915_ttm_get_pages(struct drm_i915_gem_object *obj,
    748				struct ttm_placement *placement)
    749{
    750	struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
    751	struct ttm_operation_ctx ctx = {
    752		.interruptible = true,
    753		.no_wait_gpu = false,
    754	};
    755	int real_num_busy;
    756	int ret;
    757
    758	/* First try only the requested placement. No eviction. */
    759	real_num_busy = fetch_and_zero(&placement->num_busy_placement);
    760	ret = ttm_bo_validate(bo, placement, &ctx);
    761	if (ret) {
    762		ret = i915_ttm_err_to_gem(ret);
    763		/*
    764		 * Anything that wants to restart the operation gets to
    765		 * do that.
    766		 */
    767		if (ret == -EDEADLK || ret == -EINTR || ret == -ERESTARTSYS ||
    768		    ret == -EAGAIN)
    769			return ret;
    770
    771		/*
    772		 * If the initial attempt fails, allow all accepted placements,
    773		 * evicting if necessary.
    774		 */
    775		placement->num_busy_placement = real_num_busy;
    776		ret = ttm_bo_validate(bo, placement, &ctx);
    777		if (ret)
    778			return i915_ttm_err_to_gem(ret);
    779	}
    780
    781	if (bo->ttm && !ttm_tt_is_populated(bo->ttm)) {
    782		ret = ttm_tt_populate(bo->bdev, bo->ttm, &ctx);
    783		if (ret)
    784			return ret;
    785
    786		i915_ttm_adjust_domains_after_move(obj);
    787		i915_ttm_adjust_gem_after_move(obj);
    788	}
    789
    790	if (!i915_gem_object_has_pages(obj)) {
    791		struct i915_refct_sgt *rsgt =
    792			i915_ttm_resource_get_st(obj, bo->resource);
    793
    794		if (IS_ERR(rsgt))
    795			return PTR_ERR(rsgt);
    796
    797		GEM_BUG_ON(obj->mm.rsgt);
    798		obj->mm.rsgt = rsgt;
    799		__i915_gem_object_set_pages(obj, &rsgt->table,
    800					    i915_sg_dma_sizes(rsgt->table.sgl));
    801	}
    802
    803	GEM_BUG_ON(bo->ttm && ((obj->base.size >> PAGE_SHIFT) < bo->ttm->num_pages));
    804	i915_ttm_adjust_lru(obj);
    805	return ret;
    806}
    807
    808static int i915_ttm_get_pages(struct drm_i915_gem_object *obj)
    809{
    810	struct ttm_place requested, busy[I915_TTM_MAX_PLACEMENTS];
    811	struct ttm_placement placement;
    812
    813	GEM_BUG_ON(obj->mm.n_placements > I915_TTM_MAX_PLACEMENTS);
    814
    815	/* Move to the requested placement. */
    816	i915_ttm_placement_from_obj(obj, &requested, busy, &placement);
    817
    818	return __i915_ttm_get_pages(obj, &placement);
    819}
    820
    821/**
    822 * DOC: Migration vs eviction
    823 *
    824 * GEM migration may not be the same as TTM migration / eviction. If
    825 * the TTM core decides to evict an object it may be evicted to a
    826 * TTM memory type that is not in the object's allowable GEM regions, or
    827 * in fact theoretically to a TTM memory type that doesn't correspond to
    828 * a GEM memory region. In that case the object's GEM region is not
    829 * updated, and the data is migrated back to the GEM region at
    830 * get_pages time. TTM may however set up CPU ptes to the object even
    831 * when it is evicted.
    832 * Gem forced migration using the i915_ttm_migrate() op, is allowed even
    833 * to regions that are not in the object's list of allowable placements.
    834 */
    835static int __i915_ttm_migrate(struct drm_i915_gem_object *obj,
    836			      struct intel_memory_region *mr,
    837			      unsigned int flags)
    838{
    839	struct ttm_place requested;
    840	struct ttm_placement placement;
    841	int ret;
    842
    843	i915_ttm_place_from_region(mr, &requested, obj->bo_offset,
    844				   obj->base.size, flags);
    845	placement.num_placement = 1;
    846	placement.num_busy_placement = 1;
    847	placement.placement = &requested;
    848	placement.busy_placement = &requested;
    849
    850	ret = __i915_ttm_get_pages(obj, &placement);
    851	if (ret)
    852		return ret;
    853
    854	/*
    855	 * Reinitialize the region bindings. This is primarily
    856	 * required for objects where the new region is not in
    857	 * its allowable placements.
    858	 */
    859	if (obj->mm.region != mr) {
    860		i915_gem_object_release_memory_region(obj);
    861		i915_gem_object_init_memory_region(obj, mr);
    862	}
    863
    864	return 0;
    865}
    866
    867static int i915_ttm_migrate(struct drm_i915_gem_object *obj,
    868			    struct intel_memory_region *mr)
    869{
    870	return __i915_ttm_migrate(obj, mr, obj->flags);
    871}
    872
    873static void i915_ttm_put_pages(struct drm_i915_gem_object *obj,
    874			       struct sg_table *st)
    875{
    876	/*
    877	 * We're currently not called from a shrinker, so put_pages()
    878	 * typically means the object is about to destroyed, or called
    879	 * from move_notify(). So just avoid doing much for now.
    880	 * If the object is not destroyed next, The TTM eviction logic
    881	 * and shrinkers will move it out if needed.
    882	 */
    883
    884	if (obj->mm.rsgt)
    885		i915_refct_sgt_put(fetch_and_zero(&obj->mm.rsgt));
    886}
    887
    888/**
    889 * i915_ttm_adjust_lru - Adjust an object's position on relevant LRU lists.
    890 * @obj: The object
    891 */
    892void i915_ttm_adjust_lru(struct drm_i915_gem_object *obj)
    893{
    894	struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
    895	struct i915_ttm_tt *i915_tt =
    896		container_of(bo->ttm, typeof(*i915_tt), ttm);
    897	bool shrinkable =
    898		bo->ttm && i915_tt->filp && ttm_tt_is_populated(bo->ttm);
    899
    900	/*
    901	 * Don't manipulate the TTM LRUs while in TTM bo destruction.
    902	 * We're called through i915_ttm_delete_mem_notify().
    903	 */
    904	if (!kref_read(&bo->kref))
    905		return;
    906
    907	/*
    908	 * We skip managing the shrinker LRU in set_pages() and just manage
    909	 * everything here. This does at least solve the issue with having
    910	 * temporary shmem mappings(like with evicted lmem) not being visible to
    911	 * the shrinker. Only our shmem objects are shrinkable, everything else
    912	 * we keep as unshrinkable.
    913	 *
    914	 * To make sure everything plays nice we keep an extra shrink pin in TTM
    915	 * if the underlying pages are not currently shrinkable. Once we release
    916	 * our pin, like when the pages are moved to shmem, the pages will then
    917	 * be added to the shrinker LRU, assuming the caller isn't also holding
    918	 * a pin.
    919	 *
    920	 * TODO: consider maybe also bumping the shrinker list here when we have
    921	 * already unpinned it, which should give us something more like an LRU.
    922	 *
    923	 * TODO: There is a small window of opportunity for this function to
    924	 * get called from eviction after we've dropped the last GEM refcount,
    925	 * but before the TTM deleted flag is set on the object. Avoid
    926	 * adjusting the shrinker list in such cases, since the object is
    927	 * not available to the shrinker anyway due to its zero refcount.
    928	 * To fix this properly we should move to a TTM shrinker LRU list for
    929	 * these objects.
    930	 */
    931	if (kref_get_unless_zero(&obj->base.refcount)) {
    932		if (shrinkable != obj->mm.ttm_shrinkable) {
    933			if (shrinkable) {
    934				if (obj->mm.madv == I915_MADV_WILLNEED)
    935					__i915_gem_object_make_shrinkable(obj);
    936				else
    937					__i915_gem_object_make_purgeable(obj);
    938			} else {
    939				i915_gem_object_make_unshrinkable(obj);
    940			}
    941
    942			obj->mm.ttm_shrinkable = shrinkable;
    943		}
    944		i915_gem_object_put(obj);
    945	}
    946
    947	/*
    948	 * Put on the correct LRU list depending on the MADV status
    949	 */
    950	spin_lock(&bo->bdev->lru_lock);
    951	if (shrinkable) {
    952		/* Try to keep shmem_tt from being considered for shrinking. */
    953		bo->priority = TTM_MAX_BO_PRIORITY - 1;
    954	} else if (obj->mm.madv != I915_MADV_WILLNEED) {
    955		bo->priority = I915_TTM_PRIO_PURGE;
    956	} else if (!i915_gem_object_has_pages(obj)) {
    957		bo->priority = I915_TTM_PRIO_NO_PAGES;
    958	} else {
    959		struct ttm_resource_manager *man =
    960			ttm_manager_type(bo->bdev, bo->resource->mem_type);
    961
    962		/*
    963		 * If we need to place an LMEM resource which doesn't need CPU
    964		 * access then we should try not to victimize mappable objects
    965		 * first, since we likely end up stealing more of the mappable
    966		 * portion. And likewise when we try to find space for a mappble
    967		 * object, we know not to ever victimize objects that don't
    968		 * occupy any mappable pages.
    969		 */
    970		if (i915_ttm_cpu_maps_iomem(bo->resource) &&
    971		    i915_ttm_buddy_man_visible_size(man) < man->size &&
    972		    !(obj->flags & I915_BO_ALLOC_GPU_ONLY))
    973			bo->priority = I915_TTM_PRIO_NEEDS_CPU_ACCESS;
    974		else
    975			bo->priority = I915_TTM_PRIO_HAS_PAGES;
    976	}
    977
    978	ttm_bo_move_to_lru_tail(bo);
    979	spin_unlock(&bo->bdev->lru_lock);
    980}
    981
    982/*
    983 * TTM-backed gem object destruction requires some clarification.
    984 * Basically we have two possibilities here. We can either rely on the
    985 * i915 delayed destruction and put the TTM object when the object
    986 * is idle. This would be detected by TTM which would bypass the
    987 * TTM delayed destroy handling. The other approach is to put the TTM
    988 * object early and rely on the TTM destroyed handling, and then free
    989 * the leftover parts of the GEM object once TTM's destroyed list handling is
    990 * complete. For now, we rely on the latter for two reasons:
    991 * a) TTM can evict an object even when it's on the delayed destroy list,
    992 * which in theory allows for complete eviction.
    993 * b) There is work going on in TTM to allow freeing an object even when
    994 * it's not idle, and using the TTM destroyed list handling could help us
    995 * benefit from that.
    996 */
    997static void i915_ttm_delayed_free(struct drm_i915_gem_object *obj)
    998{
    999	GEM_BUG_ON(!obj->ttm.created);
   1000
   1001	ttm_bo_put(i915_gem_to_ttm(obj));
   1002}
   1003
   1004static vm_fault_t vm_fault_ttm(struct vm_fault *vmf)
   1005{
   1006	struct vm_area_struct *area = vmf->vma;
   1007	struct ttm_buffer_object *bo = area->vm_private_data;
   1008	struct drm_device *dev = bo->base.dev;
   1009	struct drm_i915_gem_object *obj;
   1010	vm_fault_t ret;
   1011	int idx;
   1012
   1013	obj = i915_ttm_to_gem(bo);
   1014	if (!obj)
   1015		return VM_FAULT_SIGBUS;
   1016
   1017	/* Sanity check that we allow writing into this object */
   1018	if (unlikely(i915_gem_object_is_readonly(obj) &&
   1019		     area->vm_flags & VM_WRITE))
   1020		return VM_FAULT_SIGBUS;
   1021
   1022	ret = ttm_bo_vm_reserve(bo, vmf);
   1023	if (ret)
   1024		return ret;
   1025
   1026	if (obj->mm.madv != I915_MADV_WILLNEED) {
   1027		dma_resv_unlock(bo->base.resv);
   1028		return VM_FAULT_SIGBUS;
   1029	}
   1030
   1031	if (!i915_ttm_resource_mappable(bo->resource)) {
   1032		int err = -ENODEV;
   1033		int i;
   1034
   1035		for (i = 0; i < obj->mm.n_placements; i++) {
   1036			struct intel_memory_region *mr = obj->mm.placements[i];
   1037			unsigned int flags;
   1038
   1039			if (!mr->io_size && mr->type != INTEL_MEMORY_SYSTEM)
   1040				continue;
   1041
   1042			flags = obj->flags;
   1043			flags &= ~I915_BO_ALLOC_GPU_ONLY;
   1044			err = __i915_ttm_migrate(obj, mr, flags);
   1045			if (!err)
   1046				break;
   1047		}
   1048
   1049		if (err) {
   1050			drm_dbg(dev, "Unable to make resource CPU accessible\n");
   1051			dma_resv_unlock(bo->base.resv);
   1052			return VM_FAULT_SIGBUS;
   1053		}
   1054	}
   1055
   1056	if (drm_dev_enter(dev, &idx)) {
   1057		ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot,
   1058					       TTM_BO_VM_NUM_PREFAULT);
   1059		drm_dev_exit(idx);
   1060	} else {
   1061		ret = ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot);
   1062	}
   1063	if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT))
   1064		return ret;
   1065
   1066	i915_ttm_adjust_lru(obj);
   1067
   1068	dma_resv_unlock(bo->base.resv);
   1069	return ret;
   1070}
   1071
   1072static int
   1073vm_access_ttm(struct vm_area_struct *area, unsigned long addr,
   1074	      void *buf, int len, int write)
   1075{
   1076	struct drm_i915_gem_object *obj =
   1077		i915_ttm_to_gem(area->vm_private_data);
   1078
   1079	if (i915_gem_object_is_readonly(obj) && write)
   1080		return -EACCES;
   1081
   1082	return ttm_bo_vm_access(area, addr, buf, len, write);
   1083}
   1084
   1085static void ttm_vm_open(struct vm_area_struct *vma)
   1086{
   1087	struct drm_i915_gem_object *obj =
   1088		i915_ttm_to_gem(vma->vm_private_data);
   1089
   1090	GEM_BUG_ON(!obj);
   1091	i915_gem_object_get(obj);
   1092}
   1093
   1094static void ttm_vm_close(struct vm_area_struct *vma)
   1095{
   1096	struct drm_i915_gem_object *obj =
   1097		i915_ttm_to_gem(vma->vm_private_data);
   1098
   1099	GEM_BUG_ON(!obj);
   1100	i915_gem_object_put(obj);
   1101}
   1102
   1103static const struct vm_operations_struct vm_ops_ttm = {
   1104	.fault = vm_fault_ttm,
   1105	.access = vm_access_ttm,
   1106	.open = ttm_vm_open,
   1107	.close = ttm_vm_close,
   1108};
   1109
   1110static u64 i915_ttm_mmap_offset(struct drm_i915_gem_object *obj)
   1111{
   1112	/* The ttm_bo must be allocated with I915_BO_ALLOC_USER */
   1113	GEM_BUG_ON(!drm_mm_node_allocated(&obj->base.vma_node.vm_node));
   1114
   1115	return drm_vma_node_offset_addr(&obj->base.vma_node);
   1116}
   1117
   1118static void i915_ttm_unmap_virtual(struct drm_i915_gem_object *obj)
   1119{
   1120	ttm_bo_unmap_virtual(i915_gem_to_ttm(obj));
   1121}
   1122
   1123static const struct drm_i915_gem_object_ops i915_gem_ttm_obj_ops = {
   1124	.name = "i915_gem_object_ttm",
   1125	.flags = I915_GEM_OBJECT_IS_SHRINKABLE |
   1126		 I915_GEM_OBJECT_SELF_MANAGED_SHRINK_LIST,
   1127
   1128	.get_pages = i915_ttm_get_pages,
   1129	.put_pages = i915_ttm_put_pages,
   1130	.truncate = i915_ttm_truncate,
   1131	.shrink = i915_ttm_shrink,
   1132
   1133	.adjust_lru = i915_ttm_adjust_lru,
   1134	.delayed_free = i915_ttm_delayed_free,
   1135	.migrate = i915_ttm_migrate,
   1136
   1137	.mmap_offset = i915_ttm_mmap_offset,
   1138	.unmap_virtual = i915_ttm_unmap_virtual,
   1139	.mmap_ops = &vm_ops_ttm,
   1140};
   1141
   1142void i915_ttm_bo_destroy(struct ttm_buffer_object *bo)
   1143{
   1144	struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
   1145
   1146	i915_gem_object_release_memory_region(obj);
   1147	mutex_destroy(&obj->ttm.get_io_page.lock);
   1148
   1149	if (obj->ttm.created) {
   1150		/*
   1151		 * We freely manage the shrinker LRU outide of the mm.pages life
   1152		 * cycle. As a result when destroying the object we should be
   1153		 * extra paranoid and ensure we remove it from the LRU, before
   1154		 * we free the object.
   1155		 *
   1156		 * Touching the ttm_shrinkable outside of the object lock here
   1157		 * should be safe now that the last GEM object ref was dropped.
   1158		 */
   1159		if (obj->mm.ttm_shrinkable)
   1160			i915_gem_object_make_unshrinkable(obj);
   1161
   1162		i915_ttm_backup_free(obj);
   1163
   1164		/* This releases all gem object bindings to the backend. */
   1165		__i915_gem_free_object(obj);
   1166
   1167		call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
   1168	} else {
   1169		__i915_gem_object_fini(obj);
   1170	}
   1171}
   1172
   1173/**
   1174 * __i915_gem_ttm_object_init - Initialize a ttm-backed i915 gem object
   1175 * @mem: The initial memory region for the object.
   1176 * @obj: The gem object.
   1177 * @size: Object size in bytes.
   1178 * @flags: gem object flags.
   1179 *
   1180 * Return: 0 on success, negative error code on failure.
   1181 */
   1182int __i915_gem_ttm_object_init(struct intel_memory_region *mem,
   1183			       struct drm_i915_gem_object *obj,
   1184			       resource_size_t offset,
   1185			       resource_size_t size,
   1186			       resource_size_t page_size,
   1187			       unsigned int flags)
   1188{
   1189	static struct lock_class_key lock_class;
   1190	struct drm_i915_private *i915 = mem->i915;
   1191	struct ttm_operation_ctx ctx = {
   1192		.interruptible = true,
   1193		.no_wait_gpu = false,
   1194	};
   1195	enum ttm_bo_type bo_type;
   1196	int ret;
   1197
   1198	drm_gem_private_object_init(&i915->drm, &obj->base, size);
   1199	i915_gem_object_init(obj, &i915_gem_ttm_obj_ops, &lock_class, flags);
   1200
   1201	obj->bo_offset = offset;
   1202
   1203	/* Don't put on a region list until we're either locked or fully initialized. */
   1204	obj->mm.region = mem;
   1205	INIT_LIST_HEAD(&obj->mm.region_link);
   1206
   1207	INIT_RADIX_TREE(&obj->ttm.get_io_page.radix, GFP_KERNEL | __GFP_NOWARN);
   1208	mutex_init(&obj->ttm.get_io_page.lock);
   1209	bo_type = (obj->flags & I915_BO_ALLOC_USER) ? ttm_bo_type_device :
   1210		ttm_bo_type_kernel;
   1211
   1212	obj->base.vma_node.driver_private = i915_gem_to_ttm(obj);
   1213
   1214	/* Forcing the page size is kernel internal only */
   1215	GEM_BUG_ON(page_size && obj->mm.n_placements);
   1216
   1217	/*
   1218	 * Keep an extra shrink pin to prevent the object from being made
   1219	 * shrinkable too early. If the ttm_tt is ever allocated in shmem, we
   1220	 * drop the pin. The TTM backend manages the shrinker LRU itself,
   1221	 * outside of the normal mm.pages life cycle.
   1222	 */
   1223	i915_gem_object_make_unshrinkable(obj);
   1224
   1225	/*
   1226	 * If this function fails, it will call the destructor, but
   1227	 * our caller still owns the object. So no freeing in the
   1228	 * destructor until obj->ttm.created is true.
   1229	 * Similarly, in delayed_destroy, we can't call ttm_bo_put()
   1230	 * until successful initialization.
   1231	 */
   1232	ret = ttm_bo_init_reserved(&i915->bdev, i915_gem_to_ttm(obj), size,
   1233				   bo_type, &i915_sys_placement,
   1234				   page_size >> PAGE_SHIFT,
   1235				   &ctx, NULL, NULL, i915_ttm_bo_destroy);
   1236	if (ret)
   1237		return i915_ttm_err_to_gem(ret);
   1238
   1239	obj->ttm.created = true;
   1240	i915_gem_object_release_memory_region(obj);
   1241	i915_gem_object_init_memory_region(obj, mem);
   1242	i915_ttm_adjust_domains_after_move(obj);
   1243	i915_ttm_adjust_gem_after_move(obj);
   1244	i915_gem_object_unlock(obj);
   1245
   1246	return 0;
   1247}
   1248
   1249static const struct intel_memory_region_ops ttm_system_region_ops = {
   1250	.init_object = __i915_gem_ttm_object_init,
   1251	.release = intel_region_ttm_fini,
   1252};
   1253
   1254struct intel_memory_region *
   1255i915_gem_ttm_system_setup(struct drm_i915_private *i915,
   1256			  u16 type, u16 instance)
   1257{
   1258	struct intel_memory_region *mr;
   1259
   1260	mr = intel_memory_region_create(i915, 0,
   1261					totalram_pages() << PAGE_SHIFT,
   1262					PAGE_SIZE, 0, 0,
   1263					type, instance,
   1264					&ttm_system_region_ops);
   1265	if (IS_ERR(mr))
   1266		return mr;
   1267
   1268	intel_memory_region_set_name(mr, "system-ttm");
   1269	return mr;
   1270}