cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

intel_execlists_submission.c (125074B)


      1// SPDX-License-Identifier: MIT
      2/*
      3 * Copyright © 2014 Intel Corporation
      4 */
      5
      6/**
      7 * DOC: Logical Rings, Logical Ring Contexts and Execlists
      8 *
      9 * Motivation:
     10 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
     11 * These expanded contexts enable a number of new abilities, especially
     12 * "Execlists" (also implemented in this file).
     13 *
     14 * One of the main differences with the legacy HW contexts is that logical
     15 * ring contexts incorporate many more things to the context's state, like
     16 * PDPs or ringbuffer control registers:
     17 *
     18 * The reason why PDPs are included in the context is straightforward: as
     19 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
     20 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
     21 * instead, the GPU will do it for you on the context switch.
     22 *
     23 * But, what about the ringbuffer control registers (head, tail, etc..)?
     24 * shouldn't we just need a set of those per engine command streamer? This is
     25 * where the name "Logical Rings" starts to make sense: by virtualizing the
     26 * rings, the engine cs shifts to a new "ring buffer" with every context
     27 * switch. When you want to submit a workload to the GPU you: A) choose your
     28 * context, B) find its appropriate virtualized ring, C) write commands to it
     29 * and then, finally, D) tell the GPU to switch to that context.
     30 *
     31 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
     32 * to a contexts is via a context execution list, ergo "Execlists".
     33 *
     34 * LRC implementation:
     35 * Regarding the creation of contexts, we have:
     36 *
     37 * - One global default context.
     38 * - One local default context for each opened fd.
     39 * - One local extra context for each context create ioctl call.
     40 *
     41 * Now that ringbuffers belong per-context (and not per-engine, like before)
     42 * and that contexts are uniquely tied to a given engine (and not reusable,
     43 * like before) we need:
     44 *
     45 * - One ringbuffer per-engine inside each context.
     46 * - One backing object per-engine inside each context.
     47 *
     48 * The global default context starts its life with these new objects fully
     49 * allocated and populated. The local default context for each opened fd is
     50 * more complex, because we don't know at creation time which engine is going
     51 * to use them. To handle this, we have implemented a deferred creation of LR
     52 * contexts:
     53 *
     54 * The local context starts its life as a hollow or blank holder, that only
     55 * gets populated for a given engine once we receive an execbuffer. If later
     56 * on we receive another execbuffer ioctl for the same context but a different
     57 * engine, we allocate/populate a new ringbuffer and context backing object and
     58 * so on.
     59 *
     60 * Finally, regarding local contexts created using the ioctl call: as they are
     61 * only allowed with the render ring, we can allocate & populate them right
     62 * away (no need to defer anything, at least for now).
     63 *
     64 * Execlists implementation:
     65 * Execlists are the new method by which, on gen8+ hardware, workloads are
     66 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
     67 * This method works as follows:
     68 *
     69 * When a request is committed, its commands (the BB start and any leading or
     70 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
     71 * for the appropriate context. The tail pointer in the hardware context is not
     72 * updated at this time, but instead, kept by the driver in the ringbuffer
     73 * structure. A structure representing this request is added to a request queue
     74 * for the appropriate engine: this structure contains a copy of the context's
     75 * tail after the request was written to the ring buffer and a pointer to the
     76 * context itself.
     77 *
     78 * If the engine's request queue was empty before the request was added, the
     79 * queue is processed immediately. Otherwise the queue will be processed during
     80 * a context switch interrupt. In any case, elements on the queue will get sent
     81 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
     82 * globally unique 20-bits submission ID.
     83 *
     84 * When execution of a request completes, the GPU updates the context status
     85 * buffer with a context complete event and generates a context switch interrupt.
     86 * During the interrupt handling, the driver examines the events in the buffer:
     87 * for each context complete event, if the announced ID matches that on the head
     88 * of the request queue, then that request is retired and removed from the queue.
     89 *
     90 * After processing, if any requests were retired and the queue is not empty
     91 * then a new execution list can be submitted. The two requests at the front of
     92 * the queue are next to be submitted but since a context may not occur twice in
     93 * an execution list, if subsequent requests have the same ID as the first then
     94 * the two requests must be combined. This is done simply by discarding requests
     95 * at the head of the queue until either only one requests is left (in which case
     96 * we use a NULL second context) or the first two requests have unique IDs.
     97 *
     98 * By always executing the first two requests in the queue the driver ensures
     99 * that the GPU is kept as busy as possible. In the case where a single context
    100 * completes but a second context is still executing, the request for this second
    101 * context will be at the head of the queue when we remove the first one. This
    102 * request will then be resubmitted along with a new request for a different context,
    103 * which will cause the hardware to continue executing the second request and queue
    104 * the new request (the GPU detects the condition of a context getting preempted
    105 * with the same context and optimizes the context switch flow by not doing
    106 * preemption, but just sampling the new tail pointer).
    107 *
    108 */
    109#include <linux/interrupt.h>
    110#include <linux/string_helpers.h>
    111
    112#include "i915_drv.h"
    113#include "i915_trace.h"
    114#include "i915_vgpu.h"
    115#include "gen8_engine_cs.h"
    116#include "intel_breadcrumbs.h"
    117#include "intel_context.h"
    118#include "intel_engine_heartbeat.h"
    119#include "intel_engine_pm.h"
    120#include "intel_engine_regs.h"
    121#include "intel_engine_stats.h"
    122#include "intel_execlists_submission.h"
    123#include "intel_gt.h"
    124#include "intel_gt_irq.h"
    125#include "intel_gt_pm.h"
    126#include "intel_gt_regs.h"
    127#include "intel_gt_requests.h"
    128#include "intel_lrc.h"
    129#include "intel_lrc_reg.h"
    130#include "intel_mocs.h"
    131#include "intel_reset.h"
    132#include "intel_ring.h"
    133#include "intel_workarounds.h"
    134#include "shmem_utils.h"
    135
    136#define RING_EXECLIST_QFULL		(1 << 0x2)
    137#define RING_EXECLIST1_VALID		(1 << 0x3)
    138#define RING_EXECLIST0_VALID		(1 << 0x4)
    139#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
    140#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
    141#define RING_EXECLIST0_ACTIVE		(1 << 0x12)
    142
    143#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
    144#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
    145#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
    146#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
    147#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
    148#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
    149
    150#define GEN8_CTX_STATUS_COMPLETED_MASK \
    151	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
    152
    153#define GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE	(0x1) /* lower csb dword */
    154#define GEN12_CTX_SWITCH_DETAIL(csb_dw)	((csb_dw) & 0xF) /* upper csb dword */
    155#define GEN12_CSB_SW_CTX_ID_MASK		GENMASK(25, 15)
    156#define GEN12_IDLE_CTX_ID		0x7FF
    157#define GEN12_CSB_CTX_VALID(csb_dw) \
    158	(FIELD_GET(GEN12_CSB_SW_CTX_ID_MASK, csb_dw) != GEN12_IDLE_CTX_ID)
    159
    160#define XEHP_CTX_STATUS_SWITCHED_TO_NEW_QUEUE	BIT(1) /* upper csb dword */
    161#define XEHP_CSB_SW_CTX_ID_MASK			GENMASK(31, 10)
    162#define XEHP_IDLE_CTX_ID			0xFFFF
    163#define XEHP_CSB_CTX_VALID(csb_dw) \
    164	(FIELD_GET(XEHP_CSB_SW_CTX_ID_MASK, csb_dw) != XEHP_IDLE_CTX_ID)
    165
    166/* Typical size of the average request (2 pipecontrols and a MI_BB) */
    167#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
    168
    169struct virtual_engine {
    170	struct intel_engine_cs base;
    171	struct intel_context context;
    172	struct rcu_work rcu;
    173
    174	/*
    175	 * We allow only a single request through the virtual engine at a time
    176	 * (each request in the timeline waits for the completion fence of
    177	 * the previous before being submitted). By restricting ourselves to
    178	 * only submitting a single request, each request is placed on to a
    179	 * physical to maximise load spreading (by virtue of the late greedy
    180	 * scheduling -- each real engine takes the next available request
    181	 * upon idling).
    182	 */
    183	struct i915_request *request;
    184
    185	/*
    186	 * We keep a rbtree of available virtual engines inside each physical
    187	 * engine, sorted by priority. Here we preallocate the nodes we need
    188	 * for the virtual engine, indexed by physical_engine->id.
    189	 */
    190	struct ve_node {
    191		struct rb_node rb;
    192		int prio;
    193	} nodes[I915_NUM_ENGINES];
    194
    195	/* And finally, which physical engines this virtual engine maps onto. */
    196	unsigned int num_siblings;
    197	struct intel_engine_cs *siblings[];
    198};
    199
    200static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine)
    201{
    202	GEM_BUG_ON(!intel_engine_is_virtual(engine));
    203	return container_of(engine, struct virtual_engine, base);
    204}
    205
    206static struct intel_context *
    207execlists_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
    208			 unsigned long flags);
    209
    210static struct i915_request *
    211__active_request(const struct intel_timeline * const tl,
    212		 struct i915_request *rq,
    213		 int error)
    214{
    215	struct i915_request *active = rq;
    216
    217	list_for_each_entry_from_reverse(rq, &tl->requests, link) {
    218		if (__i915_request_is_complete(rq))
    219			break;
    220
    221		if (error) {
    222			i915_request_set_error_once(rq, error);
    223			__i915_request_skip(rq);
    224		}
    225		active = rq;
    226	}
    227
    228	return active;
    229}
    230
    231static struct i915_request *
    232active_request(const struct intel_timeline * const tl, struct i915_request *rq)
    233{
    234	return __active_request(tl, rq, 0);
    235}
    236
    237static void ring_set_paused(const struct intel_engine_cs *engine, int state)
    238{
    239	/*
    240	 * We inspect HWS_PREEMPT with a semaphore inside
    241	 * engine->emit_fini_breadcrumb. If the dword is true,
    242	 * the ring is paused as the semaphore will busywait
    243	 * until the dword is false.
    244	 */
    245	engine->status_page.addr[I915_GEM_HWS_PREEMPT] = state;
    246	if (state)
    247		wmb();
    248}
    249
    250static struct i915_priolist *to_priolist(struct rb_node *rb)
    251{
    252	return rb_entry(rb, struct i915_priolist, node);
    253}
    254
    255static int rq_prio(const struct i915_request *rq)
    256{
    257	return READ_ONCE(rq->sched.attr.priority);
    258}
    259
    260static int effective_prio(const struct i915_request *rq)
    261{
    262	int prio = rq_prio(rq);
    263
    264	/*
    265	 * If this request is special and must not be interrupted at any
    266	 * cost, so be it. Note we are only checking the most recent request
    267	 * in the context and so may be masking an earlier vip request. It
    268	 * is hoped that under the conditions where nopreempt is used, this
    269	 * will not matter (i.e. all requests to that context will be
    270	 * nopreempt for as long as desired).
    271	 */
    272	if (i915_request_has_nopreempt(rq))
    273		prio = I915_PRIORITY_UNPREEMPTABLE;
    274
    275	return prio;
    276}
    277
    278static int queue_prio(const struct i915_sched_engine *sched_engine)
    279{
    280	struct rb_node *rb;
    281
    282	rb = rb_first_cached(&sched_engine->queue);
    283	if (!rb)
    284		return INT_MIN;
    285
    286	return to_priolist(rb)->priority;
    287}
    288
    289static int virtual_prio(const struct intel_engine_execlists *el)
    290{
    291	struct rb_node *rb = rb_first_cached(&el->virtual);
    292
    293	return rb ? rb_entry(rb, struct ve_node, rb)->prio : INT_MIN;
    294}
    295
    296static bool need_preempt(const struct intel_engine_cs *engine,
    297			 const struct i915_request *rq)
    298{
    299	int last_prio;
    300
    301	if (!intel_engine_has_semaphores(engine))
    302		return false;
    303
    304	/*
    305	 * Check if the current priority hint merits a preemption attempt.
    306	 *
    307	 * We record the highest value priority we saw during rescheduling
    308	 * prior to this dequeue, therefore we know that if it is strictly
    309	 * less than the current tail of ESLP[0], we do not need to force
    310	 * a preempt-to-idle cycle.
    311	 *
    312	 * However, the priority hint is a mere hint that we may need to
    313	 * preempt. If that hint is stale or we may be trying to preempt
    314	 * ourselves, ignore the request.
    315	 *
    316	 * More naturally we would write
    317	 *      prio >= max(0, last);
    318	 * except that we wish to prevent triggering preemption at the same
    319	 * priority level: the task that is running should remain running
    320	 * to preserve FIFO ordering of dependencies.
    321	 */
    322	last_prio = max(effective_prio(rq), I915_PRIORITY_NORMAL - 1);
    323	if (engine->sched_engine->queue_priority_hint <= last_prio)
    324		return false;
    325
    326	/*
    327	 * Check against the first request in ELSP[1], it will, thanks to the
    328	 * power of PI, be the highest priority of that context.
    329	 */
    330	if (!list_is_last(&rq->sched.link, &engine->sched_engine->requests) &&
    331	    rq_prio(list_next_entry(rq, sched.link)) > last_prio)
    332		return true;
    333
    334	/*
    335	 * If the inflight context did not trigger the preemption, then maybe
    336	 * it was the set of queued requests? Pick the highest priority in
    337	 * the queue (the first active priolist) and see if it deserves to be
    338	 * running instead of ELSP[0].
    339	 *
    340	 * The highest priority request in the queue can not be either
    341	 * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
    342	 * context, it's priority would not exceed ELSP[0] aka last_prio.
    343	 */
    344	return max(virtual_prio(&engine->execlists),
    345		   queue_prio(engine->sched_engine)) > last_prio;
    346}
    347
    348__maybe_unused static bool
    349assert_priority_queue(const struct i915_request *prev,
    350		      const struct i915_request *next)
    351{
    352	/*
    353	 * Without preemption, the prev may refer to the still active element
    354	 * which we refuse to let go.
    355	 *
    356	 * Even with preemption, there are times when we think it is better not
    357	 * to preempt and leave an ostensibly lower priority request in flight.
    358	 */
    359	if (i915_request_is_active(prev))
    360		return true;
    361
    362	return rq_prio(prev) >= rq_prio(next);
    363}
    364
    365static struct i915_request *
    366__unwind_incomplete_requests(struct intel_engine_cs *engine)
    367{
    368	struct i915_request *rq, *rn, *active = NULL;
    369	struct list_head *pl;
    370	int prio = I915_PRIORITY_INVALID;
    371
    372	lockdep_assert_held(&engine->sched_engine->lock);
    373
    374	list_for_each_entry_safe_reverse(rq, rn,
    375					 &engine->sched_engine->requests,
    376					 sched.link) {
    377		if (__i915_request_is_complete(rq)) {
    378			list_del_init(&rq->sched.link);
    379			continue;
    380		}
    381
    382		__i915_request_unsubmit(rq);
    383
    384		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
    385		if (rq_prio(rq) != prio) {
    386			prio = rq_prio(rq);
    387			pl = i915_sched_lookup_priolist(engine->sched_engine,
    388							prio);
    389		}
    390		GEM_BUG_ON(i915_sched_engine_is_empty(engine->sched_engine));
    391
    392		list_move(&rq->sched.link, pl);
    393		set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
    394
    395		/* Check in case we rollback so far we wrap [size/2] */
    396		if (intel_ring_direction(rq->ring,
    397					 rq->tail,
    398					 rq->ring->tail + 8) > 0)
    399			rq->context->lrc.desc |= CTX_DESC_FORCE_RESTORE;
    400
    401		active = rq;
    402	}
    403
    404	return active;
    405}
    406
    407struct i915_request *
    408execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
    409{
    410	struct intel_engine_cs *engine =
    411		container_of(execlists, typeof(*engine), execlists);
    412
    413	return __unwind_incomplete_requests(engine);
    414}
    415
    416static void
    417execlists_context_status_change(struct i915_request *rq, unsigned long status)
    418{
    419	/*
    420	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
    421	 * The compiler should eliminate this function as dead-code.
    422	 */
    423	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
    424		return;
    425
    426	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
    427				   status, rq);
    428}
    429
    430static void reset_active(struct i915_request *rq,
    431			 struct intel_engine_cs *engine)
    432{
    433	struct intel_context * const ce = rq->context;
    434	u32 head;
    435
    436	/*
    437	 * The executing context has been cancelled. We want to prevent
    438	 * further execution along this context and propagate the error on
    439	 * to anything depending on its results.
    440	 *
    441	 * In __i915_request_submit(), we apply the -EIO and remove the
    442	 * requests' payloads for any banned requests. But first, we must
    443	 * rewind the context back to the start of the incomplete request so
    444	 * that we do not jump back into the middle of the batch.
    445	 *
    446	 * We preserve the breadcrumbs and semaphores of the incomplete
    447	 * requests so that inter-timeline dependencies (i.e other timelines)
    448	 * remain correctly ordered. And we defer to __i915_request_submit()
    449	 * so that all asynchronous waits are correctly handled.
    450	 */
    451	ENGINE_TRACE(engine, "{ reset rq=%llx:%lld }\n",
    452		     rq->fence.context, rq->fence.seqno);
    453
    454	/* On resubmission of the active request, payload will be scrubbed */
    455	if (__i915_request_is_complete(rq))
    456		head = rq->tail;
    457	else
    458		head = __active_request(ce->timeline, rq, -EIO)->head;
    459	head = intel_ring_wrap(ce->ring, head);
    460
    461	/* Scrub the context image to prevent replaying the previous batch */
    462	lrc_init_regs(ce, engine, true);
    463
    464	/* We've switched away, so this should be a no-op, but intent matters */
    465	ce->lrc.lrca = lrc_update_regs(ce, engine, head);
    466}
    467
    468static bool bad_request(const struct i915_request *rq)
    469{
    470	return rq->fence.error && i915_request_started(rq);
    471}
    472
    473static struct intel_engine_cs *
    474__execlists_schedule_in(struct i915_request *rq)
    475{
    476	struct intel_engine_cs * const engine = rq->engine;
    477	struct intel_context * const ce = rq->context;
    478
    479	intel_context_get(ce);
    480
    481	if (unlikely(intel_context_is_closed(ce) &&
    482		     !intel_engine_has_heartbeat(engine)))
    483		intel_context_set_banned(ce);
    484
    485	if (unlikely(intel_context_is_banned(ce) || bad_request(rq)))
    486		reset_active(rq, engine);
    487
    488	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
    489		lrc_check_regs(ce, engine, "before");
    490
    491	if (ce->tag) {
    492		/* Use a fixed tag for OA and friends */
    493		GEM_BUG_ON(ce->tag <= BITS_PER_LONG);
    494		ce->lrc.ccid = ce->tag;
    495	} else if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) {
    496		/* We don't need a strict matching tag, just different values */
    497		unsigned int tag = ffs(READ_ONCE(engine->context_tag));
    498
    499		GEM_BUG_ON(tag == 0 || tag >= BITS_PER_LONG);
    500		clear_bit(tag - 1, &engine->context_tag);
    501		ce->lrc.ccid = tag << (XEHP_SW_CTX_ID_SHIFT - 32);
    502
    503		BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID);
    504
    505	} else {
    506		/* We don't need a strict matching tag, just different values */
    507		unsigned int tag = __ffs(engine->context_tag);
    508
    509		GEM_BUG_ON(tag >= BITS_PER_LONG);
    510		__clear_bit(tag, &engine->context_tag);
    511		ce->lrc.ccid = (1 + tag) << (GEN11_SW_CTX_ID_SHIFT - 32);
    512
    513		BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID);
    514	}
    515
    516	ce->lrc.ccid |= engine->execlists.ccid;
    517
    518	__intel_gt_pm_get(engine->gt);
    519	if (engine->fw_domain && !engine->fw_active++)
    520		intel_uncore_forcewake_get(engine->uncore, engine->fw_domain);
    521	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
    522	intel_engine_context_in(engine);
    523
    524	CE_TRACE(ce, "schedule-in, ccid:%x\n", ce->lrc.ccid);
    525
    526	return engine;
    527}
    528
    529static void execlists_schedule_in(struct i915_request *rq, int idx)
    530{
    531	struct intel_context * const ce = rq->context;
    532	struct intel_engine_cs *old;
    533
    534	GEM_BUG_ON(!intel_engine_pm_is_awake(rq->engine));
    535	trace_i915_request_in(rq, idx);
    536
    537	old = ce->inflight;
    538	if (!old)
    539		old = __execlists_schedule_in(rq);
    540	WRITE_ONCE(ce->inflight, ptr_inc(old));
    541
    542	GEM_BUG_ON(intel_context_inflight(ce) != rq->engine);
    543}
    544
    545static void
    546resubmit_virtual_request(struct i915_request *rq, struct virtual_engine *ve)
    547{
    548	struct intel_engine_cs *engine = rq->engine;
    549
    550	spin_lock_irq(&engine->sched_engine->lock);
    551
    552	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
    553	WRITE_ONCE(rq->engine, &ve->base);
    554	ve->base.submit_request(rq);
    555
    556	spin_unlock_irq(&engine->sched_engine->lock);
    557}
    558
    559static void kick_siblings(struct i915_request *rq, struct intel_context *ce)
    560{
    561	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
    562	struct intel_engine_cs *engine = rq->engine;
    563
    564	/*
    565	 * After this point, the rq may be transferred to a new sibling, so
    566	 * before we clear ce->inflight make sure that the context has been
    567	 * removed from the b->signalers and furthermore we need to make sure
    568	 * that the concurrent iterator in signal_irq_work is no longer
    569	 * following ce->signal_link.
    570	 */
    571	if (!list_empty(&ce->signals))
    572		intel_context_remove_breadcrumbs(ce, engine->breadcrumbs);
    573
    574	/*
    575	 * This engine is now too busy to run this virtual request, so
    576	 * see if we can find an alternative engine for it to execute on.
    577	 * Once a request has become bonded to this engine, we treat it the
    578	 * same as other native request.
    579	 */
    580	if (i915_request_in_priority_queue(rq) &&
    581	    rq->execution_mask != engine->mask)
    582		resubmit_virtual_request(rq, ve);
    583
    584	if (READ_ONCE(ve->request))
    585		tasklet_hi_schedule(&ve->base.sched_engine->tasklet);
    586}
    587
    588static void __execlists_schedule_out(struct i915_request * const rq,
    589				     struct intel_context * const ce)
    590{
    591	struct intel_engine_cs * const engine = rq->engine;
    592	unsigned int ccid;
    593
    594	/*
    595	 * NB process_csb() is not under the engine->sched_engine->lock and hence
    596	 * schedule_out can race with schedule_in meaning that we should
    597	 * refrain from doing non-trivial work here.
    598	 */
    599
    600	CE_TRACE(ce, "schedule-out, ccid:%x\n", ce->lrc.ccid);
    601	GEM_BUG_ON(ce->inflight != engine);
    602
    603	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
    604		lrc_check_regs(ce, engine, "after");
    605
    606	/*
    607	 * If we have just completed this context, the engine may now be
    608	 * idle and we want to re-enter powersaving.
    609	 */
    610	if (intel_timeline_is_last(ce->timeline, rq) &&
    611	    __i915_request_is_complete(rq))
    612		intel_engine_add_retire(engine, ce->timeline);
    613
    614	ccid = ce->lrc.ccid;
    615	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) {
    616		ccid >>= XEHP_SW_CTX_ID_SHIFT - 32;
    617		ccid &= XEHP_MAX_CONTEXT_HW_ID;
    618	} else {
    619		ccid >>= GEN11_SW_CTX_ID_SHIFT - 32;
    620		ccid &= GEN12_MAX_CONTEXT_HW_ID;
    621	}
    622
    623	if (ccid < BITS_PER_LONG) {
    624		GEM_BUG_ON(ccid == 0);
    625		GEM_BUG_ON(test_bit(ccid - 1, &engine->context_tag));
    626		__set_bit(ccid - 1, &engine->context_tag);
    627	}
    628	intel_engine_context_out(engine);
    629	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
    630	if (engine->fw_domain && !--engine->fw_active)
    631		intel_uncore_forcewake_put(engine->uncore, engine->fw_domain);
    632	intel_gt_pm_put_async(engine->gt);
    633
    634	/*
    635	 * If this is part of a virtual engine, its next request may
    636	 * have been blocked waiting for access to the active context.
    637	 * We have to kick all the siblings again in case we need to
    638	 * switch (e.g. the next request is not runnable on this
    639	 * engine). Hopefully, we will already have submitted the next
    640	 * request before the tasklet runs and do not need to rebuild
    641	 * each virtual tree and kick everyone again.
    642	 */
    643	if (ce->engine != engine)
    644		kick_siblings(rq, ce);
    645
    646	WRITE_ONCE(ce->inflight, NULL);
    647	intel_context_put(ce);
    648}
    649
    650static inline void execlists_schedule_out(struct i915_request *rq)
    651{
    652	struct intel_context * const ce = rq->context;
    653
    654	trace_i915_request_out(rq);
    655
    656	GEM_BUG_ON(!ce->inflight);
    657	ce->inflight = ptr_dec(ce->inflight);
    658	if (!__intel_context_inflight_count(ce->inflight))
    659		__execlists_schedule_out(rq, ce);
    660
    661	i915_request_put(rq);
    662}
    663
    664static u64 execlists_update_context(struct i915_request *rq)
    665{
    666	struct intel_context *ce = rq->context;
    667	u64 desc;
    668	u32 tail, prev;
    669
    670	desc = ce->lrc.desc;
    671	if (rq->engine->flags & I915_ENGINE_HAS_EU_PRIORITY)
    672		desc |= lrc_desc_priority(rq_prio(rq));
    673
    674	/*
    675	 * WaIdleLiteRestore:bdw,skl
    676	 *
    677	 * We should never submit the context with the same RING_TAIL twice
    678	 * just in case we submit an empty ring, which confuses the HW.
    679	 *
    680	 * We append a couple of NOOPs (gen8_emit_wa_tail) after the end of
    681	 * the normal request to be able to always advance the RING_TAIL on
    682	 * subsequent resubmissions (for lite restore). Should that fail us,
    683	 * and we try and submit the same tail again, force the context
    684	 * reload.
    685	 *
    686	 * If we need to return to a preempted context, we need to skip the
    687	 * lite-restore and force it to reload the RING_TAIL. Otherwise, the
    688	 * HW has a tendency to ignore us rewinding the TAIL to the end of
    689	 * an earlier request.
    690	 */
    691	GEM_BUG_ON(ce->lrc_reg_state[CTX_RING_TAIL] != rq->ring->tail);
    692	prev = rq->ring->tail;
    693	tail = intel_ring_set_tail(rq->ring, rq->tail);
    694	if (unlikely(intel_ring_direction(rq->ring, tail, prev) <= 0))
    695		desc |= CTX_DESC_FORCE_RESTORE;
    696	ce->lrc_reg_state[CTX_RING_TAIL] = tail;
    697	rq->tail = rq->wa_tail;
    698
    699	/*
    700	 * Make sure the context image is complete before we submit it to HW.
    701	 *
    702	 * Ostensibly, writes (including the WCB) should be flushed prior to
    703	 * an uncached write such as our mmio register access, the empirical
    704	 * evidence (esp. on Braswell) suggests that the WC write into memory
    705	 * may not be visible to the HW prior to the completion of the UC
    706	 * register write and that we may begin execution from the context
    707	 * before its image is complete leading to invalid PD chasing.
    708	 */
    709	wmb();
    710
    711	ce->lrc.desc &= ~CTX_DESC_FORCE_RESTORE;
    712	return desc;
    713}
    714
    715static void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
    716{
    717	if (execlists->ctrl_reg) {
    718		writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
    719		writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
    720	} else {
    721		writel(upper_32_bits(desc), execlists->submit_reg);
    722		writel(lower_32_bits(desc), execlists->submit_reg);
    723	}
    724}
    725
    726static __maybe_unused char *
    727dump_port(char *buf, int buflen, const char *prefix, struct i915_request *rq)
    728{
    729	if (!rq)
    730		return "";
    731
    732	snprintf(buf, buflen, "%sccid:%x %llx:%lld%s prio %d",
    733		 prefix,
    734		 rq->context->lrc.ccid,
    735		 rq->fence.context, rq->fence.seqno,
    736		 __i915_request_is_complete(rq) ? "!" :
    737		 __i915_request_has_started(rq) ? "*" :
    738		 "",
    739		 rq_prio(rq));
    740
    741	return buf;
    742}
    743
    744static __maybe_unused noinline void
    745trace_ports(const struct intel_engine_execlists *execlists,
    746	    const char *msg,
    747	    struct i915_request * const *ports)
    748{
    749	const struct intel_engine_cs *engine =
    750		container_of(execlists, typeof(*engine), execlists);
    751	char __maybe_unused p0[40], p1[40];
    752
    753	if (!ports[0])
    754		return;
    755
    756	ENGINE_TRACE(engine, "%s { %s%s }\n", msg,
    757		     dump_port(p0, sizeof(p0), "", ports[0]),
    758		     dump_port(p1, sizeof(p1), ", ", ports[1]));
    759}
    760
    761static bool
    762reset_in_progress(const struct intel_engine_cs *engine)
    763{
    764	return unlikely(!__tasklet_is_enabled(&engine->sched_engine->tasklet));
    765}
    766
    767static __maybe_unused noinline bool
    768assert_pending_valid(const struct intel_engine_execlists *execlists,
    769		     const char *msg)
    770{
    771	struct intel_engine_cs *engine =
    772		container_of(execlists, typeof(*engine), execlists);
    773	struct i915_request * const *port, *rq, *prev = NULL;
    774	struct intel_context *ce = NULL;
    775	u32 ccid = -1;
    776
    777	trace_ports(execlists, msg, execlists->pending);
    778
    779	/* We may be messing around with the lists during reset, lalala */
    780	if (reset_in_progress(engine))
    781		return true;
    782
    783	if (!execlists->pending[0]) {
    784		GEM_TRACE_ERR("%s: Nothing pending for promotion!\n",
    785			      engine->name);
    786		return false;
    787	}
    788
    789	if (execlists->pending[execlists_num_ports(execlists)]) {
    790		GEM_TRACE_ERR("%s: Excess pending[%d] for promotion!\n",
    791			      engine->name, execlists_num_ports(execlists));
    792		return false;
    793	}
    794
    795	for (port = execlists->pending; (rq = *port); port++) {
    796		unsigned long flags;
    797		bool ok = true;
    798
    799		GEM_BUG_ON(!kref_read(&rq->fence.refcount));
    800		GEM_BUG_ON(!i915_request_is_active(rq));
    801
    802		if (ce == rq->context) {
    803			GEM_TRACE_ERR("%s: Dup context:%llx in pending[%zd]\n",
    804				      engine->name,
    805				      ce->timeline->fence_context,
    806				      port - execlists->pending);
    807			return false;
    808		}
    809		ce = rq->context;
    810
    811		if (ccid == ce->lrc.ccid) {
    812			GEM_TRACE_ERR("%s: Dup ccid:%x context:%llx in pending[%zd]\n",
    813				      engine->name,
    814				      ccid, ce->timeline->fence_context,
    815				      port - execlists->pending);
    816			return false;
    817		}
    818		ccid = ce->lrc.ccid;
    819
    820		/*
    821		 * Sentinels are supposed to be the last request so they flush
    822		 * the current execution off the HW. Check that they are the only
    823		 * request in the pending submission.
    824		 *
    825		 * NB: Due to the async nature of preempt-to-busy and request
    826		 * cancellation we need to handle the case where request
    827		 * becomes a sentinel in parallel to CSB processing.
    828		 */
    829		if (prev && i915_request_has_sentinel(prev) &&
    830		    !READ_ONCE(prev->fence.error)) {
    831			GEM_TRACE_ERR("%s: context:%llx after sentinel in pending[%zd]\n",
    832				      engine->name,
    833				      ce->timeline->fence_context,
    834				      port - execlists->pending);
    835			return false;
    836		}
    837		prev = rq;
    838
    839		/*
    840		 * We want virtual requests to only be in the first slot so
    841		 * that they are never stuck behind a hog and can be immediately
    842		 * transferred onto the next idle engine.
    843		 */
    844		if (rq->execution_mask != engine->mask &&
    845		    port != execlists->pending) {
    846			GEM_TRACE_ERR("%s: virtual engine:%llx not in prime position[%zd]\n",
    847				      engine->name,
    848				      ce->timeline->fence_context,
    849				      port - execlists->pending);
    850			return false;
    851		}
    852
    853		/* Hold tightly onto the lock to prevent concurrent retires! */
    854		if (!spin_trylock_irqsave(&rq->lock, flags))
    855			continue;
    856
    857		if (__i915_request_is_complete(rq))
    858			goto unlock;
    859
    860		if (i915_active_is_idle(&ce->active) &&
    861		    !intel_context_is_barrier(ce)) {
    862			GEM_TRACE_ERR("%s: Inactive context:%llx in pending[%zd]\n",
    863				      engine->name,
    864				      ce->timeline->fence_context,
    865				      port - execlists->pending);
    866			ok = false;
    867			goto unlock;
    868		}
    869
    870		if (!i915_vma_is_pinned(ce->state)) {
    871			GEM_TRACE_ERR("%s: Unpinned context:%llx in pending[%zd]\n",
    872				      engine->name,
    873				      ce->timeline->fence_context,
    874				      port - execlists->pending);
    875			ok = false;
    876			goto unlock;
    877		}
    878
    879		if (!i915_vma_is_pinned(ce->ring->vma)) {
    880			GEM_TRACE_ERR("%s: Unpinned ring:%llx in pending[%zd]\n",
    881				      engine->name,
    882				      ce->timeline->fence_context,
    883				      port - execlists->pending);
    884			ok = false;
    885			goto unlock;
    886		}
    887
    888unlock:
    889		spin_unlock_irqrestore(&rq->lock, flags);
    890		if (!ok)
    891			return false;
    892	}
    893
    894	return ce;
    895}
    896
    897static void execlists_submit_ports(struct intel_engine_cs *engine)
    898{
    899	struct intel_engine_execlists *execlists = &engine->execlists;
    900	unsigned int n;
    901
    902	GEM_BUG_ON(!assert_pending_valid(execlists, "submit"));
    903
    904	/*
    905	 * We can skip acquiring intel_runtime_pm_get() here as it was taken
    906	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
    907	 * not be relinquished until the device is idle (see
    908	 * i915_gem_idle_work_handler()). As a precaution, we make sure
    909	 * that all ELSP are drained i.e. we have processed the CSB,
    910	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
    911	 */
    912	GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
    913
    914	/*
    915	 * ELSQ note: the submit queue is not cleared after being submitted
    916	 * to the HW so we need to make sure we always clean it up. This is
    917	 * currently ensured by the fact that we always write the same number
    918	 * of elsq entries, keep this in mind before changing the loop below.
    919	 */
    920	for (n = execlists_num_ports(execlists); n--; ) {
    921		struct i915_request *rq = execlists->pending[n];
    922
    923		write_desc(execlists,
    924			   rq ? execlists_update_context(rq) : 0,
    925			   n);
    926	}
    927
    928	/* we need to manually load the submit queue */
    929	if (execlists->ctrl_reg)
    930		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
    931}
    932
    933static bool ctx_single_port_submission(const struct intel_context *ce)
    934{
    935	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
    936		intel_context_force_single_submission(ce));
    937}
    938
    939static bool can_merge_ctx(const struct intel_context *prev,
    940			  const struct intel_context *next)
    941{
    942	if (prev != next)
    943		return false;
    944
    945	if (ctx_single_port_submission(prev))
    946		return false;
    947
    948	return true;
    949}
    950
    951static unsigned long i915_request_flags(const struct i915_request *rq)
    952{
    953	return READ_ONCE(rq->fence.flags);
    954}
    955
    956static bool can_merge_rq(const struct i915_request *prev,
    957			 const struct i915_request *next)
    958{
    959	GEM_BUG_ON(prev == next);
    960	GEM_BUG_ON(!assert_priority_queue(prev, next));
    961
    962	/*
    963	 * We do not submit known completed requests. Therefore if the next
    964	 * request is already completed, we can pretend to merge it in
    965	 * with the previous context (and we will skip updating the ELSP
    966	 * and tracking). Thus hopefully keeping the ELSP full with active
    967	 * contexts, despite the best efforts of preempt-to-busy to confuse
    968	 * us.
    969	 */
    970	if (__i915_request_is_complete(next))
    971		return true;
    972
    973	if (unlikely((i915_request_flags(prev) | i915_request_flags(next)) &
    974		     (BIT(I915_FENCE_FLAG_NOPREEMPT) |
    975		      BIT(I915_FENCE_FLAG_SENTINEL))))
    976		return false;
    977
    978	if (!can_merge_ctx(prev->context, next->context))
    979		return false;
    980
    981	GEM_BUG_ON(i915_seqno_passed(prev->fence.seqno, next->fence.seqno));
    982	return true;
    983}
    984
    985static bool virtual_matches(const struct virtual_engine *ve,
    986			    const struct i915_request *rq,
    987			    const struct intel_engine_cs *engine)
    988{
    989	const struct intel_engine_cs *inflight;
    990
    991	if (!rq)
    992		return false;
    993
    994	if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */
    995		return false;
    996
    997	/*
    998	 * We track when the HW has completed saving the context image
    999	 * (i.e. when we have seen the final CS event switching out of
   1000	 * the context) and must not overwrite the context image before
   1001	 * then. This restricts us to only using the active engine
   1002	 * while the previous virtualized request is inflight (so
   1003	 * we reuse the register offsets). This is a very small
   1004	 * hystersis on the greedy seelction algorithm.
   1005	 */
   1006	inflight = intel_context_inflight(&ve->context);
   1007	if (inflight && inflight != engine)
   1008		return false;
   1009
   1010	return true;
   1011}
   1012
   1013static struct virtual_engine *
   1014first_virtual_engine(struct intel_engine_cs *engine)
   1015{
   1016	struct intel_engine_execlists *el = &engine->execlists;
   1017	struct rb_node *rb = rb_first_cached(&el->virtual);
   1018
   1019	while (rb) {
   1020		struct virtual_engine *ve =
   1021			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
   1022		struct i915_request *rq = READ_ONCE(ve->request);
   1023
   1024		/* lazily cleanup after another engine handled rq */
   1025		if (!rq || !virtual_matches(ve, rq, engine)) {
   1026			rb_erase_cached(rb, &el->virtual);
   1027			RB_CLEAR_NODE(rb);
   1028			rb = rb_first_cached(&el->virtual);
   1029			continue;
   1030		}
   1031
   1032		return ve;
   1033	}
   1034
   1035	return NULL;
   1036}
   1037
   1038static void virtual_xfer_context(struct virtual_engine *ve,
   1039				 struct intel_engine_cs *engine)
   1040{
   1041	unsigned int n;
   1042
   1043	if (likely(engine == ve->siblings[0]))
   1044		return;
   1045
   1046	GEM_BUG_ON(READ_ONCE(ve->context.inflight));
   1047	if (!intel_engine_has_relative_mmio(engine))
   1048		lrc_update_offsets(&ve->context, engine);
   1049
   1050	/*
   1051	 * Move the bound engine to the top of the list for
   1052	 * future execution. We then kick this tasklet first
   1053	 * before checking others, so that we preferentially
   1054	 * reuse this set of bound registers.
   1055	 */
   1056	for (n = 1; n < ve->num_siblings; n++) {
   1057		if (ve->siblings[n] == engine) {
   1058			swap(ve->siblings[n], ve->siblings[0]);
   1059			break;
   1060		}
   1061	}
   1062}
   1063
   1064static void defer_request(struct i915_request *rq, struct list_head * const pl)
   1065{
   1066	LIST_HEAD(list);
   1067
   1068	/*
   1069	 * We want to move the interrupted request to the back of
   1070	 * the round-robin list (i.e. its priority level), but
   1071	 * in doing so, we must then move all requests that were in
   1072	 * flight and were waiting for the interrupted request to
   1073	 * be run after it again.
   1074	 */
   1075	do {
   1076		struct i915_dependency *p;
   1077
   1078		GEM_BUG_ON(i915_request_is_active(rq));
   1079		list_move_tail(&rq->sched.link, pl);
   1080
   1081		for_each_waiter(p, rq) {
   1082			struct i915_request *w =
   1083				container_of(p->waiter, typeof(*w), sched);
   1084
   1085			if (p->flags & I915_DEPENDENCY_WEAK)
   1086				continue;
   1087
   1088			/* Leave semaphores spinning on the other engines */
   1089			if (w->engine != rq->engine)
   1090				continue;
   1091
   1092			/* No waiter should start before its signaler */
   1093			GEM_BUG_ON(i915_request_has_initial_breadcrumb(w) &&
   1094				   __i915_request_has_started(w) &&
   1095				   !__i915_request_is_complete(rq));
   1096
   1097			if (!i915_request_is_ready(w))
   1098				continue;
   1099
   1100			if (rq_prio(w) < rq_prio(rq))
   1101				continue;
   1102
   1103			GEM_BUG_ON(rq_prio(w) > rq_prio(rq));
   1104			GEM_BUG_ON(i915_request_is_active(w));
   1105			list_move_tail(&w->sched.link, &list);
   1106		}
   1107
   1108		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
   1109	} while (rq);
   1110}
   1111
   1112static void defer_active(struct intel_engine_cs *engine)
   1113{
   1114	struct i915_request *rq;
   1115
   1116	rq = __unwind_incomplete_requests(engine);
   1117	if (!rq)
   1118		return;
   1119
   1120	defer_request(rq, i915_sched_lookup_priolist(engine->sched_engine,
   1121						     rq_prio(rq)));
   1122}
   1123
   1124static bool
   1125timeslice_yield(const struct intel_engine_execlists *el,
   1126		const struct i915_request *rq)
   1127{
   1128	/*
   1129	 * Once bitten, forever smitten!
   1130	 *
   1131	 * If the active context ever busy-waited on a semaphore,
   1132	 * it will be treated as a hog until the end of its timeslice (i.e.
   1133	 * until it is scheduled out and replaced by a new submission,
   1134	 * possibly even its own lite-restore). The HW only sends an interrupt
   1135	 * on the first miss, and we do know if that semaphore has been
   1136	 * signaled, or even if it is now stuck on another semaphore. Play
   1137	 * safe, yield if it might be stuck -- it will be given a fresh
   1138	 * timeslice in the near future.
   1139	 */
   1140	return rq->context->lrc.ccid == READ_ONCE(el->yield);
   1141}
   1142
   1143static bool needs_timeslice(const struct intel_engine_cs *engine,
   1144			    const struct i915_request *rq)
   1145{
   1146	if (!intel_engine_has_timeslices(engine))
   1147		return false;
   1148
   1149	/* If not currently active, or about to switch, wait for next event */
   1150	if (!rq || __i915_request_is_complete(rq))
   1151		return false;
   1152
   1153	/* We do not need to start the timeslice until after the ACK */
   1154	if (READ_ONCE(engine->execlists.pending[0]))
   1155		return false;
   1156
   1157	/* If ELSP[1] is occupied, always check to see if worth slicing */
   1158	if (!list_is_last_rcu(&rq->sched.link,
   1159			      &engine->sched_engine->requests)) {
   1160		ENGINE_TRACE(engine, "timeslice required for second inflight context\n");
   1161		return true;
   1162	}
   1163
   1164	/* Otherwise, ELSP[0] is by itself, but may be waiting in the queue */
   1165	if (!i915_sched_engine_is_empty(engine->sched_engine)) {
   1166		ENGINE_TRACE(engine, "timeslice required for queue\n");
   1167		return true;
   1168	}
   1169
   1170	if (!RB_EMPTY_ROOT(&engine->execlists.virtual.rb_root)) {
   1171		ENGINE_TRACE(engine, "timeslice required for virtual\n");
   1172		return true;
   1173	}
   1174
   1175	return false;
   1176}
   1177
   1178static bool
   1179timeslice_expired(struct intel_engine_cs *engine, const struct i915_request *rq)
   1180{
   1181	const struct intel_engine_execlists *el = &engine->execlists;
   1182
   1183	if (i915_request_has_nopreempt(rq) && __i915_request_has_started(rq))
   1184		return false;
   1185
   1186	if (!needs_timeslice(engine, rq))
   1187		return false;
   1188
   1189	return timer_expired(&el->timer) || timeslice_yield(el, rq);
   1190}
   1191
   1192static unsigned long timeslice(const struct intel_engine_cs *engine)
   1193{
   1194	return READ_ONCE(engine->props.timeslice_duration_ms);
   1195}
   1196
   1197static void start_timeslice(struct intel_engine_cs *engine)
   1198{
   1199	struct intel_engine_execlists *el = &engine->execlists;
   1200	unsigned long duration;
   1201
   1202	/* Disable the timer if there is nothing to switch to */
   1203	duration = 0;
   1204	if (needs_timeslice(engine, *el->active)) {
   1205		/* Avoid continually prolonging an active timeslice */
   1206		if (timer_active(&el->timer)) {
   1207			/*
   1208			 * If we just submitted a new ELSP after an old
   1209			 * context, that context may have already consumed
   1210			 * its timeslice, so recheck.
   1211			 */
   1212			if (!timer_pending(&el->timer))
   1213				tasklet_hi_schedule(&engine->sched_engine->tasklet);
   1214			return;
   1215		}
   1216
   1217		duration = timeslice(engine);
   1218	}
   1219
   1220	set_timer_ms(&el->timer, duration);
   1221}
   1222
   1223static void record_preemption(struct intel_engine_execlists *execlists)
   1224{
   1225	(void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++);
   1226}
   1227
   1228static unsigned long active_preempt_timeout(struct intel_engine_cs *engine,
   1229					    const struct i915_request *rq)
   1230{
   1231	if (!rq)
   1232		return 0;
   1233
   1234	/* Force a fast reset for terminated contexts (ignoring sysfs!) */
   1235	if (unlikely(intel_context_is_banned(rq->context) || bad_request(rq)))
   1236		return 1;
   1237
   1238	return READ_ONCE(engine->props.preempt_timeout_ms);
   1239}
   1240
   1241static void set_preempt_timeout(struct intel_engine_cs *engine,
   1242				const struct i915_request *rq)
   1243{
   1244	if (!intel_engine_has_preempt_reset(engine))
   1245		return;
   1246
   1247	set_timer_ms(&engine->execlists.preempt,
   1248		     active_preempt_timeout(engine, rq));
   1249}
   1250
   1251static bool completed(const struct i915_request *rq)
   1252{
   1253	if (i915_request_has_sentinel(rq))
   1254		return false;
   1255
   1256	return __i915_request_is_complete(rq);
   1257}
   1258
   1259static void execlists_dequeue(struct intel_engine_cs *engine)
   1260{
   1261	struct intel_engine_execlists * const execlists = &engine->execlists;
   1262	struct i915_sched_engine * const sched_engine = engine->sched_engine;
   1263	struct i915_request **port = execlists->pending;
   1264	struct i915_request ** const last_port = port + execlists->port_mask;
   1265	struct i915_request *last, * const *active;
   1266	struct virtual_engine *ve;
   1267	struct rb_node *rb;
   1268	bool submit = false;
   1269
   1270	/*
   1271	 * Hardware submission is through 2 ports. Conceptually each port
   1272	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
   1273	 * static for a context, and unique to each, so we only execute
   1274	 * requests belonging to a single context from each ring. RING_HEAD
   1275	 * is maintained by the CS in the context image, it marks the place
   1276	 * where it got up to last time, and through RING_TAIL we tell the CS
   1277	 * where we want to execute up to this time.
   1278	 *
   1279	 * In this list the requests are in order of execution. Consecutive
   1280	 * requests from the same context are adjacent in the ringbuffer. We
   1281	 * can combine these requests into a single RING_TAIL update:
   1282	 *
   1283	 *              RING_HEAD...req1...req2
   1284	 *                                    ^- RING_TAIL
   1285	 * since to execute req2 the CS must first execute req1.
   1286	 *
   1287	 * Our goal then is to point each port to the end of a consecutive
   1288	 * sequence of requests as being the most optimal (fewest wake ups
   1289	 * and context switches) submission.
   1290	 */
   1291
   1292	spin_lock(&sched_engine->lock);
   1293
   1294	/*
   1295	 * If the queue is higher priority than the last
   1296	 * request in the currently active context, submit afresh.
   1297	 * We will resubmit again afterwards in case we need to split
   1298	 * the active context to interject the preemption request,
   1299	 * i.e. we will retrigger preemption following the ack in case
   1300	 * of trouble.
   1301	 *
   1302	 */
   1303	active = execlists->active;
   1304	while ((last = *active) && completed(last))
   1305		active++;
   1306
   1307	if (last) {
   1308		if (need_preempt(engine, last)) {
   1309			ENGINE_TRACE(engine,
   1310				     "preempting last=%llx:%lld, prio=%d, hint=%d\n",
   1311				     last->fence.context,
   1312				     last->fence.seqno,
   1313				     last->sched.attr.priority,
   1314				     sched_engine->queue_priority_hint);
   1315			record_preemption(execlists);
   1316
   1317			/*
   1318			 * Don't let the RING_HEAD advance past the breadcrumb
   1319			 * as we unwind (and until we resubmit) so that we do
   1320			 * not accidentally tell it to go backwards.
   1321			 */
   1322			ring_set_paused(engine, 1);
   1323
   1324			/*
   1325			 * Note that we have not stopped the GPU at this point,
   1326			 * so we are unwinding the incomplete requests as they
   1327			 * remain inflight and so by the time we do complete
   1328			 * the preemption, some of the unwound requests may
   1329			 * complete!
   1330			 */
   1331			__unwind_incomplete_requests(engine);
   1332
   1333			last = NULL;
   1334		} else if (timeslice_expired(engine, last)) {
   1335			ENGINE_TRACE(engine,
   1336				     "expired:%s last=%llx:%lld, prio=%d, hint=%d, yield?=%s\n",
   1337				     str_yes_no(timer_expired(&execlists->timer)),
   1338				     last->fence.context, last->fence.seqno,
   1339				     rq_prio(last),
   1340				     sched_engine->queue_priority_hint,
   1341				     str_yes_no(timeslice_yield(execlists, last)));
   1342
   1343			/*
   1344			 * Consume this timeslice; ensure we start a new one.
   1345			 *
   1346			 * The timeslice expired, and we will unwind the
   1347			 * running contexts and recompute the next ELSP.
   1348			 * If that submit will be the same pair of contexts
   1349			 * (due to dependency ordering), we will skip the
   1350			 * submission. If we don't cancel the timer now,
   1351			 * we will see that the timer has expired and
   1352			 * reschedule the tasklet; continually until the
   1353			 * next context switch or other preeemption event.
   1354			 *
   1355			 * Since we have decided to reschedule based on
   1356			 * consumption of this timeslice, if we submit the
   1357			 * same context again, grant it a full timeslice.
   1358			 */
   1359			cancel_timer(&execlists->timer);
   1360			ring_set_paused(engine, 1);
   1361			defer_active(engine);
   1362
   1363			/*
   1364			 * Unlike for preemption, if we rewind and continue
   1365			 * executing the same context as previously active,
   1366			 * the order of execution will remain the same and
   1367			 * the tail will only advance. We do not need to
   1368			 * force a full context restore, as a lite-restore
   1369			 * is sufficient to resample the monotonic TAIL.
   1370			 *
   1371			 * If we switch to any other context, similarly we
   1372			 * will not rewind TAIL of current context, and
   1373			 * normal save/restore will preserve state and allow
   1374			 * us to later continue executing the same request.
   1375			 */
   1376			last = NULL;
   1377		} else {
   1378			/*
   1379			 * Otherwise if we already have a request pending
   1380			 * for execution after the current one, we can
   1381			 * just wait until the next CS event before
   1382			 * queuing more. In either case we will force a
   1383			 * lite-restore preemption event, but if we wait
   1384			 * we hopefully coalesce several updates into a single
   1385			 * submission.
   1386			 */
   1387			if (active[1]) {
   1388				/*
   1389				 * Even if ELSP[1] is occupied and not worthy
   1390				 * of timeslices, our queue might be.
   1391				 */
   1392				spin_unlock(&sched_engine->lock);
   1393				return;
   1394			}
   1395		}
   1396	}
   1397
   1398	/* XXX virtual is always taking precedence */
   1399	while ((ve = first_virtual_engine(engine))) {
   1400		struct i915_request *rq;
   1401
   1402		spin_lock(&ve->base.sched_engine->lock);
   1403
   1404		rq = ve->request;
   1405		if (unlikely(!virtual_matches(ve, rq, engine)))
   1406			goto unlock; /* lost the race to a sibling */
   1407
   1408		GEM_BUG_ON(rq->engine != &ve->base);
   1409		GEM_BUG_ON(rq->context != &ve->context);
   1410
   1411		if (unlikely(rq_prio(rq) < queue_prio(sched_engine))) {
   1412			spin_unlock(&ve->base.sched_engine->lock);
   1413			break;
   1414		}
   1415
   1416		if (last && !can_merge_rq(last, rq)) {
   1417			spin_unlock(&ve->base.sched_engine->lock);
   1418			spin_unlock(&engine->sched_engine->lock);
   1419			return; /* leave this for another sibling */
   1420		}
   1421
   1422		ENGINE_TRACE(engine,
   1423			     "virtual rq=%llx:%lld%s, new engine? %s\n",
   1424			     rq->fence.context,
   1425			     rq->fence.seqno,
   1426			     __i915_request_is_complete(rq) ? "!" :
   1427			     __i915_request_has_started(rq) ? "*" :
   1428			     "",
   1429			     str_yes_no(engine != ve->siblings[0]));
   1430
   1431		WRITE_ONCE(ve->request, NULL);
   1432		WRITE_ONCE(ve->base.sched_engine->queue_priority_hint, INT_MIN);
   1433
   1434		rb = &ve->nodes[engine->id].rb;
   1435		rb_erase_cached(rb, &execlists->virtual);
   1436		RB_CLEAR_NODE(rb);
   1437
   1438		GEM_BUG_ON(!(rq->execution_mask & engine->mask));
   1439		WRITE_ONCE(rq->engine, engine);
   1440
   1441		if (__i915_request_submit(rq)) {
   1442			/*
   1443			 * Only after we confirm that we will submit
   1444			 * this request (i.e. it has not already
   1445			 * completed), do we want to update the context.
   1446			 *
   1447			 * This serves two purposes. It avoids
   1448			 * unnecessary work if we are resubmitting an
   1449			 * already completed request after timeslicing.
   1450			 * But more importantly, it prevents us altering
   1451			 * ve->siblings[] on an idle context, where
   1452			 * we may be using ve->siblings[] in
   1453			 * virtual_context_enter / virtual_context_exit.
   1454			 */
   1455			virtual_xfer_context(ve, engine);
   1456			GEM_BUG_ON(ve->siblings[0] != engine);
   1457
   1458			submit = true;
   1459			last = rq;
   1460		}
   1461
   1462		i915_request_put(rq);
   1463unlock:
   1464		spin_unlock(&ve->base.sched_engine->lock);
   1465
   1466		/*
   1467		 * Hmm, we have a bunch of virtual engine requests,
   1468		 * but the first one was already completed (thanks
   1469		 * preempt-to-busy!). Keep looking at the veng queue
   1470		 * until we have no more relevant requests (i.e.
   1471		 * the normal submit queue has higher priority).
   1472		 */
   1473		if (submit)
   1474			break;
   1475	}
   1476
   1477	while ((rb = rb_first_cached(&sched_engine->queue))) {
   1478		struct i915_priolist *p = to_priolist(rb);
   1479		struct i915_request *rq, *rn;
   1480
   1481		priolist_for_each_request_consume(rq, rn, p) {
   1482			bool merge = true;
   1483
   1484			/*
   1485			 * Can we combine this request with the current port?
   1486			 * It has to be the same context/ringbuffer and not
   1487			 * have any exceptions (e.g. GVT saying never to
   1488			 * combine contexts).
   1489			 *
   1490			 * If we can combine the requests, we can execute both
   1491			 * by updating the RING_TAIL to point to the end of the
   1492			 * second request, and so we never need to tell the
   1493			 * hardware about the first.
   1494			 */
   1495			if (last && !can_merge_rq(last, rq)) {
   1496				/*
   1497				 * If we are on the second port and cannot
   1498				 * combine this request with the last, then we
   1499				 * are done.
   1500				 */
   1501				if (port == last_port)
   1502					goto done;
   1503
   1504				/*
   1505				 * We must not populate both ELSP[] with the
   1506				 * same LRCA, i.e. we must submit 2 different
   1507				 * contexts if we submit 2 ELSP.
   1508				 */
   1509				if (last->context == rq->context)
   1510					goto done;
   1511
   1512				if (i915_request_has_sentinel(last))
   1513					goto done;
   1514
   1515				/*
   1516				 * We avoid submitting virtual requests into
   1517				 * the secondary ports so that we can migrate
   1518				 * the request immediately to another engine
   1519				 * rather than wait for the primary request.
   1520				 */
   1521				if (rq->execution_mask != engine->mask)
   1522					goto done;
   1523
   1524				/*
   1525				 * If GVT overrides us we only ever submit
   1526				 * port[0], leaving port[1] empty. Note that we
   1527				 * also have to be careful that we don't queue
   1528				 * the same context (even though a different
   1529				 * request) to the second port.
   1530				 */
   1531				if (ctx_single_port_submission(last->context) ||
   1532				    ctx_single_port_submission(rq->context))
   1533					goto done;
   1534
   1535				merge = false;
   1536			}
   1537
   1538			if (__i915_request_submit(rq)) {
   1539				if (!merge) {
   1540					*port++ = i915_request_get(last);
   1541					last = NULL;
   1542				}
   1543
   1544				GEM_BUG_ON(last &&
   1545					   !can_merge_ctx(last->context,
   1546							  rq->context));
   1547				GEM_BUG_ON(last &&
   1548					   i915_seqno_passed(last->fence.seqno,
   1549							     rq->fence.seqno));
   1550
   1551				submit = true;
   1552				last = rq;
   1553			}
   1554		}
   1555
   1556		rb_erase_cached(&p->node, &sched_engine->queue);
   1557		i915_priolist_free(p);
   1558	}
   1559done:
   1560	*port++ = i915_request_get(last);
   1561
   1562	/*
   1563	 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
   1564	 *
   1565	 * We choose the priority hint such that if we add a request of greater
   1566	 * priority than this, we kick the submission tasklet to decide on
   1567	 * the right order of submitting the requests to hardware. We must
   1568	 * also be prepared to reorder requests as they are in-flight on the
   1569	 * HW. We derive the priority hint then as the first "hole" in
   1570	 * the HW submission ports and if there are no available slots,
   1571	 * the priority of the lowest executing request, i.e. last.
   1572	 *
   1573	 * When we do receive a higher priority request ready to run from the
   1574	 * user, see queue_request(), the priority hint is bumped to that
   1575	 * request triggering preemption on the next dequeue (or subsequent
   1576	 * interrupt for secondary ports).
   1577	 */
   1578	sched_engine->queue_priority_hint = queue_prio(sched_engine);
   1579	i915_sched_engine_reset_on_empty(sched_engine);
   1580	spin_unlock(&sched_engine->lock);
   1581
   1582	/*
   1583	 * We can skip poking the HW if we ended up with exactly the same set
   1584	 * of requests as currently running, e.g. trying to timeslice a pair
   1585	 * of ordered contexts.
   1586	 */
   1587	if (submit &&
   1588	    memcmp(active,
   1589		   execlists->pending,
   1590		   (port - execlists->pending) * sizeof(*port))) {
   1591		*port = NULL;
   1592		while (port-- != execlists->pending)
   1593			execlists_schedule_in(*port, port - execlists->pending);
   1594
   1595		WRITE_ONCE(execlists->yield, -1);
   1596		set_preempt_timeout(engine, *active);
   1597		execlists_submit_ports(engine);
   1598	} else {
   1599		ring_set_paused(engine, 0);
   1600		while (port-- != execlists->pending)
   1601			i915_request_put(*port);
   1602		*execlists->pending = NULL;
   1603	}
   1604}
   1605
   1606static void execlists_dequeue_irq(struct intel_engine_cs *engine)
   1607{
   1608	local_irq_disable(); /* Suspend interrupts across request submission */
   1609	execlists_dequeue(engine);
   1610	local_irq_enable(); /* flush irq_work (e.g. breadcrumb enabling) */
   1611}
   1612
   1613static void clear_ports(struct i915_request **ports, int count)
   1614{
   1615	memset_p((void **)ports, NULL, count);
   1616}
   1617
   1618static void
   1619copy_ports(struct i915_request **dst, struct i915_request **src, int count)
   1620{
   1621	/* A memcpy_p() would be very useful here! */
   1622	while (count--)
   1623		WRITE_ONCE(*dst++, *src++); /* avoid write tearing */
   1624}
   1625
   1626static struct i915_request **
   1627cancel_port_requests(struct intel_engine_execlists * const execlists,
   1628		     struct i915_request **inactive)
   1629{
   1630	struct i915_request * const *port;
   1631
   1632	for (port = execlists->pending; *port; port++)
   1633		*inactive++ = *port;
   1634	clear_ports(execlists->pending, ARRAY_SIZE(execlists->pending));
   1635
   1636	/* Mark the end of active before we overwrite *active */
   1637	for (port = xchg(&execlists->active, execlists->pending); *port; port++)
   1638		*inactive++ = *port;
   1639	clear_ports(execlists->inflight, ARRAY_SIZE(execlists->inflight));
   1640
   1641	smp_wmb(); /* complete the seqlock for execlists_active() */
   1642	WRITE_ONCE(execlists->active, execlists->inflight);
   1643
   1644	/* Having cancelled all outstanding process_csb(), stop their timers */
   1645	GEM_BUG_ON(execlists->pending[0]);
   1646	cancel_timer(&execlists->timer);
   1647	cancel_timer(&execlists->preempt);
   1648
   1649	return inactive;
   1650}
   1651
   1652/*
   1653 * Starting with Gen12, the status has a new format:
   1654 *
   1655 *     bit  0:     switched to new queue
   1656 *     bit  1:     reserved
   1657 *     bit  2:     semaphore wait mode (poll or signal), only valid when
   1658 *                 switch detail is set to "wait on semaphore"
   1659 *     bits 3-5:   engine class
   1660 *     bits 6-11:  engine instance
   1661 *     bits 12-14: reserved
   1662 *     bits 15-25: sw context id of the lrc the GT switched to
   1663 *     bits 26-31: sw counter of the lrc the GT switched to
   1664 *     bits 32-35: context switch detail
   1665 *                  - 0: ctx complete
   1666 *                  - 1: wait on sync flip
   1667 *                  - 2: wait on vblank
   1668 *                  - 3: wait on scanline
   1669 *                  - 4: wait on semaphore
   1670 *                  - 5: context preempted (not on SEMAPHORE_WAIT or
   1671 *                       WAIT_FOR_EVENT)
   1672 *     bit  36:    reserved
   1673 *     bits 37-43: wait detail (for switch detail 1 to 4)
   1674 *     bits 44-46: reserved
   1675 *     bits 47-57: sw context id of the lrc the GT switched away from
   1676 *     bits 58-63: sw counter of the lrc the GT switched away from
   1677 *
   1678 * Xe_HP csb shuffles things around compared to TGL:
   1679 *
   1680 *     bits 0-3:   context switch detail (same possible values as TGL)
   1681 *     bits 4-9:   engine instance
   1682 *     bits 10-25: sw context id of the lrc the GT switched to
   1683 *     bits 26-31: sw counter of the lrc the GT switched to
   1684 *     bit  32:    semaphore wait mode (poll or signal), Only valid when
   1685 *                 switch detail is set to "wait on semaphore"
   1686 *     bit  33:    switched to new queue
   1687 *     bits 34-41: wait detail (for switch detail 1 to 4)
   1688 *     bits 42-57: sw context id of the lrc the GT switched away from
   1689 *     bits 58-63: sw counter of the lrc the GT switched away from
   1690 */
   1691static inline bool
   1692__gen12_csb_parse(bool ctx_to_valid, bool ctx_away_valid, bool new_queue,
   1693		  u8 switch_detail)
   1694{
   1695	/*
   1696	 * The context switch detail is not guaranteed to be 5 when a preemption
   1697	 * occurs, so we can't just check for that. The check below works for
   1698	 * all the cases we care about, including preemptions of WAIT
   1699	 * instructions and lite-restore. Preempt-to-idle via the CTRL register
   1700	 * would require some extra handling, but we don't support that.
   1701	 */
   1702	if (!ctx_away_valid || new_queue) {
   1703		GEM_BUG_ON(!ctx_to_valid);
   1704		return true;
   1705	}
   1706
   1707	/*
   1708	 * switch detail = 5 is covered by the case above and we do not expect a
   1709	 * context switch on an unsuccessful wait instruction since we always
   1710	 * use polling mode.
   1711	 */
   1712	GEM_BUG_ON(switch_detail);
   1713	return false;
   1714}
   1715
   1716static bool xehp_csb_parse(const u64 csb)
   1717{
   1718	return __gen12_csb_parse(XEHP_CSB_CTX_VALID(lower_32_bits(csb)), /* cxt to */
   1719				 XEHP_CSB_CTX_VALID(upper_32_bits(csb)), /* cxt away */
   1720				 upper_32_bits(csb) & XEHP_CTX_STATUS_SWITCHED_TO_NEW_QUEUE,
   1721				 GEN12_CTX_SWITCH_DETAIL(lower_32_bits(csb)));
   1722}
   1723
   1724static bool gen12_csb_parse(const u64 csb)
   1725{
   1726	return __gen12_csb_parse(GEN12_CSB_CTX_VALID(lower_32_bits(csb)), /* cxt to */
   1727				 GEN12_CSB_CTX_VALID(upper_32_bits(csb)), /* cxt away */
   1728				 lower_32_bits(csb) & GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE,
   1729				 GEN12_CTX_SWITCH_DETAIL(upper_32_bits(csb)));
   1730}
   1731
   1732static bool gen8_csb_parse(const u64 csb)
   1733{
   1734	return csb & (GEN8_CTX_STATUS_IDLE_ACTIVE | GEN8_CTX_STATUS_PREEMPTED);
   1735}
   1736
   1737static noinline u64
   1738wa_csb_read(const struct intel_engine_cs *engine, u64 * const csb)
   1739{
   1740	u64 entry;
   1741
   1742	/*
   1743	 * Reading from the HWSP has one particular advantage: we can detect
   1744	 * a stale entry. Since the write into HWSP is broken, we have no reason
   1745	 * to trust the HW at all, the mmio entry may equally be unordered, so
   1746	 * we prefer the path that is self-checking and as a last resort,
   1747	 * return the mmio value.
   1748	 *
   1749	 * tgl,dg1:HSDES#22011327657
   1750	 */
   1751	preempt_disable();
   1752	if (wait_for_atomic_us((entry = READ_ONCE(*csb)) != -1, 10)) {
   1753		int idx = csb - engine->execlists.csb_status;
   1754		int status;
   1755
   1756		status = GEN8_EXECLISTS_STATUS_BUF;
   1757		if (idx >= 6) {
   1758			status = GEN11_EXECLISTS_STATUS_BUF2;
   1759			idx -= 6;
   1760		}
   1761		status += sizeof(u64) * idx;
   1762
   1763		entry = intel_uncore_read64(engine->uncore,
   1764					    _MMIO(engine->mmio_base + status));
   1765	}
   1766	preempt_enable();
   1767
   1768	return entry;
   1769}
   1770
   1771static u64 csb_read(const struct intel_engine_cs *engine, u64 * const csb)
   1772{
   1773	u64 entry = READ_ONCE(*csb);
   1774
   1775	/*
   1776	 * Unfortunately, the GPU does not always serialise its write
   1777	 * of the CSB entries before its write of the CSB pointer, at least
   1778	 * from the perspective of the CPU, using what is known as a Global
   1779	 * Observation Point. We may read a new CSB tail pointer, but then
   1780	 * read the stale CSB entries, causing us to misinterpret the
   1781	 * context-switch events, and eventually declare the GPU hung.
   1782	 *
   1783	 * icl:HSDES#1806554093
   1784	 * tgl:HSDES#22011248461
   1785	 */
   1786	if (unlikely(entry == -1))
   1787		entry = wa_csb_read(engine, csb);
   1788
   1789	/* Consume this entry so that we can spot its future reuse. */
   1790	WRITE_ONCE(*csb, -1);
   1791
   1792	/* ELSP is an implicit wmb() before the GPU wraps and overwrites csb */
   1793	return entry;
   1794}
   1795
   1796static void new_timeslice(struct intel_engine_execlists *el)
   1797{
   1798	/* By cancelling, we will start afresh in start_timeslice() */
   1799	cancel_timer(&el->timer);
   1800}
   1801
   1802static struct i915_request **
   1803process_csb(struct intel_engine_cs *engine, struct i915_request **inactive)
   1804{
   1805	struct intel_engine_execlists * const execlists = &engine->execlists;
   1806	u64 * const buf = execlists->csb_status;
   1807	const u8 num_entries = execlists->csb_size;
   1808	struct i915_request **prev;
   1809	u8 head, tail;
   1810
   1811	/*
   1812	 * As we modify our execlists state tracking we require exclusive
   1813	 * access. Either we are inside the tasklet, or the tasklet is disabled
   1814	 * and we assume that is only inside the reset paths and so serialised.
   1815	 */
   1816	GEM_BUG_ON(!tasklet_is_locked(&engine->sched_engine->tasklet) &&
   1817		   !reset_in_progress(engine));
   1818
   1819	/*
   1820	 * Note that csb_write, csb_status may be either in HWSP or mmio.
   1821	 * When reading from the csb_write mmio register, we have to be
   1822	 * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
   1823	 * the low 4bits. As it happens we know the next 4bits are always
   1824	 * zero and so we can simply masked off the low u8 of the register
   1825	 * and treat it identically to reading from the HWSP (without having
   1826	 * to use explicit shifting and masking, and probably bifurcating
   1827	 * the code to handle the legacy mmio read).
   1828	 */
   1829	head = execlists->csb_head;
   1830	tail = READ_ONCE(*execlists->csb_write);
   1831	if (unlikely(head == tail))
   1832		return inactive;
   1833
   1834	/*
   1835	 * We will consume all events from HW, or at least pretend to.
   1836	 *
   1837	 * The sequence of events from the HW is deterministic, and derived
   1838	 * from our writes to the ELSP, with a smidgen of variability for
   1839	 * the arrival of the asynchronous requests wrt to the inflight
   1840	 * execution. If the HW sends an event that does not correspond with
   1841	 * the one we are expecting, we have to abandon all hope as we lose
   1842	 * all tracking of what the engine is actually executing. We will
   1843	 * only detect we are out of sequence with the HW when we get an
   1844	 * 'impossible' event because we have already drained our own
   1845	 * preemption/promotion queue. If this occurs, we know that we likely
   1846	 * lost track of execution earlier and must unwind and restart, the
   1847	 * simplest way is by stop processing the event queue and force the
   1848	 * engine to reset.
   1849	 */
   1850	execlists->csb_head = tail;
   1851	ENGINE_TRACE(engine, "cs-irq head=%d, tail=%d\n", head, tail);
   1852
   1853	/*
   1854	 * Hopefully paired with a wmb() in HW!
   1855	 *
   1856	 * We must complete the read of the write pointer before any reads
   1857	 * from the CSB, so that we do not see stale values. Without an rmb
   1858	 * (lfence) the HW may speculatively perform the CSB[] reads *before*
   1859	 * we perform the READ_ONCE(*csb_write).
   1860	 */
   1861	rmb();
   1862
   1863	/* Remember who was last running under the timer */
   1864	prev = inactive;
   1865	*prev = NULL;
   1866
   1867	do {
   1868		bool promote;
   1869		u64 csb;
   1870
   1871		if (++head == num_entries)
   1872			head = 0;
   1873
   1874		/*
   1875		 * We are flying near dragons again.
   1876		 *
   1877		 * We hold a reference to the request in execlist_port[]
   1878		 * but no more than that. We are operating in softirq
   1879		 * context and so cannot hold any mutex or sleep. That
   1880		 * prevents us stopping the requests we are processing
   1881		 * in port[] from being retired simultaneously (the
   1882		 * breadcrumb will be complete before we see the
   1883		 * context-switch). As we only hold the reference to the
   1884		 * request, any pointer chasing underneath the request
   1885		 * is subject to a potential use-after-free. Thus we
   1886		 * store all of the bookkeeping within port[] as
   1887		 * required, and avoid using unguarded pointers beneath
   1888		 * request itself. The same applies to the atomic
   1889		 * status notifier.
   1890		 */
   1891
   1892		csb = csb_read(engine, buf + head);
   1893		ENGINE_TRACE(engine, "csb[%d]: status=0x%08x:0x%08x\n",
   1894			     head, upper_32_bits(csb), lower_32_bits(csb));
   1895
   1896		if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
   1897			promote = xehp_csb_parse(csb);
   1898		else if (GRAPHICS_VER(engine->i915) >= 12)
   1899			promote = gen12_csb_parse(csb);
   1900		else
   1901			promote = gen8_csb_parse(csb);
   1902		if (promote) {
   1903			struct i915_request * const *old = execlists->active;
   1904
   1905			if (GEM_WARN_ON(!*execlists->pending)) {
   1906				execlists->error_interrupt |= ERROR_CSB;
   1907				break;
   1908			}
   1909
   1910			ring_set_paused(engine, 0);
   1911
   1912			/* Point active to the new ELSP; prevent overwriting */
   1913			WRITE_ONCE(execlists->active, execlists->pending);
   1914			smp_wmb(); /* notify execlists_active() */
   1915
   1916			/* cancel old inflight, prepare for switch */
   1917			trace_ports(execlists, "preempted", old);
   1918			while (*old)
   1919				*inactive++ = *old++;
   1920
   1921			/* switch pending to inflight */
   1922			GEM_BUG_ON(!assert_pending_valid(execlists, "promote"));
   1923			copy_ports(execlists->inflight,
   1924				   execlists->pending,
   1925				   execlists_num_ports(execlists));
   1926			smp_wmb(); /* complete the seqlock */
   1927			WRITE_ONCE(execlists->active, execlists->inflight);
   1928
   1929			/* XXX Magic delay for tgl */
   1930			ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
   1931
   1932			WRITE_ONCE(execlists->pending[0], NULL);
   1933		} else {
   1934			if (GEM_WARN_ON(!*execlists->active)) {
   1935				execlists->error_interrupt |= ERROR_CSB;
   1936				break;
   1937			}
   1938
   1939			/* port0 completed, advanced to port1 */
   1940			trace_ports(execlists, "completed", execlists->active);
   1941
   1942			/*
   1943			 * We rely on the hardware being strongly
   1944			 * ordered, that the breadcrumb write is
   1945			 * coherent (visible from the CPU) before the
   1946			 * user interrupt is processed. One might assume
   1947			 * that the breadcrumb write being before the
   1948			 * user interrupt and the CS event for the context
   1949			 * switch would therefore be before the CS event
   1950			 * itself...
   1951			 */
   1952			if (GEM_SHOW_DEBUG() &&
   1953			    !__i915_request_is_complete(*execlists->active)) {
   1954				struct i915_request *rq = *execlists->active;
   1955				const u32 *regs __maybe_unused =
   1956					rq->context->lrc_reg_state;
   1957
   1958				ENGINE_TRACE(engine,
   1959					     "context completed before request!\n");
   1960				ENGINE_TRACE(engine,
   1961					     "ring:{start:0x%08x, head:%04x, tail:%04x, ctl:%08x, mode:%08x}\n",
   1962					     ENGINE_READ(engine, RING_START),
   1963					     ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR,
   1964					     ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR,
   1965					     ENGINE_READ(engine, RING_CTL),
   1966					     ENGINE_READ(engine, RING_MI_MODE));
   1967				ENGINE_TRACE(engine,
   1968					     "rq:{start:%08x, head:%04x, tail:%04x, seqno:%llx:%d, hwsp:%d}, ",
   1969					     i915_ggtt_offset(rq->ring->vma),
   1970					     rq->head, rq->tail,
   1971					     rq->fence.context,
   1972					     lower_32_bits(rq->fence.seqno),
   1973					     hwsp_seqno(rq));
   1974				ENGINE_TRACE(engine,
   1975					     "ctx:{start:%08x, head:%04x, tail:%04x}, ",
   1976					     regs[CTX_RING_START],
   1977					     regs[CTX_RING_HEAD],
   1978					     regs[CTX_RING_TAIL]);
   1979			}
   1980
   1981			*inactive++ = *execlists->active++;
   1982
   1983			GEM_BUG_ON(execlists->active - execlists->inflight >
   1984				   execlists_num_ports(execlists));
   1985		}
   1986	} while (head != tail);
   1987
   1988	/*
   1989	 * Gen11 has proven to fail wrt global observation point between
   1990	 * entry and tail update, failing on the ordering and thus
   1991	 * we see an old entry in the context status buffer.
   1992	 *
   1993	 * Forcibly evict out entries for the next gpu csb update,
   1994	 * to increase the odds that we get a fresh entries with non
   1995	 * working hardware. The cost for doing so comes out mostly with
   1996	 * the wash as hardware, working or not, will need to do the
   1997	 * invalidation before.
   1998	 */
   1999	drm_clflush_virt_range(&buf[0], num_entries * sizeof(buf[0]));
   2000
   2001	/*
   2002	 * We assume that any event reflects a change in context flow
   2003	 * and merits a fresh timeslice. We reinstall the timer after
   2004	 * inspecting the queue to see if we need to resumbit.
   2005	 */
   2006	if (*prev != *execlists->active) { /* elide lite-restores */
   2007		/*
   2008		 * Note the inherent discrepancy between the HW runtime,
   2009		 * recorded as part of the context switch, and the CPU
   2010		 * adjustment for active contexts. We have to hope that
   2011		 * the delay in processing the CS event is very small
   2012		 * and consistent. It works to our advantage to have
   2013		 * the CPU adjustment _undershoot_ (i.e. start later than)
   2014		 * the CS timestamp so we never overreport the runtime
   2015		 * and correct overselves later when updating from HW.
   2016		 */
   2017		if (*prev)
   2018			lrc_runtime_stop((*prev)->context);
   2019		if (*execlists->active)
   2020			lrc_runtime_start((*execlists->active)->context);
   2021		new_timeslice(execlists);
   2022	}
   2023
   2024	return inactive;
   2025}
   2026
   2027static void post_process_csb(struct i915_request **port,
   2028			     struct i915_request **last)
   2029{
   2030	while (port != last)
   2031		execlists_schedule_out(*port++);
   2032}
   2033
   2034static void __execlists_hold(struct i915_request *rq)
   2035{
   2036	LIST_HEAD(list);
   2037
   2038	do {
   2039		struct i915_dependency *p;
   2040
   2041		if (i915_request_is_active(rq))
   2042			__i915_request_unsubmit(rq);
   2043
   2044		clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
   2045		list_move_tail(&rq->sched.link,
   2046			       &rq->engine->sched_engine->hold);
   2047		i915_request_set_hold(rq);
   2048		RQ_TRACE(rq, "on hold\n");
   2049
   2050		for_each_waiter(p, rq) {
   2051			struct i915_request *w =
   2052				container_of(p->waiter, typeof(*w), sched);
   2053
   2054			if (p->flags & I915_DEPENDENCY_WEAK)
   2055				continue;
   2056
   2057			/* Leave semaphores spinning on the other engines */
   2058			if (w->engine != rq->engine)
   2059				continue;
   2060
   2061			if (!i915_request_is_ready(w))
   2062				continue;
   2063
   2064			if (__i915_request_is_complete(w))
   2065				continue;
   2066
   2067			if (i915_request_on_hold(w))
   2068				continue;
   2069
   2070			list_move_tail(&w->sched.link, &list);
   2071		}
   2072
   2073		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
   2074	} while (rq);
   2075}
   2076
   2077static bool execlists_hold(struct intel_engine_cs *engine,
   2078			   struct i915_request *rq)
   2079{
   2080	if (i915_request_on_hold(rq))
   2081		return false;
   2082
   2083	spin_lock_irq(&engine->sched_engine->lock);
   2084
   2085	if (__i915_request_is_complete(rq)) { /* too late! */
   2086		rq = NULL;
   2087		goto unlock;
   2088	}
   2089
   2090	/*
   2091	 * Transfer this request onto the hold queue to prevent it
   2092	 * being resumbitted to HW (and potentially completed) before we have
   2093	 * released it. Since we may have already submitted following
   2094	 * requests, we need to remove those as well.
   2095	 */
   2096	GEM_BUG_ON(i915_request_on_hold(rq));
   2097	GEM_BUG_ON(rq->engine != engine);
   2098	__execlists_hold(rq);
   2099	GEM_BUG_ON(list_empty(&engine->sched_engine->hold));
   2100
   2101unlock:
   2102	spin_unlock_irq(&engine->sched_engine->lock);
   2103	return rq;
   2104}
   2105
   2106static bool hold_request(const struct i915_request *rq)
   2107{
   2108	struct i915_dependency *p;
   2109	bool result = false;
   2110
   2111	/*
   2112	 * If one of our ancestors is on hold, we must also be on hold,
   2113	 * otherwise we will bypass it and execute before it.
   2114	 */
   2115	rcu_read_lock();
   2116	for_each_signaler(p, rq) {
   2117		const struct i915_request *s =
   2118			container_of(p->signaler, typeof(*s), sched);
   2119
   2120		if (s->engine != rq->engine)
   2121			continue;
   2122
   2123		result = i915_request_on_hold(s);
   2124		if (result)
   2125			break;
   2126	}
   2127	rcu_read_unlock();
   2128
   2129	return result;
   2130}
   2131
   2132static void __execlists_unhold(struct i915_request *rq)
   2133{
   2134	LIST_HEAD(list);
   2135
   2136	do {
   2137		struct i915_dependency *p;
   2138
   2139		RQ_TRACE(rq, "hold release\n");
   2140
   2141		GEM_BUG_ON(!i915_request_on_hold(rq));
   2142		GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
   2143
   2144		i915_request_clear_hold(rq);
   2145		list_move_tail(&rq->sched.link,
   2146			       i915_sched_lookup_priolist(rq->engine->sched_engine,
   2147							  rq_prio(rq)));
   2148		set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
   2149
   2150		/* Also release any children on this engine that are ready */
   2151		for_each_waiter(p, rq) {
   2152			struct i915_request *w =
   2153				container_of(p->waiter, typeof(*w), sched);
   2154
   2155			if (p->flags & I915_DEPENDENCY_WEAK)
   2156				continue;
   2157
   2158			if (w->engine != rq->engine)
   2159				continue;
   2160
   2161			if (!i915_request_on_hold(w))
   2162				continue;
   2163
   2164			/* Check that no other parents are also on hold */
   2165			if (hold_request(w))
   2166				continue;
   2167
   2168			list_move_tail(&w->sched.link, &list);
   2169		}
   2170
   2171		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
   2172	} while (rq);
   2173}
   2174
   2175static void execlists_unhold(struct intel_engine_cs *engine,
   2176			     struct i915_request *rq)
   2177{
   2178	spin_lock_irq(&engine->sched_engine->lock);
   2179
   2180	/*
   2181	 * Move this request back to the priority queue, and all of its
   2182	 * children and grandchildren that were suspended along with it.
   2183	 */
   2184	__execlists_unhold(rq);
   2185
   2186	if (rq_prio(rq) > engine->sched_engine->queue_priority_hint) {
   2187		engine->sched_engine->queue_priority_hint = rq_prio(rq);
   2188		tasklet_hi_schedule(&engine->sched_engine->tasklet);
   2189	}
   2190
   2191	spin_unlock_irq(&engine->sched_engine->lock);
   2192}
   2193
   2194struct execlists_capture {
   2195	struct work_struct work;
   2196	struct i915_request *rq;
   2197	struct i915_gpu_coredump *error;
   2198};
   2199
   2200static void execlists_capture_work(struct work_struct *work)
   2201{
   2202	struct execlists_capture *cap = container_of(work, typeof(*cap), work);
   2203	const gfp_t gfp = __GFP_KSWAPD_RECLAIM | __GFP_RETRY_MAYFAIL |
   2204		__GFP_NOWARN;
   2205	struct intel_engine_cs *engine = cap->rq->engine;
   2206	struct intel_gt_coredump *gt = cap->error->gt;
   2207	struct intel_engine_capture_vma *vma;
   2208
   2209	/* Compress all the objects attached to the request, slow! */
   2210	vma = intel_engine_coredump_add_request(gt->engine, cap->rq, gfp);
   2211	if (vma) {
   2212		struct i915_vma_compress *compress =
   2213			i915_vma_capture_prepare(gt);
   2214
   2215		intel_engine_coredump_add_vma(gt->engine, vma, compress);
   2216		i915_vma_capture_finish(gt, compress);
   2217	}
   2218
   2219	gt->simulated = gt->engine->simulated;
   2220	cap->error->simulated = gt->simulated;
   2221
   2222	/* Publish the error state, and announce it to the world */
   2223	i915_error_state_store(cap->error);
   2224	i915_gpu_coredump_put(cap->error);
   2225
   2226	/* Return this request and all that depend upon it for signaling */
   2227	execlists_unhold(engine, cap->rq);
   2228	i915_request_put(cap->rq);
   2229
   2230	kfree(cap);
   2231}
   2232
   2233static struct execlists_capture *capture_regs(struct intel_engine_cs *engine)
   2234{
   2235	const gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN;
   2236	struct execlists_capture *cap;
   2237
   2238	cap = kmalloc(sizeof(*cap), gfp);
   2239	if (!cap)
   2240		return NULL;
   2241
   2242	cap->error = i915_gpu_coredump_alloc(engine->i915, gfp);
   2243	if (!cap->error)
   2244		goto err_cap;
   2245
   2246	cap->error->gt = intel_gt_coredump_alloc(engine->gt, gfp, CORE_DUMP_FLAG_NONE);
   2247	if (!cap->error->gt)
   2248		goto err_gpu;
   2249
   2250	cap->error->gt->engine = intel_engine_coredump_alloc(engine, gfp, CORE_DUMP_FLAG_NONE);
   2251	if (!cap->error->gt->engine)
   2252		goto err_gt;
   2253
   2254	cap->error->gt->engine->hung = true;
   2255
   2256	return cap;
   2257
   2258err_gt:
   2259	kfree(cap->error->gt);
   2260err_gpu:
   2261	kfree(cap->error);
   2262err_cap:
   2263	kfree(cap);
   2264	return NULL;
   2265}
   2266
   2267static struct i915_request *
   2268active_context(struct intel_engine_cs *engine, u32 ccid)
   2269{
   2270	const struct intel_engine_execlists * const el = &engine->execlists;
   2271	struct i915_request * const *port, *rq;
   2272
   2273	/*
   2274	 * Use the most recent result from process_csb(), but just in case
   2275	 * we trigger an error (via interrupt) before the first CS event has
   2276	 * been written, peek at the next submission.
   2277	 */
   2278
   2279	for (port = el->active; (rq = *port); port++) {
   2280		if (rq->context->lrc.ccid == ccid) {
   2281			ENGINE_TRACE(engine,
   2282				     "ccid:%x found at active:%zd\n",
   2283				     ccid, port - el->active);
   2284			return rq;
   2285		}
   2286	}
   2287
   2288	for (port = el->pending; (rq = *port); port++) {
   2289		if (rq->context->lrc.ccid == ccid) {
   2290			ENGINE_TRACE(engine,
   2291				     "ccid:%x found at pending:%zd\n",
   2292				     ccid, port - el->pending);
   2293			return rq;
   2294		}
   2295	}
   2296
   2297	ENGINE_TRACE(engine, "ccid:%x not found\n", ccid);
   2298	return NULL;
   2299}
   2300
   2301static u32 active_ccid(struct intel_engine_cs *engine)
   2302{
   2303	return ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI);
   2304}
   2305
   2306static void execlists_capture(struct intel_engine_cs *engine)
   2307{
   2308	struct execlists_capture *cap;
   2309
   2310	if (!IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR))
   2311		return;
   2312
   2313	/*
   2314	 * We need to _quickly_ capture the engine state before we reset.
   2315	 * We are inside an atomic section (softirq) here and we are delaying
   2316	 * the forced preemption event.
   2317	 */
   2318	cap = capture_regs(engine);
   2319	if (!cap)
   2320		return;
   2321
   2322	spin_lock_irq(&engine->sched_engine->lock);
   2323	cap->rq = active_context(engine, active_ccid(engine));
   2324	if (cap->rq) {
   2325		cap->rq = active_request(cap->rq->context->timeline, cap->rq);
   2326		cap->rq = i915_request_get_rcu(cap->rq);
   2327	}
   2328	spin_unlock_irq(&engine->sched_engine->lock);
   2329	if (!cap->rq)
   2330		goto err_free;
   2331
   2332	/*
   2333	 * Remove the request from the execlists queue, and take ownership
   2334	 * of the request. We pass it to our worker who will _slowly_ compress
   2335	 * all the pages the _user_ requested for debugging their batch, after
   2336	 * which we return it to the queue for signaling.
   2337	 *
   2338	 * By removing them from the execlists queue, we also remove the
   2339	 * requests from being processed by __unwind_incomplete_requests()
   2340	 * during the intel_engine_reset(), and so they will *not* be replayed
   2341	 * afterwards.
   2342	 *
   2343	 * Note that because we have not yet reset the engine at this point,
   2344	 * it is possible for the request that we have identified as being
   2345	 * guilty, did in fact complete and we will then hit an arbitration
   2346	 * point allowing the outstanding preemption to succeed. The likelihood
   2347	 * of that is very low (as capturing of the engine registers should be
   2348	 * fast enough to run inside an irq-off atomic section!), so we will
   2349	 * simply hold that request accountable for being non-preemptible
   2350	 * long enough to force the reset.
   2351	 */
   2352	if (!execlists_hold(engine, cap->rq))
   2353		goto err_rq;
   2354
   2355	INIT_WORK(&cap->work, execlists_capture_work);
   2356	schedule_work(&cap->work);
   2357	return;
   2358
   2359err_rq:
   2360	i915_request_put(cap->rq);
   2361err_free:
   2362	i915_gpu_coredump_put(cap->error);
   2363	kfree(cap);
   2364}
   2365
   2366static void execlists_reset(struct intel_engine_cs *engine, const char *msg)
   2367{
   2368	const unsigned int bit = I915_RESET_ENGINE + engine->id;
   2369	unsigned long *lock = &engine->gt->reset.flags;
   2370
   2371	if (!intel_has_reset_engine(engine->gt))
   2372		return;
   2373
   2374	if (test_and_set_bit(bit, lock))
   2375		return;
   2376
   2377	ENGINE_TRACE(engine, "reset for %s\n", msg);
   2378
   2379	/* Mark this tasklet as disabled to avoid waiting for it to complete */
   2380	tasklet_disable_nosync(&engine->sched_engine->tasklet);
   2381
   2382	ring_set_paused(engine, 1); /* Freeze the current request in place */
   2383	execlists_capture(engine);
   2384	intel_engine_reset(engine, msg);
   2385
   2386	tasklet_enable(&engine->sched_engine->tasklet);
   2387	clear_and_wake_up_bit(bit, lock);
   2388}
   2389
   2390static bool preempt_timeout(const struct intel_engine_cs *const engine)
   2391{
   2392	const struct timer_list *t = &engine->execlists.preempt;
   2393
   2394	if (!CONFIG_DRM_I915_PREEMPT_TIMEOUT)
   2395		return false;
   2396
   2397	if (!timer_expired(t))
   2398		return false;
   2399
   2400	return engine->execlists.pending[0];
   2401}
   2402
   2403/*
   2404 * Check the unread Context Status Buffers and manage the submission of new
   2405 * contexts to the ELSP accordingly.
   2406 */
   2407static void execlists_submission_tasklet(struct tasklet_struct *t)
   2408{
   2409	struct i915_sched_engine *sched_engine =
   2410		from_tasklet(sched_engine, t, tasklet);
   2411	struct intel_engine_cs * const engine = sched_engine->private_data;
   2412	struct i915_request *post[2 * EXECLIST_MAX_PORTS];
   2413	struct i915_request **inactive;
   2414
   2415	rcu_read_lock();
   2416	inactive = process_csb(engine, post);
   2417	GEM_BUG_ON(inactive - post > ARRAY_SIZE(post));
   2418
   2419	if (unlikely(preempt_timeout(engine))) {
   2420		cancel_timer(&engine->execlists.preempt);
   2421		engine->execlists.error_interrupt |= ERROR_PREEMPT;
   2422	}
   2423
   2424	if (unlikely(READ_ONCE(engine->execlists.error_interrupt))) {
   2425		const char *msg;
   2426
   2427		/* Generate the error message in priority wrt to the user! */
   2428		if (engine->execlists.error_interrupt & GENMASK(15, 0))
   2429			msg = "CS error"; /* thrown by a user payload */
   2430		else if (engine->execlists.error_interrupt & ERROR_CSB)
   2431			msg = "invalid CSB event";
   2432		else if (engine->execlists.error_interrupt & ERROR_PREEMPT)
   2433			msg = "preemption time out";
   2434		else
   2435			msg = "internal error";
   2436
   2437		engine->execlists.error_interrupt = 0;
   2438		execlists_reset(engine, msg);
   2439	}
   2440
   2441	if (!engine->execlists.pending[0]) {
   2442		execlists_dequeue_irq(engine);
   2443		start_timeslice(engine);
   2444	}
   2445
   2446	post_process_csb(post, inactive);
   2447	rcu_read_unlock();
   2448}
   2449
   2450static void execlists_irq_handler(struct intel_engine_cs *engine, u16 iir)
   2451{
   2452	bool tasklet = false;
   2453
   2454	if (unlikely(iir & GT_CS_MASTER_ERROR_INTERRUPT)) {
   2455		u32 eir;
   2456
   2457		/* Upper 16b are the enabling mask, rsvd for internal errors */
   2458		eir = ENGINE_READ(engine, RING_EIR) & GENMASK(15, 0);
   2459		ENGINE_TRACE(engine, "CS error: %x\n", eir);
   2460
   2461		/* Disable the error interrupt until after the reset */
   2462		if (likely(eir)) {
   2463			ENGINE_WRITE(engine, RING_EMR, ~0u);
   2464			ENGINE_WRITE(engine, RING_EIR, eir);
   2465			WRITE_ONCE(engine->execlists.error_interrupt, eir);
   2466			tasklet = true;
   2467		}
   2468	}
   2469
   2470	if (iir & GT_WAIT_SEMAPHORE_INTERRUPT) {
   2471		WRITE_ONCE(engine->execlists.yield,
   2472			   ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI));
   2473		ENGINE_TRACE(engine, "semaphore yield: %08x\n",
   2474			     engine->execlists.yield);
   2475		if (del_timer(&engine->execlists.timer))
   2476			tasklet = true;
   2477	}
   2478
   2479	if (iir & GT_CONTEXT_SWITCH_INTERRUPT)
   2480		tasklet = true;
   2481
   2482	if (iir & GT_RENDER_USER_INTERRUPT)
   2483		intel_engine_signal_breadcrumbs(engine);
   2484
   2485	if (tasklet)
   2486		tasklet_hi_schedule(&engine->sched_engine->tasklet);
   2487}
   2488
   2489static void __execlists_kick(struct intel_engine_execlists *execlists)
   2490{
   2491	struct intel_engine_cs *engine =
   2492		container_of(execlists, typeof(*engine), execlists);
   2493
   2494	/* Kick the tasklet for some interrupt coalescing and reset handling */
   2495	tasklet_hi_schedule(&engine->sched_engine->tasklet);
   2496}
   2497
   2498#define execlists_kick(t, member) \
   2499	__execlists_kick(container_of(t, struct intel_engine_execlists, member))
   2500
   2501static void execlists_timeslice(struct timer_list *timer)
   2502{
   2503	execlists_kick(timer, timer);
   2504}
   2505
   2506static void execlists_preempt(struct timer_list *timer)
   2507{
   2508	execlists_kick(timer, preempt);
   2509}
   2510
   2511static void queue_request(struct intel_engine_cs *engine,
   2512			  struct i915_request *rq)
   2513{
   2514	GEM_BUG_ON(!list_empty(&rq->sched.link));
   2515	list_add_tail(&rq->sched.link,
   2516		      i915_sched_lookup_priolist(engine->sched_engine,
   2517						 rq_prio(rq)));
   2518	set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
   2519}
   2520
   2521static bool submit_queue(struct intel_engine_cs *engine,
   2522			 const struct i915_request *rq)
   2523{
   2524	struct i915_sched_engine *sched_engine = engine->sched_engine;
   2525
   2526	if (rq_prio(rq) <= sched_engine->queue_priority_hint)
   2527		return false;
   2528
   2529	sched_engine->queue_priority_hint = rq_prio(rq);
   2530	return true;
   2531}
   2532
   2533static bool ancestor_on_hold(const struct intel_engine_cs *engine,
   2534			     const struct i915_request *rq)
   2535{
   2536	GEM_BUG_ON(i915_request_on_hold(rq));
   2537	return !list_empty(&engine->sched_engine->hold) && hold_request(rq);
   2538}
   2539
   2540static void execlists_submit_request(struct i915_request *request)
   2541{
   2542	struct intel_engine_cs *engine = request->engine;
   2543	unsigned long flags;
   2544
   2545	/* Will be called from irq-context when using foreign fences. */
   2546	spin_lock_irqsave(&engine->sched_engine->lock, flags);
   2547
   2548	if (unlikely(ancestor_on_hold(engine, request))) {
   2549		RQ_TRACE(request, "ancestor on hold\n");
   2550		list_add_tail(&request->sched.link,
   2551			      &engine->sched_engine->hold);
   2552		i915_request_set_hold(request);
   2553	} else {
   2554		queue_request(engine, request);
   2555
   2556		GEM_BUG_ON(i915_sched_engine_is_empty(engine->sched_engine));
   2557		GEM_BUG_ON(list_empty(&request->sched.link));
   2558
   2559		if (submit_queue(engine, request))
   2560			__execlists_kick(&engine->execlists);
   2561	}
   2562
   2563	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
   2564}
   2565
   2566static int
   2567__execlists_context_pre_pin(struct intel_context *ce,
   2568			    struct intel_engine_cs *engine,
   2569			    struct i915_gem_ww_ctx *ww, void **vaddr)
   2570{
   2571	int err;
   2572
   2573	err = lrc_pre_pin(ce, engine, ww, vaddr);
   2574	if (err)
   2575		return err;
   2576
   2577	if (!__test_and_set_bit(CONTEXT_INIT_BIT, &ce->flags)) {
   2578		lrc_init_state(ce, engine, *vaddr);
   2579
   2580		__i915_gem_object_flush_map(ce->state->obj, 0, engine->context_size);
   2581	}
   2582
   2583	return 0;
   2584}
   2585
   2586static int execlists_context_pre_pin(struct intel_context *ce,
   2587				     struct i915_gem_ww_ctx *ww,
   2588				     void **vaddr)
   2589{
   2590	return __execlists_context_pre_pin(ce, ce->engine, ww, vaddr);
   2591}
   2592
   2593static int execlists_context_pin(struct intel_context *ce, void *vaddr)
   2594{
   2595	return lrc_pin(ce, ce->engine, vaddr);
   2596}
   2597
   2598static int execlists_context_alloc(struct intel_context *ce)
   2599{
   2600	return lrc_alloc(ce, ce->engine);
   2601}
   2602
   2603static void execlists_context_cancel_request(struct intel_context *ce,
   2604					     struct i915_request *rq)
   2605{
   2606	struct intel_engine_cs *engine = NULL;
   2607
   2608	i915_request_active_engine(rq, &engine);
   2609
   2610	if (engine && intel_engine_pulse(engine))
   2611		intel_gt_handle_error(engine->gt, engine->mask, 0,
   2612				      "request cancellation by %s",
   2613				      current->comm);
   2614}
   2615
   2616static struct intel_context *
   2617execlists_create_parallel(struct intel_engine_cs **engines,
   2618			  unsigned int num_siblings,
   2619			  unsigned int width)
   2620{
   2621	struct intel_context *parent = NULL, *ce, *err;
   2622	int i;
   2623
   2624	GEM_BUG_ON(num_siblings != 1);
   2625
   2626	for (i = 0; i < width; ++i) {
   2627		ce = intel_context_create(engines[i]);
   2628		if (IS_ERR(ce)) {
   2629			err = ce;
   2630			goto unwind;
   2631		}
   2632
   2633		if (i == 0)
   2634			parent = ce;
   2635		else
   2636			intel_context_bind_parent_child(parent, ce);
   2637	}
   2638
   2639	parent->parallel.fence_context = dma_fence_context_alloc(1);
   2640
   2641	intel_context_set_nopreempt(parent);
   2642	for_each_child(parent, ce)
   2643		intel_context_set_nopreempt(ce);
   2644
   2645	return parent;
   2646
   2647unwind:
   2648	if (parent)
   2649		intel_context_put(parent);
   2650	return err;
   2651}
   2652
   2653static const struct intel_context_ops execlists_context_ops = {
   2654	.flags = COPS_HAS_INFLIGHT | COPS_RUNTIME_CYCLES,
   2655
   2656	.alloc = execlists_context_alloc,
   2657
   2658	.cancel_request = execlists_context_cancel_request,
   2659
   2660	.pre_pin = execlists_context_pre_pin,
   2661	.pin = execlists_context_pin,
   2662	.unpin = lrc_unpin,
   2663	.post_unpin = lrc_post_unpin,
   2664
   2665	.enter = intel_context_enter_engine,
   2666	.exit = intel_context_exit_engine,
   2667
   2668	.reset = lrc_reset,
   2669	.destroy = lrc_destroy,
   2670
   2671	.create_parallel = execlists_create_parallel,
   2672	.create_virtual = execlists_create_virtual,
   2673};
   2674
   2675static int emit_pdps(struct i915_request *rq)
   2676{
   2677	const struct intel_engine_cs * const engine = rq->engine;
   2678	struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(rq->context->vm);
   2679	int err, i;
   2680	u32 *cs;
   2681
   2682	GEM_BUG_ON(intel_vgpu_active(rq->engine->i915));
   2683
   2684	/*
   2685	 * Beware ye of the dragons, this sequence is magic!
   2686	 *
   2687	 * Small changes to this sequence can cause anything from
   2688	 * GPU hangs to forcewake errors and machine lockups!
   2689	 */
   2690
   2691	cs = intel_ring_begin(rq, 2);
   2692	if (IS_ERR(cs))
   2693		return PTR_ERR(cs);
   2694
   2695	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
   2696	*cs++ = MI_NOOP;
   2697	intel_ring_advance(rq, cs);
   2698
   2699	/* Flush any residual operations from the context load */
   2700	err = engine->emit_flush(rq, EMIT_FLUSH);
   2701	if (err)
   2702		return err;
   2703
   2704	/* Magic required to prevent forcewake errors! */
   2705	err = engine->emit_flush(rq, EMIT_INVALIDATE);
   2706	if (err)
   2707		return err;
   2708
   2709	cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
   2710	if (IS_ERR(cs))
   2711		return PTR_ERR(cs);
   2712
   2713	/* Ensure the LRI have landed before we invalidate & continue */
   2714	*cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
   2715	for (i = GEN8_3LVL_PDPES; i--; ) {
   2716		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
   2717		u32 base = engine->mmio_base;
   2718
   2719		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
   2720		*cs++ = upper_32_bits(pd_daddr);
   2721		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
   2722		*cs++ = lower_32_bits(pd_daddr);
   2723	}
   2724	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
   2725	intel_ring_advance(rq, cs);
   2726
   2727	intel_ring_advance(rq, cs);
   2728
   2729	return 0;
   2730}
   2731
   2732static int execlists_request_alloc(struct i915_request *request)
   2733{
   2734	int ret;
   2735
   2736	GEM_BUG_ON(!intel_context_is_pinned(request->context));
   2737
   2738	/*
   2739	 * Flush enough space to reduce the likelihood of waiting after
   2740	 * we start building the request - in which case we will just
   2741	 * have to repeat work.
   2742	 */
   2743	request->reserved_space += EXECLISTS_REQUEST_SIZE;
   2744
   2745	/*
   2746	 * Note that after this point, we have committed to using
   2747	 * this request as it is being used to both track the
   2748	 * state of engine initialisation and liveness of the
   2749	 * golden renderstate above. Think twice before you try
   2750	 * to cancel/unwind this request now.
   2751	 */
   2752
   2753	if (!i915_vm_is_4lvl(request->context->vm)) {
   2754		ret = emit_pdps(request);
   2755		if (ret)
   2756			return ret;
   2757	}
   2758
   2759	/* Unconditionally invalidate GPU caches and TLBs. */
   2760	ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
   2761	if (ret)
   2762		return ret;
   2763
   2764	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
   2765	return 0;
   2766}
   2767
   2768static void reset_csb_pointers(struct intel_engine_cs *engine)
   2769{
   2770	struct intel_engine_execlists * const execlists = &engine->execlists;
   2771	const unsigned int reset_value = execlists->csb_size - 1;
   2772
   2773	ring_set_paused(engine, 0);
   2774
   2775	/*
   2776	 * Sometimes Icelake forgets to reset its pointers on a GPU reset.
   2777	 * Bludgeon them with a mmio update to be sure.
   2778	 */
   2779	ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
   2780		     0xffff << 16 | reset_value << 8 | reset_value);
   2781	ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
   2782
   2783	/*
   2784	 * After a reset, the HW starts writing into CSB entry [0]. We
   2785	 * therefore have to set our HEAD pointer back one entry so that
   2786	 * the *first* entry we check is entry 0. To complicate this further,
   2787	 * as we don't wait for the first interrupt after reset, we have to
   2788	 * fake the HW write to point back to the last entry so that our
   2789	 * inline comparison of our cached head position against the last HW
   2790	 * write works even before the first interrupt.
   2791	 */
   2792	execlists->csb_head = reset_value;
   2793	WRITE_ONCE(*execlists->csb_write, reset_value);
   2794	wmb(); /* Make sure this is visible to HW (paranoia?) */
   2795
   2796	/* Check that the GPU does indeed update the CSB entries! */
   2797	memset(execlists->csb_status, -1, (reset_value + 1) * sizeof(u64));
   2798	drm_clflush_virt_range(execlists->csb_status,
   2799			       execlists->csb_size *
   2800			       sizeof(execlists->csb_status));
   2801
   2802	/* Once more for luck and our trusty paranoia */
   2803	ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
   2804		     0xffff << 16 | reset_value << 8 | reset_value);
   2805	ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
   2806
   2807	GEM_BUG_ON(READ_ONCE(*execlists->csb_write) != reset_value);
   2808}
   2809
   2810static void sanitize_hwsp(struct intel_engine_cs *engine)
   2811{
   2812	struct intel_timeline *tl;
   2813
   2814	list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
   2815		intel_timeline_reset_seqno(tl);
   2816}
   2817
   2818static void execlists_sanitize(struct intel_engine_cs *engine)
   2819{
   2820	GEM_BUG_ON(execlists_active(&engine->execlists));
   2821
   2822	/*
   2823	 * Poison residual state on resume, in case the suspend didn't!
   2824	 *
   2825	 * We have to assume that across suspend/resume (or other loss
   2826	 * of control) that the contents of our pinned buffers has been
   2827	 * lost, replaced by garbage. Since this doesn't always happen,
   2828	 * let's poison such state so that we more quickly spot when
   2829	 * we falsely assume it has been preserved.
   2830	 */
   2831	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
   2832		memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);
   2833
   2834	reset_csb_pointers(engine);
   2835
   2836	/*
   2837	 * The kernel_context HWSP is stored in the status_page. As above,
   2838	 * that may be lost on resume/initialisation, and so we need to
   2839	 * reset the value in the HWSP.
   2840	 */
   2841	sanitize_hwsp(engine);
   2842
   2843	/* And scrub the dirty cachelines for the HWSP */
   2844	drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE);
   2845
   2846	intel_engine_reset_pinned_contexts(engine);
   2847}
   2848
   2849static void enable_error_interrupt(struct intel_engine_cs *engine)
   2850{
   2851	u32 status;
   2852
   2853	engine->execlists.error_interrupt = 0;
   2854	ENGINE_WRITE(engine, RING_EMR, ~0u);
   2855	ENGINE_WRITE(engine, RING_EIR, ~0u); /* clear all existing errors */
   2856
   2857	status = ENGINE_READ(engine, RING_ESR);
   2858	if (unlikely(status)) {
   2859		drm_err(&engine->i915->drm,
   2860			"engine '%s' resumed still in error: %08x\n",
   2861			engine->name, status);
   2862		__intel_gt_reset(engine->gt, engine->mask);
   2863	}
   2864
   2865	/*
   2866	 * On current gen8+, we have 2 signals to play with
   2867	 *
   2868	 * - I915_ERROR_INSTUCTION (bit 0)
   2869	 *
   2870	 *    Generate an error if the command parser encounters an invalid
   2871	 *    instruction
   2872	 *
   2873	 *    This is a fatal error.
   2874	 *
   2875	 * - CP_PRIV (bit 2)
   2876	 *
   2877	 *    Generate an error on privilege violation (where the CP replaces
   2878	 *    the instruction with a no-op). This also fires for writes into
   2879	 *    read-only scratch pages.
   2880	 *
   2881	 *    This is a non-fatal error, parsing continues.
   2882	 *
   2883	 * * there are a few others defined for odd HW that we do not use
   2884	 *
   2885	 * Since CP_PRIV fires for cases where we have chosen to ignore the
   2886	 * error (as the HW is validating and suppressing the mistakes), we
   2887	 * only unmask the instruction error bit.
   2888	 */
   2889	ENGINE_WRITE(engine, RING_EMR, ~I915_ERROR_INSTRUCTION);
   2890}
   2891
   2892static void enable_execlists(struct intel_engine_cs *engine)
   2893{
   2894	u32 mode;
   2895
   2896	assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
   2897
   2898	intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
   2899
   2900	if (GRAPHICS_VER(engine->i915) >= 11)
   2901		mode = _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE);
   2902	else
   2903		mode = _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE);
   2904	ENGINE_WRITE_FW(engine, RING_MODE_GEN7, mode);
   2905
   2906	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
   2907
   2908	ENGINE_WRITE_FW(engine,
   2909			RING_HWS_PGA,
   2910			i915_ggtt_offset(engine->status_page.vma));
   2911	ENGINE_POSTING_READ(engine, RING_HWS_PGA);
   2912
   2913	enable_error_interrupt(engine);
   2914}
   2915
   2916static int execlists_resume(struct intel_engine_cs *engine)
   2917{
   2918	intel_mocs_init_engine(engine);
   2919	intel_breadcrumbs_reset(engine->breadcrumbs);
   2920
   2921	enable_execlists(engine);
   2922
   2923	if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE)
   2924		xehp_enable_ccs_engines(engine);
   2925
   2926	return 0;
   2927}
   2928
   2929static void execlists_reset_prepare(struct intel_engine_cs *engine)
   2930{
   2931	ENGINE_TRACE(engine, "depth<-%d\n",
   2932		     atomic_read(&engine->sched_engine->tasklet.count));
   2933
   2934	/*
   2935	 * Prevent request submission to the hardware until we have
   2936	 * completed the reset in i915_gem_reset_finish(). If a request
   2937	 * is completed by one engine, it may then queue a request
   2938	 * to a second via its execlists->tasklet *just* as we are
   2939	 * calling engine->resume() and also writing the ELSP.
   2940	 * Turning off the execlists->tasklet until the reset is over
   2941	 * prevents the race.
   2942	 */
   2943	__tasklet_disable_sync_once(&engine->sched_engine->tasklet);
   2944	GEM_BUG_ON(!reset_in_progress(engine));
   2945
   2946	/*
   2947	 * We stop engines, otherwise we might get failed reset and a
   2948	 * dead gpu (on elk). Also as modern gpu as kbl can suffer
   2949	 * from system hang if batchbuffer is progressing when
   2950	 * the reset is issued, regardless of READY_TO_RESET ack.
   2951	 * Thus assume it is best to stop engines on all gens
   2952	 * where we have a gpu reset.
   2953	 *
   2954	 * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES)
   2955	 *
   2956	 * FIXME: Wa for more modern gens needs to be validated
   2957	 */
   2958	ring_set_paused(engine, 1);
   2959	intel_engine_stop_cs(engine);
   2960
   2961	engine->execlists.reset_ccid = active_ccid(engine);
   2962}
   2963
   2964static struct i915_request **
   2965reset_csb(struct intel_engine_cs *engine, struct i915_request **inactive)
   2966{
   2967	struct intel_engine_execlists * const execlists = &engine->execlists;
   2968
   2969	drm_clflush_virt_range(execlists->csb_write,
   2970			       sizeof(execlists->csb_write[0]));
   2971
   2972	inactive = process_csb(engine, inactive); /* drain preemption events */
   2973
   2974	/* Following the reset, we need to reload the CSB read/write pointers */
   2975	reset_csb_pointers(engine);
   2976
   2977	return inactive;
   2978}
   2979
   2980static void
   2981execlists_reset_active(struct intel_engine_cs *engine, bool stalled)
   2982{
   2983	struct intel_context *ce;
   2984	struct i915_request *rq;
   2985	u32 head;
   2986
   2987	/*
   2988	 * Save the currently executing context, even if we completed
   2989	 * its request, it was still running at the time of the
   2990	 * reset and will have been clobbered.
   2991	 */
   2992	rq = active_context(engine, engine->execlists.reset_ccid);
   2993	if (!rq)
   2994		return;
   2995
   2996	ce = rq->context;
   2997	GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
   2998
   2999	if (__i915_request_is_complete(rq)) {
   3000		/* Idle context; tidy up the ring so we can restart afresh */
   3001		head = intel_ring_wrap(ce->ring, rq->tail);
   3002		goto out_replay;
   3003	}
   3004
   3005	/* We still have requests in-flight; the engine should be active */
   3006	GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
   3007
   3008	/* Context has requests still in-flight; it should not be idle! */
   3009	GEM_BUG_ON(i915_active_is_idle(&ce->active));
   3010
   3011	rq = active_request(ce->timeline, rq);
   3012	head = intel_ring_wrap(ce->ring, rq->head);
   3013	GEM_BUG_ON(head == ce->ring->tail);
   3014
   3015	/*
   3016	 * If this request hasn't started yet, e.g. it is waiting on a
   3017	 * semaphore, we need to avoid skipping the request or else we
   3018	 * break the signaling chain. However, if the context is corrupt
   3019	 * the request will not restart and we will be stuck with a wedged
   3020	 * device. It is quite often the case that if we issue a reset
   3021	 * while the GPU is loading the context image, that the context
   3022	 * image becomes corrupt.
   3023	 *
   3024	 * Otherwise, if we have not started yet, the request should replay
   3025	 * perfectly and we do not need to flag the result as being erroneous.
   3026	 */
   3027	if (!__i915_request_has_started(rq))
   3028		goto out_replay;
   3029
   3030	/*
   3031	 * If the request was innocent, we leave the request in the ELSP
   3032	 * and will try to replay it on restarting. The context image may
   3033	 * have been corrupted by the reset, in which case we may have
   3034	 * to service a new GPU hang, but more likely we can continue on
   3035	 * without impact.
   3036	 *
   3037	 * If the request was guilty, we presume the context is corrupt
   3038	 * and have to at least restore the RING register in the context
   3039	 * image back to the expected values to skip over the guilty request.
   3040	 */
   3041	__i915_request_reset(rq, stalled);
   3042
   3043	/*
   3044	 * We want a simple context + ring to execute the breadcrumb update.
   3045	 * We cannot rely on the context being intact across the GPU hang,
   3046	 * so clear it and rebuild just what we need for the breadcrumb.
   3047	 * All pending requests for this context will be zapped, and any
   3048	 * future request will be after userspace has had the opportunity
   3049	 * to recreate its own state.
   3050	 */
   3051out_replay:
   3052	ENGINE_TRACE(engine, "replay {head:%04x, tail:%04x}\n",
   3053		     head, ce->ring->tail);
   3054	lrc_reset_regs(ce, engine);
   3055	ce->lrc.lrca = lrc_update_regs(ce, engine, head);
   3056}
   3057
   3058static void execlists_reset_csb(struct intel_engine_cs *engine, bool stalled)
   3059{
   3060	struct intel_engine_execlists * const execlists = &engine->execlists;
   3061	struct i915_request *post[2 * EXECLIST_MAX_PORTS];
   3062	struct i915_request **inactive;
   3063
   3064	rcu_read_lock();
   3065	inactive = reset_csb(engine, post);
   3066
   3067	execlists_reset_active(engine, true);
   3068
   3069	inactive = cancel_port_requests(execlists, inactive);
   3070	post_process_csb(post, inactive);
   3071	rcu_read_unlock();
   3072}
   3073
   3074static void execlists_reset_rewind(struct intel_engine_cs *engine, bool stalled)
   3075{
   3076	unsigned long flags;
   3077
   3078	ENGINE_TRACE(engine, "\n");
   3079
   3080	/* Process the csb, find the guilty context and throw away */
   3081	execlists_reset_csb(engine, stalled);
   3082
   3083	/* Push back any incomplete requests for replay after the reset. */
   3084	rcu_read_lock();
   3085	spin_lock_irqsave(&engine->sched_engine->lock, flags);
   3086	__unwind_incomplete_requests(engine);
   3087	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
   3088	rcu_read_unlock();
   3089}
   3090
   3091static void nop_submission_tasklet(struct tasklet_struct *t)
   3092{
   3093	struct i915_sched_engine *sched_engine =
   3094		from_tasklet(sched_engine, t, tasklet);
   3095	struct intel_engine_cs * const engine = sched_engine->private_data;
   3096
   3097	/* The driver is wedged; don't process any more events. */
   3098	WRITE_ONCE(engine->sched_engine->queue_priority_hint, INT_MIN);
   3099}
   3100
   3101static void execlists_reset_cancel(struct intel_engine_cs *engine)
   3102{
   3103	struct intel_engine_execlists * const execlists = &engine->execlists;
   3104	struct i915_sched_engine * const sched_engine = engine->sched_engine;
   3105	struct i915_request *rq, *rn;
   3106	struct rb_node *rb;
   3107	unsigned long flags;
   3108
   3109	ENGINE_TRACE(engine, "\n");
   3110
   3111	/*
   3112	 * Before we call engine->cancel_requests(), we should have exclusive
   3113	 * access to the submission state. This is arranged for us by the
   3114	 * caller disabling the interrupt generation, the tasklet and other
   3115	 * threads that may then access the same state, giving us a free hand
   3116	 * to reset state. However, we still need to let lockdep be aware that
   3117	 * we know this state may be accessed in hardirq context, so we
   3118	 * disable the irq around this manipulation and we want to keep
   3119	 * the spinlock focused on its duties and not accidentally conflate
   3120	 * coverage to the submission's irq state. (Similarly, although we
   3121	 * shouldn't need to disable irq around the manipulation of the
   3122	 * submission's irq state, we also wish to remind ourselves that
   3123	 * it is irq state.)
   3124	 */
   3125	execlists_reset_csb(engine, true);
   3126
   3127	rcu_read_lock();
   3128	spin_lock_irqsave(&engine->sched_engine->lock, flags);
   3129
   3130	/* Mark all executing requests as skipped. */
   3131	list_for_each_entry(rq, &engine->sched_engine->requests, sched.link)
   3132		i915_request_put(i915_request_mark_eio(rq));
   3133	intel_engine_signal_breadcrumbs(engine);
   3134
   3135	/* Flush the queued requests to the timeline list (for retiring). */
   3136	while ((rb = rb_first_cached(&sched_engine->queue))) {
   3137		struct i915_priolist *p = to_priolist(rb);
   3138
   3139		priolist_for_each_request_consume(rq, rn, p) {
   3140			if (i915_request_mark_eio(rq)) {
   3141				__i915_request_submit(rq);
   3142				i915_request_put(rq);
   3143			}
   3144		}
   3145
   3146		rb_erase_cached(&p->node, &sched_engine->queue);
   3147		i915_priolist_free(p);
   3148	}
   3149
   3150	/* On-hold requests will be flushed to timeline upon their release */
   3151	list_for_each_entry(rq, &sched_engine->hold, sched.link)
   3152		i915_request_put(i915_request_mark_eio(rq));
   3153
   3154	/* Cancel all attached virtual engines */
   3155	while ((rb = rb_first_cached(&execlists->virtual))) {
   3156		struct virtual_engine *ve =
   3157			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
   3158
   3159		rb_erase_cached(rb, &execlists->virtual);
   3160		RB_CLEAR_NODE(rb);
   3161
   3162		spin_lock(&ve->base.sched_engine->lock);
   3163		rq = fetch_and_zero(&ve->request);
   3164		if (rq) {
   3165			if (i915_request_mark_eio(rq)) {
   3166				rq->engine = engine;
   3167				__i915_request_submit(rq);
   3168				i915_request_put(rq);
   3169			}
   3170			i915_request_put(rq);
   3171
   3172			ve->base.sched_engine->queue_priority_hint = INT_MIN;
   3173		}
   3174		spin_unlock(&ve->base.sched_engine->lock);
   3175	}
   3176
   3177	/* Remaining _unready_ requests will be nop'ed when submitted */
   3178
   3179	sched_engine->queue_priority_hint = INT_MIN;
   3180	sched_engine->queue = RB_ROOT_CACHED;
   3181
   3182	GEM_BUG_ON(__tasklet_is_enabled(&engine->sched_engine->tasklet));
   3183	engine->sched_engine->tasklet.callback = nop_submission_tasklet;
   3184
   3185	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
   3186	rcu_read_unlock();
   3187}
   3188
   3189static void execlists_reset_finish(struct intel_engine_cs *engine)
   3190{
   3191	struct intel_engine_execlists * const execlists = &engine->execlists;
   3192
   3193	/*
   3194	 * After a GPU reset, we may have requests to replay. Do so now while
   3195	 * we still have the forcewake to be sure that the GPU is not allowed
   3196	 * to sleep before we restart and reload a context.
   3197	 *
   3198	 * If the GPU reset fails, the engine may still be alive with requests
   3199	 * inflight. We expect those to complete, or for the device to be
   3200	 * reset as the next level of recovery, and as a final resort we
   3201	 * will declare the device wedged.
   3202	 */
   3203	GEM_BUG_ON(!reset_in_progress(engine));
   3204
   3205	/* And kick in case we missed a new request submission. */
   3206	if (__tasklet_enable(&engine->sched_engine->tasklet))
   3207		__execlists_kick(execlists);
   3208
   3209	ENGINE_TRACE(engine, "depth->%d\n",
   3210		     atomic_read(&engine->sched_engine->tasklet.count));
   3211}
   3212
   3213static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
   3214{
   3215	ENGINE_WRITE(engine, RING_IMR,
   3216		     ~(engine->irq_enable_mask | engine->irq_keep_mask));
   3217	ENGINE_POSTING_READ(engine, RING_IMR);
   3218}
   3219
   3220static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
   3221{
   3222	ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
   3223}
   3224
   3225static void execlists_park(struct intel_engine_cs *engine)
   3226{
   3227	cancel_timer(&engine->execlists.timer);
   3228	cancel_timer(&engine->execlists.preempt);
   3229}
   3230
   3231static void add_to_engine(struct i915_request *rq)
   3232{
   3233	lockdep_assert_held(&rq->engine->sched_engine->lock);
   3234	list_move_tail(&rq->sched.link, &rq->engine->sched_engine->requests);
   3235}
   3236
   3237static void remove_from_engine(struct i915_request *rq)
   3238{
   3239	struct intel_engine_cs *engine, *locked;
   3240
   3241	/*
   3242	 * Virtual engines complicate acquiring the engine timeline lock,
   3243	 * as their rq->engine pointer is not stable until under that
   3244	 * engine lock. The simple ploy we use is to take the lock then
   3245	 * check that the rq still belongs to the newly locked engine.
   3246	 */
   3247	locked = READ_ONCE(rq->engine);
   3248	spin_lock_irq(&locked->sched_engine->lock);
   3249	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
   3250		spin_unlock(&locked->sched_engine->lock);
   3251		spin_lock(&engine->sched_engine->lock);
   3252		locked = engine;
   3253	}
   3254	list_del_init(&rq->sched.link);
   3255
   3256	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
   3257	clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
   3258
   3259	/* Prevent further __await_execution() registering a cb, then flush */
   3260	set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
   3261
   3262	spin_unlock_irq(&locked->sched_engine->lock);
   3263
   3264	i915_request_notify_execute_cb_imm(rq);
   3265}
   3266
   3267static bool can_preempt(struct intel_engine_cs *engine)
   3268{
   3269	if (GRAPHICS_VER(engine->i915) > 8)
   3270		return true;
   3271
   3272	/* GPGPU on bdw requires extra w/a; not implemented */
   3273	return engine->class != RENDER_CLASS;
   3274}
   3275
   3276static void kick_execlists(const struct i915_request *rq, int prio)
   3277{
   3278	struct intel_engine_cs *engine = rq->engine;
   3279	struct i915_sched_engine *sched_engine = engine->sched_engine;
   3280	const struct i915_request *inflight;
   3281
   3282	/*
   3283	 * We only need to kick the tasklet once for the high priority
   3284	 * new context we add into the queue.
   3285	 */
   3286	if (prio <= sched_engine->queue_priority_hint)
   3287		return;
   3288
   3289	rcu_read_lock();
   3290
   3291	/* Nothing currently active? We're overdue for a submission! */
   3292	inflight = execlists_active(&engine->execlists);
   3293	if (!inflight)
   3294		goto unlock;
   3295
   3296	/*
   3297	 * If we are already the currently executing context, don't
   3298	 * bother evaluating if we should preempt ourselves.
   3299	 */
   3300	if (inflight->context == rq->context)
   3301		goto unlock;
   3302
   3303	ENGINE_TRACE(engine,
   3304		     "bumping queue-priority-hint:%d for rq:%llx:%lld, inflight:%llx:%lld prio %d\n",
   3305		     prio,
   3306		     rq->fence.context, rq->fence.seqno,
   3307		     inflight->fence.context, inflight->fence.seqno,
   3308		     inflight->sched.attr.priority);
   3309
   3310	sched_engine->queue_priority_hint = prio;
   3311
   3312	/*
   3313	 * Allow preemption of low -> normal -> high, but we do
   3314	 * not allow low priority tasks to preempt other low priority
   3315	 * tasks under the impression that latency for low priority
   3316	 * tasks does not matter (as much as background throughput),
   3317	 * so kiss.
   3318	 */
   3319	if (prio >= max(I915_PRIORITY_NORMAL, rq_prio(inflight)))
   3320		tasklet_hi_schedule(&sched_engine->tasklet);
   3321
   3322unlock:
   3323	rcu_read_unlock();
   3324}
   3325
   3326static void execlists_set_default_submission(struct intel_engine_cs *engine)
   3327{
   3328	engine->submit_request = execlists_submit_request;
   3329	engine->sched_engine->schedule = i915_schedule;
   3330	engine->sched_engine->kick_backend = kick_execlists;
   3331	engine->sched_engine->tasklet.callback = execlists_submission_tasklet;
   3332}
   3333
   3334static void execlists_shutdown(struct intel_engine_cs *engine)
   3335{
   3336	/* Synchronise with residual timers and any softirq they raise */
   3337	del_timer_sync(&engine->execlists.timer);
   3338	del_timer_sync(&engine->execlists.preempt);
   3339	tasklet_kill(&engine->sched_engine->tasklet);
   3340}
   3341
   3342static void execlists_release(struct intel_engine_cs *engine)
   3343{
   3344	engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
   3345
   3346	execlists_shutdown(engine);
   3347
   3348	intel_engine_cleanup_common(engine);
   3349	lrc_fini_wa_ctx(engine);
   3350}
   3351
   3352static ktime_t __execlists_engine_busyness(struct intel_engine_cs *engine,
   3353					   ktime_t *now)
   3354{
   3355	struct intel_engine_execlists_stats *stats = &engine->stats.execlists;
   3356	ktime_t total = stats->total;
   3357
   3358	/*
   3359	 * If the engine is executing something at the moment
   3360	 * add it to the total.
   3361	 */
   3362	*now = ktime_get();
   3363	if (READ_ONCE(stats->active))
   3364		total = ktime_add(total, ktime_sub(*now, stats->start));
   3365
   3366	return total;
   3367}
   3368
   3369static ktime_t execlists_engine_busyness(struct intel_engine_cs *engine,
   3370					 ktime_t *now)
   3371{
   3372	struct intel_engine_execlists_stats *stats = &engine->stats.execlists;
   3373	unsigned int seq;
   3374	ktime_t total;
   3375
   3376	do {
   3377		seq = read_seqcount_begin(&stats->lock);
   3378		total = __execlists_engine_busyness(engine, now);
   3379	} while (read_seqcount_retry(&stats->lock, seq));
   3380
   3381	return total;
   3382}
   3383
   3384static void
   3385logical_ring_default_vfuncs(struct intel_engine_cs *engine)
   3386{
   3387	/* Default vfuncs which can be overridden by each engine. */
   3388
   3389	engine->resume = execlists_resume;
   3390
   3391	engine->cops = &execlists_context_ops;
   3392	engine->request_alloc = execlists_request_alloc;
   3393	engine->add_active_request = add_to_engine;
   3394	engine->remove_active_request = remove_from_engine;
   3395
   3396	engine->reset.prepare = execlists_reset_prepare;
   3397	engine->reset.rewind = execlists_reset_rewind;
   3398	engine->reset.cancel = execlists_reset_cancel;
   3399	engine->reset.finish = execlists_reset_finish;
   3400
   3401	engine->park = execlists_park;
   3402	engine->unpark = NULL;
   3403
   3404	engine->emit_flush = gen8_emit_flush_xcs;
   3405	engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
   3406	engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
   3407	if (GRAPHICS_VER(engine->i915) >= 12) {
   3408		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
   3409		engine->emit_flush = gen12_emit_flush_xcs;
   3410	}
   3411	engine->set_default_submission = execlists_set_default_submission;
   3412
   3413	if (GRAPHICS_VER(engine->i915) < 11) {
   3414		engine->irq_enable = gen8_logical_ring_enable_irq;
   3415		engine->irq_disable = gen8_logical_ring_disable_irq;
   3416	} else {
   3417		/*
   3418		 * TODO: On Gen11 interrupt masks need to be clear
   3419		 * to allow C6 entry. Keep interrupts enabled at
   3420		 * and take the hit of generating extra interrupts
   3421		 * until a more refined solution exists.
   3422		 */
   3423	}
   3424	intel_engine_set_irq_handler(engine, execlists_irq_handler);
   3425
   3426	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
   3427	if (!intel_vgpu_active(engine->i915)) {
   3428		engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
   3429		if (can_preempt(engine)) {
   3430			engine->flags |= I915_ENGINE_HAS_PREEMPTION;
   3431			if (CONFIG_DRM_I915_TIMESLICE_DURATION)
   3432				engine->flags |= I915_ENGINE_HAS_TIMESLICES;
   3433		}
   3434	}
   3435
   3436	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) {
   3437		if (intel_engine_has_preemption(engine))
   3438			engine->emit_bb_start = gen125_emit_bb_start;
   3439		else
   3440			engine->emit_bb_start = gen125_emit_bb_start_noarb;
   3441	} else {
   3442		if (intel_engine_has_preemption(engine))
   3443			engine->emit_bb_start = gen8_emit_bb_start;
   3444		else
   3445			engine->emit_bb_start = gen8_emit_bb_start_noarb;
   3446	}
   3447
   3448	engine->busyness = execlists_engine_busyness;
   3449}
   3450
   3451static void logical_ring_default_irqs(struct intel_engine_cs *engine)
   3452{
   3453	unsigned int shift = 0;
   3454
   3455	if (GRAPHICS_VER(engine->i915) < 11) {
   3456		const u8 irq_shifts[] = {
   3457			[RCS0]  = GEN8_RCS_IRQ_SHIFT,
   3458			[BCS0]  = GEN8_BCS_IRQ_SHIFT,
   3459			[VCS0]  = GEN8_VCS0_IRQ_SHIFT,
   3460			[VCS1]  = GEN8_VCS1_IRQ_SHIFT,
   3461			[VECS0] = GEN8_VECS_IRQ_SHIFT,
   3462		};
   3463
   3464		shift = irq_shifts[engine->id];
   3465	}
   3466
   3467	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
   3468	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
   3469	engine->irq_keep_mask |= GT_CS_MASTER_ERROR_INTERRUPT << shift;
   3470	engine->irq_keep_mask |= GT_WAIT_SEMAPHORE_INTERRUPT << shift;
   3471}
   3472
   3473static void rcs_submission_override(struct intel_engine_cs *engine)
   3474{
   3475	switch (GRAPHICS_VER(engine->i915)) {
   3476	case 12:
   3477		engine->emit_flush = gen12_emit_flush_rcs;
   3478		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
   3479		break;
   3480	case 11:
   3481		engine->emit_flush = gen11_emit_flush_rcs;
   3482		engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
   3483		break;
   3484	default:
   3485		engine->emit_flush = gen8_emit_flush_rcs;
   3486		engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
   3487		break;
   3488	}
   3489}
   3490
   3491int intel_execlists_submission_setup(struct intel_engine_cs *engine)
   3492{
   3493	struct intel_engine_execlists * const execlists = &engine->execlists;
   3494	struct drm_i915_private *i915 = engine->i915;
   3495	struct intel_uncore *uncore = engine->uncore;
   3496	u32 base = engine->mmio_base;
   3497
   3498	tasklet_setup(&engine->sched_engine->tasklet, execlists_submission_tasklet);
   3499	timer_setup(&engine->execlists.timer, execlists_timeslice, 0);
   3500	timer_setup(&engine->execlists.preempt, execlists_preempt, 0);
   3501
   3502	logical_ring_default_vfuncs(engine);
   3503	logical_ring_default_irqs(engine);
   3504
   3505	if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE)
   3506		rcs_submission_override(engine);
   3507
   3508	lrc_init_wa_ctx(engine);
   3509
   3510	if (HAS_LOGICAL_RING_ELSQ(i915)) {
   3511		execlists->submit_reg = uncore->regs +
   3512			i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
   3513		execlists->ctrl_reg = uncore->regs +
   3514			i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
   3515
   3516		engine->fw_domain = intel_uncore_forcewake_for_reg(engine->uncore,
   3517				    RING_EXECLIST_CONTROL(engine->mmio_base),
   3518				    FW_REG_WRITE);
   3519	} else {
   3520		execlists->submit_reg = uncore->regs +
   3521			i915_mmio_reg_offset(RING_ELSP(base));
   3522	}
   3523
   3524	execlists->csb_status =
   3525		(u64 *)&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
   3526
   3527	execlists->csb_write =
   3528		&engine->status_page.addr[INTEL_HWS_CSB_WRITE_INDEX(i915)];
   3529
   3530	if (GRAPHICS_VER(i915) < 11)
   3531		execlists->csb_size = GEN8_CSB_ENTRIES;
   3532	else
   3533		execlists->csb_size = GEN11_CSB_ENTRIES;
   3534
   3535	engine->context_tag = GENMASK(BITS_PER_LONG - 2, 0);
   3536	if (GRAPHICS_VER(engine->i915) >= 11 &&
   3537	    GRAPHICS_VER_FULL(engine->i915) < IP_VER(12, 50)) {
   3538		execlists->ccid |= engine->instance << (GEN11_ENGINE_INSTANCE_SHIFT - 32);
   3539		execlists->ccid |= engine->class << (GEN11_ENGINE_CLASS_SHIFT - 32);
   3540	}
   3541
   3542	/* Finally, take ownership and responsibility for cleanup! */
   3543	engine->sanitize = execlists_sanitize;
   3544	engine->release = execlists_release;
   3545
   3546	return 0;
   3547}
   3548
   3549static struct list_head *virtual_queue(struct virtual_engine *ve)
   3550{
   3551	return &ve->base.sched_engine->default_priolist.requests;
   3552}
   3553
   3554static void rcu_virtual_context_destroy(struct work_struct *wrk)
   3555{
   3556	struct virtual_engine *ve =
   3557		container_of(wrk, typeof(*ve), rcu.work);
   3558	unsigned int n;
   3559
   3560	GEM_BUG_ON(ve->context.inflight);
   3561
   3562	/* Preempt-to-busy may leave a stale request behind. */
   3563	if (unlikely(ve->request)) {
   3564		struct i915_request *old;
   3565
   3566		spin_lock_irq(&ve->base.sched_engine->lock);
   3567
   3568		old = fetch_and_zero(&ve->request);
   3569		if (old) {
   3570			GEM_BUG_ON(!__i915_request_is_complete(old));
   3571			__i915_request_submit(old);
   3572			i915_request_put(old);
   3573		}
   3574
   3575		spin_unlock_irq(&ve->base.sched_engine->lock);
   3576	}
   3577
   3578	/*
   3579	 * Flush the tasklet in case it is still running on another core.
   3580	 *
   3581	 * This needs to be done before we remove ourselves from the siblings'
   3582	 * rbtrees as in the case it is running in parallel, it may reinsert
   3583	 * the rb_node into a sibling.
   3584	 */
   3585	tasklet_kill(&ve->base.sched_engine->tasklet);
   3586
   3587	/* Decouple ourselves from the siblings, no more access allowed. */
   3588	for (n = 0; n < ve->num_siblings; n++) {
   3589		struct intel_engine_cs *sibling = ve->siblings[n];
   3590		struct rb_node *node = &ve->nodes[sibling->id].rb;
   3591
   3592		if (RB_EMPTY_NODE(node))
   3593			continue;
   3594
   3595		spin_lock_irq(&sibling->sched_engine->lock);
   3596
   3597		/* Detachment is lazily performed in the sched_engine->tasklet */
   3598		if (!RB_EMPTY_NODE(node))
   3599			rb_erase_cached(node, &sibling->execlists.virtual);
   3600
   3601		spin_unlock_irq(&sibling->sched_engine->lock);
   3602	}
   3603	GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.sched_engine->tasklet));
   3604	GEM_BUG_ON(!list_empty(virtual_queue(ve)));
   3605
   3606	lrc_fini(&ve->context);
   3607	intel_context_fini(&ve->context);
   3608
   3609	if (ve->base.breadcrumbs)
   3610		intel_breadcrumbs_put(ve->base.breadcrumbs);
   3611	if (ve->base.sched_engine)
   3612		i915_sched_engine_put(ve->base.sched_engine);
   3613	intel_engine_free_request_pool(&ve->base);
   3614
   3615	kfree(ve);
   3616}
   3617
   3618static void virtual_context_destroy(struct kref *kref)
   3619{
   3620	struct virtual_engine *ve =
   3621		container_of(kref, typeof(*ve), context.ref);
   3622
   3623	GEM_BUG_ON(!list_empty(&ve->context.signals));
   3624
   3625	/*
   3626	 * When destroying the virtual engine, we have to be aware that
   3627	 * it may still be in use from an hardirq/softirq context causing
   3628	 * the resubmission of a completed request (background completion
   3629	 * due to preempt-to-busy). Before we can free the engine, we need
   3630	 * to flush the submission code and tasklets that are still potentially
   3631	 * accessing the engine. Flushing the tasklets requires process context,
   3632	 * and since we can guard the resubmit onto the engine with an RCU read
   3633	 * lock, we can delegate the free of the engine to an RCU worker.
   3634	 */
   3635	INIT_RCU_WORK(&ve->rcu, rcu_virtual_context_destroy);
   3636	queue_rcu_work(system_wq, &ve->rcu);
   3637}
   3638
   3639static void virtual_engine_initial_hint(struct virtual_engine *ve)
   3640{
   3641	int swp;
   3642
   3643	/*
   3644	 * Pick a random sibling on starting to help spread the load around.
   3645	 *
   3646	 * New contexts are typically created with exactly the same order
   3647	 * of siblings, and often started in batches. Due to the way we iterate
   3648	 * the array of sibling when submitting requests, sibling[0] is
   3649	 * prioritised for dequeuing. If we make sure that sibling[0] is fairly
   3650	 * randomised across the system, we also help spread the load by the
   3651	 * first engine we inspect being different each time.
   3652	 *
   3653	 * NB This does not force us to execute on this engine, it will just
   3654	 * typically be the first we inspect for submission.
   3655	 */
   3656	swp = prandom_u32_max(ve->num_siblings);
   3657	if (swp)
   3658		swap(ve->siblings[swp], ve->siblings[0]);
   3659}
   3660
   3661static int virtual_context_alloc(struct intel_context *ce)
   3662{
   3663	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
   3664
   3665	return lrc_alloc(ce, ve->siblings[0]);
   3666}
   3667
   3668static int virtual_context_pre_pin(struct intel_context *ce,
   3669				   struct i915_gem_ww_ctx *ww,
   3670				   void **vaddr)
   3671{
   3672	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
   3673
   3674	 /* Note: we must use a real engine class for setting up reg state */
   3675	return __execlists_context_pre_pin(ce, ve->siblings[0], ww, vaddr);
   3676}
   3677
   3678static int virtual_context_pin(struct intel_context *ce, void *vaddr)
   3679{
   3680	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
   3681
   3682	return lrc_pin(ce, ve->siblings[0], vaddr);
   3683}
   3684
   3685static void virtual_context_enter(struct intel_context *ce)
   3686{
   3687	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
   3688	unsigned int n;
   3689
   3690	for (n = 0; n < ve->num_siblings; n++)
   3691		intel_engine_pm_get(ve->siblings[n]);
   3692
   3693	intel_timeline_enter(ce->timeline);
   3694}
   3695
   3696static void virtual_context_exit(struct intel_context *ce)
   3697{
   3698	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
   3699	unsigned int n;
   3700
   3701	intel_timeline_exit(ce->timeline);
   3702
   3703	for (n = 0; n < ve->num_siblings; n++)
   3704		intel_engine_pm_put(ve->siblings[n]);
   3705}
   3706
   3707static struct intel_engine_cs *
   3708virtual_get_sibling(struct intel_engine_cs *engine, unsigned int sibling)
   3709{
   3710	struct virtual_engine *ve = to_virtual_engine(engine);
   3711
   3712	if (sibling >= ve->num_siblings)
   3713		return NULL;
   3714
   3715	return ve->siblings[sibling];
   3716}
   3717
   3718static const struct intel_context_ops virtual_context_ops = {
   3719	.flags = COPS_HAS_INFLIGHT | COPS_RUNTIME_CYCLES,
   3720
   3721	.alloc = virtual_context_alloc,
   3722
   3723	.cancel_request = execlists_context_cancel_request,
   3724
   3725	.pre_pin = virtual_context_pre_pin,
   3726	.pin = virtual_context_pin,
   3727	.unpin = lrc_unpin,
   3728	.post_unpin = lrc_post_unpin,
   3729
   3730	.enter = virtual_context_enter,
   3731	.exit = virtual_context_exit,
   3732
   3733	.destroy = virtual_context_destroy,
   3734
   3735	.get_sibling = virtual_get_sibling,
   3736};
   3737
   3738static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve)
   3739{
   3740	struct i915_request *rq;
   3741	intel_engine_mask_t mask;
   3742
   3743	rq = READ_ONCE(ve->request);
   3744	if (!rq)
   3745		return 0;
   3746
   3747	/* The rq is ready for submission; rq->execution_mask is now stable. */
   3748	mask = rq->execution_mask;
   3749	if (unlikely(!mask)) {
   3750		/* Invalid selection, submit to a random engine in error */
   3751		i915_request_set_error_once(rq, -ENODEV);
   3752		mask = ve->siblings[0]->mask;
   3753	}
   3754
   3755	ENGINE_TRACE(&ve->base, "rq=%llx:%lld, mask=%x, prio=%d\n",
   3756		     rq->fence.context, rq->fence.seqno,
   3757		     mask, ve->base.sched_engine->queue_priority_hint);
   3758
   3759	return mask;
   3760}
   3761
   3762static void virtual_submission_tasklet(struct tasklet_struct *t)
   3763{
   3764	struct i915_sched_engine *sched_engine =
   3765		from_tasklet(sched_engine, t, tasklet);
   3766	struct virtual_engine * const ve =
   3767		(struct virtual_engine *)sched_engine->private_data;
   3768	const int prio = READ_ONCE(sched_engine->queue_priority_hint);
   3769	intel_engine_mask_t mask;
   3770	unsigned int n;
   3771
   3772	rcu_read_lock();
   3773	mask = virtual_submission_mask(ve);
   3774	rcu_read_unlock();
   3775	if (unlikely(!mask))
   3776		return;
   3777
   3778	for (n = 0; n < ve->num_siblings; n++) {
   3779		struct intel_engine_cs *sibling = READ_ONCE(ve->siblings[n]);
   3780		struct ve_node * const node = &ve->nodes[sibling->id];
   3781		struct rb_node **parent, *rb;
   3782		bool first;
   3783
   3784		if (!READ_ONCE(ve->request))
   3785			break; /* already handled by a sibling's tasklet */
   3786
   3787		spin_lock_irq(&sibling->sched_engine->lock);
   3788
   3789		if (unlikely(!(mask & sibling->mask))) {
   3790			if (!RB_EMPTY_NODE(&node->rb)) {
   3791				rb_erase_cached(&node->rb,
   3792						&sibling->execlists.virtual);
   3793				RB_CLEAR_NODE(&node->rb);
   3794			}
   3795
   3796			goto unlock_engine;
   3797		}
   3798
   3799		if (unlikely(!RB_EMPTY_NODE(&node->rb))) {
   3800			/*
   3801			 * Cheat and avoid rebalancing the tree if we can
   3802			 * reuse this node in situ.
   3803			 */
   3804			first = rb_first_cached(&sibling->execlists.virtual) ==
   3805				&node->rb;
   3806			if (prio == node->prio || (prio > node->prio && first))
   3807				goto submit_engine;
   3808
   3809			rb_erase_cached(&node->rb, &sibling->execlists.virtual);
   3810		}
   3811
   3812		rb = NULL;
   3813		first = true;
   3814		parent = &sibling->execlists.virtual.rb_root.rb_node;
   3815		while (*parent) {
   3816			struct ve_node *other;
   3817
   3818			rb = *parent;
   3819			other = rb_entry(rb, typeof(*other), rb);
   3820			if (prio > other->prio) {
   3821				parent = &rb->rb_left;
   3822			} else {
   3823				parent = &rb->rb_right;
   3824				first = false;
   3825			}
   3826		}
   3827
   3828		rb_link_node(&node->rb, rb, parent);
   3829		rb_insert_color_cached(&node->rb,
   3830				       &sibling->execlists.virtual,
   3831				       first);
   3832
   3833submit_engine:
   3834		GEM_BUG_ON(RB_EMPTY_NODE(&node->rb));
   3835		node->prio = prio;
   3836		if (first && prio > sibling->sched_engine->queue_priority_hint)
   3837			tasklet_hi_schedule(&sibling->sched_engine->tasklet);
   3838
   3839unlock_engine:
   3840		spin_unlock_irq(&sibling->sched_engine->lock);
   3841
   3842		if (intel_context_inflight(&ve->context))
   3843			break;
   3844	}
   3845}
   3846
   3847static void virtual_submit_request(struct i915_request *rq)
   3848{
   3849	struct virtual_engine *ve = to_virtual_engine(rq->engine);
   3850	unsigned long flags;
   3851
   3852	ENGINE_TRACE(&ve->base, "rq=%llx:%lld\n",
   3853		     rq->fence.context,
   3854		     rq->fence.seqno);
   3855
   3856	GEM_BUG_ON(ve->base.submit_request != virtual_submit_request);
   3857
   3858	spin_lock_irqsave(&ve->base.sched_engine->lock, flags);
   3859
   3860	/* By the time we resubmit a request, it may be completed */
   3861	if (__i915_request_is_complete(rq)) {
   3862		__i915_request_submit(rq);
   3863		goto unlock;
   3864	}
   3865
   3866	if (ve->request) { /* background completion from preempt-to-busy */
   3867		GEM_BUG_ON(!__i915_request_is_complete(ve->request));
   3868		__i915_request_submit(ve->request);
   3869		i915_request_put(ve->request);
   3870	}
   3871
   3872	ve->base.sched_engine->queue_priority_hint = rq_prio(rq);
   3873	ve->request = i915_request_get(rq);
   3874
   3875	GEM_BUG_ON(!list_empty(virtual_queue(ve)));
   3876	list_move_tail(&rq->sched.link, virtual_queue(ve));
   3877
   3878	tasklet_hi_schedule(&ve->base.sched_engine->tasklet);
   3879
   3880unlock:
   3881	spin_unlock_irqrestore(&ve->base.sched_engine->lock, flags);
   3882}
   3883
   3884static struct intel_context *
   3885execlists_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
   3886			 unsigned long flags)
   3887{
   3888	struct virtual_engine *ve;
   3889	unsigned int n;
   3890	int err;
   3891
   3892	ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL);
   3893	if (!ve)
   3894		return ERR_PTR(-ENOMEM);
   3895
   3896	ve->base.i915 = siblings[0]->i915;
   3897	ve->base.gt = siblings[0]->gt;
   3898	ve->base.uncore = siblings[0]->uncore;
   3899	ve->base.id = -1;
   3900
   3901	ve->base.class = OTHER_CLASS;
   3902	ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
   3903	ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
   3904	ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
   3905
   3906	/*
   3907	 * The decision on whether to submit a request using semaphores
   3908	 * depends on the saturated state of the engine. We only compute
   3909	 * this during HW submission of the request, and we need for this
   3910	 * state to be globally applied to all requests being submitted
   3911	 * to this engine. Virtual engines encompass more than one physical
   3912	 * engine and so we cannot accurately tell in advance if one of those
   3913	 * engines is already saturated and so cannot afford to use a semaphore
   3914	 * and be pessimized in priority for doing so -- if we are the only
   3915	 * context using semaphores after all other clients have stopped, we
   3916	 * will be starved on the saturated system. Such a global switch for
   3917	 * semaphores is less than ideal, but alas is the current compromise.
   3918	 */
   3919	ve->base.saturated = ALL_ENGINES;
   3920
   3921	snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
   3922
   3923	intel_engine_init_execlists(&ve->base);
   3924
   3925	ve->base.sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL);
   3926	if (!ve->base.sched_engine) {
   3927		err = -ENOMEM;
   3928		goto err_put;
   3929	}
   3930	ve->base.sched_engine->private_data = &ve->base;
   3931
   3932	ve->base.cops = &virtual_context_ops;
   3933	ve->base.request_alloc = execlists_request_alloc;
   3934
   3935	ve->base.sched_engine->schedule = i915_schedule;
   3936	ve->base.sched_engine->kick_backend = kick_execlists;
   3937	ve->base.submit_request = virtual_submit_request;
   3938
   3939	INIT_LIST_HEAD(virtual_queue(ve));
   3940	tasklet_setup(&ve->base.sched_engine->tasklet, virtual_submission_tasklet);
   3941
   3942	intel_context_init(&ve->context, &ve->base);
   3943
   3944	ve->base.breadcrumbs = intel_breadcrumbs_create(NULL);
   3945	if (!ve->base.breadcrumbs) {
   3946		err = -ENOMEM;
   3947		goto err_put;
   3948	}
   3949
   3950	for (n = 0; n < count; n++) {
   3951		struct intel_engine_cs *sibling = siblings[n];
   3952
   3953		GEM_BUG_ON(!is_power_of_2(sibling->mask));
   3954		if (sibling->mask & ve->base.mask) {
   3955			DRM_DEBUG("duplicate %s entry in load balancer\n",
   3956				  sibling->name);
   3957			err = -EINVAL;
   3958			goto err_put;
   3959		}
   3960
   3961		/*
   3962		 * The virtual engine implementation is tightly coupled to
   3963		 * the execlists backend -- we push out request directly
   3964		 * into a tree inside each physical engine. We could support
   3965		 * layering if we handle cloning of the requests and
   3966		 * submitting a copy into each backend.
   3967		 */
   3968		if (sibling->sched_engine->tasklet.callback !=
   3969		    execlists_submission_tasklet) {
   3970			err = -ENODEV;
   3971			goto err_put;
   3972		}
   3973
   3974		GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb));
   3975		RB_CLEAR_NODE(&ve->nodes[sibling->id].rb);
   3976
   3977		ve->siblings[ve->num_siblings++] = sibling;
   3978		ve->base.mask |= sibling->mask;
   3979		ve->base.logical_mask |= sibling->logical_mask;
   3980
   3981		/*
   3982		 * All physical engines must be compatible for their emission
   3983		 * functions (as we build the instructions during request
   3984		 * construction and do not alter them before submission
   3985		 * on the physical engine). We use the engine class as a guide
   3986		 * here, although that could be refined.
   3987		 */
   3988		if (ve->base.class != OTHER_CLASS) {
   3989			if (ve->base.class != sibling->class) {
   3990				DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
   3991					  sibling->class, ve->base.class);
   3992				err = -EINVAL;
   3993				goto err_put;
   3994			}
   3995			continue;
   3996		}
   3997
   3998		ve->base.class = sibling->class;
   3999		ve->base.uabi_class = sibling->uabi_class;
   4000		snprintf(ve->base.name, sizeof(ve->base.name),
   4001			 "v%dx%d", ve->base.class, count);
   4002		ve->base.context_size = sibling->context_size;
   4003
   4004		ve->base.add_active_request = sibling->add_active_request;
   4005		ve->base.remove_active_request = sibling->remove_active_request;
   4006		ve->base.emit_bb_start = sibling->emit_bb_start;
   4007		ve->base.emit_flush = sibling->emit_flush;
   4008		ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb;
   4009		ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb;
   4010		ve->base.emit_fini_breadcrumb_dw =
   4011			sibling->emit_fini_breadcrumb_dw;
   4012
   4013		ve->base.flags = sibling->flags;
   4014	}
   4015
   4016	ve->base.flags |= I915_ENGINE_IS_VIRTUAL;
   4017
   4018	virtual_engine_initial_hint(ve);
   4019	return &ve->context;
   4020
   4021err_put:
   4022	intel_context_put(&ve->context);
   4023	return ERR_PTR(err);
   4024}
   4025
   4026void intel_execlists_show_requests(struct intel_engine_cs *engine,
   4027				   struct drm_printer *m,
   4028				   void (*show_request)(struct drm_printer *m,
   4029							const struct i915_request *rq,
   4030							const char *prefix,
   4031							int indent),
   4032				   unsigned int max)
   4033{
   4034	const struct intel_engine_execlists *execlists = &engine->execlists;
   4035	struct i915_sched_engine *sched_engine = engine->sched_engine;
   4036	struct i915_request *rq, *last;
   4037	unsigned long flags;
   4038	unsigned int count;
   4039	struct rb_node *rb;
   4040
   4041	spin_lock_irqsave(&sched_engine->lock, flags);
   4042
   4043	last = NULL;
   4044	count = 0;
   4045	list_for_each_entry(rq, &sched_engine->requests, sched.link) {
   4046		if (count++ < max - 1)
   4047			show_request(m, rq, "\t\t", 0);
   4048		else
   4049			last = rq;
   4050	}
   4051	if (last) {
   4052		if (count > max) {
   4053			drm_printf(m,
   4054				   "\t\t...skipping %d executing requests...\n",
   4055				   count - max);
   4056		}
   4057		show_request(m, last, "\t\t", 0);
   4058	}
   4059
   4060	if (sched_engine->queue_priority_hint != INT_MIN)
   4061		drm_printf(m, "\t\tQueue priority hint: %d\n",
   4062			   READ_ONCE(sched_engine->queue_priority_hint));
   4063
   4064	last = NULL;
   4065	count = 0;
   4066	for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) {
   4067		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
   4068
   4069		priolist_for_each_request(rq, p) {
   4070			if (count++ < max - 1)
   4071				show_request(m, rq, "\t\t", 0);
   4072			else
   4073				last = rq;
   4074		}
   4075	}
   4076	if (last) {
   4077		if (count > max) {
   4078			drm_printf(m,
   4079				   "\t\t...skipping %d queued requests...\n",
   4080				   count - max);
   4081		}
   4082		show_request(m, last, "\t\t", 0);
   4083	}
   4084
   4085	last = NULL;
   4086	count = 0;
   4087	for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) {
   4088		struct virtual_engine *ve =
   4089			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
   4090		struct i915_request *rq = READ_ONCE(ve->request);
   4091
   4092		if (rq) {
   4093			if (count++ < max - 1)
   4094				show_request(m, rq, "\t\t", 0);
   4095			else
   4096				last = rq;
   4097		}
   4098	}
   4099	if (last) {
   4100		if (count > max) {
   4101			drm_printf(m,
   4102				   "\t\t...skipping %d virtual requests...\n",
   4103				   count - max);
   4104		}
   4105		show_request(m, last, "\t\t", 0);
   4106	}
   4107
   4108	spin_unlock_irqrestore(&sched_engine->lock, flags);
   4109}
   4110
   4111#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
   4112#include "selftest_execlists.c"
   4113#endif