cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

intel_ggtt_fencing.c (27126B)


      1// SPDX-License-Identifier: MIT
      2/*
      3 * Copyright © 2008-2015 Intel Corporation
      4 */
      5
      6#include <linux/highmem.h>
      7
      8#include "i915_drv.h"
      9#include "i915_reg.h"
     10#include "i915_scatterlist.h"
     11#include "i915_pvinfo.h"
     12#include "i915_vgpu.h"
     13#include "intel_gt_regs.h"
     14#include "intel_mchbar_regs.h"
     15
     16/**
     17 * DOC: fence register handling
     18 *
     19 * Important to avoid confusions: "fences" in the i915 driver are not execution
     20 * fences used to track command completion but hardware detiler objects which
     21 * wrap a given range of the global GTT. Each platform has only a fairly limited
     22 * set of these objects.
     23 *
     24 * Fences are used to detile GTT memory mappings. They're also connected to the
     25 * hardware frontbuffer render tracking and hence interact with frontbuffer
     26 * compression. Furthermore on older platforms fences are required for tiled
     27 * objects used by the display engine. They can also be used by the render
     28 * engine - they're required for blitter commands and are optional for render
     29 * commands. But on gen4+ both display (with the exception of fbc) and rendering
     30 * have their own tiling state bits and don't need fences.
     31 *
     32 * Also note that fences only support X and Y tiling and hence can't be used for
     33 * the fancier new tiling formats like W, Ys and Yf.
     34 *
     35 * Finally note that because fences are such a restricted resource they're
     36 * dynamically associated with objects. Furthermore fence state is committed to
     37 * the hardware lazily to avoid unnecessary stalls on gen2/3. Therefore code must
     38 * explicitly call i915_gem_object_get_fence() to synchronize fencing status
     39 * for cpu access. Also note that some code wants an unfenced view, for those
     40 * cases the fence can be removed forcefully with i915_gem_object_put_fence().
     41 *
     42 * Internally these functions will synchronize with userspace access by removing
     43 * CPU ptes into GTT mmaps (not the GTT ptes themselves) as needed.
     44 */
     45
     46#define pipelined 0
     47
     48static struct drm_i915_private *fence_to_i915(struct i915_fence_reg *fence)
     49{
     50	return fence->ggtt->vm.i915;
     51}
     52
     53static struct intel_uncore *fence_to_uncore(struct i915_fence_reg *fence)
     54{
     55	return fence->ggtt->vm.gt->uncore;
     56}
     57
     58static void i965_write_fence_reg(struct i915_fence_reg *fence)
     59{
     60	i915_reg_t fence_reg_lo, fence_reg_hi;
     61	int fence_pitch_shift;
     62	u64 val;
     63
     64	if (GRAPHICS_VER(fence_to_i915(fence)) >= 6) {
     65		fence_reg_lo = FENCE_REG_GEN6_LO(fence->id);
     66		fence_reg_hi = FENCE_REG_GEN6_HI(fence->id);
     67		fence_pitch_shift = GEN6_FENCE_PITCH_SHIFT;
     68
     69	} else {
     70		fence_reg_lo = FENCE_REG_965_LO(fence->id);
     71		fence_reg_hi = FENCE_REG_965_HI(fence->id);
     72		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
     73	}
     74
     75	val = 0;
     76	if (fence->tiling) {
     77		unsigned int stride = fence->stride;
     78
     79		GEM_BUG_ON(!IS_ALIGNED(stride, 128));
     80
     81		val = fence->start + fence->size - I965_FENCE_PAGE;
     82		val <<= 32;
     83		val |= fence->start;
     84		val |= (u64)((stride / 128) - 1) << fence_pitch_shift;
     85		if (fence->tiling == I915_TILING_Y)
     86			val |= BIT(I965_FENCE_TILING_Y_SHIFT);
     87		val |= I965_FENCE_REG_VALID;
     88	}
     89
     90	if (!pipelined) {
     91		struct intel_uncore *uncore = fence_to_uncore(fence);
     92
     93		/*
     94		 * To w/a incoherency with non-atomic 64-bit register updates,
     95		 * we split the 64-bit update into two 32-bit writes. In order
     96		 * for a partial fence not to be evaluated between writes, we
     97		 * precede the update with write to turn off the fence register,
     98		 * and only enable the fence as the last step.
     99		 *
    100		 * For extra levels of paranoia, we make sure each step lands
    101		 * before applying the next step.
    102		 */
    103		intel_uncore_write_fw(uncore, fence_reg_lo, 0);
    104		intel_uncore_posting_read_fw(uncore, fence_reg_lo);
    105
    106		intel_uncore_write_fw(uncore, fence_reg_hi, upper_32_bits(val));
    107		intel_uncore_write_fw(uncore, fence_reg_lo, lower_32_bits(val));
    108		intel_uncore_posting_read_fw(uncore, fence_reg_lo);
    109	}
    110}
    111
    112static void i915_write_fence_reg(struct i915_fence_reg *fence)
    113{
    114	u32 val;
    115
    116	val = 0;
    117	if (fence->tiling) {
    118		unsigned int stride = fence->stride;
    119		unsigned int tiling = fence->tiling;
    120		bool is_y_tiled = tiling == I915_TILING_Y;
    121
    122		if (is_y_tiled && HAS_128_BYTE_Y_TILING(fence_to_i915(fence)))
    123			stride /= 128;
    124		else
    125			stride /= 512;
    126		GEM_BUG_ON(!is_power_of_2(stride));
    127
    128		val = fence->start;
    129		if (is_y_tiled)
    130			val |= BIT(I830_FENCE_TILING_Y_SHIFT);
    131		val |= I915_FENCE_SIZE_BITS(fence->size);
    132		val |= ilog2(stride) << I830_FENCE_PITCH_SHIFT;
    133
    134		val |= I830_FENCE_REG_VALID;
    135	}
    136
    137	if (!pipelined) {
    138		struct intel_uncore *uncore = fence_to_uncore(fence);
    139		i915_reg_t reg = FENCE_REG(fence->id);
    140
    141		intel_uncore_write_fw(uncore, reg, val);
    142		intel_uncore_posting_read_fw(uncore, reg);
    143	}
    144}
    145
    146static void i830_write_fence_reg(struct i915_fence_reg *fence)
    147{
    148	u32 val;
    149
    150	val = 0;
    151	if (fence->tiling) {
    152		unsigned int stride = fence->stride;
    153
    154		val = fence->start;
    155		if (fence->tiling == I915_TILING_Y)
    156			val |= BIT(I830_FENCE_TILING_Y_SHIFT);
    157		val |= I830_FENCE_SIZE_BITS(fence->size);
    158		val |= ilog2(stride / 128) << I830_FENCE_PITCH_SHIFT;
    159		val |= I830_FENCE_REG_VALID;
    160	}
    161
    162	if (!pipelined) {
    163		struct intel_uncore *uncore = fence_to_uncore(fence);
    164		i915_reg_t reg = FENCE_REG(fence->id);
    165
    166		intel_uncore_write_fw(uncore, reg, val);
    167		intel_uncore_posting_read_fw(uncore, reg);
    168	}
    169}
    170
    171static void fence_write(struct i915_fence_reg *fence)
    172{
    173	struct drm_i915_private *i915 = fence_to_i915(fence);
    174
    175	/*
    176	 * Previous access through the fence register is marshalled by
    177	 * the mb() inside the fault handlers (i915_gem_release_mmaps)
    178	 * and explicitly managed for internal users.
    179	 */
    180
    181	if (GRAPHICS_VER(i915) == 2)
    182		i830_write_fence_reg(fence);
    183	else if (GRAPHICS_VER(i915) == 3)
    184		i915_write_fence_reg(fence);
    185	else
    186		i965_write_fence_reg(fence);
    187
    188	/*
    189	 * Access through the fenced region afterwards is
    190	 * ordered by the posting reads whilst writing the registers.
    191	 */
    192}
    193
    194static bool gpu_uses_fence_registers(struct i915_fence_reg *fence)
    195{
    196	return GRAPHICS_VER(fence_to_i915(fence)) < 4;
    197}
    198
    199static int fence_update(struct i915_fence_reg *fence,
    200			struct i915_vma *vma)
    201{
    202	struct i915_ggtt *ggtt = fence->ggtt;
    203	struct intel_uncore *uncore = fence_to_uncore(fence);
    204	intel_wakeref_t wakeref;
    205	struct i915_vma *old;
    206	int ret;
    207
    208	fence->tiling = 0;
    209	if (vma) {
    210		GEM_BUG_ON(!i915_gem_object_get_stride(vma->obj) ||
    211			   !i915_gem_object_get_tiling(vma->obj));
    212
    213		if (!i915_vma_is_map_and_fenceable(vma))
    214			return -EINVAL;
    215
    216		if (gpu_uses_fence_registers(fence)) {
    217			/* implicit 'unfenced' GPU blits */
    218			ret = i915_vma_sync(vma);
    219			if (ret)
    220				return ret;
    221		}
    222
    223		fence->start = vma->node.start;
    224		fence->size = vma->fence_size;
    225		fence->stride = i915_gem_object_get_stride(vma->obj);
    226		fence->tiling = i915_gem_object_get_tiling(vma->obj);
    227	}
    228	WRITE_ONCE(fence->dirty, false);
    229
    230	old = xchg(&fence->vma, NULL);
    231	if (old) {
    232		/* XXX Ideally we would move the waiting to outside the mutex */
    233		ret = i915_active_wait(&fence->active);
    234		if (ret) {
    235			fence->vma = old;
    236			return ret;
    237		}
    238
    239		i915_vma_flush_writes(old);
    240
    241		/*
    242		 * Ensure that all userspace CPU access is completed before
    243		 * stealing the fence.
    244		 */
    245		if (old != vma) {
    246			GEM_BUG_ON(old->fence != fence);
    247			i915_vma_revoke_mmap(old);
    248			old->fence = NULL;
    249		}
    250
    251		list_move(&fence->link, &ggtt->fence_list);
    252	}
    253
    254	/*
    255	 * We only need to update the register itself if the device is awake.
    256	 * If the device is currently powered down, we will defer the write
    257	 * to the runtime resume, see intel_ggtt_restore_fences().
    258	 *
    259	 * This only works for removing the fence register, on acquisition
    260	 * the caller must hold the rpm wakeref. The fence register must
    261	 * be cleared before we can use any other fences to ensure that
    262	 * the new fences do not overlap the elided clears, confusing HW.
    263	 */
    264	wakeref = intel_runtime_pm_get_if_in_use(uncore->rpm);
    265	if (!wakeref) {
    266		GEM_BUG_ON(vma);
    267		return 0;
    268	}
    269
    270	WRITE_ONCE(fence->vma, vma);
    271	fence_write(fence);
    272
    273	if (vma) {
    274		vma->fence = fence;
    275		list_move_tail(&fence->link, &ggtt->fence_list);
    276	}
    277
    278	intel_runtime_pm_put(uncore->rpm, wakeref);
    279	return 0;
    280}
    281
    282/**
    283 * i915_vma_revoke_fence - force-remove fence for a VMA
    284 * @vma: vma to map linearly (not through a fence reg)
    285 *
    286 * This function force-removes any fence from the given object, which is useful
    287 * if the kernel wants to do untiled GTT access.
    288 */
    289void i915_vma_revoke_fence(struct i915_vma *vma)
    290{
    291	struct i915_fence_reg *fence = vma->fence;
    292	intel_wakeref_t wakeref;
    293
    294	lockdep_assert_held(&vma->vm->mutex);
    295	if (!fence)
    296		return;
    297
    298	GEM_BUG_ON(fence->vma != vma);
    299	GEM_BUG_ON(!i915_active_is_idle(&fence->active));
    300	GEM_BUG_ON(atomic_read(&fence->pin_count));
    301
    302	fence->tiling = 0;
    303	WRITE_ONCE(fence->vma, NULL);
    304	vma->fence = NULL;
    305
    306	/*
    307	 * Skip the write to HW if and only if the device is currently
    308	 * suspended.
    309	 *
    310	 * If the driver does not currently hold a wakeref (if_in_use == 0),
    311	 * the device may currently be runtime suspended, or it may be woken
    312	 * up before the suspend takes place. If the device is not suspended
    313	 * (powered down) and we skip clearing the fence register, the HW is
    314	 * left in an undefined state where we may end up with multiple
    315	 * registers overlapping.
    316	 */
    317	with_intel_runtime_pm_if_active(fence_to_uncore(fence)->rpm, wakeref)
    318		fence_write(fence);
    319}
    320
    321static bool fence_is_active(const struct i915_fence_reg *fence)
    322{
    323	return fence->vma && i915_vma_is_active(fence->vma);
    324}
    325
    326static struct i915_fence_reg *fence_find(struct i915_ggtt *ggtt)
    327{
    328	struct i915_fence_reg *active = NULL;
    329	struct i915_fence_reg *fence, *fn;
    330
    331	list_for_each_entry_safe(fence, fn, &ggtt->fence_list, link) {
    332		GEM_BUG_ON(fence->vma && fence->vma->fence != fence);
    333
    334		if (fence == active) /* now seen this fence twice */
    335			active = ERR_PTR(-EAGAIN);
    336
    337		/* Prefer idle fences so we do not have to wait on the GPU */
    338		if (active != ERR_PTR(-EAGAIN) && fence_is_active(fence)) {
    339			if (!active)
    340				active = fence;
    341
    342			list_move_tail(&fence->link, &ggtt->fence_list);
    343			continue;
    344		}
    345
    346		if (atomic_read(&fence->pin_count))
    347			continue;
    348
    349		return fence;
    350	}
    351
    352	/* Wait for completion of pending flips which consume fences */
    353	if (intel_has_pending_fb_unpin(ggtt->vm.i915))
    354		return ERR_PTR(-EAGAIN);
    355
    356	return ERR_PTR(-ENOBUFS);
    357}
    358
    359int __i915_vma_pin_fence(struct i915_vma *vma)
    360{
    361	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
    362	struct i915_fence_reg *fence;
    363	struct i915_vma *set = i915_gem_object_is_tiled(vma->obj) ? vma : NULL;
    364	int err;
    365
    366	lockdep_assert_held(&vma->vm->mutex);
    367
    368	/* Just update our place in the LRU if our fence is getting reused. */
    369	if (vma->fence) {
    370		fence = vma->fence;
    371		GEM_BUG_ON(fence->vma != vma);
    372		atomic_inc(&fence->pin_count);
    373		if (!fence->dirty) {
    374			list_move_tail(&fence->link, &ggtt->fence_list);
    375			return 0;
    376		}
    377	} else if (set) {
    378		fence = fence_find(ggtt);
    379		if (IS_ERR(fence))
    380			return PTR_ERR(fence);
    381
    382		GEM_BUG_ON(atomic_read(&fence->pin_count));
    383		atomic_inc(&fence->pin_count);
    384	} else {
    385		return 0;
    386	}
    387
    388	err = fence_update(fence, set);
    389	if (err)
    390		goto out_unpin;
    391
    392	GEM_BUG_ON(fence->vma != set);
    393	GEM_BUG_ON(vma->fence != (set ? fence : NULL));
    394
    395	if (set)
    396		return 0;
    397
    398out_unpin:
    399	atomic_dec(&fence->pin_count);
    400	return err;
    401}
    402
    403/**
    404 * i915_vma_pin_fence - set up fencing for a vma
    405 * @vma: vma to map through a fence reg
    406 *
    407 * When mapping objects through the GTT, userspace wants to be able to write
    408 * to them without having to worry about swizzling if the object is tiled.
    409 * This function walks the fence regs looking for a free one for @obj,
    410 * stealing one if it can't find any.
    411 *
    412 * It then sets up the reg based on the object's properties: address, pitch
    413 * and tiling format.
    414 *
    415 * For an untiled surface, this removes any existing fence.
    416 *
    417 * Returns:
    418 *
    419 * 0 on success, negative error code on failure.
    420 */
    421int i915_vma_pin_fence(struct i915_vma *vma)
    422{
    423	int err;
    424
    425	if (!vma->fence && !i915_gem_object_is_tiled(vma->obj))
    426		return 0;
    427
    428	/*
    429	 * Note that we revoke fences on runtime suspend. Therefore the user
    430	 * must keep the device awake whilst using the fence.
    431	 */
    432	assert_rpm_wakelock_held(vma->vm->gt->uncore->rpm);
    433	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
    434
    435	err = mutex_lock_interruptible(&vma->vm->mutex);
    436	if (err)
    437		return err;
    438
    439	err = __i915_vma_pin_fence(vma);
    440	mutex_unlock(&vma->vm->mutex);
    441
    442	return err;
    443}
    444
    445/**
    446 * i915_reserve_fence - Reserve a fence for vGPU
    447 * @ggtt: Global GTT
    448 *
    449 * This function walks the fence regs looking for a free one and remove
    450 * it from the fence_list. It is used to reserve fence for vGPU to use.
    451 */
    452struct i915_fence_reg *i915_reserve_fence(struct i915_ggtt *ggtt)
    453{
    454	struct i915_fence_reg *fence;
    455	int count;
    456	int ret;
    457
    458	lockdep_assert_held(&ggtt->vm.mutex);
    459
    460	/* Keep at least one fence available for the display engine. */
    461	count = 0;
    462	list_for_each_entry(fence, &ggtt->fence_list, link)
    463		count += !atomic_read(&fence->pin_count);
    464	if (count <= 1)
    465		return ERR_PTR(-ENOSPC);
    466
    467	fence = fence_find(ggtt);
    468	if (IS_ERR(fence))
    469		return fence;
    470
    471	if (fence->vma) {
    472		/* Force-remove fence from VMA */
    473		ret = fence_update(fence, NULL);
    474		if (ret)
    475			return ERR_PTR(ret);
    476	}
    477
    478	list_del(&fence->link);
    479
    480	return fence;
    481}
    482
    483/**
    484 * i915_unreserve_fence - Reclaim a reserved fence
    485 * @fence: the fence reg
    486 *
    487 * This function add a reserved fence register from vGPU to the fence_list.
    488 */
    489void i915_unreserve_fence(struct i915_fence_reg *fence)
    490{
    491	struct i915_ggtt *ggtt = fence->ggtt;
    492
    493	lockdep_assert_held(&ggtt->vm.mutex);
    494
    495	list_add(&fence->link, &ggtt->fence_list);
    496}
    497
    498/**
    499 * intel_ggtt_restore_fences - restore fence state
    500 * @ggtt: Global GTT
    501 *
    502 * Restore the hw fence state to match the software tracking again, to be called
    503 * after a gpu reset and on resume. Note that on runtime suspend we only cancel
    504 * the fences, to be reacquired by the user later.
    505 */
    506void intel_ggtt_restore_fences(struct i915_ggtt *ggtt)
    507{
    508	int i;
    509
    510	for (i = 0; i < ggtt->num_fences; i++)
    511		fence_write(&ggtt->fence_regs[i]);
    512}
    513
    514/**
    515 * DOC: tiling swizzling details
    516 *
    517 * The idea behind tiling is to increase cache hit rates by rearranging
    518 * pixel data so that a group of pixel accesses are in the same cacheline.
    519 * Performance improvement from doing this on the back/depth buffer are on
    520 * the order of 30%.
    521 *
    522 * Intel architectures make this somewhat more complicated, though, by
    523 * adjustments made to addressing of data when the memory is in interleaved
    524 * mode (matched pairs of DIMMS) to improve memory bandwidth.
    525 * For interleaved memory, the CPU sends every sequential 64 bytes
    526 * to an alternate memory channel so it can get the bandwidth from both.
    527 *
    528 * The GPU also rearranges its accesses for increased bandwidth to interleaved
    529 * memory, and it matches what the CPU does for non-tiled.  However, when tiled
    530 * it does it a little differently, since one walks addresses not just in the
    531 * X direction but also Y.  So, along with alternating channels when bit
    532 * 6 of the address flips, it also alternates when other bits flip --  Bits 9
    533 * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
    534 * are common to both the 915 and 965-class hardware.
    535 *
    536 * The CPU also sometimes XORs in higher bits as well, to improve
    537 * bandwidth doing strided access like we do so frequently in graphics.  This
    538 * is called "Channel XOR Randomization" in the MCH documentation.  The result
    539 * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
    540 * decode.
    541 *
    542 * All of this bit 6 XORing has an effect on our memory management,
    543 * as we need to make sure that the 3d driver can correctly address object
    544 * contents.
    545 *
    546 * If we don't have interleaved memory, all tiling is safe and no swizzling is
    547 * required.
    548 *
    549 * When bit 17 is XORed in, we simply refuse to tile at all.  Bit
    550 * 17 is not just a page offset, so as we page an object out and back in,
    551 * individual pages in it will have different bit 17 addresses, resulting in
    552 * each 64 bytes being swapped with its neighbor!
    553 *
    554 * Otherwise, if interleaved, we have to tell the 3d driver what the address
    555 * swizzling it needs to do is, since it's writing with the CPU to the pages
    556 * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
    557 * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
    558 * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
    559 * to match what the GPU expects.
    560 */
    561
    562/**
    563 * detect_bit_6_swizzle - detect bit 6 swizzling pattern
    564 * @ggtt: Global GGTT
    565 *
    566 * Detects bit 6 swizzling of address lookup between IGD access and CPU
    567 * access through main memory.
    568 */
    569static void detect_bit_6_swizzle(struct i915_ggtt *ggtt)
    570{
    571	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
    572	struct drm_i915_private *i915 = ggtt->vm.i915;
    573	u32 swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
    574	u32 swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
    575
    576	if (GRAPHICS_VER(i915) >= 8 || IS_VALLEYVIEW(i915)) {
    577		/*
    578		 * On BDW+, swizzling is not used. We leave the CPU memory
    579		 * controller in charge of optimizing memory accesses without
    580		 * the extra address manipulation GPU side.
    581		 *
    582		 * VLV and CHV don't have GPU swizzling.
    583		 */
    584		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
    585		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
    586	} else if (GRAPHICS_VER(i915) >= 6) {
    587		if (i915->preserve_bios_swizzle) {
    588			if (intel_uncore_read(uncore, DISP_ARB_CTL) &
    589			    DISP_TILE_SURFACE_SWIZZLING) {
    590				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
    591				swizzle_y = I915_BIT_6_SWIZZLE_9;
    592			} else {
    593				swizzle_x = I915_BIT_6_SWIZZLE_NONE;
    594				swizzle_y = I915_BIT_6_SWIZZLE_NONE;
    595			}
    596		} else {
    597			u32 dimm_c0, dimm_c1;
    598
    599			dimm_c0 = intel_uncore_read(uncore, MAD_DIMM_C0);
    600			dimm_c1 = intel_uncore_read(uncore, MAD_DIMM_C1);
    601			dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
    602			dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
    603			/*
    604			 * Enable swizzling when the channels are populated
    605			 * with identically sized dimms. We don't need to check
    606			 * the 3rd channel because no cpu with gpu attached
    607			 * ships in that configuration. Also, swizzling only
    608			 * makes sense for 2 channels anyway.
    609			 */
    610			if (dimm_c0 == dimm_c1) {
    611				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
    612				swizzle_y = I915_BIT_6_SWIZZLE_9;
    613			} else {
    614				swizzle_x = I915_BIT_6_SWIZZLE_NONE;
    615				swizzle_y = I915_BIT_6_SWIZZLE_NONE;
    616			}
    617		}
    618	} else if (GRAPHICS_VER(i915) == 5) {
    619		/*
    620		 * On Ironlake whatever DRAM config, GPU always do
    621		 * same swizzling setup.
    622		 */
    623		swizzle_x = I915_BIT_6_SWIZZLE_9_10;
    624		swizzle_y = I915_BIT_6_SWIZZLE_9;
    625	} else if (GRAPHICS_VER(i915) == 2) {
    626		/*
    627		 * As far as we know, the 865 doesn't have these bit 6
    628		 * swizzling issues.
    629		 */
    630		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
    631		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
    632	} else if (IS_G45(i915) || IS_I965G(i915) || IS_G33(i915)) {
    633		/*
    634		 * The 965, G33, and newer, have a very flexible memory
    635		 * configuration.  It will enable dual-channel mode
    636		 * (interleaving) on as much memory as it can, and the GPU
    637		 * will additionally sometimes enable different bit 6
    638		 * swizzling for tiled objects from the CPU.
    639		 *
    640		 * Here's what I found on the G965:
    641		 *    slot fill         memory size  swizzling
    642		 * 0A   0B   1A   1B    1-ch   2-ch
    643		 * 512  0    0    0     512    0     O
    644		 * 512  0    512  0     16     1008  X
    645		 * 512  0    0    512   16     1008  X
    646		 * 0    512  0    512   16     1008  X
    647		 * 1024 1024 1024 0     2048   1024  O
    648		 *
    649		 * We could probably detect this based on either the DRB
    650		 * matching, which was the case for the swizzling required in
    651		 * the table above, or from the 1-ch value being less than
    652		 * the minimum size of a rank.
    653		 *
    654		 * Reports indicate that the swizzling actually
    655		 * varies depending upon page placement inside the
    656		 * channels, i.e. we see swizzled pages where the
    657		 * banks of memory are paired and unswizzled on the
    658		 * uneven portion, so leave that as unknown.
    659		 */
    660		if (intel_uncore_read16(uncore, C0DRB3_BW) ==
    661		    intel_uncore_read16(uncore, C1DRB3_BW)) {
    662			swizzle_x = I915_BIT_6_SWIZZLE_9_10;
    663			swizzle_y = I915_BIT_6_SWIZZLE_9;
    664		}
    665	} else {
    666		u32 dcc = intel_uncore_read(uncore, DCC);
    667
    668		/*
    669		 * On 9xx chipsets, channel interleave by the CPU is
    670		 * determined by DCC.  For single-channel, neither the CPU
    671		 * nor the GPU do swizzling.  For dual channel interleaved,
    672		 * the GPU's interleave is bit 9 and 10 for X tiled, and bit
    673		 * 9 for Y tiled.  The CPU's interleave is independent, and
    674		 * can be based on either bit 11 (haven't seen this yet) or
    675		 * bit 17 (common).
    676		 */
    677		switch (dcc & DCC_ADDRESSING_MODE_MASK) {
    678		case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
    679		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
    680			swizzle_x = I915_BIT_6_SWIZZLE_NONE;
    681			swizzle_y = I915_BIT_6_SWIZZLE_NONE;
    682			break;
    683		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
    684			if (dcc & DCC_CHANNEL_XOR_DISABLE) {
    685				/*
    686				 * This is the base swizzling by the GPU for
    687				 * tiled buffers.
    688				 */
    689				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
    690				swizzle_y = I915_BIT_6_SWIZZLE_9;
    691			} else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
    692				/* Bit 11 swizzling by the CPU in addition. */
    693				swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
    694				swizzle_y = I915_BIT_6_SWIZZLE_9_11;
    695			} else {
    696				/* Bit 17 swizzling by the CPU in addition. */
    697				swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
    698				swizzle_y = I915_BIT_6_SWIZZLE_9_17;
    699			}
    700			break;
    701		}
    702
    703		/* check for L-shaped memory aka modified enhanced addressing */
    704		if (GRAPHICS_VER(i915) == 4 &&
    705		    !(intel_uncore_read(uncore, DCC2) & DCC2_MODIFIED_ENHANCED_DISABLE)) {
    706			swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
    707			swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
    708		}
    709
    710		if (dcc == 0xffffffff) {
    711			drm_err(&i915->drm, "Couldn't read from MCHBAR.  "
    712				  "Disabling tiling.\n");
    713			swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
    714			swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
    715		}
    716	}
    717
    718	if (swizzle_x == I915_BIT_6_SWIZZLE_UNKNOWN ||
    719	    swizzle_y == I915_BIT_6_SWIZZLE_UNKNOWN) {
    720		/*
    721		 * Userspace likes to explode if it sees unknown swizzling,
    722		 * so lie. We will finish the lie when reporting through
    723		 * the get-tiling-ioctl by reporting the physical swizzle
    724		 * mode as unknown instead.
    725		 *
    726		 * As we don't strictly know what the swizzling is, it may be
    727		 * bit17 dependent, and so we need to also prevent the pages
    728		 * from being moved.
    729		 */
    730		i915->quirks |= QUIRK_PIN_SWIZZLED_PAGES;
    731		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
    732		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
    733	}
    734
    735	to_gt(i915)->ggtt->bit_6_swizzle_x = swizzle_x;
    736	to_gt(i915)->ggtt->bit_6_swizzle_y = swizzle_y;
    737}
    738
    739/*
    740 * Swap every 64 bytes of this page around, to account for it having a new
    741 * bit 17 of its physical address and therefore being interpreted differently
    742 * by the GPU.
    743 */
    744static void swizzle_page(struct page *page)
    745{
    746	char temp[64];
    747	char *vaddr;
    748	int i;
    749
    750	vaddr = kmap(page);
    751
    752	for (i = 0; i < PAGE_SIZE; i += 128) {
    753		memcpy(temp, &vaddr[i], 64);
    754		memcpy(&vaddr[i], &vaddr[i + 64], 64);
    755		memcpy(&vaddr[i + 64], temp, 64);
    756	}
    757
    758	kunmap(page);
    759}
    760
    761/**
    762 * i915_gem_object_do_bit_17_swizzle - fixup bit 17 swizzling
    763 * @obj: i915 GEM buffer object
    764 * @pages: the scattergather list of physical pages
    765 *
    766 * This function fixes up the swizzling in case any page frame number for this
    767 * object has changed in bit 17 since that state has been saved with
    768 * i915_gem_object_save_bit_17_swizzle().
    769 *
    770 * This is called when pinning backing storage again, since the kernel is free
    771 * to move unpinned backing storage around (either by directly moving pages or
    772 * by swapping them out and back in again).
    773 */
    774void
    775i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
    776				  struct sg_table *pages)
    777{
    778	struct sgt_iter sgt_iter;
    779	struct page *page;
    780	int i;
    781
    782	if (obj->bit_17 == NULL)
    783		return;
    784
    785	i = 0;
    786	for_each_sgt_page(page, sgt_iter, pages) {
    787		char new_bit_17 = page_to_phys(page) >> 17;
    788
    789		if ((new_bit_17 & 0x1) != (test_bit(i, obj->bit_17) != 0)) {
    790			swizzle_page(page);
    791			set_page_dirty(page);
    792		}
    793
    794		i++;
    795	}
    796}
    797
    798/**
    799 * i915_gem_object_save_bit_17_swizzle - save bit 17 swizzling
    800 * @obj: i915 GEM buffer object
    801 * @pages: the scattergather list of physical pages
    802 *
    803 * This function saves the bit 17 of each page frame number so that swizzling
    804 * can be fixed up later on with i915_gem_object_do_bit_17_swizzle(). This must
    805 * be called before the backing storage can be unpinned.
    806 */
    807void
    808i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
    809				    struct sg_table *pages)
    810{
    811	const unsigned int page_count = obj->base.size >> PAGE_SHIFT;
    812	struct sgt_iter sgt_iter;
    813	struct page *page;
    814	int i;
    815
    816	if (obj->bit_17 == NULL) {
    817		obj->bit_17 = bitmap_zalloc(page_count, GFP_KERNEL);
    818		if (obj->bit_17 == NULL) {
    819			DRM_ERROR("Failed to allocate memory for bit 17 "
    820				  "record\n");
    821			return;
    822		}
    823	}
    824
    825	i = 0;
    826
    827	for_each_sgt_page(page, sgt_iter, pages) {
    828		if (page_to_phys(page) & (1 << 17))
    829			__set_bit(i, obj->bit_17);
    830		else
    831			__clear_bit(i, obj->bit_17);
    832		i++;
    833	}
    834}
    835
    836void intel_ggtt_init_fences(struct i915_ggtt *ggtt)
    837{
    838	struct drm_i915_private *i915 = ggtt->vm.i915;
    839	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
    840	int num_fences;
    841	int i;
    842
    843	INIT_LIST_HEAD(&ggtt->fence_list);
    844	INIT_LIST_HEAD(&ggtt->userfault_list);
    845	intel_wakeref_auto_init(&ggtt->userfault_wakeref, uncore->rpm);
    846
    847	detect_bit_6_swizzle(ggtt);
    848
    849	if (!i915_ggtt_has_aperture(ggtt))
    850		num_fences = 0;
    851	else if (GRAPHICS_VER(i915) >= 7 &&
    852		 !(IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)))
    853		num_fences = 32;
    854	else if (GRAPHICS_VER(i915) >= 4 ||
    855		 IS_I945G(i915) || IS_I945GM(i915) ||
    856		 IS_G33(i915) || IS_PINEVIEW(i915))
    857		num_fences = 16;
    858	else
    859		num_fences = 8;
    860
    861	if (intel_vgpu_active(i915))
    862		num_fences = intel_uncore_read(uncore,
    863					       vgtif_reg(avail_rs.fence_num));
    864	ggtt->fence_regs = kcalloc(num_fences,
    865				   sizeof(*ggtt->fence_regs),
    866				   GFP_KERNEL);
    867	if (!ggtt->fence_regs)
    868		num_fences = 0;
    869
    870	/* Initialize fence registers to zero */
    871	for (i = 0; i < num_fences; i++) {
    872		struct i915_fence_reg *fence = &ggtt->fence_regs[i];
    873
    874		i915_active_init(&fence->active, NULL, NULL, 0);
    875		fence->ggtt = ggtt;
    876		fence->id = i;
    877		list_add_tail(&fence->link, &ggtt->fence_list);
    878	}
    879	ggtt->num_fences = num_fences;
    880
    881	intel_ggtt_restore_fences(ggtt);
    882}
    883
    884void intel_ggtt_fini_fences(struct i915_ggtt *ggtt)
    885{
    886	int i;
    887
    888	for (i = 0; i < ggtt->num_fences; i++) {
    889		struct i915_fence_reg *fence = &ggtt->fence_regs[i];
    890
    891		i915_active_fini(&fence->active);
    892	}
    893
    894	kfree(ggtt->fence_regs);
    895}
    896
    897void intel_gt_init_swizzling(struct intel_gt *gt)
    898{
    899	struct drm_i915_private *i915 = gt->i915;
    900	struct intel_uncore *uncore = gt->uncore;
    901
    902	if (GRAPHICS_VER(i915) < 5 ||
    903	    to_gt(i915)->ggtt->bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
    904		return;
    905
    906	intel_uncore_rmw(uncore, DISP_ARB_CTL, 0, DISP_TILE_SURFACE_SWIZZLING);
    907
    908	if (GRAPHICS_VER(i915) == 5)
    909		return;
    910
    911	intel_uncore_rmw(uncore, TILECTL, 0, TILECTL_SWZCTL);
    912
    913	if (GRAPHICS_VER(i915) == 6)
    914		intel_uncore_write(uncore,
    915				   ARB_MODE,
    916				   _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
    917	else if (GRAPHICS_VER(i915) == 7)
    918		intel_uncore_write(uncore,
    919				   ARB_MODE,
    920				   _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
    921	else if (GRAPHICS_VER(i915) == 8)
    922		intel_uncore_write(uncore,
    923				   GAMTARBMODE,
    924				   _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
    925	else
    926		MISSING_CASE(GRAPHICS_VER(i915));
    927}