intel_gtt.c (18371B)
1// SPDX-License-Identifier: MIT 2/* 3 * Copyright © 2020 Intel Corporation 4 */ 5 6#include <linux/slab.h> /* fault-inject.h is not standalone! */ 7 8#include <linux/fault-inject.h> 9#include <linux/sched/mm.h> 10 11#include <drm/drm_cache.h> 12 13#include "gem/i915_gem_internal.h" 14#include "gem/i915_gem_lmem.h" 15#include "i915_trace.h" 16#include "i915_utils.h" 17#include "intel_gt.h" 18#include "intel_gt_regs.h" 19#include "intel_gtt.h" 20 21 22static bool intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *i915) 23{ 24 return IS_BROXTON(i915) && i915_vtd_active(i915); 25} 26 27bool intel_vm_no_concurrent_access_wa(struct drm_i915_private *i915) 28{ 29 return IS_CHERRYVIEW(i915) || intel_ggtt_update_needs_vtd_wa(i915); 30} 31 32struct drm_i915_gem_object *alloc_pt_lmem(struct i915_address_space *vm, int sz) 33{ 34 struct drm_i915_gem_object *obj; 35 36 /* 37 * To avoid severe over-allocation when dealing with min_page_size 38 * restrictions, we override that behaviour here by allowing an object 39 * size and page layout which can be smaller. In practice this should be 40 * totally fine, since GTT paging structures are not typically inserted 41 * into the GTT. 42 * 43 * Note that we also hit this path for the scratch page, and for this 44 * case it might need to be 64K, but that should work fine here since we 45 * used the passed in size for the page size, which should ensure it 46 * also has the same alignment. 47 */ 48 obj = __i915_gem_object_create_lmem_with_ps(vm->i915, sz, sz, 49 vm->lmem_pt_obj_flags); 50 /* 51 * Ensure all paging structures for this vm share the same dma-resv 52 * object underneath, with the idea that one object_lock() will lock 53 * them all at once. 54 */ 55 if (!IS_ERR(obj)) { 56 obj->base.resv = i915_vm_resv_get(vm); 57 obj->shares_resv_from = vm; 58 } 59 60 return obj; 61} 62 63struct drm_i915_gem_object *alloc_pt_dma(struct i915_address_space *vm, int sz) 64{ 65 struct drm_i915_gem_object *obj; 66 67 if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1))) 68 i915_gem_shrink_all(vm->i915); 69 70 obj = i915_gem_object_create_internal(vm->i915, sz); 71 /* 72 * Ensure all paging structures for this vm share the same dma-resv 73 * object underneath, with the idea that one object_lock() will lock 74 * them all at once. 75 */ 76 if (!IS_ERR(obj)) { 77 obj->base.resv = i915_vm_resv_get(vm); 78 obj->shares_resv_from = vm; 79 } 80 81 return obj; 82} 83 84int map_pt_dma(struct i915_address_space *vm, struct drm_i915_gem_object *obj) 85{ 86 enum i915_map_type type; 87 void *vaddr; 88 89 type = i915_coherent_map_type(vm->i915, obj, true); 90 vaddr = i915_gem_object_pin_map_unlocked(obj, type); 91 if (IS_ERR(vaddr)) 92 return PTR_ERR(vaddr); 93 94 i915_gem_object_make_unshrinkable(obj); 95 return 0; 96} 97 98int map_pt_dma_locked(struct i915_address_space *vm, struct drm_i915_gem_object *obj) 99{ 100 enum i915_map_type type; 101 void *vaddr; 102 103 type = i915_coherent_map_type(vm->i915, obj, true); 104 vaddr = i915_gem_object_pin_map(obj, type); 105 if (IS_ERR(vaddr)) 106 return PTR_ERR(vaddr); 107 108 i915_gem_object_make_unshrinkable(obj); 109 return 0; 110} 111 112static void clear_vm_list(struct list_head *list) 113{ 114 struct i915_vma *vma, *vn; 115 116 list_for_each_entry_safe(vma, vn, list, vm_link) { 117 struct drm_i915_gem_object *obj = vma->obj; 118 119 if (!i915_gem_object_get_rcu(obj)) { 120 /* 121 * Object is dying, but has not yet cleared its 122 * vma list. 123 * Unbind the dying vma to ensure our list 124 * is completely drained. We leave the destruction to 125 * the object destructor to avoid the vma 126 * disappearing under it. 127 */ 128 atomic_and(~I915_VMA_PIN_MASK, &vma->flags); 129 WARN_ON(__i915_vma_unbind(vma)); 130 131 /* Remove from the unbound list */ 132 list_del_init(&vma->vm_link); 133 134 /* 135 * Delay the vm and vm mutex freeing until the 136 * object is done with destruction. 137 */ 138 i915_vm_resv_get(vma->vm); 139 vma->vm_ddestroy = true; 140 } else { 141 i915_vma_destroy_locked(vma); 142 i915_gem_object_put(obj); 143 } 144 145 } 146} 147 148static void __i915_vm_close(struct i915_address_space *vm) 149{ 150 mutex_lock(&vm->mutex); 151 152 clear_vm_list(&vm->bound_list); 153 clear_vm_list(&vm->unbound_list); 154 155 /* Check for must-fix unanticipated side-effects */ 156 GEM_BUG_ON(!list_empty(&vm->bound_list)); 157 GEM_BUG_ON(!list_empty(&vm->unbound_list)); 158 159 mutex_unlock(&vm->mutex); 160} 161 162/* lock the vm into the current ww, if we lock one, we lock all */ 163int i915_vm_lock_objects(struct i915_address_space *vm, 164 struct i915_gem_ww_ctx *ww) 165{ 166 if (vm->scratch[0]->base.resv == &vm->_resv) { 167 return i915_gem_object_lock(vm->scratch[0], ww); 168 } else { 169 struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 170 171 /* We borrowed the scratch page from ggtt, take the top level object */ 172 return i915_gem_object_lock(ppgtt->pd->pt.base, ww); 173 } 174} 175 176void i915_address_space_fini(struct i915_address_space *vm) 177{ 178 drm_mm_takedown(&vm->mm); 179} 180 181/** 182 * i915_vm_resv_release - Final struct i915_address_space destructor 183 * @kref: Pointer to the &i915_address_space.resv_ref member. 184 * 185 * This function is called when the last lock sharer no longer shares the 186 * &i915_address_space._resv lock, and also if we raced when 187 * destroying a vma by the vma destruction 188 */ 189void i915_vm_resv_release(struct kref *kref) 190{ 191 struct i915_address_space *vm = 192 container_of(kref, typeof(*vm), resv_ref); 193 194 dma_resv_fini(&vm->_resv); 195 mutex_destroy(&vm->mutex); 196 197 kfree(vm); 198} 199 200static void __i915_vm_release(struct work_struct *work) 201{ 202 struct i915_address_space *vm = 203 container_of(work, struct i915_address_space, release_work); 204 205 __i915_vm_close(vm); 206 207 /* Synchronize async unbinds. */ 208 i915_vma_resource_bind_dep_sync_all(vm); 209 210 vm->cleanup(vm); 211 i915_address_space_fini(vm); 212 213 i915_vm_resv_put(vm); 214} 215 216void i915_vm_release(struct kref *kref) 217{ 218 struct i915_address_space *vm = 219 container_of(kref, struct i915_address_space, ref); 220 221 GEM_BUG_ON(i915_is_ggtt(vm)); 222 trace_i915_ppgtt_release(vm); 223 224 queue_work(vm->i915->wq, &vm->release_work); 225} 226 227void i915_address_space_init(struct i915_address_space *vm, int subclass) 228{ 229 kref_init(&vm->ref); 230 231 /* 232 * Special case for GGTT that has already done an early 233 * kref_init here. 234 */ 235 if (!kref_read(&vm->resv_ref)) 236 kref_init(&vm->resv_ref); 237 238 vm->pending_unbind = RB_ROOT_CACHED; 239 INIT_WORK(&vm->release_work, __i915_vm_release); 240 241 /* 242 * The vm->mutex must be reclaim safe (for use in the shrinker). 243 * Do a dummy acquire now under fs_reclaim so that any allocation 244 * attempt holding the lock is immediately reported by lockdep. 245 */ 246 mutex_init(&vm->mutex); 247 lockdep_set_subclass(&vm->mutex, subclass); 248 249 if (!intel_vm_no_concurrent_access_wa(vm->i915)) { 250 i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex); 251 } else { 252 /* 253 * CHV + BXT VTD workaround use stop_machine(), 254 * which is allowed to allocate memory. This means &vm->mutex 255 * is the outer lock, and in theory we can allocate memory inside 256 * it through stop_machine(). 257 * 258 * Add the annotation for this, we use trylock in shrinker. 259 */ 260 mutex_acquire(&vm->mutex.dep_map, 0, 0, _THIS_IP_); 261 might_alloc(GFP_KERNEL); 262 mutex_release(&vm->mutex.dep_map, _THIS_IP_); 263 } 264 dma_resv_init(&vm->_resv); 265 266 GEM_BUG_ON(!vm->total); 267 drm_mm_init(&vm->mm, 0, vm->total); 268 269 memset64(vm->min_alignment, I915_GTT_MIN_ALIGNMENT, 270 ARRAY_SIZE(vm->min_alignment)); 271 272 if (HAS_64K_PAGES(vm->i915) && NEEDS_COMPACT_PT(vm->i915) && 273 subclass == VM_CLASS_PPGTT) { 274 vm->min_alignment[INTEL_MEMORY_LOCAL] = I915_GTT_PAGE_SIZE_2M; 275 vm->min_alignment[INTEL_MEMORY_STOLEN_LOCAL] = I915_GTT_PAGE_SIZE_2M; 276 } else if (HAS_64K_PAGES(vm->i915)) { 277 vm->min_alignment[INTEL_MEMORY_LOCAL] = I915_GTT_PAGE_SIZE_64K; 278 vm->min_alignment[INTEL_MEMORY_STOLEN_LOCAL] = I915_GTT_PAGE_SIZE_64K; 279 } 280 281 vm->mm.head_node.color = I915_COLOR_UNEVICTABLE; 282 283 INIT_LIST_HEAD(&vm->bound_list); 284 INIT_LIST_HEAD(&vm->unbound_list); 285} 286 287void *__px_vaddr(struct drm_i915_gem_object *p) 288{ 289 enum i915_map_type type; 290 291 GEM_BUG_ON(!i915_gem_object_has_pages(p)); 292 return page_unpack_bits(p->mm.mapping, &type); 293} 294 295dma_addr_t __px_dma(struct drm_i915_gem_object *p) 296{ 297 GEM_BUG_ON(!i915_gem_object_has_pages(p)); 298 return sg_dma_address(p->mm.pages->sgl); 299} 300 301struct page *__px_page(struct drm_i915_gem_object *p) 302{ 303 GEM_BUG_ON(!i915_gem_object_has_pages(p)); 304 return sg_page(p->mm.pages->sgl); 305} 306 307void 308fill_page_dma(struct drm_i915_gem_object *p, const u64 val, unsigned int count) 309{ 310 void *vaddr = __px_vaddr(p); 311 312 memset64(vaddr, val, count); 313 drm_clflush_virt_range(vaddr, PAGE_SIZE); 314} 315 316static void poison_scratch_page(struct drm_i915_gem_object *scratch) 317{ 318 void *vaddr = __px_vaddr(scratch); 319 u8 val; 320 321 val = 0; 322 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 323 val = POISON_FREE; 324 325 memset(vaddr, val, scratch->base.size); 326 drm_clflush_virt_range(vaddr, scratch->base.size); 327} 328 329int setup_scratch_page(struct i915_address_space *vm) 330{ 331 unsigned long size; 332 333 /* 334 * In order to utilize 64K pages for an object with a size < 2M, we will 335 * need to support a 64K scratch page, given that every 16th entry for a 336 * page-table operating in 64K mode must point to a properly aligned 64K 337 * region, including any PTEs which happen to point to scratch. 338 * 339 * This is only relevant for the 48b PPGTT where we support 340 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the 341 * scratch (read-only) between all vm, we create one 64k scratch page 342 * for all. 343 */ 344 size = I915_GTT_PAGE_SIZE_4K; 345 if (i915_vm_is_4lvl(vm) && 346 HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) 347 size = I915_GTT_PAGE_SIZE_64K; 348 349 do { 350 struct drm_i915_gem_object *obj; 351 352 obj = vm->alloc_scratch_dma(vm, size); 353 if (IS_ERR(obj)) 354 goto skip; 355 356 if (map_pt_dma(vm, obj)) 357 goto skip_obj; 358 359 /* We need a single contiguous page for our scratch */ 360 if (obj->mm.page_sizes.sg < size) 361 goto skip_obj; 362 363 /* And it needs to be correspondingly aligned */ 364 if (__px_dma(obj) & (size - 1)) 365 goto skip_obj; 366 367 /* 368 * Use a non-zero scratch page for debugging. 369 * 370 * We want a value that should be reasonably obvious 371 * to spot in the error state, while also causing a GPU hang 372 * if executed. We prefer using a clear page in production, so 373 * should it ever be accidentally used, the effect should be 374 * fairly benign. 375 */ 376 poison_scratch_page(obj); 377 378 vm->scratch[0] = obj; 379 vm->scratch_order = get_order(size); 380 return 0; 381 382skip_obj: 383 i915_gem_object_put(obj); 384skip: 385 if (size == I915_GTT_PAGE_SIZE_4K) 386 return -ENOMEM; 387 388 /* 389 * If we need 64K minimum GTT pages for device local-memory, 390 * like on XEHPSDV, then we need to fail the allocation here, 391 * otherwise we can't safely support the insertion of 392 * local-memory pages for this vm, since the HW expects the 393 * correct physical alignment and size when the page-table is 394 * operating in 64K GTT mode, which includes any scratch PTEs, 395 * since userspace can still touch them. 396 */ 397 if (HAS_64K_PAGES(vm->i915)) 398 return -ENOMEM; 399 400 size = I915_GTT_PAGE_SIZE_4K; 401 } while (1); 402} 403 404void free_scratch(struct i915_address_space *vm) 405{ 406 int i; 407 408 for (i = 0; i <= vm->top; i++) 409 i915_gem_object_put(vm->scratch[i]); 410} 411 412void gtt_write_workarounds(struct intel_gt *gt) 413{ 414 struct drm_i915_private *i915 = gt->i915; 415 struct intel_uncore *uncore = gt->uncore; 416 417 /* 418 * This function is for gtt related workarounds. This function is 419 * called on driver load and after a GPU reset, so you can place 420 * workarounds here even if they get overwritten by GPU reset. 421 */ 422 /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */ 423 if (IS_BROADWELL(i915)) 424 intel_uncore_write(uncore, 425 GEN8_L3_LRA_1_GPGPU, 426 GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW); 427 else if (IS_CHERRYVIEW(i915)) 428 intel_uncore_write(uncore, 429 GEN8_L3_LRA_1_GPGPU, 430 GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV); 431 else if (IS_GEN9_LP(i915)) 432 intel_uncore_write(uncore, 433 GEN8_L3_LRA_1_GPGPU, 434 GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT); 435 else if (GRAPHICS_VER(i915) >= 9 && GRAPHICS_VER(i915) <= 11) 436 intel_uncore_write(uncore, 437 GEN8_L3_LRA_1_GPGPU, 438 GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL); 439 440 /* 441 * To support 64K PTEs we need to first enable the use of the 442 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical 443 * mmio, otherwise the page-walker will simply ignore the IPS bit. This 444 * shouldn't be needed after GEN10. 445 * 446 * 64K pages were first introduced from BDW+, although technically they 447 * only *work* from gen9+. For pre-BDW we instead have the option for 448 * 32K pages, but we don't currently have any support for it in our 449 * driver. 450 */ 451 if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_64K) && 452 GRAPHICS_VER(i915) <= 10) 453 intel_uncore_rmw(uncore, 454 GEN8_GAMW_ECO_DEV_RW_IA, 455 0, 456 GAMW_ECO_ENABLE_64K_IPS_FIELD); 457 458 if (IS_GRAPHICS_VER(i915, 8, 11)) { 459 bool can_use_gtt_cache = true; 460 461 /* 462 * According to the BSpec if we use 2M/1G pages then we also 463 * need to disable the GTT cache. At least on BDW we can see 464 * visual corruption when using 2M pages, and not disabling the 465 * GTT cache. 466 */ 467 if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_2M)) 468 can_use_gtt_cache = false; 469 470 /* WaGttCachingOffByDefault */ 471 intel_uncore_write(uncore, 472 HSW_GTT_CACHE_EN, 473 can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0); 474 drm_WARN_ON_ONCE(&i915->drm, can_use_gtt_cache && 475 intel_uncore_read(uncore, 476 HSW_GTT_CACHE_EN) == 0); 477 } 478} 479 480static void tgl_setup_private_ppat(struct intel_uncore *uncore) 481{ 482 /* TGL doesn't support LLC or AGE settings */ 483 intel_uncore_write(uncore, GEN12_PAT_INDEX(0), GEN8_PPAT_WB); 484 intel_uncore_write(uncore, GEN12_PAT_INDEX(1), GEN8_PPAT_WC); 485 intel_uncore_write(uncore, GEN12_PAT_INDEX(2), GEN8_PPAT_WT); 486 intel_uncore_write(uncore, GEN12_PAT_INDEX(3), GEN8_PPAT_UC); 487 intel_uncore_write(uncore, GEN12_PAT_INDEX(4), GEN8_PPAT_WB); 488 intel_uncore_write(uncore, GEN12_PAT_INDEX(5), GEN8_PPAT_WB); 489 intel_uncore_write(uncore, GEN12_PAT_INDEX(6), GEN8_PPAT_WB); 490 intel_uncore_write(uncore, GEN12_PAT_INDEX(7), GEN8_PPAT_WB); 491} 492 493static void icl_setup_private_ppat(struct intel_uncore *uncore) 494{ 495 intel_uncore_write(uncore, 496 GEN10_PAT_INDEX(0), 497 GEN8_PPAT_WB | GEN8_PPAT_LLC); 498 intel_uncore_write(uncore, 499 GEN10_PAT_INDEX(1), 500 GEN8_PPAT_WC | GEN8_PPAT_LLCELLC); 501 intel_uncore_write(uncore, 502 GEN10_PAT_INDEX(2), 503 GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE); 504 intel_uncore_write(uncore, 505 GEN10_PAT_INDEX(3), 506 GEN8_PPAT_UC); 507 intel_uncore_write(uncore, 508 GEN10_PAT_INDEX(4), 509 GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)); 510 intel_uncore_write(uncore, 511 GEN10_PAT_INDEX(5), 512 GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)); 513 intel_uncore_write(uncore, 514 GEN10_PAT_INDEX(6), 515 GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)); 516 intel_uncore_write(uncore, 517 GEN10_PAT_INDEX(7), 518 GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3)); 519} 520 521/* 522 * The GGTT and PPGTT need a private PPAT setup in order to handle cacheability 523 * bits. When using advanced contexts each context stores its own PAT, but 524 * writing this data shouldn't be harmful even in those cases. 525 */ 526static void bdw_setup_private_ppat(struct intel_uncore *uncore) 527{ 528 struct drm_i915_private *i915 = uncore->i915; 529 u64 pat; 530 531 pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */ 532 GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */ 533 GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */ 534 GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) | 535 GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) | 536 GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) | 537 GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3)); 538 539 /* for scanout with eLLC */ 540 if (GRAPHICS_VER(i915) >= 9) 541 pat |= GEN8_PPAT(2, GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE); 542 else 543 pat |= GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC); 544 545 intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat)); 546 intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat)); 547} 548 549static void chv_setup_private_ppat(struct intel_uncore *uncore) 550{ 551 u64 pat; 552 553 /* 554 * Map WB on BDW to snooped on CHV. 555 * 556 * Only the snoop bit has meaning for CHV, the rest is 557 * ignored. 558 * 559 * The hardware will never snoop for certain types of accesses: 560 * - CPU GTT (GMADR->GGTT->no snoop->memory) 561 * - PPGTT page tables 562 * - some other special cycles 563 * 564 * As with BDW, we also need to consider the following for GT accesses: 565 * "For GGTT, there is NO pat_sel[2:0] from the entry, 566 * so RTL will always use the value corresponding to 567 * pat_sel = 000". 568 * Which means we must set the snoop bit in PAT entry 0 569 * in order to keep the global status page working. 570 */ 571 572 pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) | 573 GEN8_PPAT(1, 0) | 574 GEN8_PPAT(2, 0) | 575 GEN8_PPAT(3, 0) | 576 GEN8_PPAT(4, CHV_PPAT_SNOOP) | 577 GEN8_PPAT(5, CHV_PPAT_SNOOP) | 578 GEN8_PPAT(6, CHV_PPAT_SNOOP) | 579 GEN8_PPAT(7, CHV_PPAT_SNOOP); 580 581 intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat)); 582 intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat)); 583} 584 585void setup_private_pat(struct intel_uncore *uncore) 586{ 587 struct drm_i915_private *i915 = uncore->i915; 588 589 GEM_BUG_ON(GRAPHICS_VER(i915) < 8); 590 591 if (GRAPHICS_VER(i915) >= 12) 592 tgl_setup_private_ppat(uncore); 593 else if (GRAPHICS_VER(i915) >= 11) 594 icl_setup_private_ppat(uncore); 595 else if (IS_CHERRYVIEW(i915) || IS_GEN9_LP(i915)) 596 chv_setup_private_ppat(uncore); 597 else 598 bdw_setup_private_ppat(uncore); 599} 600 601struct i915_vma * 602__vm_create_scratch_for_read(struct i915_address_space *vm, unsigned long size) 603{ 604 struct drm_i915_gem_object *obj; 605 struct i915_vma *vma; 606 607 obj = i915_gem_object_create_internal(vm->i915, PAGE_ALIGN(size)); 608 if (IS_ERR(obj)) 609 return ERR_CAST(obj); 610 611 i915_gem_object_set_cache_coherency(obj, I915_CACHING_CACHED); 612 613 vma = i915_vma_instance(obj, vm, NULL); 614 if (IS_ERR(vma)) { 615 i915_gem_object_put(obj); 616 return vma; 617 } 618 619 return vma; 620} 621 622struct i915_vma * 623__vm_create_scratch_for_read_pinned(struct i915_address_space *vm, unsigned long size) 624{ 625 struct i915_vma *vma; 626 int err; 627 628 vma = __vm_create_scratch_for_read(vm, size); 629 if (IS_ERR(vma)) 630 return vma; 631 632 err = i915_vma_pin(vma, 0, 0, 633 i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER); 634 if (err) { 635 i915_vma_put(vma); 636 return ERR_PTR(err); 637 } 638 639 return vma; 640} 641 642#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 643#include "selftests/mock_gtt.c" 644#endif