cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

selftest_engine_pm.c (9993B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Copyright © 2018 Intel Corporation
      4 */
      5
      6#include <linux/sort.h>
      7
      8#include "i915_selftest.h"
      9#include "intel_engine_regs.h"
     10#include "intel_gpu_commands.h"
     11#include "intel_gt_clock_utils.h"
     12#include "selftest_engine.h"
     13#include "selftest_engine_heartbeat.h"
     14#include "selftests/igt_atomic.h"
     15#include "selftests/igt_flush_test.h"
     16#include "selftests/igt_spinner.h"
     17
     18#define COUNT 5
     19
     20static int cmp_u64(const void *A, const void *B)
     21{
     22	const u64 *a = A, *b = B;
     23
     24	return *a - *b;
     25}
     26
     27static u64 trifilter(u64 *a)
     28{
     29	sort(a, COUNT, sizeof(*a), cmp_u64, NULL);
     30	return (a[1] + 2 * a[2] + a[3]) >> 2;
     31}
     32
     33static u32 *emit_wait(u32 *cs, u32 offset, int op, u32 value)
     34{
     35	*cs++ = MI_SEMAPHORE_WAIT |
     36		MI_SEMAPHORE_GLOBAL_GTT |
     37		MI_SEMAPHORE_POLL |
     38		op;
     39	*cs++ = value;
     40	*cs++ = offset;
     41	*cs++ = 0;
     42
     43	return cs;
     44}
     45
     46static u32 *emit_store(u32 *cs, u32 offset, u32 value)
     47{
     48	*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
     49	*cs++ = offset;
     50	*cs++ = 0;
     51	*cs++ = value;
     52
     53	return cs;
     54}
     55
     56static u32 *emit_srm(u32 *cs, i915_reg_t reg, u32 offset)
     57{
     58	*cs++ = MI_STORE_REGISTER_MEM_GEN8 | MI_USE_GGTT;
     59	*cs++ = i915_mmio_reg_offset(reg);
     60	*cs++ = offset;
     61	*cs++ = 0;
     62
     63	return cs;
     64}
     65
     66static void write_semaphore(u32 *x, u32 value)
     67{
     68	WRITE_ONCE(*x, value);
     69	wmb();
     70}
     71
     72static int __measure_timestamps(struct intel_context *ce,
     73				u64 *dt, u64 *d_ring, u64 *d_ctx)
     74{
     75	struct intel_engine_cs *engine = ce->engine;
     76	u32 *sema = memset32(engine->status_page.addr + 1000, 0, 5);
     77	u32 offset = i915_ggtt_offset(engine->status_page.vma);
     78	struct i915_request *rq;
     79	u32 *cs;
     80
     81	rq = intel_context_create_request(ce);
     82	if (IS_ERR(rq))
     83		return PTR_ERR(rq);
     84
     85	cs = intel_ring_begin(rq, 28);
     86	if (IS_ERR(cs)) {
     87		i915_request_add(rq);
     88		return PTR_ERR(cs);
     89	}
     90
     91	/* Signal & wait for start */
     92	cs = emit_store(cs, offset + 4008, 1);
     93	cs = emit_wait(cs, offset + 4008, MI_SEMAPHORE_SAD_NEQ_SDD, 1);
     94
     95	cs = emit_srm(cs, RING_TIMESTAMP(engine->mmio_base), offset + 4000);
     96	cs = emit_srm(cs, RING_CTX_TIMESTAMP(engine->mmio_base), offset + 4004);
     97
     98	/* Busy wait */
     99	cs = emit_wait(cs, offset + 4008, MI_SEMAPHORE_SAD_EQ_SDD, 1);
    100
    101	cs = emit_srm(cs, RING_TIMESTAMP(engine->mmio_base), offset + 4016);
    102	cs = emit_srm(cs, RING_CTX_TIMESTAMP(engine->mmio_base), offset + 4012);
    103
    104	intel_ring_advance(rq, cs);
    105	i915_request_get(rq);
    106	i915_request_add(rq);
    107	intel_engine_flush_submission(engine);
    108
    109	/* Wait for the request to start executing, that then waits for us */
    110	while (READ_ONCE(sema[2]) == 0)
    111		cpu_relax();
    112
    113	/* Run the request for a 100us, sampling timestamps before/after */
    114	local_irq_disable();
    115	write_semaphore(&sema[2], 0);
    116	while (READ_ONCE(sema[1]) == 0) /* wait for the gpu to catch up */
    117		cpu_relax();
    118	*dt = local_clock();
    119	udelay(100);
    120	*dt = local_clock() - *dt;
    121	write_semaphore(&sema[2], 1);
    122	local_irq_enable();
    123
    124	if (i915_request_wait(rq, 0, HZ / 2) < 0) {
    125		i915_request_put(rq);
    126		return -ETIME;
    127	}
    128	i915_request_put(rq);
    129
    130	pr_debug("%s CTX_TIMESTAMP: [%x, %x], RING_TIMESTAMP: [%x, %x]\n",
    131		 engine->name, sema[1], sema[3], sema[0], sema[4]);
    132
    133	*d_ctx = sema[3] - sema[1];
    134	*d_ring = sema[4] - sema[0];
    135	return 0;
    136}
    137
    138static int __live_engine_timestamps(struct intel_engine_cs *engine)
    139{
    140	u64 s_ring[COUNT], s_ctx[COUNT], st[COUNT], d_ring, d_ctx, dt;
    141	struct intel_context *ce;
    142	int i, err = 0;
    143
    144	ce = intel_context_create(engine);
    145	if (IS_ERR(ce))
    146		return PTR_ERR(ce);
    147
    148	for (i = 0; i < COUNT; i++) {
    149		err = __measure_timestamps(ce, &st[i], &s_ring[i], &s_ctx[i]);
    150		if (err)
    151			break;
    152	}
    153	intel_context_put(ce);
    154	if (err)
    155		return err;
    156
    157	dt = trifilter(st);
    158	d_ring = trifilter(s_ring);
    159	d_ctx = trifilter(s_ctx);
    160
    161	pr_info("%s elapsed:%lldns, CTX_TIMESTAMP:%lldns, RING_TIMESTAMP:%lldns\n",
    162		engine->name, dt,
    163		intel_gt_clock_interval_to_ns(engine->gt, d_ctx),
    164		intel_gt_clock_interval_to_ns(engine->gt, d_ring));
    165
    166	d_ring = intel_gt_clock_interval_to_ns(engine->gt, d_ring);
    167	if (3 * dt > 4 * d_ring || 4 * dt < 3 * d_ring) {
    168		pr_err("%s Mismatch between ring timestamp and walltime!\n",
    169		       engine->name);
    170		return -EINVAL;
    171	}
    172
    173	d_ring = trifilter(s_ring);
    174	d_ctx = trifilter(s_ctx);
    175
    176	d_ctx *= engine->gt->clock_frequency;
    177	if (GRAPHICS_VER(engine->i915) == 11)
    178		d_ring *= 12500000; /* Fixed 80ns for GEN11 ctx timestamp? */
    179	else
    180		d_ring *= engine->gt->clock_frequency;
    181
    182	if (3 * d_ctx > 4 * d_ring || 4 * d_ctx < 3 * d_ring) {
    183		pr_err("%s Mismatch between ring and context timestamps!\n",
    184		       engine->name);
    185		return -EINVAL;
    186	}
    187
    188	return 0;
    189}
    190
    191static int live_engine_timestamps(void *arg)
    192{
    193	struct intel_gt *gt = arg;
    194	struct intel_engine_cs *engine;
    195	enum intel_engine_id id;
    196
    197	/*
    198	 * Check that CS_TIMESTAMP / CTX_TIMESTAMP are in sync, i.e. share
    199	 * the same CS clock.
    200	 */
    201
    202	if (GRAPHICS_VER(gt->i915) < 8)
    203		return 0;
    204
    205	for_each_engine(engine, gt, id) {
    206		int err;
    207
    208		st_engine_heartbeat_disable(engine);
    209		err = __live_engine_timestamps(engine);
    210		st_engine_heartbeat_enable(engine);
    211		if (err)
    212			return err;
    213	}
    214
    215	return 0;
    216}
    217
    218static int __spin_until_busier(struct intel_engine_cs *engine, ktime_t busyness)
    219{
    220	ktime_t start, unused, dt;
    221
    222	if (!intel_engine_uses_guc(engine))
    223		return 0;
    224
    225	/*
    226	 * In GuC mode of submission, the busyness stats may get updated after
    227	 * the batch starts running. Poll for a change in busyness and timeout
    228	 * after 500 us.
    229	 */
    230	start = ktime_get();
    231	while (intel_engine_get_busy_time(engine, &unused) == busyness) {
    232		dt = ktime_get() - start;
    233		if (dt > 10000000) {
    234			pr_err("active wait timed out %lld\n", dt);
    235			ENGINE_TRACE(engine, "active wait time out %lld\n", dt);
    236			return -ETIME;
    237		}
    238	}
    239
    240	return 0;
    241}
    242
    243static int live_engine_busy_stats(void *arg)
    244{
    245	struct intel_gt *gt = arg;
    246	struct intel_engine_cs *engine;
    247	enum intel_engine_id id;
    248	struct igt_spinner spin;
    249	int err = 0;
    250
    251	/*
    252	 * Check that if an engine supports busy-stats, they tell the truth.
    253	 */
    254
    255	if (igt_spinner_init(&spin, gt))
    256		return -ENOMEM;
    257
    258	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
    259	for_each_engine(engine, gt, id) {
    260		struct i915_request *rq;
    261		ktime_t busyness, dummy;
    262		ktime_t de, dt;
    263		ktime_t t[2];
    264
    265		if (!intel_engine_supports_stats(engine))
    266			continue;
    267
    268		if (!intel_engine_can_store_dword(engine))
    269			continue;
    270
    271		if (intel_gt_pm_wait_for_idle(gt)) {
    272			err = -EBUSY;
    273			break;
    274		}
    275
    276		st_engine_heartbeat_disable(engine);
    277
    278		ENGINE_TRACE(engine, "measuring idle time\n");
    279		preempt_disable();
    280		de = intel_engine_get_busy_time(engine, &t[0]);
    281		udelay(100);
    282		de = ktime_sub(intel_engine_get_busy_time(engine, &t[1]), de);
    283		preempt_enable();
    284		dt = ktime_sub(t[1], t[0]);
    285		if (de < 0 || de > 10) {
    286			pr_err("%s: reported %lldns [%d%%] busyness while sleeping [for %lldns]\n",
    287			       engine->name,
    288			       de, (int)div64_u64(100 * de, dt), dt);
    289			GEM_TRACE_DUMP();
    290			err = -EINVAL;
    291			goto end;
    292		}
    293
    294		/* 100% busy */
    295		rq = igt_spinner_create_request(&spin,
    296						engine->kernel_context,
    297						MI_NOOP);
    298		if (IS_ERR(rq)) {
    299			err = PTR_ERR(rq);
    300			goto end;
    301		}
    302		i915_request_add(rq);
    303
    304		busyness = intel_engine_get_busy_time(engine, &dummy);
    305		if (!igt_wait_for_spinner(&spin, rq)) {
    306			intel_gt_set_wedged(engine->gt);
    307			err = -ETIME;
    308			goto end;
    309		}
    310
    311		err = __spin_until_busier(engine, busyness);
    312		if (err) {
    313			GEM_TRACE_DUMP();
    314			goto end;
    315		}
    316
    317		ENGINE_TRACE(engine, "measuring busy time\n");
    318		preempt_disable();
    319		de = intel_engine_get_busy_time(engine, &t[0]);
    320		mdelay(10);
    321		de = ktime_sub(intel_engine_get_busy_time(engine, &t[1]), de);
    322		preempt_enable();
    323		dt = ktime_sub(t[1], t[0]);
    324		if (100 * de < 95 * dt || 95 * de > 100 * dt) {
    325			pr_err("%s: reported %lldns [%d%%] busyness while spinning [for %lldns]\n",
    326			       engine->name,
    327			       de, (int)div64_u64(100 * de, dt), dt);
    328			GEM_TRACE_DUMP();
    329			err = -EINVAL;
    330			goto end;
    331		}
    332
    333end:
    334		st_engine_heartbeat_enable(engine);
    335		igt_spinner_end(&spin);
    336		if (igt_flush_test(gt->i915))
    337			err = -EIO;
    338		if (err)
    339			break;
    340	}
    341
    342	igt_spinner_fini(&spin);
    343	if (igt_flush_test(gt->i915))
    344		err = -EIO;
    345	return err;
    346}
    347
    348static int live_engine_pm(void *arg)
    349{
    350	struct intel_gt *gt = arg;
    351	struct intel_engine_cs *engine;
    352	enum intel_engine_id id;
    353
    354	/*
    355	 * Check we can call intel_engine_pm_put from any context. No
    356	 * failures are reported directly, but if we mess up lockdep should
    357	 * tell us.
    358	 */
    359	if (intel_gt_pm_wait_for_idle(gt)) {
    360		pr_err("Unable to flush GT pm before test\n");
    361		return -EBUSY;
    362	}
    363
    364	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
    365	for_each_engine(engine, gt, id) {
    366		const typeof(*igt_atomic_phases) *p;
    367
    368		for (p = igt_atomic_phases; p->name; p++) {
    369			/*
    370			 * Acquisition is always synchronous, except if we
    371			 * know that the engine is already awake, in which
    372			 * case we should use intel_engine_pm_get_if_awake()
    373			 * to atomically grab the wakeref.
    374			 *
    375			 * In practice,
    376			 *    intel_engine_pm_get();
    377			 *    intel_engine_pm_put();
    378			 * occurs in one thread, while simultaneously
    379			 *    intel_engine_pm_get_if_awake();
    380			 *    intel_engine_pm_put();
    381			 * occurs from atomic context in another.
    382			 */
    383			GEM_BUG_ON(intel_engine_pm_is_awake(engine));
    384			intel_engine_pm_get(engine);
    385
    386			p->critical_section_begin();
    387			if (!intel_engine_pm_get_if_awake(engine))
    388				pr_err("intel_engine_pm_get_if_awake(%s) failed under %s\n",
    389				       engine->name, p->name);
    390			else
    391				intel_engine_pm_put_async(engine);
    392			intel_engine_pm_put_async(engine);
    393			p->critical_section_end();
    394
    395			intel_engine_pm_flush(engine);
    396
    397			if (intel_engine_pm_is_awake(engine)) {
    398				pr_err("%s is still awake after flushing pm\n",
    399				       engine->name);
    400				return -EINVAL;
    401			}
    402
    403			/* gt wakeref is async (deferred to workqueue) */
    404			if (intel_gt_pm_wait_for_idle(gt)) {
    405				pr_err("GT failed to idle\n");
    406				return -EINVAL;
    407			}
    408		}
    409	}
    410
    411	return 0;
    412}
    413
    414int live_engine_pm_selftests(struct intel_gt *gt)
    415{
    416	static const struct i915_subtest tests[] = {
    417		SUBTEST(live_engine_timestamps),
    418		SUBTEST(live_engine_busy_stats),
    419		SUBTEST(live_engine_pm),
    420	};
    421
    422	return intel_gt_live_subtests(tests, gt);
    423}