cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

intel_guc.c (26037B)


      1// SPDX-License-Identifier: MIT
      2/*
      3 * Copyright © 2014-2019 Intel Corporation
      4 */
      5
      6#include "gem/i915_gem_lmem.h"
      7#include "gt/intel_gt.h"
      8#include "gt/intel_gt_irq.h"
      9#include "gt/intel_gt_pm_irq.h"
     10#include "gt/intel_gt_regs.h"
     11#include "intel_guc.h"
     12#include "intel_guc_ads.h"
     13#include "intel_guc_capture.h"
     14#include "intel_guc_slpc.h"
     15#include "intel_guc_submission.h"
     16#include "i915_drv.h"
     17#include "i915_irq.h"
     18
     19/**
     20 * DOC: GuC
     21 *
     22 * The GuC is a microcontroller inside the GT HW, introduced in gen9. The GuC is
     23 * designed to offload some of the functionality usually performed by the host
     24 * driver; currently the main operations it can take care of are:
     25 *
     26 * - Authentication of the HuC, which is required to fully enable HuC usage.
     27 * - Low latency graphics context scheduling (a.k.a. GuC submission).
     28 * - GT Power management.
     29 *
     30 * The enable_guc module parameter can be used to select which of those
     31 * operations to enable within GuC. Note that not all the operations are
     32 * supported on all gen9+ platforms.
     33 *
     34 * Enabling the GuC is not mandatory and therefore the firmware is only loaded
     35 * if at least one of the operations is selected. However, not loading the GuC
     36 * might result in the loss of some features that do require the GuC (currently
     37 * just the HuC, but more are expected to land in the future).
     38 */
     39
     40void intel_guc_notify(struct intel_guc *guc)
     41{
     42	struct intel_gt *gt = guc_to_gt(guc);
     43
     44	/*
     45	 * On Gen11+, the value written to the register is passes as a payload
     46	 * to the FW. However, the FW currently treats all values the same way
     47	 * (H2G interrupt), so we can just write the value that the HW expects
     48	 * on older gens.
     49	 */
     50	intel_uncore_write(gt->uncore, guc->notify_reg, GUC_SEND_TRIGGER);
     51}
     52
     53static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i)
     54{
     55	GEM_BUG_ON(!guc->send_regs.base);
     56	GEM_BUG_ON(!guc->send_regs.count);
     57	GEM_BUG_ON(i >= guc->send_regs.count);
     58
     59	return _MMIO(guc->send_regs.base + 4 * i);
     60}
     61
     62void intel_guc_init_send_regs(struct intel_guc *guc)
     63{
     64	struct intel_gt *gt = guc_to_gt(guc);
     65	enum forcewake_domains fw_domains = 0;
     66	unsigned int i;
     67
     68	GEM_BUG_ON(!guc->send_regs.base);
     69	GEM_BUG_ON(!guc->send_regs.count);
     70
     71	for (i = 0; i < guc->send_regs.count; i++) {
     72		fw_domains |= intel_uncore_forcewake_for_reg(gt->uncore,
     73					guc_send_reg(guc, i),
     74					FW_REG_READ | FW_REG_WRITE);
     75	}
     76	guc->send_regs.fw_domains = fw_domains;
     77}
     78
     79static void gen9_reset_guc_interrupts(struct intel_guc *guc)
     80{
     81	struct intel_gt *gt = guc_to_gt(guc);
     82
     83	assert_rpm_wakelock_held(&gt->i915->runtime_pm);
     84
     85	spin_lock_irq(&gt->irq_lock);
     86	gen6_gt_pm_reset_iir(gt, gt->pm_guc_events);
     87	spin_unlock_irq(&gt->irq_lock);
     88}
     89
     90static void gen9_enable_guc_interrupts(struct intel_guc *guc)
     91{
     92	struct intel_gt *gt = guc_to_gt(guc);
     93
     94	assert_rpm_wakelock_held(&gt->i915->runtime_pm);
     95
     96	spin_lock_irq(&gt->irq_lock);
     97	WARN_ON_ONCE(intel_uncore_read(gt->uncore, GEN8_GT_IIR(2)) &
     98		     gt->pm_guc_events);
     99	gen6_gt_pm_enable_irq(gt, gt->pm_guc_events);
    100	spin_unlock_irq(&gt->irq_lock);
    101}
    102
    103static void gen9_disable_guc_interrupts(struct intel_guc *guc)
    104{
    105	struct intel_gt *gt = guc_to_gt(guc);
    106
    107	assert_rpm_wakelock_held(&gt->i915->runtime_pm);
    108
    109	spin_lock_irq(&gt->irq_lock);
    110
    111	gen6_gt_pm_disable_irq(gt, gt->pm_guc_events);
    112
    113	spin_unlock_irq(&gt->irq_lock);
    114	intel_synchronize_irq(gt->i915);
    115
    116	gen9_reset_guc_interrupts(guc);
    117}
    118
    119static void gen11_reset_guc_interrupts(struct intel_guc *guc)
    120{
    121	struct intel_gt *gt = guc_to_gt(guc);
    122
    123	spin_lock_irq(&gt->irq_lock);
    124	gen11_gt_reset_one_iir(gt, 0, GEN11_GUC);
    125	spin_unlock_irq(&gt->irq_lock);
    126}
    127
    128static void gen11_enable_guc_interrupts(struct intel_guc *guc)
    129{
    130	struct intel_gt *gt = guc_to_gt(guc);
    131	u32 events = REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST);
    132
    133	spin_lock_irq(&gt->irq_lock);
    134	WARN_ON_ONCE(gen11_gt_reset_one_iir(gt, 0, GEN11_GUC));
    135	intel_uncore_write(gt->uncore,
    136			   GEN11_GUC_SG_INTR_ENABLE, events);
    137	intel_uncore_write(gt->uncore,
    138			   GEN11_GUC_SG_INTR_MASK, ~events);
    139	spin_unlock_irq(&gt->irq_lock);
    140}
    141
    142static void gen11_disable_guc_interrupts(struct intel_guc *guc)
    143{
    144	struct intel_gt *gt = guc_to_gt(guc);
    145
    146	spin_lock_irq(&gt->irq_lock);
    147
    148	intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_MASK, ~0);
    149	intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_ENABLE, 0);
    150
    151	spin_unlock_irq(&gt->irq_lock);
    152	intel_synchronize_irq(gt->i915);
    153
    154	gen11_reset_guc_interrupts(guc);
    155}
    156
    157void intel_guc_init_early(struct intel_guc *guc)
    158{
    159	struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
    160
    161	intel_uc_fw_init_early(&guc->fw, INTEL_UC_FW_TYPE_GUC);
    162	intel_guc_ct_init_early(&guc->ct);
    163	intel_guc_log_init_early(&guc->log);
    164	intel_guc_submission_init_early(guc);
    165	intel_guc_slpc_init_early(&guc->slpc);
    166	intel_guc_rc_init_early(guc);
    167
    168	mutex_init(&guc->send_mutex);
    169	spin_lock_init(&guc->irq_lock);
    170	if (GRAPHICS_VER(i915) >= 11) {
    171		guc->notify_reg = GEN11_GUC_HOST_INTERRUPT;
    172		guc->interrupts.reset = gen11_reset_guc_interrupts;
    173		guc->interrupts.enable = gen11_enable_guc_interrupts;
    174		guc->interrupts.disable = gen11_disable_guc_interrupts;
    175		guc->send_regs.base =
    176			i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0));
    177		guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT;
    178
    179	} else {
    180		guc->notify_reg = GUC_SEND_INTERRUPT;
    181		guc->interrupts.reset = gen9_reset_guc_interrupts;
    182		guc->interrupts.enable = gen9_enable_guc_interrupts;
    183		guc->interrupts.disable = gen9_disable_guc_interrupts;
    184		guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0));
    185		guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN;
    186		BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT);
    187	}
    188
    189	intel_guc_enable_msg(guc, INTEL_GUC_RECV_MSG_EXCEPTION |
    190				  INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED);
    191}
    192
    193void intel_guc_init_late(struct intel_guc *guc)
    194{
    195	intel_guc_ads_init_late(guc);
    196}
    197
    198static u32 guc_ctl_debug_flags(struct intel_guc *guc)
    199{
    200	u32 level = intel_guc_log_get_level(&guc->log);
    201	u32 flags = 0;
    202
    203	if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
    204		flags |= GUC_LOG_DISABLED;
    205	else
    206		flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) <<
    207			 GUC_LOG_VERBOSITY_SHIFT;
    208
    209	return flags;
    210}
    211
    212static u32 guc_ctl_feature_flags(struct intel_guc *guc)
    213{
    214	u32 flags = 0;
    215
    216	if (!intel_guc_submission_is_used(guc))
    217		flags |= GUC_CTL_DISABLE_SCHEDULER;
    218
    219	if (intel_guc_slpc_is_used(guc))
    220		flags |= GUC_CTL_ENABLE_SLPC;
    221
    222	return flags;
    223}
    224
    225static u32 guc_ctl_log_params_flags(struct intel_guc *guc)
    226{
    227	u32 offset = intel_guc_ggtt_offset(guc, guc->log.vma) >> PAGE_SHIFT;
    228	u32 flags;
    229
    230	#if (((CRASH_BUFFER_SIZE) % SZ_1M) == 0)
    231	#define LOG_UNIT SZ_1M
    232	#define LOG_FLAG GUC_LOG_LOG_ALLOC_UNITS
    233	#else
    234	#define LOG_UNIT SZ_4K
    235	#define LOG_FLAG 0
    236	#endif
    237
    238	#if (((CAPTURE_BUFFER_SIZE) % SZ_1M) == 0)
    239	#define CAPTURE_UNIT SZ_1M
    240	#define CAPTURE_FLAG GUC_LOG_CAPTURE_ALLOC_UNITS
    241	#else
    242	#define CAPTURE_UNIT SZ_4K
    243	#define CAPTURE_FLAG 0
    244	#endif
    245
    246	BUILD_BUG_ON(!CRASH_BUFFER_SIZE);
    247	BUILD_BUG_ON(!IS_ALIGNED(CRASH_BUFFER_SIZE, LOG_UNIT));
    248	BUILD_BUG_ON(!DEBUG_BUFFER_SIZE);
    249	BUILD_BUG_ON(!IS_ALIGNED(DEBUG_BUFFER_SIZE, LOG_UNIT));
    250	BUILD_BUG_ON(!CAPTURE_BUFFER_SIZE);
    251	BUILD_BUG_ON(!IS_ALIGNED(CAPTURE_BUFFER_SIZE, CAPTURE_UNIT));
    252
    253	BUILD_BUG_ON((CRASH_BUFFER_SIZE / LOG_UNIT - 1) >
    254			(GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT));
    255	BUILD_BUG_ON((DEBUG_BUFFER_SIZE / LOG_UNIT - 1) >
    256			(GUC_LOG_DEBUG_MASK >> GUC_LOG_DEBUG_SHIFT));
    257	BUILD_BUG_ON((CAPTURE_BUFFER_SIZE / CAPTURE_UNIT - 1) >
    258			(GUC_LOG_CAPTURE_MASK >> GUC_LOG_CAPTURE_SHIFT));
    259
    260	flags = GUC_LOG_VALID |
    261		GUC_LOG_NOTIFY_ON_HALF_FULL |
    262		CAPTURE_FLAG |
    263		LOG_FLAG |
    264		((CRASH_BUFFER_SIZE / LOG_UNIT - 1) << GUC_LOG_CRASH_SHIFT) |
    265		((DEBUG_BUFFER_SIZE / LOG_UNIT - 1) << GUC_LOG_DEBUG_SHIFT) |
    266		((CAPTURE_BUFFER_SIZE / CAPTURE_UNIT - 1) << GUC_LOG_CAPTURE_SHIFT) |
    267		(offset << GUC_LOG_BUF_ADDR_SHIFT);
    268
    269	#undef LOG_UNIT
    270	#undef LOG_FLAG
    271	#undef CAPTURE_UNIT
    272	#undef CAPTURE_FLAG
    273
    274	return flags;
    275}
    276
    277static u32 guc_ctl_ads_flags(struct intel_guc *guc)
    278{
    279	u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT;
    280	u32 flags = ads << GUC_ADS_ADDR_SHIFT;
    281
    282	return flags;
    283}
    284
    285static u32 guc_ctl_wa_flags(struct intel_guc *guc)
    286{
    287	struct intel_gt *gt = guc_to_gt(guc);
    288	u32 flags = 0;
    289
    290	/* Wa_22012773006:gen11,gen12 < XeHP */
    291	if (GRAPHICS_VER(gt->i915) >= 11 &&
    292	    GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 50))
    293		flags |= GUC_WA_POLLCS;
    294
    295	/* Wa_16011759253:dg2_g10:a0 */
    296	if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_B0))
    297		flags |= GUC_WA_GAM_CREDITS;
    298
    299	/* Wa_14014475959:dg2 */
    300	if (IS_DG2(gt->i915))
    301		flags |= GUC_WA_HOLD_CCS_SWITCHOUT;
    302
    303	/*
    304	 * Wa_14012197797:dg2_g10:a0,dg2_g11:a0
    305	 * Wa_22011391025:dg2_g10,dg2_g11,dg2_g12
    306	 *
    307	 * The same WA bit is used for both and 22011391025 is applicable to
    308	 * all DG2.
    309	 */
    310	if (IS_DG2(gt->i915))
    311		flags |= GUC_WA_DUAL_QUEUE;
    312
    313	/* Wa_22011802037: graphics version 12 */
    314	if (GRAPHICS_VER(gt->i915) == 12)
    315		flags |= GUC_WA_PRE_PARSER;
    316
    317	/* Wa_16011777198:dg2 */
    318	if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) ||
    319	    IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_B0))
    320		flags |= GUC_WA_RCS_RESET_BEFORE_RC6;
    321
    322	/*
    323	 * Wa_22012727170:dg2_g10[a0-c0), dg2_g11[a0..)
    324	 * Wa_22012727685:dg2_g11[a0..)
    325	 */
    326	if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) ||
    327	    IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_FOREVER))
    328		flags |= GUC_WA_CONTEXT_ISOLATION;
    329
    330	return flags;
    331}
    332
    333static u32 guc_ctl_devid(struct intel_guc *guc)
    334{
    335	struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
    336
    337	return (INTEL_DEVID(i915) << 16) | INTEL_REVID(i915);
    338}
    339
    340/*
    341 * Initialise the GuC parameter block before starting the firmware
    342 * transfer. These parameters are read by the firmware on startup
    343 * and cannot be changed thereafter.
    344 */
    345static void guc_init_params(struct intel_guc *guc)
    346{
    347	u32 *params = guc->params;
    348	int i;
    349
    350	BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32));
    351
    352	params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
    353	params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc);
    354	params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
    355	params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
    356	params[GUC_CTL_WA] = guc_ctl_wa_flags(guc);
    357	params[GUC_CTL_DEVID] = guc_ctl_devid(guc);
    358
    359	for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
    360		DRM_DEBUG_DRIVER("param[%2d] = %#x\n", i, params[i]);
    361}
    362
    363/*
    364 * Initialise the GuC parameter block before starting the firmware
    365 * transfer. These parameters are read by the firmware on startup
    366 * and cannot be changed thereafter.
    367 */
    368void intel_guc_write_params(struct intel_guc *guc)
    369{
    370	struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
    371	int i;
    372
    373	/*
    374	 * All SOFT_SCRATCH registers are in FORCEWAKE_GT domain and
    375	 * they are power context saved so it's ok to release forcewake
    376	 * when we are done here and take it again at xfer time.
    377	 */
    378	intel_uncore_forcewake_get(uncore, FORCEWAKE_GT);
    379
    380	intel_uncore_write(uncore, SOFT_SCRATCH(0), 0);
    381
    382	for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
    383		intel_uncore_write(uncore, SOFT_SCRATCH(1 + i), guc->params[i]);
    384
    385	intel_uncore_forcewake_put(uncore, FORCEWAKE_GT);
    386}
    387
    388int intel_guc_init(struct intel_guc *guc)
    389{
    390	struct intel_gt *gt = guc_to_gt(guc);
    391	int ret;
    392
    393	ret = intel_uc_fw_init(&guc->fw);
    394	if (ret)
    395		goto out;
    396
    397	ret = intel_guc_log_create(&guc->log);
    398	if (ret)
    399		goto err_fw;
    400
    401	ret = intel_guc_capture_init(guc);
    402	if (ret)
    403		goto err_log;
    404
    405	ret = intel_guc_ads_create(guc);
    406	if (ret)
    407		goto err_capture;
    408
    409	GEM_BUG_ON(!guc->ads_vma);
    410
    411	ret = intel_guc_ct_init(&guc->ct);
    412	if (ret)
    413		goto err_ads;
    414
    415	if (intel_guc_submission_is_used(guc)) {
    416		/*
    417		 * This is stuff we need to have available at fw load time
    418		 * if we are planning to enable submission later
    419		 */
    420		ret = intel_guc_submission_init(guc);
    421		if (ret)
    422			goto err_ct;
    423	}
    424
    425	if (intel_guc_slpc_is_used(guc)) {
    426		ret = intel_guc_slpc_init(&guc->slpc);
    427		if (ret)
    428			goto err_submission;
    429	}
    430
    431	/* now that everything is perma-pinned, initialize the parameters */
    432	guc_init_params(guc);
    433
    434	/* We need to notify the guc whenever we change the GGTT */
    435	i915_ggtt_enable_guc(gt->ggtt);
    436
    437	intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_LOADABLE);
    438
    439	return 0;
    440
    441err_submission:
    442	intel_guc_submission_fini(guc);
    443err_ct:
    444	intel_guc_ct_fini(&guc->ct);
    445err_ads:
    446	intel_guc_ads_destroy(guc);
    447err_capture:
    448	intel_guc_capture_destroy(guc);
    449err_log:
    450	intel_guc_log_destroy(&guc->log);
    451err_fw:
    452	intel_uc_fw_fini(&guc->fw);
    453out:
    454	i915_probe_error(gt->i915, "failed with %d\n", ret);
    455	return ret;
    456}
    457
    458void intel_guc_fini(struct intel_guc *guc)
    459{
    460	struct intel_gt *gt = guc_to_gt(guc);
    461
    462	if (!intel_uc_fw_is_loadable(&guc->fw))
    463		return;
    464
    465	i915_ggtt_disable_guc(gt->ggtt);
    466
    467	if (intel_guc_slpc_is_used(guc))
    468		intel_guc_slpc_fini(&guc->slpc);
    469
    470	if (intel_guc_submission_is_used(guc))
    471		intel_guc_submission_fini(guc);
    472
    473	intel_guc_ct_fini(&guc->ct);
    474
    475	intel_guc_ads_destroy(guc);
    476	intel_guc_capture_destroy(guc);
    477	intel_guc_log_destroy(&guc->log);
    478	intel_uc_fw_fini(&guc->fw);
    479}
    480
    481/*
    482 * This function implements the MMIO based host to GuC interface.
    483 */
    484int intel_guc_send_mmio(struct intel_guc *guc, const u32 *request, u32 len,
    485			u32 *response_buf, u32 response_buf_size)
    486{
    487	struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
    488	struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
    489	u32 header;
    490	int i;
    491	int ret;
    492
    493	GEM_BUG_ON(!len);
    494	GEM_BUG_ON(len > guc->send_regs.count);
    495
    496	GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) != GUC_HXG_ORIGIN_HOST);
    497	GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) != GUC_HXG_TYPE_REQUEST);
    498
    499	mutex_lock(&guc->send_mutex);
    500	intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains);
    501
    502retry:
    503	for (i = 0; i < len; i++)
    504		intel_uncore_write(uncore, guc_send_reg(guc, i), request[i]);
    505
    506	intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1));
    507
    508	intel_guc_notify(guc);
    509
    510	/*
    511	 * No GuC command should ever take longer than 10ms.
    512	 * Fast commands should still complete in 10us.
    513	 */
    514	ret = __intel_wait_for_register_fw(uncore,
    515					   guc_send_reg(guc, 0),
    516					   GUC_HXG_MSG_0_ORIGIN,
    517					   FIELD_PREP(GUC_HXG_MSG_0_ORIGIN,
    518						      GUC_HXG_ORIGIN_GUC),
    519					   10, 10, &header);
    520	if (unlikely(ret)) {
    521timeout:
    522		drm_err(&i915->drm, "mmio request %#x: no reply %x\n",
    523			request[0], header);
    524		goto out;
    525	}
    526
    527	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_BUSY) {
    528#define done ({ header = intel_uncore_read(uncore, guc_send_reg(guc, 0)); \
    529		FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != GUC_HXG_ORIGIN_GUC || \
    530		FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_NO_RESPONSE_BUSY; })
    531
    532		ret = wait_for(done, 1000);
    533		if (unlikely(ret))
    534			goto timeout;
    535		if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) !=
    536				       GUC_HXG_ORIGIN_GUC))
    537			goto proto;
    538#undef done
    539	}
    540
    541	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
    542		u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header);
    543
    544		drm_dbg(&i915->drm, "mmio request %#x: retrying, reason %u\n",
    545			request[0], reason);
    546		goto retry;
    547	}
    548
    549	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_RESPONSE_FAILURE) {
    550		u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header);
    551		u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header);
    552
    553		drm_err(&i915->drm, "mmio request %#x: failure %x/%u\n",
    554			request[0], error, hint);
    555		ret = -ENXIO;
    556		goto out;
    557	}
    558
    559	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_RESPONSE_SUCCESS) {
    560proto:
    561		drm_err(&i915->drm, "mmio request %#x: unexpected reply %#x\n",
    562			request[0], header);
    563		ret = -EPROTO;
    564		goto out;
    565	}
    566
    567	if (response_buf) {
    568		int count = min(response_buf_size, guc->send_regs.count);
    569
    570		GEM_BUG_ON(!count);
    571
    572		response_buf[0] = header;
    573
    574		for (i = 1; i < count; i++)
    575			response_buf[i] = intel_uncore_read(uncore,
    576							    guc_send_reg(guc, i));
    577
    578		/* Use number of copied dwords as our return value */
    579		ret = count;
    580	} else {
    581		/* Use data from the GuC response as our return value */
    582		ret = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header);
    583	}
    584
    585out:
    586	intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains);
    587	mutex_unlock(&guc->send_mutex);
    588
    589	return ret;
    590}
    591
    592int intel_guc_to_host_process_recv_msg(struct intel_guc *guc,
    593				       const u32 *payload, u32 len)
    594{
    595	u32 msg;
    596
    597	if (unlikely(!len))
    598		return -EPROTO;
    599
    600	/* Make sure to handle only enabled messages */
    601	msg = payload[0] & guc->msg_enabled_mask;
    602
    603	if (msg & INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED)
    604		drm_err(&guc_to_gt(guc)->i915->drm, "Received early GuC crash dump notification!\n");
    605	if (msg & INTEL_GUC_RECV_MSG_EXCEPTION)
    606		drm_err(&guc_to_gt(guc)->i915->drm, "Received early GuC exception notification!\n");
    607
    608	return 0;
    609}
    610
    611/**
    612 * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode
    613 * @guc: intel_guc structure
    614 * @rsa_offset: rsa offset w.r.t ggtt base of huc vma
    615 *
    616 * Triggers a HuC firmware authentication request to the GuC via intel_guc_send
    617 * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by
    618 * intel_huc_auth().
    619 *
    620 * Return:	non-zero code on error
    621 */
    622int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset)
    623{
    624	u32 action[] = {
    625		INTEL_GUC_ACTION_AUTHENTICATE_HUC,
    626		rsa_offset
    627	};
    628
    629	return intel_guc_send(guc, action, ARRAY_SIZE(action));
    630}
    631
    632/**
    633 * intel_guc_suspend() - notify GuC entering suspend state
    634 * @guc:	the guc
    635 */
    636int intel_guc_suspend(struct intel_guc *guc)
    637{
    638	int ret;
    639	u32 action[] = {
    640		INTEL_GUC_ACTION_CLIENT_SOFT_RESET,
    641	};
    642
    643	if (!intel_guc_is_ready(guc))
    644		return 0;
    645
    646	if (intel_guc_submission_is_used(guc)) {
    647		/*
    648		 * This H2G MMIO command tears down the GuC in two steps. First it will
    649		 * generate a G2H CTB for every active context indicating a reset. In
    650		 * practice the i915 shouldn't ever get a G2H as suspend should only be
    651		 * called when the GPU is idle. Next, it tears down the CTBs and this
    652		 * H2G MMIO command completes.
    653		 *
    654		 * Don't abort on a failure code from the GuC. Keep going and do the
    655		 * clean up in santize() and re-initialisation on resume and hopefully
    656		 * the error here won't be problematic.
    657		 */
    658		ret = intel_guc_send_mmio(guc, action, ARRAY_SIZE(action), NULL, 0);
    659		if (ret)
    660			DRM_ERROR("GuC suspend: RESET_CLIENT action failed with error %d!\n", ret);
    661	}
    662
    663	/* Signal that the GuC isn't running. */
    664	intel_guc_sanitize(guc);
    665
    666	return 0;
    667}
    668
    669/**
    670 * intel_guc_resume() - notify GuC resuming from suspend state
    671 * @guc:	the guc
    672 */
    673int intel_guc_resume(struct intel_guc *guc)
    674{
    675	/*
    676	 * NB: This function can still be called even if GuC submission is
    677	 * disabled, e.g. if GuC is enabled for HuC authentication only. Thus,
    678	 * if any code is later added here, it must be support doing nothing
    679	 * if submission is disabled (as per intel_guc_suspend).
    680	 */
    681	return 0;
    682}
    683
    684/**
    685 * DOC: GuC Memory Management
    686 *
    687 * GuC can't allocate any memory for its own usage, so all the allocations must
    688 * be handled by the host driver. GuC accesses the memory via the GGTT, with the
    689 * exception of the top and bottom parts of the 4GB address space, which are
    690 * instead re-mapped by the GuC HW to memory location of the FW itself (WOPCM)
    691 * or other parts of the HW. The driver must take care not to place objects that
    692 * the GuC is going to access in these reserved ranges. The layout of the GuC
    693 * address space is shown below:
    694 *
    695 * ::
    696 *
    697 *     +===========> +====================+ <== FFFF_FFFF
    698 *     ^             |      Reserved      |
    699 *     |             +====================+ <== GUC_GGTT_TOP
    700 *     |             |                    |
    701 *     |             |        DRAM        |
    702 *    GuC            |                    |
    703 *  Address    +===> +====================+ <== GuC ggtt_pin_bias
    704 *   Space     ^     |                    |
    705 *     |       |     |                    |
    706 *     |      GuC    |        GuC         |
    707 *     |     WOPCM   |       WOPCM        |
    708 *     |      Size   |                    |
    709 *     |       |     |                    |
    710 *     v       v     |                    |
    711 *     +=======+===> +====================+ <== 0000_0000
    712 *
    713 * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM
    714 * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped
    715 * to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size.
    716 */
    717
    718/**
    719 * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
    720 * @guc:	the guc
    721 * @size:	size of area to allocate (both virtual space and memory)
    722 *
    723 * This is a wrapper to create an object for use with the GuC. In order to
    724 * use it inside the GuC, an object needs to be pinned lifetime, so we allocate
    725 * both some backing storage and a range inside the Global GTT. We must pin
    726 * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that
    727 * range is reserved inside GuC.
    728 *
    729 * Return:	A i915_vma if successful, otherwise an ERR_PTR.
    730 */
    731struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size)
    732{
    733	struct intel_gt *gt = guc_to_gt(guc);
    734	struct drm_i915_gem_object *obj;
    735	struct i915_vma *vma;
    736	u64 flags;
    737	int ret;
    738
    739	if (HAS_LMEM(gt->i915))
    740		obj = i915_gem_object_create_lmem(gt->i915, size,
    741						  I915_BO_ALLOC_CPU_CLEAR |
    742						  I915_BO_ALLOC_CONTIGUOUS |
    743						  I915_BO_ALLOC_PM_EARLY);
    744	else
    745		obj = i915_gem_object_create_shmem(gt->i915, size);
    746
    747	if (IS_ERR(obj))
    748		return ERR_CAST(obj);
    749
    750	vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
    751	if (IS_ERR(vma))
    752		goto err;
    753
    754	flags = PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
    755	ret = i915_ggtt_pin(vma, NULL, 0, flags);
    756	if (ret) {
    757		vma = ERR_PTR(ret);
    758		goto err;
    759	}
    760
    761	return i915_vma_make_unshrinkable(vma);
    762
    763err:
    764	i915_gem_object_put(obj);
    765	return vma;
    766}
    767
    768/**
    769 * intel_guc_allocate_and_map_vma() - Allocate and map VMA for GuC usage
    770 * @guc:	the guc
    771 * @size:	size of area to allocate (both virtual space and memory)
    772 * @out_vma:	return variable for the allocated vma pointer
    773 * @out_vaddr:	return variable for the obj mapping
    774 *
    775 * This wrapper calls intel_guc_allocate_vma() and then maps the allocated
    776 * object with I915_MAP_WB.
    777 *
    778 * Return:	0 if successful, a negative errno code otherwise.
    779 */
    780int intel_guc_allocate_and_map_vma(struct intel_guc *guc, u32 size,
    781				   struct i915_vma **out_vma, void **out_vaddr)
    782{
    783	struct i915_vma *vma;
    784	void *vaddr;
    785
    786	vma = intel_guc_allocate_vma(guc, size);
    787	if (IS_ERR(vma))
    788		return PTR_ERR(vma);
    789
    790	vaddr = i915_gem_object_pin_map_unlocked(vma->obj,
    791						 i915_coherent_map_type(guc_to_gt(guc)->i915,
    792									vma->obj, true));
    793	if (IS_ERR(vaddr)) {
    794		i915_vma_unpin_and_release(&vma, 0);
    795		return PTR_ERR(vaddr);
    796	}
    797
    798	*out_vma = vma;
    799	*out_vaddr = vaddr;
    800
    801	return 0;
    802}
    803
    804static int __guc_action_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value)
    805{
    806	u32 request[HOST2GUC_SELF_CFG_REQUEST_MSG_LEN] = {
    807		FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
    808		FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
    809		FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, GUC_ACTION_HOST2GUC_SELF_CFG),
    810		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_KEY, key) |
    811		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_LEN, len),
    812		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_2_VALUE32, lower_32_bits(value)),
    813		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_3_VALUE64, upper_32_bits(value)),
    814	};
    815	int ret;
    816
    817	GEM_BUG_ON(len > 2);
    818	GEM_BUG_ON(len == 1 && upper_32_bits(value));
    819
    820	/* Self config must go over MMIO */
    821	ret = intel_guc_send_mmio(guc, request, ARRAY_SIZE(request), NULL, 0);
    822
    823	if (unlikely(ret < 0))
    824		return ret;
    825	if (unlikely(ret > 1))
    826		return -EPROTO;
    827	if (unlikely(!ret))
    828		return -ENOKEY;
    829
    830	return 0;
    831}
    832
    833static int __guc_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value)
    834{
    835	struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
    836	int err = __guc_action_self_cfg(guc, key, len, value);
    837
    838	if (unlikely(err))
    839		i915_probe_error(i915, "Unsuccessful self-config (%pe) key %#hx value %#llx\n",
    840				 ERR_PTR(err), key, value);
    841	return err;
    842}
    843
    844int intel_guc_self_cfg32(struct intel_guc *guc, u16 key, u32 value)
    845{
    846	return __guc_self_cfg(guc, key, 1, value);
    847}
    848
    849int intel_guc_self_cfg64(struct intel_guc *guc, u16 key, u64 value)
    850{
    851	return __guc_self_cfg(guc, key, 2, value);
    852}
    853
    854/**
    855 * intel_guc_load_status - dump information about GuC load status
    856 * @guc: the GuC
    857 * @p: the &drm_printer
    858 *
    859 * Pretty printer for GuC load status.
    860 */
    861void intel_guc_load_status(struct intel_guc *guc, struct drm_printer *p)
    862{
    863	struct intel_gt *gt = guc_to_gt(guc);
    864	struct intel_uncore *uncore = gt->uncore;
    865	intel_wakeref_t wakeref;
    866
    867	if (!intel_guc_is_supported(guc)) {
    868		drm_printf(p, "GuC not supported\n");
    869		return;
    870	}
    871
    872	if (!intel_guc_is_wanted(guc)) {
    873		drm_printf(p, "GuC disabled\n");
    874		return;
    875	}
    876
    877	intel_uc_fw_dump(&guc->fw, p);
    878
    879	with_intel_runtime_pm(uncore->rpm, wakeref) {
    880		u32 status = intel_uncore_read(uncore, GUC_STATUS);
    881		u32 i;
    882
    883		drm_printf(p, "\nGuC status 0x%08x:\n", status);
    884		drm_printf(p, "\tBootrom status = 0x%x\n",
    885			   (status & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
    886		drm_printf(p, "\tuKernel status = 0x%x\n",
    887			   (status & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
    888		drm_printf(p, "\tMIA Core status = 0x%x\n",
    889			   (status & GS_MIA_MASK) >> GS_MIA_SHIFT);
    890		drm_puts(p, "\nScratch registers:\n");
    891		for (i = 0; i < 16; i++) {
    892			drm_printf(p, "\t%2d: \t0x%x\n",
    893				   i, intel_uncore_read(uncore, SOFT_SCRATCH(i)));
    894		}
    895	}
    896}
    897
    898void intel_guc_write_barrier(struct intel_guc *guc)
    899{
    900	struct intel_gt *gt = guc_to_gt(guc);
    901
    902	if (i915_gem_object_is_lmem(guc->ct.vma->obj)) {
    903		/*
    904		 * Ensure intel_uncore_write_fw can be used rather than
    905		 * intel_uncore_write.
    906		 */
    907		GEM_BUG_ON(guc->send_regs.fw_domains);
    908
    909		/*
    910		 * This register is used by the i915 and GuC for MMIO based
    911		 * communication. Once we are in this code CTBs are the only
    912		 * method the i915 uses to communicate with the GuC so it is
    913		 * safe to write to this register (a value of 0 is NOP for MMIO
    914		 * communication). If we ever start mixing CTBs and MMIOs a new
    915		 * register will have to be chosen. This function is also used
    916		 * to enforce ordering of a work queue item write and an update
    917		 * to the process descriptor. When a work queue is being used,
    918		 * CTBs are also the only mechanism of communication.
    919		 */
    920		intel_uncore_write_fw(gt->uncore, GEN11_SOFT_SCRATCH(0), 0);
    921	} else {
    922		/* wmb() sufficient for a barrier if in smem */
    923		wmb();
    924	}
    925}