cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

cmd_parser.c (97656B)


      1/*
      2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
      3 *
      4 * Permission is hereby granted, free of charge, to any person obtaining a
      5 * copy of this software and associated documentation files (the "Software"),
      6 * to deal in the Software without restriction, including without limitation
      7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8 * and/or sell copies of the Software, and to permit persons to whom the
      9 * Software is furnished to do so, subject to the following conditions:
     10 *
     11 * The above copyright notice and this permission notice (including the next
     12 * paragraph) shall be included in all copies or substantial portions of the
     13 * Software.
     14 *
     15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
     21 * SOFTWARE.
     22 *
     23 * Authors:
     24 *    Ke Yu
     25 *    Kevin Tian <kevin.tian@intel.com>
     26 *    Zhiyuan Lv <zhiyuan.lv@intel.com>
     27 *
     28 * Contributors:
     29 *    Min He <min.he@intel.com>
     30 *    Ping Gao <ping.a.gao@intel.com>
     31 *    Tina Zhang <tina.zhang@intel.com>
     32 *    Yulei Zhang <yulei.zhang@intel.com>
     33 *    Zhi Wang <zhi.a.wang@intel.com>
     34 *
     35 */
     36
     37#include <linux/slab.h>
     38
     39#include "i915_drv.h"
     40#include "gt/intel_engine_regs.h"
     41#include "gt/intel_gpu_commands.h"
     42#include "gt/intel_gt_regs.h"
     43#include "gt/intel_lrc.h"
     44#include "gt/intel_ring.h"
     45#include "gt/intel_gt_requests.h"
     46#include "gt/shmem_utils.h"
     47#include "gvt.h"
     48#include "i915_pvinfo.h"
     49#include "trace.h"
     50
     51#include "gem/i915_gem_context.h"
     52#include "gem/i915_gem_pm.h"
     53#include "gt/intel_context.h"
     54
     55#define INVALID_OP    (~0U)
     56
     57#define OP_LEN_MI           9
     58#define OP_LEN_2D           10
     59#define OP_LEN_3D_MEDIA     16
     60#define OP_LEN_MFX_VC       16
     61#define OP_LEN_VEBOX	    16
     62
     63#define CMD_TYPE(cmd)	(((cmd) >> 29) & 7)
     64
     65struct sub_op_bits {
     66	int hi;
     67	int low;
     68};
     69struct decode_info {
     70	const char *name;
     71	int op_len;
     72	int nr_sub_op;
     73	const struct sub_op_bits *sub_op;
     74};
     75
     76#define   MAX_CMD_BUDGET			0x7fffffff
     77#define   MI_WAIT_FOR_PLANE_C_FLIP_PENDING      (1<<15)
     78#define   MI_WAIT_FOR_PLANE_B_FLIP_PENDING      (1<<9)
     79#define   MI_WAIT_FOR_PLANE_A_FLIP_PENDING      (1<<1)
     80
     81#define   MI_WAIT_FOR_SPRITE_C_FLIP_PENDING      (1<<20)
     82#define   MI_WAIT_FOR_SPRITE_B_FLIP_PENDING      (1<<10)
     83#define   MI_WAIT_FOR_SPRITE_A_FLIP_PENDING      (1<<2)
     84
     85/* Render Command Map */
     86
     87/* MI_* command Opcode (28:23) */
     88#define OP_MI_NOOP                          0x0
     89#define OP_MI_SET_PREDICATE                 0x1  /* HSW+ */
     90#define OP_MI_USER_INTERRUPT                0x2
     91#define OP_MI_WAIT_FOR_EVENT                0x3
     92#define OP_MI_FLUSH                         0x4
     93#define OP_MI_ARB_CHECK                     0x5
     94#define OP_MI_RS_CONTROL                    0x6  /* HSW+ */
     95#define OP_MI_REPORT_HEAD                   0x7
     96#define OP_MI_ARB_ON_OFF                    0x8
     97#define OP_MI_URB_ATOMIC_ALLOC              0x9  /* HSW+ */
     98#define OP_MI_BATCH_BUFFER_END              0xA
     99#define OP_MI_SUSPEND_FLUSH                 0xB
    100#define OP_MI_PREDICATE                     0xC  /* IVB+ */
    101#define OP_MI_TOPOLOGY_FILTER               0xD  /* IVB+ */
    102#define OP_MI_SET_APPID                     0xE  /* IVB+ */
    103#define OP_MI_RS_CONTEXT                    0xF  /* HSW+ */
    104#define OP_MI_LOAD_SCAN_LINES_INCL          0x12 /* HSW+ */
    105#define OP_MI_DISPLAY_FLIP                  0x14
    106#define OP_MI_SEMAPHORE_MBOX                0x16
    107#define OP_MI_SET_CONTEXT                   0x18
    108#define OP_MI_MATH                          0x1A
    109#define OP_MI_URB_CLEAR                     0x19
    110#define OP_MI_SEMAPHORE_SIGNAL		    0x1B  /* BDW+ */
    111#define OP_MI_SEMAPHORE_WAIT		    0x1C  /* BDW+ */
    112
    113#define OP_MI_STORE_DATA_IMM                0x20
    114#define OP_MI_STORE_DATA_INDEX              0x21
    115#define OP_MI_LOAD_REGISTER_IMM             0x22
    116#define OP_MI_UPDATE_GTT                    0x23
    117#define OP_MI_STORE_REGISTER_MEM            0x24
    118#define OP_MI_FLUSH_DW                      0x26
    119#define OP_MI_CLFLUSH                       0x27
    120#define OP_MI_REPORT_PERF_COUNT             0x28
    121#define OP_MI_LOAD_REGISTER_MEM             0x29  /* HSW+ */
    122#define OP_MI_LOAD_REGISTER_REG             0x2A  /* HSW+ */
    123#define OP_MI_RS_STORE_DATA_IMM             0x2B  /* HSW+ */
    124#define OP_MI_LOAD_URB_MEM                  0x2C  /* HSW+ */
    125#define OP_MI_STORE_URM_MEM                 0x2D  /* HSW+ */
    126#define OP_MI_2E			    0x2E  /* BDW+ */
    127#define OP_MI_2F			    0x2F  /* BDW+ */
    128#define OP_MI_BATCH_BUFFER_START            0x31
    129
    130/* Bit definition for dword 0 */
    131#define _CMDBIT_BB_START_IN_PPGTT	(1UL << 8)
    132
    133#define OP_MI_CONDITIONAL_BATCH_BUFFER_END  0x36
    134
    135#define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2))
    136#define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U))
    137#define BATCH_BUFFER_ADR_SPACE_BIT(x)	(((x) >> 8) & 1U)
    138#define BATCH_BUFFER_2ND_LEVEL_BIT(x)   ((x) >> 22 & 1U)
    139
    140/* 2D command: Opcode (28:22) */
    141#define OP_2D(x)    ((2<<7) | x)
    142
    143#define OP_XY_SETUP_BLT                             OP_2D(0x1)
    144#define OP_XY_SETUP_CLIP_BLT                        OP_2D(0x3)
    145#define OP_XY_SETUP_MONO_PATTERN_SL_BLT             OP_2D(0x11)
    146#define OP_XY_PIXEL_BLT                             OP_2D(0x24)
    147#define OP_XY_SCANLINES_BLT                         OP_2D(0x25)
    148#define OP_XY_TEXT_BLT                              OP_2D(0x26)
    149#define OP_XY_TEXT_IMMEDIATE_BLT                    OP_2D(0x31)
    150#define OP_XY_COLOR_BLT                             OP_2D(0x50)
    151#define OP_XY_PAT_BLT                               OP_2D(0x51)
    152#define OP_XY_MONO_PAT_BLT                          OP_2D(0x52)
    153#define OP_XY_SRC_COPY_BLT                          OP_2D(0x53)
    154#define OP_XY_MONO_SRC_COPY_BLT                     OP_2D(0x54)
    155#define OP_XY_FULL_BLT                              OP_2D(0x55)
    156#define OP_XY_FULL_MONO_SRC_BLT                     OP_2D(0x56)
    157#define OP_XY_FULL_MONO_PATTERN_BLT                 OP_2D(0x57)
    158#define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT        OP_2D(0x58)
    159#define OP_XY_MONO_PAT_FIXED_BLT                    OP_2D(0x59)
    160#define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT           OP_2D(0x71)
    161#define OP_XY_PAT_BLT_IMMEDIATE                     OP_2D(0x72)
    162#define OP_XY_SRC_COPY_CHROMA_BLT                   OP_2D(0x73)
    163#define OP_XY_FULL_IMMEDIATE_PATTERN_BLT            OP_2D(0x74)
    164#define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT   OP_2D(0x75)
    165#define OP_XY_PAT_CHROMA_BLT                        OP_2D(0x76)
    166#define OP_XY_PAT_CHROMA_BLT_IMMEDIATE              OP_2D(0x77)
    167
    168/* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */
    169#define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \
    170	((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode))
    171
    172#define OP_STATE_PREFETCH                       OP_3D_MEDIA(0x0, 0x0, 0x03)
    173
    174#define OP_STATE_BASE_ADDRESS                   OP_3D_MEDIA(0x0, 0x1, 0x01)
    175#define OP_STATE_SIP                            OP_3D_MEDIA(0x0, 0x1, 0x02)
    176#define OP_3D_MEDIA_0_1_4			OP_3D_MEDIA(0x0, 0x1, 0x04)
    177#define OP_SWTESS_BASE_ADDRESS			OP_3D_MEDIA(0x0, 0x1, 0x03)
    178
    179#define OP_3DSTATE_VF_STATISTICS_GM45           OP_3D_MEDIA(0x1, 0x0, 0x0B)
    180
    181#define OP_PIPELINE_SELECT                      OP_3D_MEDIA(0x1, 0x1, 0x04)
    182
    183#define OP_MEDIA_VFE_STATE                      OP_3D_MEDIA(0x2, 0x0, 0x0)
    184#define OP_MEDIA_CURBE_LOAD                     OP_3D_MEDIA(0x2, 0x0, 0x1)
    185#define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD      OP_3D_MEDIA(0x2, 0x0, 0x2)
    186#define OP_MEDIA_GATEWAY_STATE                  OP_3D_MEDIA(0x2, 0x0, 0x3)
    187#define OP_MEDIA_STATE_FLUSH                    OP_3D_MEDIA(0x2, 0x0, 0x4)
    188#define OP_MEDIA_POOL_STATE                     OP_3D_MEDIA(0x2, 0x0, 0x5)
    189
    190#define OP_MEDIA_OBJECT                         OP_3D_MEDIA(0x2, 0x1, 0x0)
    191#define OP_MEDIA_OBJECT_PRT                     OP_3D_MEDIA(0x2, 0x1, 0x2)
    192#define OP_MEDIA_OBJECT_WALKER                  OP_3D_MEDIA(0x2, 0x1, 0x3)
    193#define OP_GPGPU_WALKER                         OP_3D_MEDIA(0x2, 0x1, 0x5)
    194
    195#define OP_3DSTATE_CLEAR_PARAMS                 OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */
    196#define OP_3DSTATE_DEPTH_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */
    197#define OP_3DSTATE_STENCIL_BUFFER               OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */
    198#define OP_3DSTATE_HIER_DEPTH_BUFFER            OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */
    199#define OP_3DSTATE_VERTEX_BUFFERS               OP_3D_MEDIA(0x3, 0x0, 0x08)
    200#define OP_3DSTATE_VERTEX_ELEMENTS              OP_3D_MEDIA(0x3, 0x0, 0x09)
    201#define OP_3DSTATE_INDEX_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x0A)
    202#define OP_3DSTATE_VF_STATISTICS                OP_3D_MEDIA(0x3, 0x0, 0x0B)
    203#define OP_3DSTATE_VF                           OP_3D_MEDIA(0x3, 0x0, 0x0C)  /* HSW+ */
    204#define OP_3DSTATE_CC_STATE_POINTERS            OP_3D_MEDIA(0x3, 0x0, 0x0E)
    205#define OP_3DSTATE_SCISSOR_STATE_POINTERS       OP_3D_MEDIA(0x3, 0x0, 0x0F)
    206#define OP_3DSTATE_VS                           OP_3D_MEDIA(0x3, 0x0, 0x10)
    207#define OP_3DSTATE_GS                           OP_3D_MEDIA(0x3, 0x0, 0x11)
    208#define OP_3DSTATE_CLIP                         OP_3D_MEDIA(0x3, 0x0, 0x12)
    209#define OP_3DSTATE_SF                           OP_3D_MEDIA(0x3, 0x0, 0x13)
    210#define OP_3DSTATE_WM                           OP_3D_MEDIA(0x3, 0x0, 0x14)
    211#define OP_3DSTATE_CONSTANT_VS                  OP_3D_MEDIA(0x3, 0x0, 0x15)
    212#define OP_3DSTATE_CONSTANT_GS                  OP_3D_MEDIA(0x3, 0x0, 0x16)
    213#define OP_3DSTATE_CONSTANT_PS                  OP_3D_MEDIA(0x3, 0x0, 0x17)
    214#define OP_3DSTATE_SAMPLE_MASK                  OP_3D_MEDIA(0x3, 0x0, 0x18)
    215#define OP_3DSTATE_CONSTANT_HS                  OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */
    216#define OP_3DSTATE_CONSTANT_DS                  OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */
    217#define OP_3DSTATE_HS                           OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */
    218#define OP_3DSTATE_TE                           OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */
    219#define OP_3DSTATE_DS                           OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */
    220#define OP_3DSTATE_STREAMOUT                    OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */
    221#define OP_3DSTATE_SBE                          OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */
    222#define OP_3DSTATE_PS                           OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */
    223#define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */
    224#define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC   OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */
    225#define OP_3DSTATE_BLEND_STATE_POINTERS         OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */
    226#define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */
    227#define OP_3DSTATE_BINDING_TABLE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */
    228#define OP_3DSTATE_BINDING_TABLE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */
    229#define OP_3DSTATE_BINDING_TABLE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */
    230#define OP_3DSTATE_BINDING_TABLE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */
    231#define OP_3DSTATE_BINDING_TABLE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */
    232#define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */
    233#define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */
    234#define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */
    235#define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */
    236#define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */
    237#define OP_3DSTATE_URB_VS                       OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */
    238#define OP_3DSTATE_URB_HS                       OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */
    239#define OP_3DSTATE_URB_DS                       OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */
    240#define OP_3DSTATE_URB_GS                       OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */
    241#define OP_3DSTATE_GATHER_CONSTANT_VS           OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */
    242#define OP_3DSTATE_GATHER_CONSTANT_GS           OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */
    243#define OP_3DSTATE_GATHER_CONSTANT_HS           OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */
    244#define OP_3DSTATE_GATHER_CONSTANT_DS           OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */
    245#define OP_3DSTATE_GATHER_CONSTANT_PS           OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */
    246#define OP_3DSTATE_DX9_CONSTANTF_VS             OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */
    247#define OP_3DSTATE_DX9_CONSTANTF_PS             OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */
    248#define OP_3DSTATE_DX9_CONSTANTI_VS             OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */
    249#define OP_3DSTATE_DX9_CONSTANTI_PS             OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */
    250#define OP_3DSTATE_DX9_CONSTANTB_VS             OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */
    251#define OP_3DSTATE_DX9_CONSTANTB_PS             OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */
    252#define OP_3DSTATE_DX9_LOCAL_VALID_VS           OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */
    253#define OP_3DSTATE_DX9_LOCAL_VALID_PS           OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */
    254#define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS       OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */
    255#define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS       OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */
    256#define OP_3DSTATE_BINDING_TABLE_EDIT_VS        OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */
    257#define OP_3DSTATE_BINDING_TABLE_EDIT_GS        OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */
    258#define OP_3DSTATE_BINDING_TABLE_EDIT_HS        OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */
    259#define OP_3DSTATE_BINDING_TABLE_EDIT_DS        OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */
    260#define OP_3DSTATE_BINDING_TABLE_EDIT_PS        OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */
    261
    262#define OP_3DSTATE_VF_INSTANCING 		OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */
    263#define OP_3DSTATE_VF_SGVS  			OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */
    264#define OP_3DSTATE_VF_TOPOLOGY   		OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */
    265#define OP_3DSTATE_WM_CHROMAKEY   		OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */
    266#define OP_3DSTATE_PS_BLEND   			OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */
    267#define OP_3DSTATE_WM_DEPTH_STENCIL   		OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */
    268#define OP_3DSTATE_PS_EXTRA   			OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */
    269#define OP_3DSTATE_RASTER   			OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */
    270#define OP_3DSTATE_SBE_SWIZ   			OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */
    271#define OP_3DSTATE_WM_HZ_OP   			OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */
    272#define OP_3DSTATE_COMPONENT_PACKING		OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */
    273
    274#define OP_3DSTATE_DRAWING_RECTANGLE            OP_3D_MEDIA(0x3, 0x1, 0x00)
    275#define OP_3DSTATE_SAMPLER_PALETTE_LOAD0        OP_3D_MEDIA(0x3, 0x1, 0x02)
    276#define OP_3DSTATE_CHROMA_KEY                   OP_3D_MEDIA(0x3, 0x1, 0x04)
    277#define OP_SNB_3DSTATE_DEPTH_BUFFER             OP_3D_MEDIA(0x3, 0x1, 0x05)
    278#define OP_3DSTATE_POLY_STIPPLE_OFFSET          OP_3D_MEDIA(0x3, 0x1, 0x06)
    279#define OP_3DSTATE_POLY_STIPPLE_PATTERN         OP_3D_MEDIA(0x3, 0x1, 0x07)
    280#define OP_3DSTATE_LINE_STIPPLE                 OP_3D_MEDIA(0x3, 0x1, 0x08)
    281#define OP_3DSTATE_AA_LINE_PARAMS               OP_3D_MEDIA(0x3, 0x1, 0x0A)
    282#define OP_3DSTATE_GS_SVB_INDEX                 OP_3D_MEDIA(0x3, 0x1, 0x0B)
    283#define OP_3DSTATE_SAMPLER_PALETTE_LOAD1        OP_3D_MEDIA(0x3, 0x1, 0x0C)
    284#define OP_3DSTATE_MULTISAMPLE_BDW		OP_3D_MEDIA(0x3, 0x0, 0x0D)
    285#define OP_SNB_3DSTATE_STENCIL_BUFFER           OP_3D_MEDIA(0x3, 0x1, 0x0E)
    286#define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER        OP_3D_MEDIA(0x3, 0x1, 0x0F)
    287#define OP_SNB_3DSTATE_CLEAR_PARAMS             OP_3D_MEDIA(0x3, 0x1, 0x10)
    288#define OP_3DSTATE_MONOFILTER_SIZE              OP_3D_MEDIA(0x3, 0x1, 0x11)
    289#define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS       OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */
    290#define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS       OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */
    291#define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS       OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */
    292#define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS       OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */
    293#define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS       OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */
    294#define OP_3DSTATE_SO_DECL_LIST                 OP_3D_MEDIA(0x3, 0x1, 0x17)
    295#define OP_3DSTATE_SO_BUFFER                    OP_3D_MEDIA(0x3, 0x1, 0x18)
    296#define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC     OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */
    297#define OP_3DSTATE_GATHER_POOL_ALLOC            OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */
    298#define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */
    299#define OP_3DSTATE_SAMPLE_PATTERN               OP_3D_MEDIA(0x3, 0x1, 0x1C)
    300#define OP_PIPE_CONTROL                         OP_3D_MEDIA(0x3, 0x2, 0x00)
    301#define OP_3DPRIMITIVE                          OP_3D_MEDIA(0x3, 0x3, 0x00)
    302
    303/* VCCP Command Parser */
    304
    305/*
    306 * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License)
    307 * git://anongit.freedesktop.org/vaapi/intel-driver
    308 * src/i965_defines.h
    309 *
    310 */
    311
    312#define OP_MFX(pipeline, op, sub_opa, sub_opb)     \
    313	(3 << 13 | \
    314	 (pipeline) << 11 | \
    315	 (op) << 8 | \
    316	 (sub_opa) << 5 | \
    317	 (sub_opb))
    318
    319#define OP_MFX_PIPE_MODE_SELECT                    OP_MFX(2, 0, 0, 0)  /* ALL */
    320#define OP_MFX_SURFACE_STATE                       OP_MFX(2, 0, 0, 1)  /* ALL */
    321#define OP_MFX_PIPE_BUF_ADDR_STATE                 OP_MFX(2, 0, 0, 2)  /* ALL */
    322#define OP_MFX_IND_OBJ_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 3)  /* ALL */
    323#define OP_MFX_BSP_BUF_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 4)  /* ALL */
    324#define OP_2_0_0_5                                 OP_MFX(2, 0, 0, 5)  /* ALL */
    325#define OP_MFX_STATE_POINTER                       OP_MFX(2, 0, 0, 6)  /* ALL */
    326#define OP_MFX_QM_STATE                            OP_MFX(2, 0, 0, 7)  /* IVB+ */
    327#define OP_MFX_FQM_STATE                           OP_MFX(2, 0, 0, 8)  /* IVB+ */
    328#define OP_MFX_PAK_INSERT_OBJECT                   OP_MFX(2, 0, 2, 8)  /* IVB+ */
    329#define OP_MFX_STITCH_OBJECT                       OP_MFX(2, 0, 2, 0xA)  /* IVB+ */
    330
    331#define OP_MFD_IT_OBJECT                           OP_MFX(2, 0, 1, 9) /* ALL */
    332
    333#define OP_MFX_WAIT                                OP_MFX(1, 0, 0, 0) /* IVB+ */
    334#define OP_MFX_AVC_IMG_STATE                       OP_MFX(2, 1, 0, 0) /* ALL */
    335#define OP_MFX_AVC_QM_STATE                        OP_MFX(2, 1, 0, 1) /* ALL */
    336#define OP_MFX_AVC_DIRECTMODE_STATE                OP_MFX(2, 1, 0, 2) /* ALL */
    337#define OP_MFX_AVC_SLICE_STATE                     OP_MFX(2, 1, 0, 3) /* ALL */
    338#define OP_MFX_AVC_REF_IDX_STATE                   OP_MFX(2, 1, 0, 4) /* ALL */
    339#define OP_MFX_AVC_WEIGHTOFFSET_STATE              OP_MFX(2, 1, 0, 5) /* ALL */
    340#define OP_MFD_AVC_PICID_STATE                     OP_MFX(2, 1, 1, 5) /* HSW+ */
    341#define OP_MFD_AVC_DPB_STATE			   OP_MFX(2, 1, 1, 6) /* IVB+ */
    342#define OP_MFD_AVC_SLICEADDR                       OP_MFX(2, 1, 1, 7) /* IVB+ */
    343#define OP_MFD_AVC_BSD_OBJECT                      OP_MFX(2, 1, 1, 8) /* ALL */
    344#define OP_MFC_AVC_PAK_OBJECT                      OP_MFX(2, 1, 2, 9) /* ALL */
    345
    346#define OP_MFX_VC1_PRED_PIPE_STATE                 OP_MFX(2, 2, 0, 1) /* ALL */
    347#define OP_MFX_VC1_DIRECTMODE_STATE                OP_MFX(2, 2, 0, 2) /* ALL */
    348#define OP_MFD_VC1_SHORT_PIC_STATE                 OP_MFX(2, 2, 1, 0) /* IVB+ */
    349#define OP_MFD_VC1_LONG_PIC_STATE                  OP_MFX(2, 2, 1, 1) /* IVB+ */
    350#define OP_MFD_VC1_BSD_OBJECT                      OP_MFX(2, 2, 1, 8) /* ALL */
    351
    352#define OP_MFX_MPEG2_PIC_STATE                     OP_MFX(2, 3, 0, 0) /* ALL */
    353#define OP_MFX_MPEG2_QM_STATE                      OP_MFX(2, 3, 0, 1) /* ALL */
    354#define OP_MFD_MPEG2_BSD_OBJECT                    OP_MFX(2, 3, 1, 8) /* ALL */
    355#define OP_MFC_MPEG2_SLICEGROUP_STATE              OP_MFX(2, 3, 2, 3) /* ALL */
    356#define OP_MFC_MPEG2_PAK_OBJECT                    OP_MFX(2, 3, 2, 9) /* ALL */
    357
    358#define OP_MFX_2_6_0_0                             OP_MFX(2, 6, 0, 0) /* IVB+ */
    359#define OP_MFX_2_6_0_8                             OP_MFX(2, 6, 0, 8) /* IVB+ */
    360#define OP_MFX_2_6_0_9                             OP_MFX(2, 6, 0, 9) /* IVB+ */
    361
    362#define OP_MFX_JPEG_PIC_STATE                      OP_MFX(2, 7, 0, 0)
    363#define OP_MFX_JPEG_HUFF_TABLE_STATE               OP_MFX(2, 7, 0, 2)
    364#define OP_MFD_JPEG_BSD_OBJECT                     OP_MFX(2, 7, 1, 8)
    365
    366#define OP_VEB(pipeline, op, sub_opa, sub_opb) \
    367	(3 << 13 | \
    368	 (pipeline) << 11 | \
    369	 (op) << 8 | \
    370	 (sub_opa) << 5 | \
    371	 (sub_opb))
    372
    373#define OP_VEB_SURFACE_STATE                       OP_VEB(2, 4, 0, 0)
    374#define OP_VEB_STATE                               OP_VEB(2, 4, 0, 2)
    375#define OP_VEB_DNDI_IECP_STATE                     OP_VEB(2, 4, 0, 3)
    376
    377struct parser_exec_state;
    378
    379typedef int (*parser_cmd_handler)(struct parser_exec_state *s);
    380
    381#define GVT_CMD_HASH_BITS   7
    382
    383/* which DWords need address fix */
    384#define ADDR_FIX_1(x1)			(1 << (x1))
    385#define ADDR_FIX_2(x1, x2)		(ADDR_FIX_1(x1) | ADDR_FIX_1(x2))
    386#define ADDR_FIX_3(x1, x2, x3)		(ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3))
    387#define ADDR_FIX_4(x1, x2, x3, x4)	(ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4))
    388#define ADDR_FIX_5(x1, x2, x3, x4, x5)  (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5))
    389
    390#define DWORD_FIELD(dword, end, start) \
    391	FIELD_GET(GENMASK(end, start), cmd_val(s, dword))
    392
    393#define OP_LENGTH_BIAS 2
    394#define CMD_LEN(value)  (value + OP_LENGTH_BIAS)
    395
    396static int gvt_check_valid_cmd_length(int len, int valid_len)
    397{
    398	if (valid_len != len) {
    399		gvt_err("len is not valid:  len=%u  valid_len=%u\n",
    400			len, valid_len);
    401		return -EFAULT;
    402	}
    403	return 0;
    404}
    405
    406struct cmd_info {
    407	const char *name;
    408	u32 opcode;
    409
    410#define F_LEN_MASK	3U
    411#define F_LEN_CONST  1U
    412#define F_LEN_VAR    0U
    413/* value is const although LEN maybe variable */
    414#define F_LEN_VAR_FIXED    (1<<1)
    415
    416/*
    417 * command has its own ip advance logic
    418 * e.g. MI_BATCH_START, MI_BATCH_END
    419 */
    420#define F_IP_ADVANCE_CUSTOM (1<<2)
    421	u32 flag;
    422
    423#define R_RCS	BIT(RCS0)
    424#define R_VCS1  BIT(VCS0)
    425#define R_VCS2  BIT(VCS1)
    426#define R_VCS	(R_VCS1 | R_VCS2)
    427#define R_BCS	BIT(BCS0)
    428#define R_VECS	BIT(VECS0)
    429#define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS)
    430	/* rings that support this cmd: BLT/RCS/VCS/VECS */
    431	u16 rings;
    432
    433	/* devices that support this cmd: SNB/IVB/HSW/... */
    434	u16 devices;
    435
    436	/* which DWords are address that need fix up.
    437	 * bit 0 means a 32-bit non address operand in command
    438	 * bit 1 means address operand, which could be 32-bit
    439	 * or 64-bit depending on different architectures.(
    440	 * defined by "gmadr_bytes_in_cmd" in intel_gvt.
    441	 * No matter the address length, each address only takes
    442	 * one bit in the bitmap.
    443	 */
    444	u16 addr_bitmap;
    445
    446	/* flag == F_LEN_CONST : command length
    447	 * flag == F_LEN_VAR : length bias bits
    448	 * Note: length is in DWord
    449	 */
    450	u32 len;
    451
    452	parser_cmd_handler handler;
    453
    454	/* valid length in DWord */
    455	u32 valid_len;
    456};
    457
    458struct cmd_entry {
    459	struct hlist_node hlist;
    460	const struct cmd_info *info;
    461};
    462
    463enum {
    464	RING_BUFFER_INSTRUCTION,
    465	BATCH_BUFFER_INSTRUCTION,
    466	BATCH_BUFFER_2ND_LEVEL,
    467	RING_BUFFER_CTX,
    468};
    469
    470enum {
    471	GTT_BUFFER,
    472	PPGTT_BUFFER
    473};
    474
    475struct parser_exec_state {
    476	struct intel_vgpu *vgpu;
    477	const struct intel_engine_cs *engine;
    478
    479	int buf_type;
    480
    481	/* batch buffer address type */
    482	int buf_addr_type;
    483
    484	/* graphics memory address of ring buffer start */
    485	unsigned long ring_start;
    486	unsigned long ring_size;
    487	unsigned long ring_head;
    488	unsigned long ring_tail;
    489
    490	/* instruction graphics memory address */
    491	unsigned long ip_gma;
    492
    493	/* mapped va of the instr_gma */
    494	void *ip_va;
    495	void *rb_va;
    496
    497	void *ret_bb_va;
    498	/* next instruction when return from  batch buffer to ring buffer */
    499	unsigned long ret_ip_gma_ring;
    500
    501	/* next instruction when return from 2nd batch buffer to batch buffer */
    502	unsigned long ret_ip_gma_bb;
    503
    504	/* batch buffer address type (GTT or PPGTT)
    505	 * used when ret from 2nd level batch buffer
    506	 */
    507	int saved_buf_addr_type;
    508	bool is_ctx_wa;
    509	bool is_init_ctx;
    510
    511	const struct cmd_info *info;
    512
    513	struct intel_vgpu_workload *workload;
    514};
    515
    516#define gmadr_dw_number(s)	\
    517	(s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2)
    518
    519static unsigned long bypass_scan_mask = 0;
    520
    521/* ring ALL, type = 0 */
    522static const struct sub_op_bits sub_op_mi[] = {
    523	{31, 29},
    524	{28, 23},
    525};
    526
    527static const struct decode_info decode_info_mi = {
    528	"MI",
    529	OP_LEN_MI,
    530	ARRAY_SIZE(sub_op_mi),
    531	sub_op_mi,
    532};
    533
    534/* ring RCS, command type 2 */
    535static const struct sub_op_bits sub_op_2d[] = {
    536	{31, 29},
    537	{28, 22},
    538};
    539
    540static const struct decode_info decode_info_2d = {
    541	"2D",
    542	OP_LEN_2D,
    543	ARRAY_SIZE(sub_op_2d),
    544	sub_op_2d,
    545};
    546
    547/* ring RCS, command type 3 */
    548static const struct sub_op_bits sub_op_3d_media[] = {
    549	{31, 29},
    550	{28, 27},
    551	{26, 24},
    552	{23, 16},
    553};
    554
    555static const struct decode_info decode_info_3d_media = {
    556	"3D_Media",
    557	OP_LEN_3D_MEDIA,
    558	ARRAY_SIZE(sub_op_3d_media),
    559	sub_op_3d_media,
    560};
    561
    562/* ring VCS, command type 3 */
    563static const struct sub_op_bits sub_op_mfx_vc[] = {
    564	{31, 29},
    565	{28, 27},
    566	{26, 24},
    567	{23, 21},
    568	{20, 16},
    569};
    570
    571static const struct decode_info decode_info_mfx_vc = {
    572	"MFX_VC",
    573	OP_LEN_MFX_VC,
    574	ARRAY_SIZE(sub_op_mfx_vc),
    575	sub_op_mfx_vc,
    576};
    577
    578/* ring VECS, command type 3 */
    579static const struct sub_op_bits sub_op_vebox[] = {
    580	{31, 29},
    581	{28, 27},
    582	{26, 24},
    583	{23, 21},
    584	{20, 16},
    585};
    586
    587static const struct decode_info decode_info_vebox = {
    588	"VEBOX",
    589	OP_LEN_VEBOX,
    590	ARRAY_SIZE(sub_op_vebox),
    591	sub_op_vebox,
    592};
    593
    594static const struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = {
    595	[RCS0] = {
    596		&decode_info_mi,
    597		NULL,
    598		NULL,
    599		&decode_info_3d_media,
    600		NULL,
    601		NULL,
    602		NULL,
    603		NULL,
    604	},
    605
    606	[VCS0] = {
    607		&decode_info_mi,
    608		NULL,
    609		NULL,
    610		&decode_info_mfx_vc,
    611		NULL,
    612		NULL,
    613		NULL,
    614		NULL,
    615	},
    616
    617	[BCS0] = {
    618		&decode_info_mi,
    619		NULL,
    620		&decode_info_2d,
    621		NULL,
    622		NULL,
    623		NULL,
    624		NULL,
    625		NULL,
    626	},
    627
    628	[VECS0] = {
    629		&decode_info_mi,
    630		NULL,
    631		NULL,
    632		&decode_info_vebox,
    633		NULL,
    634		NULL,
    635		NULL,
    636		NULL,
    637	},
    638
    639	[VCS1] = {
    640		&decode_info_mi,
    641		NULL,
    642		NULL,
    643		&decode_info_mfx_vc,
    644		NULL,
    645		NULL,
    646		NULL,
    647		NULL,
    648	},
    649};
    650
    651static inline u32 get_opcode(u32 cmd, const struct intel_engine_cs *engine)
    652{
    653	const struct decode_info *d_info;
    654
    655	d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)];
    656	if (d_info == NULL)
    657		return INVALID_OP;
    658
    659	return cmd >> (32 - d_info->op_len);
    660}
    661
    662static inline const struct cmd_info *
    663find_cmd_entry(struct intel_gvt *gvt, unsigned int opcode,
    664	       const struct intel_engine_cs *engine)
    665{
    666	struct cmd_entry *e;
    667
    668	hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) {
    669		if (opcode == e->info->opcode &&
    670		    e->info->rings & engine->mask)
    671			return e->info;
    672	}
    673	return NULL;
    674}
    675
    676static inline const struct cmd_info *
    677get_cmd_info(struct intel_gvt *gvt, u32 cmd,
    678	     const struct intel_engine_cs *engine)
    679{
    680	u32 opcode;
    681
    682	opcode = get_opcode(cmd, engine);
    683	if (opcode == INVALID_OP)
    684		return NULL;
    685
    686	return find_cmd_entry(gvt, opcode, engine);
    687}
    688
    689static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low)
    690{
    691	return (cmd >> low) & ((1U << (hi - low + 1)) - 1);
    692}
    693
    694static inline void print_opcode(u32 cmd, const struct intel_engine_cs *engine)
    695{
    696	const struct decode_info *d_info;
    697	int i;
    698
    699	d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)];
    700	if (d_info == NULL)
    701		return;
    702
    703	gvt_dbg_cmd("opcode=0x%x %s sub_ops:",
    704			cmd >> (32 - d_info->op_len), d_info->name);
    705
    706	for (i = 0; i < d_info->nr_sub_op; i++)
    707		pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi,
    708					d_info->sub_op[i].low));
    709
    710	pr_err("\n");
    711}
    712
    713static inline u32 *cmd_ptr(struct parser_exec_state *s, int index)
    714{
    715	return s->ip_va + (index << 2);
    716}
    717
    718static inline u32 cmd_val(struct parser_exec_state *s, int index)
    719{
    720	return *cmd_ptr(s, index);
    721}
    722
    723static inline bool is_init_ctx(struct parser_exec_state *s)
    724{
    725	return (s->buf_type == RING_BUFFER_CTX && s->is_init_ctx);
    726}
    727
    728static void parser_exec_state_dump(struct parser_exec_state *s)
    729{
    730	int cnt = 0;
    731	int i;
    732
    733	gvt_dbg_cmd("  vgpu%d RING%s: ring_start(%08lx) ring_end(%08lx)"
    734		    " ring_head(%08lx) ring_tail(%08lx)\n",
    735		    s->vgpu->id, s->engine->name,
    736		    s->ring_start, s->ring_start + s->ring_size,
    737		    s->ring_head, s->ring_tail);
    738
    739	gvt_dbg_cmd("  %s %s ip_gma(%08lx) ",
    740			s->buf_type == RING_BUFFER_INSTRUCTION ?
    741			"RING_BUFFER" : ((s->buf_type == RING_BUFFER_CTX) ?
    742				"CTX_BUFFER" : "BATCH_BUFFER"),
    743			s->buf_addr_type == GTT_BUFFER ?
    744			"GTT" : "PPGTT", s->ip_gma);
    745
    746	if (s->ip_va == NULL) {
    747		gvt_dbg_cmd(" ip_va(NULL)");
    748		return;
    749	}
    750
    751	gvt_dbg_cmd("  ip_va=%p: %08x %08x %08x %08x\n",
    752			s->ip_va, cmd_val(s, 0), cmd_val(s, 1),
    753			cmd_val(s, 2), cmd_val(s, 3));
    754
    755	print_opcode(cmd_val(s, 0), s->engine);
    756
    757	s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12);
    758
    759	while (cnt < 1024) {
    760		gvt_dbg_cmd("ip_va=%p: ", s->ip_va);
    761		for (i = 0; i < 8; i++)
    762			gvt_dbg_cmd("%08x ", cmd_val(s, i));
    763		gvt_dbg_cmd("\n");
    764
    765		s->ip_va += 8 * sizeof(u32);
    766		cnt += 8;
    767	}
    768}
    769
    770static inline void update_ip_va(struct parser_exec_state *s)
    771{
    772	unsigned long len = 0;
    773
    774	if (WARN_ON(s->ring_head == s->ring_tail))
    775		return;
    776
    777	if (s->buf_type == RING_BUFFER_INSTRUCTION ||
    778			s->buf_type == RING_BUFFER_CTX) {
    779		unsigned long ring_top = s->ring_start + s->ring_size;
    780
    781		if (s->ring_head > s->ring_tail) {
    782			if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top)
    783				len = (s->ip_gma - s->ring_head);
    784			else if (s->ip_gma >= s->ring_start &&
    785					s->ip_gma <= s->ring_tail)
    786				len = (ring_top - s->ring_head) +
    787					(s->ip_gma - s->ring_start);
    788		} else
    789			len = (s->ip_gma - s->ring_head);
    790
    791		s->ip_va = s->rb_va + len;
    792	} else {/* shadow batch buffer */
    793		s->ip_va = s->ret_bb_va;
    794	}
    795}
    796
    797static inline int ip_gma_set(struct parser_exec_state *s,
    798		unsigned long ip_gma)
    799{
    800	WARN_ON(!IS_ALIGNED(ip_gma, 4));
    801
    802	s->ip_gma = ip_gma;
    803	update_ip_va(s);
    804	return 0;
    805}
    806
    807static inline int ip_gma_advance(struct parser_exec_state *s,
    808		unsigned int dw_len)
    809{
    810	s->ip_gma += (dw_len << 2);
    811
    812	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
    813		if (s->ip_gma >= s->ring_start + s->ring_size)
    814			s->ip_gma -= s->ring_size;
    815		update_ip_va(s);
    816	} else {
    817		s->ip_va += (dw_len << 2);
    818	}
    819
    820	return 0;
    821}
    822
    823static inline int get_cmd_length(const struct cmd_info *info, u32 cmd)
    824{
    825	if ((info->flag & F_LEN_MASK) == F_LEN_CONST)
    826		return info->len;
    827	else
    828		return (cmd & ((1U << info->len) - 1)) + 2;
    829	return 0;
    830}
    831
    832static inline int cmd_length(struct parser_exec_state *s)
    833{
    834	return get_cmd_length(s->info, cmd_val(s, 0));
    835}
    836
    837/* do not remove this, some platform may need clflush here */
    838#define patch_value(s, addr, val) do { \
    839	*addr = val; \
    840} while (0)
    841
    842static inline bool is_mocs_mmio(unsigned int offset)
    843{
    844	return ((offset >= 0xc800) && (offset <= 0xcff8)) ||
    845		((offset >= 0xb020) && (offset <= 0xb0a0));
    846}
    847
    848static int is_cmd_update_pdps(unsigned int offset,
    849			      struct parser_exec_state *s)
    850{
    851	u32 base = s->workload->engine->mmio_base;
    852	return i915_mmio_reg_equal(_MMIO(offset), GEN8_RING_PDP_UDW(base, 0));
    853}
    854
    855static int cmd_pdp_mmio_update_handler(struct parser_exec_state *s,
    856				       unsigned int offset, unsigned int index)
    857{
    858	struct intel_vgpu *vgpu = s->vgpu;
    859	struct intel_vgpu_mm *shadow_mm = s->workload->shadow_mm;
    860	struct intel_vgpu_mm *mm;
    861	u64 pdps[GEN8_3LVL_PDPES];
    862
    863	if (shadow_mm->ppgtt_mm.root_entry_type ==
    864	    GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
    865		pdps[0] = (u64)cmd_val(s, 2) << 32;
    866		pdps[0] |= cmd_val(s, 4);
    867
    868		mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
    869		if (!mm) {
    870			gvt_vgpu_err("failed to get the 4-level shadow vm\n");
    871			return -EINVAL;
    872		}
    873		intel_vgpu_mm_get(mm);
    874		list_add_tail(&mm->ppgtt_mm.link,
    875			      &s->workload->lri_shadow_mm);
    876		*cmd_ptr(s, 2) = upper_32_bits(mm->ppgtt_mm.shadow_pdps[0]);
    877		*cmd_ptr(s, 4) = lower_32_bits(mm->ppgtt_mm.shadow_pdps[0]);
    878	} else {
    879		/* Currently all guests use PML4 table and now can't
    880		 * have a guest with 3-level table but uses LRI for
    881		 * PPGTT update. So this is simply un-testable. */
    882		GEM_BUG_ON(1);
    883		gvt_vgpu_err("invalid shared shadow vm type\n");
    884		return -EINVAL;
    885	}
    886	return 0;
    887}
    888
    889static int cmd_reg_handler(struct parser_exec_state *s,
    890	unsigned int offset, unsigned int index, char *cmd)
    891{
    892	struct intel_vgpu *vgpu = s->vgpu;
    893	struct intel_gvt *gvt = vgpu->gvt;
    894	u32 ctx_sr_ctl;
    895	u32 *vreg, vreg_old;
    896
    897	if (offset + 4 > gvt->device_info.mmio_size) {
    898		gvt_vgpu_err("%s access to (%x) outside of MMIO range\n",
    899				cmd, offset);
    900		return -EFAULT;
    901	}
    902
    903	if (is_init_ctx(s)) {
    904		struct intel_gvt_mmio_info *mmio_info;
    905
    906		intel_gvt_mmio_set_cmd_accessible(gvt, offset);
    907		mmio_info = intel_gvt_find_mmio_info(gvt, offset);
    908		if (mmio_info && mmio_info->write)
    909			intel_gvt_mmio_set_cmd_write_patch(gvt, offset);
    910		return 0;
    911	}
    912
    913	if (!intel_gvt_mmio_is_cmd_accessible(gvt, offset)) {
    914		gvt_vgpu_err("%s access to non-render register (%x)\n",
    915				cmd, offset);
    916		return -EBADRQC;
    917	}
    918
    919	if (!strncmp(cmd, "srm", 3) ||
    920			!strncmp(cmd, "lrm", 3)) {
    921		if (offset == i915_mmio_reg_offset(GEN8_L3SQCREG4) ||
    922		    offset == 0x21f0 ||
    923		    (IS_BROADWELL(gvt->gt->i915) &&
    924		     offset == i915_mmio_reg_offset(INSTPM)))
    925			return 0;
    926		else {
    927			gvt_vgpu_err("%s access to register (%x)\n",
    928					cmd, offset);
    929			return -EPERM;
    930		}
    931	}
    932
    933	if (!strncmp(cmd, "lrr-src", 7) ||
    934			!strncmp(cmd, "lrr-dst", 7)) {
    935		if (IS_BROADWELL(gvt->gt->i915) && offset == 0x215c)
    936			return 0;
    937		else {
    938			gvt_vgpu_err("not allowed cmd %s reg (%x)\n", cmd, offset);
    939			return -EPERM;
    940		}
    941	}
    942
    943	if (!strncmp(cmd, "pipe_ctrl", 9)) {
    944		/* TODO: add LRI POST logic here */
    945		return 0;
    946	}
    947
    948	if (strncmp(cmd, "lri", 3))
    949		return -EPERM;
    950
    951	/* below are all lri handlers */
    952	vreg = &vgpu_vreg(s->vgpu, offset);
    953
    954	if (is_cmd_update_pdps(offset, s) &&
    955	    cmd_pdp_mmio_update_handler(s, offset, index))
    956		return -EINVAL;
    957
    958	if (offset == i915_mmio_reg_offset(DERRMR) ||
    959		offset == i915_mmio_reg_offset(FORCEWAKE_MT)) {
    960		/* Writing to HW VGT_PVINFO_PAGE offset will be discarded */
    961		patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE);
    962	}
    963
    964	if (is_mocs_mmio(offset))
    965		*vreg = cmd_val(s, index + 1);
    966
    967	vreg_old = *vreg;
    968
    969	if (intel_gvt_mmio_is_cmd_write_patch(gvt, offset)) {
    970		u32 cmdval_new, cmdval;
    971		struct intel_gvt_mmio_info *mmio_info;
    972
    973		cmdval = cmd_val(s, index + 1);
    974
    975		mmio_info = intel_gvt_find_mmio_info(gvt, offset);
    976		if (!mmio_info) {
    977			cmdval_new = cmdval;
    978		} else {
    979			u64 ro_mask = mmio_info->ro_mask;
    980			int ret;
    981
    982			if (likely(!ro_mask))
    983				ret = mmio_info->write(s->vgpu, offset,
    984						&cmdval, 4);
    985			else {
    986				gvt_vgpu_err("try to write RO reg %x\n",
    987						offset);
    988				ret = -EBADRQC;
    989			}
    990			if (ret)
    991				return ret;
    992			cmdval_new = *vreg;
    993		}
    994		if (cmdval_new != cmdval)
    995			patch_value(s, cmd_ptr(s, index+1), cmdval_new);
    996	}
    997
    998	/* only patch cmd. restore vreg value if changed in mmio write handler*/
    999	*vreg = vreg_old;
   1000
   1001	/* TODO
   1002	 * In order to let workload with inhibit context to generate
   1003	 * correct image data into memory, vregs values will be loaded to
   1004	 * hw via LRIs in the workload with inhibit context. But as
   1005	 * indirect context is loaded prior to LRIs in workload, we don't
   1006	 * want reg values specified in indirect context overwritten by
   1007	 * LRIs in workloads. So, when scanning an indirect context, we
   1008	 * update reg values in it into vregs, so LRIs in workload with
   1009	 * inhibit context will restore with correct values
   1010	 */
   1011	if (GRAPHICS_VER(s->engine->i915) == 9 &&
   1012	    intel_gvt_mmio_is_sr_in_ctx(gvt, offset) &&
   1013	    !strncmp(cmd, "lri", 3)) {
   1014		intel_gvt_read_gpa(s->vgpu,
   1015			s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4);
   1016		/* check inhibit context */
   1017		if (ctx_sr_ctl & 1) {
   1018			u32 data = cmd_val(s, index + 1);
   1019
   1020			if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset))
   1021				intel_vgpu_mask_mmio_write(vgpu,
   1022							offset, &data, 4);
   1023			else
   1024				vgpu_vreg(vgpu, offset) = data;
   1025		}
   1026	}
   1027
   1028	return 0;
   1029}
   1030
   1031#define cmd_reg(s, i) \
   1032	(cmd_val(s, i) & GENMASK(22, 2))
   1033
   1034#define cmd_reg_inhibit(s, i) \
   1035	(cmd_val(s, i) & GENMASK(22, 18))
   1036
   1037#define cmd_gma(s, i) \
   1038	(cmd_val(s, i) & GENMASK(31, 2))
   1039
   1040#define cmd_gma_hi(s, i) \
   1041	(cmd_val(s, i) & GENMASK(15, 0))
   1042
   1043static int cmd_handler_lri(struct parser_exec_state *s)
   1044{
   1045	int i, ret = 0;
   1046	int cmd_len = cmd_length(s);
   1047
   1048	for (i = 1; i < cmd_len; i += 2) {
   1049		if (IS_BROADWELL(s->engine->i915) && s->engine->id != RCS0) {
   1050			if (s->engine->id == BCS0 &&
   1051			    cmd_reg(s, i) == i915_mmio_reg_offset(DERRMR))
   1052				ret |= 0;
   1053			else
   1054				ret |= cmd_reg_inhibit(s, i) ? -EBADRQC : 0;
   1055		}
   1056		if (ret)
   1057			break;
   1058		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri");
   1059		if (ret)
   1060			break;
   1061	}
   1062	return ret;
   1063}
   1064
   1065static int cmd_handler_lrr(struct parser_exec_state *s)
   1066{
   1067	int i, ret = 0;
   1068	int cmd_len = cmd_length(s);
   1069
   1070	for (i = 1; i < cmd_len; i += 2) {
   1071		if (IS_BROADWELL(s->engine->i915))
   1072			ret |= ((cmd_reg_inhibit(s, i) ||
   1073				 (cmd_reg_inhibit(s, i + 1)))) ?
   1074				-EBADRQC : 0;
   1075		if (ret)
   1076			break;
   1077		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src");
   1078		if (ret)
   1079			break;
   1080		ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst");
   1081		if (ret)
   1082			break;
   1083	}
   1084	return ret;
   1085}
   1086
   1087static inline int cmd_address_audit(struct parser_exec_state *s,
   1088		unsigned long guest_gma, int op_size, bool index_mode);
   1089
   1090static int cmd_handler_lrm(struct parser_exec_state *s)
   1091{
   1092	struct intel_gvt *gvt = s->vgpu->gvt;
   1093	int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
   1094	unsigned long gma;
   1095	int i, ret = 0;
   1096	int cmd_len = cmd_length(s);
   1097
   1098	for (i = 1; i < cmd_len;) {
   1099		if (IS_BROADWELL(s->engine->i915))
   1100			ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0;
   1101		if (ret)
   1102			break;
   1103		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm");
   1104		if (ret)
   1105			break;
   1106		if (cmd_val(s, 0) & (1 << 22)) {
   1107			gma = cmd_gma(s, i + 1);
   1108			if (gmadr_bytes == 8)
   1109				gma |= (cmd_gma_hi(s, i + 2)) << 32;
   1110			ret |= cmd_address_audit(s, gma, sizeof(u32), false);
   1111			if (ret)
   1112				break;
   1113		}
   1114		i += gmadr_dw_number(s) + 1;
   1115	}
   1116	return ret;
   1117}
   1118
   1119static int cmd_handler_srm(struct parser_exec_state *s)
   1120{
   1121	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
   1122	unsigned long gma;
   1123	int i, ret = 0;
   1124	int cmd_len = cmd_length(s);
   1125
   1126	for (i = 1; i < cmd_len;) {
   1127		ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm");
   1128		if (ret)
   1129			break;
   1130		if (cmd_val(s, 0) & (1 << 22)) {
   1131			gma = cmd_gma(s, i + 1);
   1132			if (gmadr_bytes == 8)
   1133				gma |= (cmd_gma_hi(s, i + 2)) << 32;
   1134			ret |= cmd_address_audit(s, gma, sizeof(u32), false);
   1135			if (ret)
   1136				break;
   1137		}
   1138		i += gmadr_dw_number(s) + 1;
   1139	}
   1140	return ret;
   1141}
   1142
   1143struct cmd_interrupt_event {
   1144	int pipe_control_notify;
   1145	int mi_flush_dw;
   1146	int mi_user_interrupt;
   1147};
   1148
   1149static const struct cmd_interrupt_event cmd_interrupt_events[] = {
   1150	[RCS0] = {
   1151		.pipe_control_notify = RCS_PIPE_CONTROL,
   1152		.mi_flush_dw = INTEL_GVT_EVENT_RESERVED,
   1153		.mi_user_interrupt = RCS_MI_USER_INTERRUPT,
   1154	},
   1155	[BCS0] = {
   1156		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
   1157		.mi_flush_dw = BCS_MI_FLUSH_DW,
   1158		.mi_user_interrupt = BCS_MI_USER_INTERRUPT,
   1159	},
   1160	[VCS0] = {
   1161		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
   1162		.mi_flush_dw = VCS_MI_FLUSH_DW,
   1163		.mi_user_interrupt = VCS_MI_USER_INTERRUPT,
   1164	},
   1165	[VCS1] = {
   1166		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
   1167		.mi_flush_dw = VCS2_MI_FLUSH_DW,
   1168		.mi_user_interrupt = VCS2_MI_USER_INTERRUPT,
   1169	},
   1170	[VECS0] = {
   1171		.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
   1172		.mi_flush_dw = VECS_MI_FLUSH_DW,
   1173		.mi_user_interrupt = VECS_MI_USER_INTERRUPT,
   1174	},
   1175};
   1176
   1177static int cmd_handler_pipe_control(struct parser_exec_state *s)
   1178{
   1179	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
   1180	unsigned long gma;
   1181	bool index_mode = false;
   1182	unsigned int post_sync;
   1183	int ret = 0;
   1184	u32 hws_pga, val;
   1185
   1186	post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14;
   1187
   1188	/* LRI post sync */
   1189	if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE)
   1190		ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl");
   1191	/* post sync */
   1192	else if (post_sync) {
   1193		if (post_sync == 2)
   1194			ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl");
   1195		else if (post_sync == 3)
   1196			ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl");
   1197		else if (post_sync == 1) {
   1198			/* check ggtt*/
   1199			if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) {
   1200				gma = cmd_val(s, 2) & GENMASK(31, 3);
   1201				if (gmadr_bytes == 8)
   1202					gma |= (cmd_gma_hi(s, 3)) << 32;
   1203				/* Store Data Index */
   1204				if (cmd_val(s, 1) & (1 << 21))
   1205					index_mode = true;
   1206				ret |= cmd_address_audit(s, gma, sizeof(u64),
   1207						index_mode);
   1208				if (ret)
   1209					return ret;
   1210				if (index_mode) {
   1211					hws_pga = s->vgpu->hws_pga[s->engine->id];
   1212					gma = hws_pga + gma;
   1213					patch_value(s, cmd_ptr(s, 2), gma);
   1214					val = cmd_val(s, 1) & (~(1 << 21));
   1215					patch_value(s, cmd_ptr(s, 1), val);
   1216				}
   1217			}
   1218		}
   1219	}
   1220
   1221	if (ret)
   1222		return ret;
   1223
   1224	if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY)
   1225		set_bit(cmd_interrupt_events[s->engine->id].pipe_control_notify,
   1226			s->workload->pending_events);
   1227	return 0;
   1228}
   1229
   1230static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s)
   1231{
   1232	set_bit(cmd_interrupt_events[s->engine->id].mi_user_interrupt,
   1233		s->workload->pending_events);
   1234	patch_value(s, cmd_ptr(s, 0), MI_NOOP);
   1235	return 0;
   1236}
   1237
   1238static int cmd_advance_default(struct parser_exec_state *s)
   1239{
   1240	return ip_gma_advance(s, cmd_length(s));
   1241}
   1242
   1243static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s)
   1244{
   1245	int ret;
   1246
   1247	if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
   1248		s->buf_type = BATCH_BUFFER_INSTRUCTION;
   1249		ret = ip_gma_set(s, s->ret_ip_gma_bb);
   1250		s->buf_addr_type = s->saved_buf_addr_type;
   1251	} else if (s->buf_type == RING_BUFFER_CTX) {
   1252		ret = ip_gma_set(s, s->ring_tail);
   1253	} else {
   1254		s->buf_type = RING_BUFFER_INSTRUCTION;
   1255		s->buf_addr_type = GTT_BUFFER;
   1256		if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size)
   1257			s->ret_ip_gma_ring -= s->ring_size;
   1258		ret = ip_gma_set(s, s->ret_ip_gma_ring);
   1259	}
   1260	return ret;
   1261}
   1262
   1263struct mi_display_flip_command_info {
   1264	int pipe;
   1265	int plane;
   1266	int event;
   1267	i915_reg_t stride_reg;
   1268	i915_reg_t ctrl_reg;
   1269	i915_reg_t surf_reg;
   1270	u64 stride_val;
   1271	u64 tile_val;
   1272	u64 surf_val;
   1273	bool async_flip;
   1274};
   1275
   1276struct plane_code_mapping {
   1277	int pipe;
   1278	int plane;
   1279	int event;
   1280};
   1281
   1282static int gen8_decode_mi_display_flip(struct parser_exec_state *s,
   1283		struct mi_display_flip_command_info *info)
   1284{
   1285	struct drm_i915_private *dev_priv = s->engine->i915;
   1286	struct plane_code_mapping gen8_plane_code[] = {
   1287		[0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE},
   1288		[1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE},
   1289		[2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE},
   1290		[3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE},
   1291		[4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE},
   1292		[5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE},
   1293	};
   1294	u32 dword0, dword1, dword2;
   1295	u32 v;
   1296
   1297	dword0 = cmd_val(s, 0);
   1298	dword1 = cmd_val(s, 1);
   1299	dword2 = cmd_val(s, 2);
   1300
   1301	v = (dword0 & GENMASK(21, 19)) >> 19;
   1302	if (drm_WARN_ON(&dev_priv->drm, v >= ARRAY_SIZE(gen8_plane_code)))
   1303		return -EBADRQC;
   1304
   1305	info->pipe = gen8_plane_code[v].pipe;
   1306	info->plane = gen8_plane_code[v].plane;
   1307	info->event = gen8_plane_code[v].event;
   1308	info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
   1309	info->tile_val = (dword1 & 0x1);
   1310	info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
   1311	info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
   1312
   1313	if (info->plane == PLANE_A) {
   1314		info->ctrl_reg = DSPCNTR(info->pipe);
   1315		info->stride_reg = DSPSTRIDE(info->pipe);
   1316		info->surf_reg = DSPSURF(info->pipe);
   1317	} else if (info->plane == PLANE_B) {
   1318		info->ctrl_reg = SPRCTL(info->pipe);
   1319		info->stride_reg = SPRSTRIDE(info->pipe);
   1320		info->surf_reg = SPRSURF(info->pipe);
   1321	} else {
   1322		drm_WARN_ON(&dev_priv->drm, 1);
   1323		return -EBADRQC;
   1324	}
   1325	return 0;
   1326}
   1327
   1328static int skl_decode_mi_display_flip(struct parser_exec_state *s,
   1329		struct mi_display_flip_command_info *info)
   1330{
   1331	struct drm_i915_private *dev_priv = s->engine->i915;
   1332	struct intel_vgpu *vgpu = s->vgpu;
   1333	u32 dword0 = cmd_val(s, 0);
   1334	u32 dword1 = cmd_val(s, 1);
   1335	u32 dword2 = cmd_val(s, 2);
   1336	u32 plane = (dword0 & GENMASK(12, 8)) >> 8;
   1337
   1338	info->plane = PRIMARY_PLANE;
   1339
   1340	switch (plane) {
   1341	case MI_DISPLAY_FLIP_SKL_PLANE_1_A:
   1342		info->pipe = PIPE_A;
   1343		info->event = PRIMARY_A_FLIP_DONE;
   1344		break;
   1345	case MI_DISPLAY_FLIP_SKL_PLANE_1_B:
   1346		info->pipe = PIPE_B;
   1347		info->event = PRIMARY_B_FLIP_DONE;
   1348		break;
   1349	case MI_DISPLAY_FLIP_SKL_PLANE_1_C:
   1350		info->pipe = PIPE_C;
   1351		info->event = PRIMARY_C_FLIP_DONE;
   1352		break;
   1353
   1354	case MI_DISPLAY_FLIP_SKL_PLANE_2_A:
   1355		info->pipe = PIPE_A;
   1356		info->event = SPRITE_A_FLIP_DONE;
   1357		info->plane = SPRITE_PLANE;
   1358		break;
   1359	case MI_DISPLAY_FLIP_SKL_PLANE_2_B:
   1360		info->pipe = PIPE_B;
   1361		info->event = SPRITE_B_FLIP_DONE;
   1362		info->plane = SPRITE_PLANE;
   1363		break;
   1364	case MI_DISPLAY_FLIP_SKL_PLANE_2_C:
   1365		info->pipe = PIPE_C;
   1366		info->event = SPRITE_C_FLIP_DONE;
   1367		info->plane = SPRITE_PLANE;
   1368		break;
   1369
   1370	default:
   1371		gvt_vgpu_err("unknown plane code %d\n", plane);
   1372		return -EBADRQC;
   1373	}
   1374
   1375	info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
   1376	info->tile_val = (dword1 & GENMASK(2, 0));
   1377	info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
   1378	info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
   1379
   1380	info->ctrl_reg = DSPCNTR(info->pipe);
   1381	info->stride_reg = DSPSTRIDE(info->pipe);
   1382	info->surf_reg = DSPSURF(info->pipe);
   1383
   1384	return 0;
   1385}
   1386
   1387static int gen8_check_mi_display_flip(struct parser_exec_state *s,
   1388		struct mi_display_flip_command_info *info)
   1389{
   1390	u32 stride, tile;
   1391
   1392	if (!info->async_flip)
   1393		return 0;
   1394
   1395	if (GRAPHICS_VER(s->engine->i915) >= 9) {
   1396		stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0);
   1397		tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) &
   1398				GENMASK(12, 10)) >> 10;
   1399	} else {
   1400		stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) &
   1401				GENMASK(15, 6)) >> 6;
   1402		tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10;
   1403	}
   1404
   1405	if (stride != info->stride_val)
   1406		gvt_dbg_cmd("cannot change stride during async flip\n");
   1407
   1408	if (tile != info->tile_val)
   1409		gvt_dbg_cmd("cannot change tile during async flip\n");
   1410
   1411	return 0;
   1412}
   1413
   1414static int gen8_update_plane_mmio_from_mi_display_flip(
   1415		struct parser_exec_state *s,
   1416		struct mi_display_flip_command_info *info)
   1417{
   1418	struct drm_i915_private *dev_priv = s->engine->i915;
   1419	struct intel_vgpu *vgpu = s->vgpu;
   1420
   1421	set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12),
   1422		      info->surf_val << 12);
   1423	if (GRAPHICS_VER(dev_priv) >= 9) {
   1424		set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0),
   1425			      info->stride_val);
   1426		set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10),
   1427			      info->tile_val << 10);
   1428	} else {
   1429		set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6),
   1430			      info->stride_val << 6);
   1431		set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10),
   1432			      info->tile_val << 10);
   1433	}
   1434
   1435	if (info->plane == PLANE_PRIMARY)
   1436		vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(info->pipe))++;
   1437
   1438	if (info->async_flip)
   1439		intel_vgpu_trigger_virtual_event(vgpu, info->event);
   1440	else
   1441		set_bit(info->event, vgpu->irq.flip_done_event[info->pipe]);
   1442
   1443	return 0;
   1444}
   1445
   1446static int decode_mi_display_flip(struct parser_exec_state *s,
   1447		struct mi_display_flip_command_info *info)
   1448{
   1449	if (IS_BROADWELL(s->engine->i915))
   1450		return gen8_decode_mi_display_flip(s, info);
   1451	if (GRAPHICS_VER(s->engine->i915) >= 9)
   1452		return skl_decode_mi_display_flip(s, info);
   1453
   1454	return -ENODEV;
   1455}
   1456
   1457static int check_mi_display_flip(struct parser_exec_state *s,
   1458		struct mi_display_flip_command_info *info)
   1459{
   1460	return gen8_check_mi_display_flip(s, info);
   1461}
   1462
   1463static int update_plane_mmio_from_mi_display_flip(
   1464		struct parser_exec_state *s,
   1465		struct mi_display_flip_command_info *info)
   1466{
   1467	return gen8_update_plane_mmio_from_mi_display_flip(s, info);
   1468}
   1469
   1470static int cmd_handler_mi_display_flip(struct parser_exec_state *s)
   1471{
   1472	struct mi_display_flip_command_info info;
   1473	struct intel_vgpu *vgpu = s->vgpu;
   1474	int ret;
   1475	int i;
   1476	int len = cmd_length(s);
   1477	u32 valid_len = CMD_LEN(1);
   1478
   1479	/* Flip Type == Stereo 3D Flip */
   1480	if (DWORD_FIELD(2, 1, 0) == 2)
   1481		valid_len++;
   1482	ret = gvt_check_valid_cmd_length(cmd_length(s),
   1483			valid_len);
   1484	if (ret)
   1485		return ret;
   1486
   1487	ret = decode_mi_display_flip(s, &info);
   1488	if (ret) {
   1489		gvt_vgpu_err("fail to decode MI display flip command\n");
   1490		return ret;
   1491	}
   1492
   1493	ret = check_mi_display_flip(s, &info);
   1494	if (ret) {
   1495		gvt_vgpu_err("invalid MI display flip command\n");
   1496		return ret;
   1497	}
   1498
   1499	ret = update_plane_mmio_from_mi_display_flip(s, &info);
   1500	if (ret) {
   1501		gvt_vgpu_err("fail to update plane mmio\n");
   1502		return ret;
   1503	}
   1504
   1505	for (i = 0; i < len; i++)
   1506		patch_value(s, cmd_ptr(s, i), MI_NOOP);
   1507	return 0;
   1508}
   1509
   1510static bool is_wait_for_flip_pending(u32 cmd)
   1511{
   1512	return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING |
   1513			MI_WAIT_FOR_PLANE_B_FLIP_PENDING |
   1514			MI_WAIT_FOR_PLANE_C_FLIP_PENDING |
   1515			MI_WAIT_FOR_SPRITE_A_FLIP_PENDING |
   1516			MI_WAIT_FOR_SPRITE_B_FLIP_PENDING |
   1517			MI_WAIT_FOR_SPRITE_C_FLIP_PENDING);
   1518}
   1519
   1520static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s)
   1521{
   1522	u32 cmd = cmd_val(s, 0);
   1523
   1524	if (!is_wait_for_flip_pending(cmd))
   1525		return 0;
   1526
   1527	patch_value(s, cmd_ptr(s, 0), MI_NOOP);
   1528	return 0;
   1529}
   1530
   1531static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index)
   1532{
   1533	unsigned long addr;
   1534	unsigned long gma_high, gma_low;
   1535	struct intel_vgpu *vgpu = s->vgpu;
   1536	int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd;
   1537
   1538	if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) {
   1539		gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes);
   1540		return INTEL_GVT_INVALID_ADDR;
   1541	}
   1542
   1543	gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK;
   1544	if (gmadr_bytes == 4) {
   1545		addr = gma_low;
   1546	} else {
   1547		gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK;
   1548		addr = (((unsigned long)gma_high) << 32) | gma_low;
   1549	}
   1550	return addr;
   1551}
   1552
   1553static inline int cmd_address_audit(struct parser_exec_state *s,
   1554		unsigned long guest_gma, int op_size, bool index_mode)
   1555{
   1556	struct intel_vgpu *vgpu = s->vgpu;
   1557	u32 max_surface_size = vgpu->gvt->device_info.max_surface_size;
   1558	int i;
   1559	int ret;
   1560
   1561	if (op_size > max_surface_size) {
   1562		gvt_vgpu_err("command address audit fail name %s\n",
   1563			s->info->name);
   1564		return -EFAULT;
   1565	}
   1566
   1567	if (index_mode)	{
   1568		if (guest_gma >= I915_GTT_PAGE_SIZE) {
   1569			ret = -EFAULT;
   1570			goto err;
   1571		}
   1572	} else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) {
   1573		ret = -EFAULT;
   1574		goto err;
   1575	}
   1576
   1577	return 0;
   1578
   1579err:
   1580	gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n",
   1581			s->info->name, guest_gma, op_size);
   1582
   1583	pr_err("cmd dump: ");
   1584	for (i = 0; i < cmd_length(s); i++) {
   1585		if (!(i % 4))
   1586			pr_err("\n%08x ", cmd_val(s, i));
   1587		else
   1588			pr_err("%08x ", cmd_val(s, i));
   1589	}
   1590	pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n",
   1591			vgpu->id,
   1592			vgpu_aperture_gmadr_base(vgpu),
   1593			vgpu_aperture_gmadr_end(vgpu),
   1594			vgpu_hidden_gmadr_base(vgpu),
   1595			vgpu_hidden_gmadr_end(vgpu));
   1596	return ret;
   1597}
   1598
   1599static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s)
   1600{
   1601	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
   1602	int op_size = (cmd_length(s) - 3) * sizeof(u32);
   1603	int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0;
   1604	unsigned long gma, gma_low, gma_high;
   1605	u32 valid_len = CMD_LEN(2);
   1606	int ret = 0;
   1607
   1608	/* check ppggt */
   1609	if (!(cmd_val(s, 0) & (1 << 22)))
   1610		return 0;
   1611
   1612	/* check if QWORD */
   1613	if (DWORD_FIELD(0, 21, 21))
   1614		valid_len++;
   1615	ret = gvt_check_valid_cmd_length(cmd_length(s),
   1616			valid_len);
   1617	if (ret)
   1618		return ret;
   1619
   1620	gma = cmd_val(s, 2) & GENMASK(31, 2);
   1621
   1622	if (gmadr_bytes == 8) {
   1623		gma_low = cmd_val(s, 1) & GENMASK(31, 2);
   1624		gma_high = cmd_val(s, 2) & GENMASK(15, 0);
   1625		gma = (gma_high << 32) | gma_low;
   1626		core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0;
   1627	}
   1628	ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false);
   1629	return ret;
   1630}
   1631
   1632static inline int unexpected_cmd(struct parser_exec_state *s)
   1633{
   1634	struct intel_vgpu *vgpu = s->vgpu;
   1635
   1636	gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name);
   1637
   1638	return -EBADRQC;
   1639}
   1640
   1641static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s)
   1642{
   1643	return unexpected_cmd(s);
   1644}
   1645
   1646static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s)
   1647{
   1648	return unexpected_cmd(s);
   1649}
   1650
   1651static int cmd_handler_mi_op_2e(struct parser_exec_state *s)
   1652{
   1653	return unexpected_cmd(s);
   1654}
   1655
   1656static int cmd_handler_mi_op_2f(struct parser_exec_state *s)
   1657{
   1658	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
   1659	int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) *
   1660			sizeof(u32);
   1661	unsigned long gma, gma_high;
   1662	u32 valid_len = CMD_LEN(1);
   1663	int ret = 0;
   1664
   1665	if (!(cmd_val(s, 0) & (1 << 22)))
   1666		return ret;
   1667
   1668	/* check inline data */
   1669	if (cmd_val(s, 0) & BIT(18))
   1670		valid_len = CMD_LEN(9);
   1671	ret = gvt_check_valid_cmd_length(cmd_length(s),
   1672			valid_len);
   1673	if (ret)
   1674		return ret;
   1675
   1676	gma = cmd_val(s, 1) & GENMASK(31, 2);
   1677	if (gmadr_bytes == 8) {
   1678		gma_high = cmd_val(s, 2) & GENMASK(15, 0);
   1679		gma = (gma_high << 32) | gma;
   1680	}
   1681	ret = cmd_address_audit(s, gma, op_size, false);
   1682	return ret;
   1683}
   1684
   1685static int cmd_handler_mi_store_data_index(struct parser_exec_state *s)
   1686{
   1687	return unexpected_cmd(s);
   1688}
   1689
   1690static int cmd_handler_mi_clflush(struct parser_exec_state *s)
   1691{
   1692	return unexpected_cmd(s);
   1693}
   1694
   1695static int cmd_handler_mi_conditional_batch_buffer_end(
   1696		struct parser_exec_state *s)
   1697{
   1698	return unexpected_cmd(s);
   1699}
   1700
   1701static int cmd_handler_mi_update_gtt(struct parser_exec_state *s)
   1702{
   1703	return unexpected_cmd(s);
   1704}
   1705
   1706static int cmd_handler_mi_flush_dw(struct parser_exec_state *s)
   1707{
   1708	int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
   1709	unsigned long gma;
   1710	bool index_mode = false;
   1711	int ret = 0;
   1712	u32 hws_pga, val;
   1713	u32 valid_len = CMD_LEN(2);
   1714
   1715	ret = gvt_check_valid_cmd_length(cmd_length(s),
   1716			valid_len);
   1717	if (ret) {
   1718		/* Check again for Qword */
   1719		ret = gvt_check_valid_cmd_length(cmd_length(s),
   1720			++valid_len);
   1721		return ret;
   1722	}
   1723
   1724	/* Check post-sync and ppgtt bit */
   1725	if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) {
   1726		gma = cmd_val(s, 1) & GENMASK(31, 3);
   1727		if (gmadr_bytes == 8)
   1728			gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32;
   1729		/* Store Data Index */
   1730		if (cmd_val(s, 0) & (1 << 21))
   1731			index_mode = true;
   1732		ret = cmd_address_audit(s, gma, sizeof(u64), index_mode);
   1733		if (ret)
   1734			return ret;
   1735		if (index_mode) {
   1736			hws_pga = s->vgpu->hws_pga[s->engine->id];
   1737			gma = hws_pga + gma;
   1738			patch_value(s, cmd_ptr(s, 1), gma);
   1739			val = cmd_val(s, 0) & (~(1 << 21));
   1740			patch_value(s, cmd_ptr(s, 0), val);
   1741		}
   1742	}
   1743	/* Check notify bit */
   1744	if ((cmd_val(s, 0) & (1 << 8)))
   1745		set_bit(cmd_interrupt_events[s->engine->id].mi_flush_dw,
   1746			s->workload->pending_events);
   1747	return ret;
   1748}
   1749
   1750static void addr_type_update_snb(struct parser_exec_state *s)
   1751{
   1752	if ((s->buf_type == RING_BUFFER_INSTRUCTION) &&
   1753			(BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) {
   1754		s->buf_addr_type = PPGTT_BUFFER;
   1755	}
   1756}
   1757
   1758
   1759static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm,
   1760		unsigned long gma, unsigned long end_gma, void *va)
   1761{
   1762	unsigned long copy_len, offset;
   1763	unsigned long len = 0;
   1764	unsigned long gpa;
   1765
   1766	while (gma != end_gma) {
   1767		gpa = intel_vgpu_gma_to_gpa(mm, gma);
   1768		if (gpa == INTEL_GVT_INVALID_ADDR) {
   1769			gvt_vgpu_err("invalid gma address: %lx\n", gma);
   1770			return -EFAULT;
   1771		}
   1772
   1773		offset = gma & (I915_GTT_PAGE_SIZE - 1);
   1774
   1775		copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ?
   1776			I915_GTT_PAGE_SIZE - offset : end_gma - gma;
   1777
   1778		intel_gvt_read_gpa(vgpu, gpa, va + len, copy_len);
   1779
   1780		len += copy_len;
   1781		gma += copy_len;
   1782	}
   1783	return len;
   1784}
   1785
   1786
   1787/*
   1788 * Check whether a batch buffer needs to be scanned. Currently
   1789 * the only criteria is based on privilege.
   1790 */
   1791static int batch_buffer_needs_scan(struct parser_exec_state *s)
   1792{
   1793	/* Decide privilege based on address space */
   1794	if (cmd_val(s, 0) & BIT(8) &&
   1795	    !(s->vgpu->scan_nonprivbb & s->engine->mask))
   1796		return 0;
   1797
   1798	return 1;
   1799}
   1800
   1801static const char *repr_addr_type(unsigned int type)
   1802{
   1803	return type == PPGTT_BUFFER ? "ppgtt" : "ggtt";
   1804}
   1805
   1806static int find_bb_size(struct parser_exec_state *s,
   1807			unsigned long *bb_size,
   1808			unsigned long *bb_end_cmd_offset)
   1809{
   1810	unsigned long gma = 0;
   1811	const struct cmd_info *info;
   1812	u32 cmd_len = 0;
   1813	bool bb_end = false;
   1814	struct intel_vgpu *vgpu = s->vgpu;
   1815	u32 cmd;
   1816	struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
   1817		s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
   1818
   1819	*bb_size = 0;
   1820	*bb_end_cmd_offset = 0;
   1821
   1822	/* get the start gm address of the batch buffer */
   1823	gma = get_gma_bb_from_cmd(s, 1);
   1824	if (gma == INTEL_GVT_INVALID_ADDR)
   1825		return -EFAULT;
   1826
   1827	cmd = cmd_val(s, 0);
   1828	info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
   1829	if (info == NULL) {
   1830		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
   1831			     cmd, get_opcode(cmd, s->engine),
   1832			     repr_addr_type(s->buf_addr_type),
   1833			     s->engine->name, s->workload);
   1834		return -EBADRQC;
   1835	}
   1836	do {
   1837		if (copy_gma_to_hva(s->vgpu, mm,
   1838				    gma, gma + 4, &cmd) < 0)
   1839			return -EFAULT;
   1840		info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
   1841		if (info == NULL) {
   1842			gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
   1843				     cmd, get_opcode(cmd, s->engine),
   1844				     repr_addr_type(s->buf_addr_type),
   1845				     s->engine->name, s->workload);
   1846			return -EBADRQC;
   1847		}
   1848
   1849		if (info->opcode == OP_MI_BATCH_BUFFER_END) {
   1850			bb_end = true;
   1851		} else if (info->opcode == OP_MI_BATCH_BUFFER_START) {
   1852			if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)
   1853				/* chained batch buffer */
   1854				bb_end = true;
   1855		}
   1856
   1857		if (bb_end)
   1858			*bb_end_cmd_offset = *bb_size;
   1859
   1860		cmd_len = get_cmd_length(info, cmd) << 2;
   1861		*bb_size += cmd_len;
   1862		gma += cmd_len;
   1863	} while (!bb_end);
   1864
   1865	return 0;
   1866}
   1867
   1868static int audit_bb_end(struct parser_exec_state *s, void *va)
   1869{
   1870	struct intel_vgpu *vgpu = s->vgpu;
   1871	u32 cmd = *(u32 *)va;
   1872	const struct cmd_info *info;
   1873
   1874	info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
   1875	if (info == NULL) {
   1876		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
   1877			     cmd, get_opcode(cmd, s->engine),
   1878			     repr_addr_type(s->buf_addr_type),
   1879			     s->engine->name, s->workload);
   1880		return -EBADRQC;
   1881	}
   1882
   1883	if ((info->opcode == OP_MI_BATCH_BUFFER_END) ||
   1884	    ((info->opcode == OP_MI_BATCH_BUFFER_START) &&
   1885	     (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)))
   1886		return 0;
   1887
   1888	return -EBADRQC;
   1889}
   1890
   1891static int perform_bb_shadow(struct parser_exec_state *s)
   1892{
   1893	struct intel_vgpu *vgpu = s->vgpu;
   1894	struct intel_vgpu_shadow_bb *bb;
   1895	unsigned long gma = 0;
   1896	unsigned long bb_size;
   1897	unsigned long bb_end_cmd_offset;
   1898	int ret = 0;
   1899	struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
   1900		s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
   1901	unsigned long start_offset = 0;
   1902
   1903	/* get the start gm address of the batch buffer */
   1904	gma = get_gma_bb_from_cmd(s, 1);
   1905	if (gma == INTEL_GVT_INVALID_ADDR)
   1906		return -EFAULT;
   1907
   1908	ret = find_bb_size(s, &bb_size, &bb_end_cmd_offset);
   1909	if (ret)
   1910		return ret;
   1911
   1912	bb = kzalloc(sizeof(*bb), GFP_KERNEL);
   1913	if (!bb)
   1914		return -ENOMEM;
   1915
   1916	bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true;
   1917
   1918	/* the start_offset stores the batch buffer's start gma's
   1919	 * offset relative to page boundary. so for non-privileged batch
   1920	 * buffer, the shadowed gem object holds exactly the same page
   1921	 * layout as original gem object. This is for the convience of
   1922	 * replacing the whole non-privilged batch buffer page to this
   1923	 * shadowed one in PPGTT at the same gma address. (this replacing
   1924	 * action is not implemented yet now, but may be necessary in
   1925	 * future).
   1926	 * for prileged batch buffer, we just change start gma address to
   1927	 * that of shadowed page.
   1928	 */
   1929	if (bb->ppgtt)
   1930		start_offset = gma & ~I915_GTT_PAGE_MASK;
   1931
   1932	bb->obj = i915_gem_object_create_shmem(s->engine->i915,
   1933					       round_up(bb_size + start_offset,
   1934							PAGE_SIZE));
   1935	if (IS_ERR(bb->obj)) {
   1936		ret = PTR_ERR(bb->obj);
   1937		goto err_free_bb;
   1938	}
   1939
   1940	bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB);
   1941	if (IS_ERR(bb->va)) {
   1942		ret = PTR_ERR(bb->va);
   1943		goto err_free_obj;
   1944	}
   1945
   1946	ret = copy_gma_to_hva(s->vgpu, mm,
   1947			      gma, gma + bb_size,
   1948			      bb->va + start_offset);
   1949	if (ret < 0) {
   1950		gvt_vgpu_err("fail to copy guest ring buffer\n");
   1951		ret = -EFAULT;
   1952		goto err_unmap;
   1953	}
   1954
   1955	ret = audit_bb_end(s, bb->va + start_offset + bb_end_cmd_offset);
   1956	if (ret)
   1957		goto err_unmap;
   1958
   1959	i915_gem_object_unlock(bb->obj);
   1960	INIT_LIST_HEAD(&bb->list);
   1961	list_add(&bb->list, &s->workload->shadow_bb);
   1962
   1963	bb->bb_start_cmd_va = s->ip_va;
   1964
   1965	if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa))
   1966		bb->bb_offset = s->ip_va - s->rb_va;
   1967	else
   1968		bb->bb_offset = 0;
   1969
   1970	/*
   1971	 * ip_va saves the virtual address of the shadow batch buffer, while
   1972	 * ip_gma saves the graphics address of the original batch buffer.
   1973	 * As the shadow batch buffer is just a copy from the originial one,
   1974	 * it should be right to use shadow batch buffer'va and original batch
   1975	 * buffer's gma in pair. After all, we don't want to pin the shadow
   1976	 * buffer here (too early).
   1977	 */
   1978	s->ip_va = bb->va + start_offset;
   1979	s->ip_gma = gma;
   1980	return 0;
   1981err_unmap:
   1982	i915_gem_object_unpin_map(bb->obj);
   1983err_free_obj:
   1984	i915_gem_object_put(bb->obj);
   1985err_free_bb:
   1986	kfree(bb);
   1987	return ret;
   1988}
   1989
   1990static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s)
   1991{
   1992	bool second_level;
   1993	int ret = 0;
   1994	struct intel_vgpu *vgpu = s->vgpu;
   1995
   1996	if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
   1997		gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n");
   1998		return -EFAULT;
   1999	}
   2000
   2001	second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1;
   2002	if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) {
   2003		gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n");
   2004		return -EFAULT;
   2005	}
   2006
   2007	s->saved_buf_addr_type = s->buf_addr_type;
   2008	addr_type_update_snb(s);
   2009	if (s->buf_type == RING_BUFFER_INSTRUCTION) {
   2010		s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32);
   2011		s->buf_type = BATCH_BUFFER_INSTRUCTION;
   2012	} else if (second_level) {
   2013		s->buf_type = BATCH_BUFFER_2ND_LEVEL;
   2014		s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32);
   2015		s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32);
   2016	}
   2017
   2018	if (batch_buffer_needs_scan(s)) {
   2019		ret = perform_bb_shadow(s);
   2020		if (ret < 0)
   2021			gvt_vgpu_err("invalid shadow batch buffer\n");
   2022	} else {
   2023		/* emulate a batch buffer end to do return right */
   2024		ret = cmd_handler_mi_batch_buffer_end(s);
   2025		if (ret < 0)
   2026			return ret;
   2027	}
   2028	return ret;
   2029}
   2030
   2031static int mi_noop_index;
   2032
   2033static const struct cmd_info cmd_info[] = {
   2034	{"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
   2035
   2036	{"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL,
   2037		0, 1, NULL},
   2038
   2039	{"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL,
   2040		0, 1, cmd_handler_mi_user_interrupt},
   2041
   2042	{"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS,
   2043		D_ALL, 0, 1, cmd_handler_mi_wait_for_event},
   2044
   2045	{"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
   2046
   2047	{"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
   2048		NULL},
   2049
   2050	{"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
   2051		NULL},
   2052
   2053	{"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
   2054		NULL},
   2055
   2056	{"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
   2057		NULL},
   2058
   2059	{"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS,
   2060		D_ALL, 0, 1, NULL},
   2061
   2062	{"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END,
   2063		F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1,
   2064		cmd_handler_mi_batch_buffer_end},
   2065
   2066	{"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL,
   2067		0, 1, NULL},
   2068
   2069	{"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
   2070		NULL},
   2071
   2072	{"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL,
   2073		D_ALL, 0, 1, NULL},
   2074
   2075	{"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
   2076		NULL},
   2077
   2078	{"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
   2079		NULL},
   2080
   2081	{"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR,
   2082		R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip},
   2083
   2084	{"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR | F_LEN_VAR_FIXED,
   2085		R_ALL, D_ALL, 0, 8, NULL, CMD_LEN(1)},
   2086
   2087	{"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL},
   2088
   2089	{"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS,
   2090		D_ALL, 0, 8, NULL, CMD_LEN(0)},
   2091
   2092	{"MI_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL,
   2093		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 0, 8,
   2094		NULL, CMD_LEN(0)},
   2095
   2096	{"MI_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT,
   2097		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, ADDR_FIX_1(2),
   2098		8, cmd_handler_mi_semaphore_wait, CMD_LEN(2)},
   2099
   2100	{"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS,
   2101		ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm},
   2102
   2103	{"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL,
   2104		0, 8, cmd_handler_mi_store_data_index},
   2105
   2106	{"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL,
   2107		D_ALL, 0, 8, cmd_handler_lri},
   2108
   2109	{"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10,
   2110		cmd_handler_mi_update_gtt},
   2111
   2112	{"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM,
   2113		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
   2114		cmd_handler_srm, CMD_LEN(2)},
   2115
   2116	{"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6,
   2117		cmd_handler_mi_flush_dw},
   2118
   2119	{"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1),
   2120		10, cmd_handler_mi_clflush},
   2121
   2122	{"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT,
   2123		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(1), 6,
   2124		cmd_handler_mi_report_perf_count, CMD_LEN(2)},
   2125
   2126	{"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM,
   2127		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
   2128		cmd_handler_lrm, CMD_LEN(2)},
   2129
   2130	{"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG,
   2131		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, 0, 8,
   2132		cmd_handler_lrr, CMD_LEN(1)},
   2133
   2134	{"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM,
   2135		F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, D_ALL, 0,
   2136		8, NULL, CMD_LEN(2)},
   2137
   2138	{"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR | F_LEN_VAR_FIXED,
   2139		R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL, CMD_LEN(2)},
   2140
   2141	{"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL,
   2142		ADDR_FIX_1(2), 8, NULL},
   2143
   2144	{"MI_OP_2E", OP_MI_2E, F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS,
   2145		ADDR_FIX_2(1, 2), 8, cmd_handler_mi_op_2e, CMD_LEN(3)},
   2146
   2147	{"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1),
   2148		8, cmd_handler_mi_op_2f},
   2149
   2150	{"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START,
   2151		F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8,
   2152		cmd_handler_mi_batch_buffer_start},
   2153
   2154	{"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END,
   2155		F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
   2156		cmd_handler_mi_conditional_batch_buffer_end, CMD_LEN(2)},
   2157
   2158	{"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST,
   2159		R_RCS | R_BCS, D_ALL, 0, 2, NULL},
   2160
   2161	{"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL,
   2162		ADDR_FIX_2(4, 7), 8, NULL},
   2163
   2164	{"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL,
   2165		0, 8, NULL},
   2166
   2167	{"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT,
   2168		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
   2169
   2170	{"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
   2171
   2172	{"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL,
   2173		0, 8, NULL},
   2174
   2175	{"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL,
   2176		ADDR_FIX_1(3), 8, NULL},
   2177
   2178	{"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS,
   2179		D_ALL, 0, 8, NULL},
   2180
   2181	{"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL,
   2182		ADDR_FIX_1(4), 8, NULL},
   2183
   2184	{"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
   2185		ADDR_FIX_2(4, 5), 8, NULL},
   2186
   2187	{"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
   2188		ADDR_FIX_1(4), 8, NULL},
   2189
   2190	{"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL,
   2191		ADDR_FIX_2(4, 7), 8, NULL},
   2192
   2193	{"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS,
   2194		D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
   2195
   2196	{"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
   2197
   2198	{"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS,
   2199		D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL},
   2200
   2201	{"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR,
   2202		R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
   2203
   2204	{"XY_FULL_MONO_PATTERN_MONO_SRC_BLT",
   2205		OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT,
   2206		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
   2207
   2208	{"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS,
   2209		D_ALL, ADDR_FIX_1(4), 8, NULL},
   2210
   2211	{"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT,
   2212		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
   2213
   2214	{"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS,
   2215		D_ALL, ADDR_FIX_1(4), 8, NULL},
   2216
   2217	{"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS,
   2218		D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
   2219
   2220	{"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT,
   2221		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
   2222
   2223	{"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT",
   2224		OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT,
   2225		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
   2226
   2227	{"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL,
   2228		ADDR_FIX_2(4, 5), 8, NULL},
   2229
   2230	{"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE,
   2231		F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
   2232
   2233	{"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP",
   2234		OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP,
   2235		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
   2236
   2237	{"3DSTATE_VIEWPORT_STATE_POINTERS_CC",
   2238		OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC,
   2239		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
   2240
   2241	{"3DSTATE_BLEND_STATE_POINTERS",
   2242		OP_3DSTATE_BLEND_STATE_POINTERS,
   2243		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
   2244
   2245	{"3DSTATE_DEPTH_STENCIL_STATE_POINTERS",
   2246		OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS,
   2247		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
   2248
   2249	{"3DSTATE_BINDING_TABLE_POINTERS_VS",
   2250		OP_3DSTATE_BINDING_TABLE_POINTERS_VS,
   2251		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
   2252
   2253	{"3DSTATE_BINDING_TABLE_POINTERS_HS",
   2254		OP_3DSTATE_BINDING_TABLE_POINTERS_HS,
   2255		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
   2256
   2257	{"3DSTATE_BINDING_TABLE_POINTERS_DS",
   2258		OP_3DSTATE_BINDING_TABLE_POINTERS_DS,
   2259		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
   2260
   2261	{"3DSTATE_BINDING_TABLE_POINTERS_GS",
   2262		OP_3DSTATE_BINDING_TABLE_POINTERS_GS,
   2263		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
   2264
   2265	{"3DSTATE_BINDING_TABLE_POINTERS_PS",
   2266		OP_3DSTATE_BINDING_TABLE_POINTERS_PS,
   2267		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
   2268
   2269	{"3DSTATE_SAMPLER_STATE_POINTERS_VS",
   2270		OP_3DSTATE_SAMPLER_STATE_POINTERS_VS,
   2271		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
   2272
   2273	{"3DSTATE_SAMPLER_STATE_POINTERS_HS",
   2274		OP_3DSTATE_SAMPLER_STATE_POINTERS_HS,
   2275		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
   2276
   2277	{"3DSTATE_SAMPLER_STATE_POINTERS_DS",
   2278		OP_3DSTATE_SAMPLER_STATE_POINTERS_DS,
   2279		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
   2280
   2281	{"3DSTATE_SAMPLER_STATE_POINTERS_GS",
   2282		OP_3DSTATE_SAMPLER_STATE_POINTERS_GS,
   2283		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
   2284
   2285	{"3DSTATE_SAMPLER_STATE_POINTERS_PS",
   2286		OP_3DSTATE_SAMPLER_STATE_POINTERS_PS,
   2287		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
   2288
   2289	{"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL,
   2290		0, 8, NULL},
   2291
   2292	{"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL,
   2293		0, 8, NULL},
   2294
   2295	{"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL,
   2296		0, 8, NULL},
   2297
   2298	{"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL,
   2299		0, 8, NULL},
   2300
   2301	{"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS,
   2302		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
   2303
   2304	{"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS,
   2305		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
   2306
   2307	{"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS,
   2308		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
   2309
   2310	{"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS,
   2311		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
   2312
   2313	{"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS,
   2314		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
   2315
   2316	{"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS,
   2317		F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
   2318
   2319	{"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS,
   2320		F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
   2321
   2322	{"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS,
   2323		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
   2324
   2325	{"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS,
   2326		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
   2327
   2328	{"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS,
   2329		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
   2330
   2331	{"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS,
   2332		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
   2333
   2334	{"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS,
   2335		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
   2336
   2337	{"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS,
   2338		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
   2339
   2340	{"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS,
   2341		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
   2342
   2343	{"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS,
   2344		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
   2345
   2346	{"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS,
   2347		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
   2348
   2349	{"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS,
   2350		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
   2351
   2352	{"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS,
   2353		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
   2354
   2355	{"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS,
   2356		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
   2357
   2358	{"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS,
   2359		F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
   2360
   2361	{"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS,
   2362		D_BDW_PLUS, 0, 8, NULL},
   2363
   2364	{"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
   2365		NULL},
   2366
   2367	{"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS,
   2368		D_BDW_PLUS, 0, 8, NULL},
   2369
   2370	{"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS,
   2371		D_BDW_PLUS, 0, 8, NULL},
   2372
   2373	{"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
   2374		8, NULL},
   2375
   2376	{"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR,
   2377		R_RCS, D_BDW_PLUS, 0, 8, NULL},
   2378
   2379	{"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
   2380		8, NULL},
   2381
   2382	{"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
   2383		NULL},
   2384
   2385	{"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
   2386		NULL},
   2387
   2388	{"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
   2389		NULL},
   2390
   2391	{"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS,
   2392		D_BDW_PLUS, 0, 8, NULL},
   2393
   2394	{"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR,
   2395		R_RCS, D_ALL, 0, 8, NULL},
   2396
   2397	{"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS,
   2398		D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL},
   2399
   2400	{"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST,
   2401		R_RCS, D_ALL, 0, 1, NULL},
   2402
   2403	{"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
   2404
   2405	{"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR,
   2406		R_RCS, D_ALL, 0, 8, NULL},
   2407
   2408	{"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS,
   2409		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
   2410
   2411	{"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
   2412
   2413	{"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
   2414
   2415	{"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
   2416
   2417	{"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS,
   2418		D_BDW_PLUS, 0, 8, NULL},
   2419
   2420	{"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS,
   2421		D_BDW_PLUS, 0, 8, NULL},
   2422
   2423	{"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS,
   2424		D_ALL, 0, 8, NULL},
   2425
   2426	{"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS,
   2427		D_BDW_PLUS, 0, 8, NULL},
   2428
   2429	{"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS,
   2430		D_BDW_PLUS, 0, 8, NULL},
   2431
   2432	{"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
   2433
   2434	{"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
   2435
   2436	{"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
   2437
   2438	{"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS,
   2439		D_ALL, 0, 8, NULL},
   2440
   2441	{"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
   2442
   2443	{"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
   2444
   2445	{"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR,
   2446		R_RCS, D_ALL, 0, 8, NULL},
   2447
   2448	{"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0,
   2449		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
   2450
   2451	{"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL,
   2452		0, 8, NULL},
   2453
   2454	{"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS,
   2455		D_ALL, ADDR_FIX_1(2), 8, NULL},
   2456
   2457	{"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET,
   2458		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
   2459
   2460	{"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN,
   2461		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
   2462
   2463	{"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS,
   2464		D_ALL, 0, 8, NULL},
   2465
   2466	{"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS,
   2467		D_ALL, 0, 8, NULL},
   2468
   2469	{"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS,
   2470		D_ALL, 0, 8, NULL},
   2471
   2472	{"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1,
   2473		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
   2474
   2475	{"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS,
   2476		D_BDW_PLUS, 0, 8, NULL},
   2477
   2478	{"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS,
   2479		D_ALL, ADDR_FIX_1(2), 8, NULL},
   2480
   2481	{"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR,
   2482		R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL},
   2483
   2484	{"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR,
   2485		R_RCS, D_ALL, 0, 8, NULL},
   2486
   2487	{"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS,
   2488		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
   2489
   2490	{"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS,
   2491		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
   2492
   2493	{"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS,
   2494		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
   2495
   2496	{"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS,
   2497		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
   2498
   2499	{"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS,
   2500		F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
   2501
   2502	{"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR,
   2503		R_RCS, D_ALL, 0, 8, NULL},
   2504
   2505	{"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS,
   2506		D_ALL, 0, 9, NULL},
   2507
   2508	{"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS,
   2509		ADDR_FIX_2(2, 4), 8, NULL},
   2510
   2511	{"3DSTATE_BINDING_TABLE_POOL_ALLOC",
   2512		OP_3DSTATE_BINDING_TABLE_POOL_ALLOC,
   2513		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
   2514
   2515	{"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC,
   2516		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
   2517
   2518	{"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC",
   2519		OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC,
   2520		F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
   2521
   2522	{"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS,
   2523		D_BDW_PLUS, 0, 8, NULL},
   2524
   2525	{"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL,
   2526		ADDR_FIX_1(2), 8, cmd_handler_pipe_control},
   2527
   2528	{"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
   2529
   2530	{"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0,
   2531		1, NULL},
   2532
   2533	{"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL,
   2534		ADDR_FIX_1(1), 8, NULL},
   2535
   2536	{"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
   2537
   2538	{"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
   2539		ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL},
   2540
   2541	{"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL,
   2542		ADDR_FIX_1(1), 8, NULL},
   2543
   2544	{"OP_SWTESS_BASE_ADDRESS", OP_SWTESS_BASE_ADDRESS,
   2545		F_LEN_VAR, R_RCS, D_ALL, ADDR_FIX_2(1, 2), 3, NULL},
   2546
   2547	{"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
   2548
   2549	{"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
   2550
   2551	{"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
   2552		0, 8, NULL},
   2553
   2554	{"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS,
   2555		D_SKL_PLUS, 0, 8, NULL},
   2556
   2557	{"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD,
   2558		F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
   2559
   2560	{"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL,
   2561		0, 16, NULL},
   2562
   2563	{"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL,
   2564		0, 16, NULL},
   2565
   2566	{"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL,
   2567		0, 16, NULL},
   2568
   2569	{"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
   2570
   2571	{"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL,
   2572		0, 16, NULL},
   2573
   2574	{"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL,
   2575		0, 16, NULL},
   2576
   2577	{"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL,
   2578		0, 16, NULL},
   2579
   2580	{"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL,
   2581		0, 8, NULL},
   2582
   2583	{"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16,
   2584		NULL},
   2585
   2586	{"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45,
   2587		F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
   2588
   2589	{"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR,
   2590		R_VCS, D_ALL, 0, 12, NULL},
   2591
   2592	{"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR,
   2593		R_VCS, D_ALL, 0, 12, NULL},
   2594
   2595	{"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR,
   2596		R_VCS, D_BDW_PLUS, 0, 12, NULL},
   2597
   2598	{"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE,
   2599		F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
   2600
   2601	{"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE,
   2602		F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL},
   2603
   2604	{"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
   2605
   2606	{"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR,
   2607		R_VCS, D_ALL, 0, 12, NULL},
   2608
   2609	{"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR,
   2610		R_VCS, D_ALL, 0, 12, NULL},
   2611
   2612	{"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR,
   2613		R_VCS, D_ALL, 0, 12, NULL},
   2614
   2615	{"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR,
   2616		R_VCS, D_ALL, 0, 12, NULL},
   2617
   2618	{"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR,
   2619		R_VCS, D_ALL, 0, 12, NULL},
   2620
   2621	{"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR,
   2622		R_VCS, D_ALL, 0, 12, NULL},
   2623
   2624	{"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR,
   2625		R_VCS, D_ALL, 0, 6, NULL},
   2626
   2627	{"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR,
   2628		R_VCS, D_ALL, 0, 12, NULL},
   2629
   2630	{"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR,
   2631		R_VCS, D_ALL, 0, 12, NULL},
   2632
   2633	{"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR,
   2634		R_VCS, D_ALL, 0, 12, NULL},
   2635
   2636	{"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR,
   2637		R_VCS, D_ALL, 0, 12, NULL},
   2638
   2639	{"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR,
   2640		R_VCS, D_ALL, 0, 12, NULL},
   2641
   2642	{"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR,
   2643		R_VCS, D_ALL, 0, 12, NULL},
   2644
   2645	{"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR,
   2646		R_VCS, D_ALL, 0, 12, NULL},
   2647	{"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR,
   2648		R_VCS, D_ALL, 0, 12, NULL},
   2649
   2650	{"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR,
   2651		R_VCS, D_ALL, 0, 12, NULL},
   2652
   2653	{"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR,
   2654		R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL},
   2655
   2656	{"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR,
   2657		R_VCS, D_ALL, 0, 12, NULL},
   2658
   2659	{"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR,
   2660		R_VCS, D_ALL, 0, 12, NULL},
   2661
   2662	{"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR,
   2663		R_VCS, D_ALL, 0, 12, NULL},
   2664
   2665	{"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR,
   2666		R_VCS, D_ALL, 0, 12, NULL},
   2667
   2668	{"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR,
   2669		R_VCS, D_ALL, 0, 12, NULL},
   2670
   2671	{"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR,
   2672		R_VCS, D_ALL, 0, 12, NULL},
   2673
   2674	{"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR,
   2675		R_VCS, D_ALL, 0, 12, NULL},
   2676
   2677	{"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR,
   2678		R_VCS, D_ALL, 0, 12, NULL},
   2679
   2680	{"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR,
   2681		R_VCS, D_ALL, 0, 12, NULL},
   2682
   2683	{"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR,
   2684		R_VCS, D_ALL, 0, 12, NULL},
   2685
   2686	{"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR,
   2687		R_VCS, D_ALL, 0, 12, NULL},
   2688
   2689	{"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL,
   2690		0, 16, NULL},
   2691
   2692	{"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
   2693
   2694	{"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
   2695
   2696	{"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR,
   2697		R_VCS, D_ALL, 0, 12, NULL},
   2698
   2699	{"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR,
   2700		R_VCS, D_ALL, 0, 12, NULL},
   2701
   2702	{"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR,
   2703		R_VCS, D_ALL, 0, 12, NULL},
   2704
   2705	{"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL},
   2706
   2707	{"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL,
   2708		0, 12, NULL},
   2709
   2710	{"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS,
   2711		0, 12, NULL},
   2712};
   2713
   2714static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e)
   2715{
   2716	hash_add(gvt->cmd_table, &e->hlist, e->info->opcode);
   2717}
   2718
   2719/* call the cmd handler, and advance ip */
   2720static int cmd_parser_exec(struct parser_exec_state *s)
   2721{
   2722	struct intel_vgpu *vgpu = s->vgpu;
   2723	const struct cmd_info *info;
   2724	u32 cmd;
   2725	int ret = 0;
   2726
   2727	cmd = cmd_val(s, 0);
   2728
   2729	/* fastpath for MI_NOOP */
   2730	if (cmd == MI_NOOP)
   2731		info = &cmd_info[mi_noop_index];
   2732	else
   2733		info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
   2734
   2735	if (info == NULL) {
   2736		gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
   2737			     cmd, get_opcode(cmd, s->engine),
   2738			     repr_addr_type(s->buf_addr_type),
   2739			     s->engine->name, s->workload);
   2740		return -EBADRQC;
   2741	}
   2742
   2743	s->info = info;
   2744
   2745	trace_gvt_command(vgpu->id, s->engine->id, s->ip_gma, s->ip_va,
   2746			  cmd_length(s), s->buf_type, s->buf_addr_type,
   2747			  s->workload, info->name);
   2748
   2749	if ((info->flag & F_LEN_MASK) == F_LEN_VAR_FIXED) {
   2750		ret = gvt_check_valid_cmd_length(cmd_length(s),
   2751						 info->valid_len);
   2752		if (ret)
   2753			return ret;
   2754	}
   2755
   2756	if (info->handler) {
   2757		ret = info->handler(s);
   2758		if (ret < 0) {
   2759			gvt_vgpu_err("%s handler error\n", info->name);
   2760			return ret;
   2761		}
   2762	}
   2763
   2764	if (!(info->flag & F_IP_ADVANCE_CUSTOM)) {
   2765		ret = cmd_advance_default(s);
   2766		if (ret) {
   2767			gvt_vgpu_err("%s IP advance error\n", info->name);
   2768			return ret;
   2769		}
   2770	}
   2771	return 0;
   2772}
   2773
   2774static inline bool gma_out_of_range(unsigned long gma,
   2775		unsigned long gma_head, unsigned int gma_tail)
   2776{
   2777	if (gma_tail >= gma_head)
   2778		return (gma < gma_head) || (gma > gma_tail);
   2779	else
   2780		return (gma > gma_tail) && (gma < gma_head);
   2781}
   2782
   2783/* Keep the consistent return type, e.g EBADRQC for unknown
   2784 * cmd, EFAULT for invalid address, EPERM for nonpriv. later
   2785 * works as the input of VM healthy status.
   2786 */
   2787static int command_scan(struct parser_exec_state *s,
   2788		unsigned long rb_head, unsigned long rb_tail,
   2789		unsigned long rb_start, unsigned long rb_len)
   2790{
   2791
   2792	unsigned long gma_head, gma_tail, gma_bottom;
   2793	int ret = 0;
   2794	struct intel_vgpu *vgpu = s->vgpu;
   2795
   2796	gma_head = rb_start + rb_head;
   2797	gma_tail = rb_start + rb_tail;
   2798	gma_bottom = rb_start +  rb_len;
   2799
   2800	while (s->ip_gma != gma_tail) {
   2801		if (s->buf_type == RING_BUFFER_INSTRUCTION ||
   2802				s->buf_type == RING_BUFFER_CTX) {
   2803			if (!(s->ip_gma >= rb_start) ||
   2804				!(s->ip_gma < gma_bottom)) {
   2805				gvt_vgpu_err("ip_gma %lx out of ring scope."
   2806					"(base:0x%lx, bottom: 0x%lx)\n",
   2807					s->ip_gma, rb_start,
   2808					gma_bottom);
   2809				parser_exec_state_dump(s);
   2810				return -EFAULT;
   2811			}
   2812			if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) {
   2813				gvt_vgpu_err("ip_gma %lx out of range."
   2814					"base 0x%lx head 0x%lx tail 0x%lx\n",
   2815					s->ip_gma, rb_start,
   2816					rb_head, rb_tail);
   2817				parser_exec_state_dump(s);
   2818				break;
   2819			}
   2820		}
   2821		ret = cmd_parser_exec(s);
   2822		if (ret) {
   2823			gvt_vgpu_err("cmd parser error\n");
   2824			parser_exec_state_dump(s);
   2825			break;
   2826		}
   2827	}
   2828
   2829	return ret;
   2830}
   2831
   2832static int scan_workload(struct intel_vgpu_workload *workload)
   2833{
   2834	unsigned long gma_head, gma_tail, gma_bottom;
   2835	struct parser_exec_state s;
   2836	int ret = 0;
   2837
   2838	/* ring base is page aligned */
   2839	if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE)))
   2840		return -EINVAL;
   2841
   2842	gma_head = workload->rb_start + workload->rb_head;
   2843	gma_tail = workload->rb_start + workload->rb_tail;
   2844	gma_bottom = workload->rb_start +  _RING_CTL_BUF_SIZE(workload->rb_ctl);
   2845
   2846	s.buf_type = RING_BUFFER_INSTRUCTION;
   2847	s.buf_addr_type = GTT_BUFFER;
   2848	s.vgpu = workload->vgpu;
   2849	s.engine = workload->engine;
   2850	s.ring_start = workload->rb_start;
   2851	s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
   2852	s.ring_head = gma_head;
   2853	s.ring_tail = gma_tail;
   2854	s.rb_va = workload->shadow_ring_buffer_va;
   2855	s.workload = workload;
   2856	s.is_ctx_wa = false;
   2857
   2858	if (bypass_scan_mask & workload->engine->mask || gma_head == gma_tail)
   2859		return 0;
   2860
   2861	ret = ip_gma_set(&s, gma_head);
   2862	if (ret)
   2863		goto out;
   2864
   2865	ret = command_scan(&s, workload->rb_head, workload->rb_tail,
   2866		workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl));
   2867
   2868out:
   2869	return ret;
   2870}
   2871
   2872static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
   2873{
   2874
   2875	unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail;
   2876	struct parser_exec_state s;
   2877	int ret = 0;
   2878	struct intel_vgpu_workload *workload = container_of(wa_ctx,
   2879				struct intel_vgpu_workload,
   2880				wa_ctx);
   2881
   2882	/* ring base is page aligned */
   2883	if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma,
   2884					I915_GTT_PAGE_SIZE)))
   2885		return -EINVAL;
   2886
   2887	ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(u32);
   2888	ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES,
   2889			PAGE_SIZE);
   2890	gma_head = wa_ctx->indirect_ctx.guest_gma;
   2891	gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail;
   2892	gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size;
   2893
   2894	s.buf_type = RING_BUFFER_INSTRUCTION;
   2895	s.buf_addr_type = GTT_BUFFER;
   2896	s.vgpu = workload->vgpu;
   2897	s.engine = workload->engine;
   2898	s.ring_start = wa_ctx->indirect_ctx.guest_gma;
   2899	s.ring_size = ring_size;
   2900	s.ring_head = gma_head;
   2901	s.ring_tail = gma_tail;
   2902	s.rb_va = wa_ctx->indirect_ctx.shadow_va;
   2903	s.workload = workload;
   2904	s.is_ctx_wa = true;
   2905
   2906	ret = ip_gma_set(&s, gma_head);
   2907	if (ret)
   2908		goto out;
   2909
   2910	ret = command_scan(&s, 0, ring_tail,
   2911		wa_ctx->indirect_ctx.guest_gma, ring_size);
   2912out:
   2913	return ret;
   2914}
   2915
   2916static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload)
   2917{
   2918	struct intel_vgpu *vgpu = workload->vgpu;
   2919	struct intel_vgpu_submission *s = &vgpu->submission;
   2920	unsigned long gma_head, gma_tail, gma_top, guest_rb_size;
   2921	void *shadow_ring_buffer_va;
   2922	int ret;
   2923
   2924	guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
   2925
   2926	/* calculate workload ring buffer size */
   2927	workload->rb_len = (workload->rb_tail + guest_rb_size -
   2928			workload->rb_head) % guest_rb_size;
   2929
   2930	gma_head = workload->rb_start + workload->rb_head;
   2931	gma_tail = workload->rb_start + workload->rb_tail;
   2932	gma_top = workload->rb_start + guest_rb_size;
   2933
   2934	if (workload->rb_len > s->ring_scan_buffer_size[workload->engine->id]) {
   2935		void *p;
   2936
   2937		/* realloc the new ring buffer if needed */
   2938		p = krealloc(s->ring_scan_buffer[workload->engine->id],
   2939			     workload->rb_len, GFP_KERNEL);
   2940		if (!p) {
   2941			gvt_vgpu_err("fail to re-alloc ring scan buffer\n");
   2942			return -ENOMEM;
   2943		}
   2944		s->ring_scan_buffer[workload->engine->id] = p;
   2945		s->ring_scan_buffer_size[workload->engine->id] = workload->rb_len;
   2946	}
   2947
   2948	shadow_ring_buffer_va = s->ring_scan_buffer[workload->engine->id];
   2949
   2950	/* get shadow ring buffer va */
   2951	workload->shadow_ring_buffer_va = shadow_ring_buffer_va;
   2952
   2953	/* head > tail --> copy head <-> top */
   2954	if (gma_head > gma_tail) {
   2955		ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm,
   2956				      gma_head, gma_top, shadow_ring_buffer_va);
   2957		if (ret < 0) {
   2958			gvt_vgpu_err("fail to copy guest ring buffer\n");
   2959			return ret;
   2960		}
   2961		shadow_ring_buffer_va += ret;
   2962		gma_head = workload->rb_start;
   2963	}
   2964
   2965	/* copy head or start <-> tail */
   2966	ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail,
   2967				shadow_ring_buffer_va);
   2968	if (ret < 0) {
   2969		gvt_vgpu_err("fail to copy guest ring buffer\n");
   2970		return ret;
   2971	}
   2972	return 0;
   2973}
   2974
   2975int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload)
   2976{
   2977	int ret;
   2978	struct intel_vgpu *vgpu = workload->vgpu;
   2979
   2980	ret = shadow_workload_ring_buffer(workload);
   2981	if (ret) {
   2982		gvt_vgpu_err("fail to shadow workload ring_buffer\n");
   2983		return ret;
   2984	}
   2985
   2986	ret = scan_workload(workload);
   2987	if (ret) {
   2988		gvt_vgpu_err("scan workload error\n");
   2989		return ret;
   2990	}
   2991	return 0;
   2992}
   2993
   2994static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx)
   2995{
   2996	int ctx_size = wa_ctx->indirect_ctx.size;
   2997	unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma;
   2998	struct intel_vgpu_workload *workload = container_of(wa_ctx,
   2999					struct intel_vgpu_workload,
   3000					wa_ctx);
   3001	struct intel_vgpu *vgpu = workload->vgpu;
   3002	struct drm_i915_gem_object *obj;
   3003	int ret = 0;
   3004	void *map;
   3005
   3006	obj = i915_gem_object_create_shmem(workload->engine->i915,
   3007					   roundup(ctx_size + CACHELINE_BYTES,
   3008						   PAGE_SIZE));
   3009	if (IS_ERR(obj))
   3010		return PTR_ERR(obj);
   3011
   3012	/* get the va of the shadow batch buffer */
   3013	map = i915_gem_object_pin_map(obj, I915_MAP_WB);
   3014	if (IS_ERR(map)) {
   3015		gvt_vgpu_err("failed to vmap shadow indirect ctx\n");
   3016		ret = PTR_ERR(map);
   3017		goto put_obj;
   3018	}
   3019
   3020	i915_gem_object_lock(obj, NULL);
   3021	ret = i915_gem_object_set_to_cpu_domain(obj, false);
   3022	i915_gem_object_unlock(obj);
   3023	if (ret) {
   3024		gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n");
   3025		goto unmap_src;
   3026	}
   3027
   3028	ret = copy_gma_to_hva(workload->vgpu,
   3029				workload->vgpu->gtt.ggtt_mm,
   3030				guest_gma, guest_gma + ctx_size,
   3031				map);
   3032	if (ret < 0) {
   3033		gvt_vgpu_err("fail to copy guest indirect ctx\n");
   3034		goto unmap_src;
   3035	}
   3036
   3037	wa_ctx->indirect_ctx.obj = obj;
   3038	wa_ctx->indirect_ctx.shadow_va = map;
   3039	return 0;
   3040
   3041unmap_src:
   3042	i915_gem_object_unpin_map(obj);
   3043put_obj:
   3044	i915_gem_object_put(obj);
   3045	return ret;
   3046}
   3047
   3048static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
   3049{
   3050	u32 per_ctx_start[CACHELINE_DWORDS] = {0};
   3051	unsigned char *bb_start_sva;
   3052
   3053	if (!wa_ctx->per_ctx.valid)
   3054		return 0;
   3055
   3056	per_ctx_start[0] = 0x18800001;
   3057	per_ctx_start[1] = wa_ctx->per_ctx.guest_gma;
   3058
   3059	bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
   3060				wa_ctx->indirect_ctx.size;
   3061
   3062	memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES);
   3063
   3064	return 0;
   3065}
   3066
   3067int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
   3068{
   3069	int ret;
   3070	struct intel_vgpu_workload *workload = container_of(wa_ctx,
   3071					struct intel_vgpu_workload,
   3072					wa_ctx);
   3073	struct intel_vgpu *vgpu = workload->vgpu;
   3074
   3075	if (wa_ctx->indirect_ctx.size == 0)
   3076		return 0;
   3077
   3078	ret = shadow_indirect_ctx(wa_ctx);
   3079	if (ret) {
   3080		gvt_vgpu_err("fail to shadow indirect ctx\n");
   3081		return ret;
   3082	}
   3083
   3084	combine_wa_ctx(wa_ctx);
   3085
   3086	ret = scan_wa_ctx(wa_ctx);
   3087	if (ret) {
   3088		gvt_vgpu_err("scan wa ctx error\n");
   3089		return ret;
   3090	}
   3091
   3092	return 0;
   3093}
   3094
   3095/* generate dummy contexts by sending empty requests to HW, and let
   3096 * the HW to fill Engine Contexts. This dummy contexts are used for
   3097 * initialization purpose (update reg whitelist), so referred to as
   3098 * init context here
   3099 */
   3100void intel_gvt_update_reg_whitelist(struct intel_vgpu *vgpu)
   3101{
   3102	const unsigned long start = LRC_STATE_PN * PAGE_SIZE;
   3103	struct intel_gvt *gvt = vgpu->gvt;
   3104	struct intel_engine_cs *engine;
   3105	enum intel_engine_id id;
   3106
   3107	if (gvt->is_reg_whitelist_updated)
   3108		return;
   3109
   3110	/* scan init ctx to update cmd accessible list */
   3111	for_each_engine(engine, gvt->gt, id) {
   3112		struct parser_exec_state s;
   3113		void *vaddr;
   3114		int ret;
   3115
   3116		if (!engine->default_state)
   3117			continue;
   3118
   3119		vaddr = shmem_pin_map(engine->default_state);
   3120		if (IS_ERR(vaddr)) {
   3121			gvt_err("failed to map %s->default state, err:%zd\n",
   3122				engine->name, PTR_ERR(vaddr));
   3123			return;
   3124		}
   3125
   3126		s.buf_type = RING_BUFFER_CTX;
   3127		s.buf_addr_type = GTT_BUFFER;
   3128		s.vgpu = vgpu;
   3129		s.engine = engine;
   3130		s.ring_start = 0;
   3131		s.ring_size = engine->context_size - start;
   3132		s.ring_head = 0;
   3133		s.ring_tail = s.ring_size;
   3134		s.rb_va = vaddr + start;
   3135		s.workload = NULL;
   3136		s.is_ctx_wa = false;
   3137		s.is_init_ctx = true;
   3138
   3139		/* skipping the first RING_CTX_SIZE(0x50) dwords */
   3140		ret = ip_gma_set(&s, RING_CTX_SIZE);
   3141		if (ret == 0) {
   3142			ret = command_scan(&s, 0, s.ring_size, 0, s.ring_size);
   3143			if (ret)
   3144				gvt_err("Scan init ctx error\n");
   3145		}
   3146
   3147		shmem_unpin_map(engine->default_state, vaddr);
   3148		if (ret)
   3149			return;
   3150	}
   3151
   3152	gvt->is_reg_whitelist_updated = true;
   3153}
   3154
   3155int intel_gvt_scan_engine_context(struct intel_vgpu_workload *workload)
   3156{
   3157	struct intel_vgpu *vgpu = workload->vgpu;
   3158	unsigned long gma_head, gma_tail, gma_start, ctx_size;
   3159	struct parser_exec_state s;
   3160	int ring_id = workload->engine->id;
   3161	struct intel_context *ce = vgpu->submission.shadow[ring_id];
   3162	int ret;
   3163
   3164	GEM_BUG_ON(atomic_read(&ce->pin_count) < 0);
   3165
   3166	ctx_size = workload->engine->context_size - PAGE_SIZE;
   3167
   3168	/* Only ring contxt is loaded to HW for inhibit context, no need to
   3169	 * scan engine context
   3170	 */
   3171	if (is_inhibit_context(ce))
   3172		return 0;
   3173
   3174	gma_start = i915_ggtt_offset(ce->state) + LRC_STATE_PN*PAGE_SIZE;
   3175	gma_head = 0;
   3176	gma_tail = ctx_size;
   3177
   3178	s.buf_type = RING_BUFFER_CTX;
   3179	s.buf_addr_type = GTT_BUFFER;
   3180	s.vgpu = workload->vgpu;
   3181	s.engine = workload->engine;
   3182	s.ring_start = gma_start;
   3183	s.ring_size = ctx_size;
   3184	s.ring_head = gma_start + gma_head;
   3185	s.ring_tail = gma_start + gma_tail;
   3186	s.rb_va = ce->lrc_reg_state;
   3187	s.workload = workload;
   3188	s.is_ctx_wa = false;
   3189	s.is_init_ctx = false;
   3190
   3191	/* don't scan the first RING_CTX_SIZE(0x50) dwords, as it's ring
   3192	 * context
   3193	 */
   3194	ret = ip_gma_set(&s, gma_start + gma_head + RING_CTX_SIZE);
   3195	if (ret)
   3196		goto out;
   3197
   3198	ret = command_scan(&s, gma_head, gma_tail,
   3199		gma_start, ctx_size);
   3200out:
   3201	if (ret)
   3202		gvt_vgpu_err("scan shadow ctx error\n");
   3203
   3204	return ret;
   3205}
   3206
   3207static int init_cmd_table(struct intel_gvt *gvt)
   3208{
   3209	unsigned int gen_type = intel_gvt_get_device_type(gvt);
   3210	int i;
   3211
   3212	for (i = 0; i < ARRAY_SIZE(cmd_info); i++) {
   3213		struct cmd_entry *e;
   3214
   3215		if (!(cmd_info[i].devices & gen_type))
   3216			continue;
   3217
   3218		e = kzalloc(sizeof(*e), GFP_KERNEL);
   3219		if (!e)
   3220			return -ENOMEM;
   3221
   3222		e->info = &cmd_info[i];
   3223		if (cmd_info[i].opcode == OP_MI_NOOP)
   3224			mi_noop_index = i;
   3225
   3226		INIT_HLIST_NODE(&e->hlist);
   3227		add_cmd_entry(gvt, e);
   3228		gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n",
   3229			    e->info->name, e->info->opcode, e->info->flag,
   3230			    e->info->devices, e->info->rings);
   3231	}
   3232
   3233	return 0;
   3234}
   3235
   3236static void clean_cmd_table(struct intel_gvt *gvt)
   3237{
   3238	struct hlist_node *tmp;
   3239	struct cmd_entry *e;
   3240	int i;
   3241
   3242	hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist)
   3243		kfree(e);
   3244
   3245	hash_init(gvt->cmd_table);
   3246}
   3247
   3248void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt)
   3249{
   3250	clean_cmd_table(gvt);
   3251}
   3252
   3253int intel_gvt_init_cmd_parser(struct intel_gvt *gvt)
   3254{
   3255	int ret;
   3256
   3257	ret = init_cmd_table(gvt);
   3258	if (ret) {
   3259		intel_gvt_clean_cmd_parser(gvt);
   3260		return ret;
   3261	}
   3262	return 0;
   3263}