cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

i915_request.c (66189B)


      1/*
      2 * Copyright © 2008-2015 Intel Corporation
      3 *
      4 * Permission is hereby granted, free of charge, to any person obtaining a
      5 * copy of this software and associated documentation files (the "Software"),
      6 * to deal in the Software without restriction, including without limitation
      7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8 * and/or sell copies of the Software, and to permit persons to whom the
      9 * Software is furnished to do so, subject to the following conditions:
     10 *
     11 * The above copyright notice and this permission notice (including the next
     12 * paragraph) shall be included in all copies or substantial portions of the
     13 * Software.
     14 *
     15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     21 * IN THE SOFTWARE.
     22 *
     23 */
     24
     25#include <linux/dma-fence-array.h>
     26#include <linux/dma-fence-chain.h>
     27#include <linux/irq_work.h>
     28#include <linux/prefetch.h>
     29#include <linux/sched.h>
     30#include <linux/sched/clock.h>
     31#include <linux/sched/signal.h>
     32#include <linux/sched/mm.h>
     33
     34#include "gem/i915_gem_context.h"
     35#include "gt/intel_breadcrumbs.h"
     36#include "gt/intel_context.h"
     37#include "gt/intel_engine.h"
     38#include "gt/intel_engine_heartbeat.h"
     39#include "gt/intel_engine_regs.h"
     40#include "gt/intel_gpu_commands.h"
     41#include "gt/intel_reset.h"
     42#include "gt/intel_ring.h"
     43#include "gt/intel_rps.h"
     44
     45#include "i915_active.h"
     46#include "i915_deps.h"
     47#include "i915_driver.h"
     48#include "i915_drv.h"
     49#include "i915_trace.h"
     50#include "intel_pm.h"
     51
     52struct execute_cb {
     53	struct irq_work work;
     54	struct i915_sw_fence *fence;
     55	struct i915_request *signal;
     56};
     57
     58static struct kmem_cache *slab_requests;
     59static struct kmem_cache *slab_execute_cbs;
     60
     61static const char *i915_fence_get_driver_name(struct dma_fence *fence)
     62{
     63	return dev_name(to_request(fence)->engine->i915->drm.dev);
     64}
     65
     66static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
     67{
     68	const struct i915_gem_context *ctx;
     69
     70	/*
     71	 * The timeline struct (as part of the ppgtt underneath a context)
     72	 * may be freed when the request is no longer in use by the GPU.
     73	 * We could extend the life of a context to beyond that of all
     74	 * fences, possibly keeping the hw resource around indefinitely,
     75	 * or we just give them a false name. Since
     76	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
     77	 * lie seems justifiable.
     78	 */
     79	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
     80		return "signaled";
     81
     82	ctx = i915_request_gem_context(to_request(fence));
     83	if (!ctx)
     84		return "[" DRIVER_NAME "]";
     85
     86	return ctx->name;
     87}
     88
     89static bool i915_fence_signaled(struct dma_fence *fence)
     90{
     91	return i915_request_completed(to_request(fence));
     92}
     93
     94static bool i915_fence_enable_signaling(struct dma_fence *fence)
     95{
     96	return i915_request_enable_breadcrumb(to_request(fence));
     97}
     98
     99static signed long i915_fence_wait(struct dma_fence *fence,
    100				   bool interruptible,
    101				   signed long timeout)
    102{
    103	return i915_request_wait_timeout(to_request(fence),
    104					 interruptible | I915_WAIT_PRIORITY,
    105					 timeout);
    106}
    107
    108struct kmem_cache *i915_request_slab_cache(void)
    109{
    110	return slab_requests;
    111}
    112
    113static void i915_fence_release(struct dma_fence *fence)
    114{
    115	struct i915_request *rq = to_request(fence);
    116
    117	GEM_BUG_ON(rq->guc_prio != GUC_PRIO_INIT &&
    118		   rq->guc_prio != GUC_PRIO_FINI);
    119
    120	i915_request_free_capture_list(fetch_and_zero(&rq->capture_list));
    121	if (rq->batch_res) {
    122		i915_vma_resource_put(rq->batch_res);
    123		rq->batch_res = NULL;
    124	}
    125
    126	/*
    127	 * The request is put onto a RCU freelist (i.e. the address
    128	 * is immediately reused), mark the fences as being freed now.
    129	 * Otherwise the debugobjects for the fences are only marked as
    130	 * freed when the slab cache itself is freed, and so we would get
    131	 * caught trying to reuse dead objects.
    132	 */
    133	i915_sw_fence_fini(&rq->submit);
    134	i915_sw_fence_fini(&rq->semaphore);
    135
    136	/*
    137	 * Keep one request on each engine for reserved use under mempressure,
    138	 * do not use with virtual engines as this really is only needed for
    139	 * kernel contexts.
    140	 */
    141	if (!intel_engine_is_virtual(rq->engine) &&
    142	    !cmpxchg(&rq->engine->request_pool, NULL, rq)) {
    143		intel_context_put(rq->context);
    144		return;
    145	}
    146
    147	intel_context_put(rq->context);
    148
    149	kmem_cache_free(slab_requests, rq);
    150}
    151
    152const struct dma_fence_ops i915_fence_ops = {
    153	.get_driver_name = i915_fence_get_driver_name,
    154	.get_timeline_name = i915_fence_get_timeline_name,
    155	.enable_signaling = i915_fence_enable_signaling,
    156	.signaled = i915_fence_signaled,
    157	.wait = i915_fence_wait,
    158	.release = i915_fence_release,
    159};
    160
    161static void irq_execute_cb(struct irq_work *wrk)
    162{
    163	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
    164
    165	i915_sw_fence_complete(cb->fence);
    166	kmem_cache_free(slab_execute_cbs, cb);
    167}
    168
    169static __always_inline void
    170__notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk))
    171{
    172	struct execute_cb *cb, *cn;
    173
    174	if (llist_empty(&rq->execute_cb))
    175		return;
    176
    177	llist_for_each_entry_safe(cb, cn,
    178				  llist_del_all(&rq->execute_cb),
    179				  work.node.llist)
    180		fn(&cb->work);
    181}
    182
    183static void __notify_execute_cb_irq(struct i915_request *rq)
    184{
    185	__notify_execute_cb(rq, irq_work_queue);
    186}
    187
    188static bool irq_work_imm(struct irq_work *wrk)
    189{
    190	wrk->func(wrk);
    191	return false;
    192}
    193
    194void i915_request_notify_execute_cb_imm(struct i915_request *rq)
    195{
    196	__notify_execute_cb(rq, irq_work_imm);
    197}
    198
    199static void __i915_request_fill(struct i915_request *rq, u8 val)
    200{
    201	void *vaddr = rq->ring->vaddr;
    202	u32 head;
    203
    204	head = rq->infix;
    205	if (rq->postfix < head) {
    206		memset(vaddr + head, val, rq->ring->size - head);
    207		head = 0;
    208	}
    209	memset(vaddr + head, val, rq->postfix - head);
    210}
    211
    212/**
    213 * i915_request_active_engine
    214 * @rq: request to inspect
    215 * @active: pointer in which to return the active engine
    216 *
    217 * Fills the currently active engine to the @active pointer if the request
    218 * is active and still not completed.
    219 *
    220 * Returns true if request was active or false otherwise.
    221 */
    222bool
    223i915_request_active_engine(struct i915_request *rq,
    224			   struct intel_engine_cs **active)
    225{
    226	struct intel_engine_cs *engine, *locked;
    227	bool ret = false;
    228
    229	/*
    230	 * Serialise with __i915_request_submit() so that it sees
    231	 * is-banned?, or we know the request is already inflight.
    232	 *
    233	 * Note that rq->engine is unstable, and so we double
    234	 * check that we have acquired the lock on the final engine.
    235	 */
    236	locked = READ_ONCE(rq->engine);
    237	spin_lock_irq(&locked->sched_engine->lock);
    238	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
    239		spin_unlock(&locked->sched_engine->lock);
    240		locked = engine;
    241		spin_lock(&locked->sched_engine->lock);
    242	}
    243
    244	if (i915_request_is_active(rq)) {
    245		if (!__i915_request_is_complete(rq))
    246			*active = locked;
    247		ret = true;
    248	}
    249
    250	spin_unlock_irq(&locked->sched_engine->lock);
    251
    252	return ret;
    253}
    254
    255static void __rq_init_watchdog(struct i915_request *rq)
    256{
    257	rq->watchdog.timer.function = NULL;
    258}
    259
    260static enum hrtimer_restart __rq_watchdog_expired(struct hrtimer *hrtimer)
    261{
    262	struct i915_request *rq =
    263		container_of(hrtimer, struct i915_request, watchdog.timer);
    264	struct intel_gt *gt = rq->engine->gt;
    265
    266	if (!i915_request_completed(rq)) {
    267		if (llist_add(&rq->watchdog.link, &gt->watchdog.list))
    268			schedule_work(&gt->watchdog.work);
    269	} else {
    270		i915_request_put(rq);
    271	}
    272
    273	return HRTIMER_NORESTART;
    274}
    275
    276static void __rq_arm_watchdog(struct i915_request *rq)
    277{
    278	struct i915_request_watchdog *wdg = &rq->watchdog;
    279	struct intel_context *ce = rq->context;
    280
    281	if (!ce->watchdog.timeout_us)
    282		return;
    283
    284	i915_request_get(rq);
    285
    286	hrtimer_init(&wdg->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
    287	wdg->timer.function = __rq_watchdog_expired;
    288	hrtimer_start_range_ns(&wdg->timer,
    289			       ns_to_ktime(ce->watchdog.timeout_us *
    290					   NSEC_PER_USEC),
    291			       NSEC_PER_MSEC,
    292			       HRTIMER_MODE_REL);
    293}
    294
    295static void __rq_cancel_watchdog(struct i915_request *rq)
    296{
    297	struct i915_request_watchdog *wdg = &rq->watchdog;
    298
    299	if (wdg->timer.function && hrtimer_try_to_cancel(&wdg->timer) > 0)
    300		i915_request_put(rq);
    301}
    302
    303#if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
    304
    305/**
    306 * i915_request_free_capture_list - Free a capture list
    307 * @capture: Pointer to the first list item or NULL
    308 *
    309 */
    310void i915_request_free_capture_list(struct i915_capture_list *capture)
    311{
    312	while (capture) {
    313		struct i915_capture_list *next = capture->next;
    314
    315		i915_vma_resource_put(capture->vma_res);
    316		kfree(capture);
    317		capture = next;
    318	}
    319}
    320
    321#define assert_capture_list_is_null(_rq) GEM_BUG_ON((_rq)->capture_list)
    322
    323#define clear_capture_list(_rq) ((_rq)->capture_list = NULL)
    324
    325#else
    326
    327#define i915_request_free_capture_list(_a) do {} while (0)
    328
    329#define assert_capture_list_is_null(_a) do {} while (0)
    330
    331#define clear_capture_list(_rq) do {} while (0)
    332
    333#endif
    334
    335bool i915_request_retire(struct i915_request *rq)
    336{
    337	if (!__i915_request_is_complete(rq))
    338		return false;
    339
    340	RQ_TRACE(rq, "\n");
    341
    342	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
    343	trace_i915_request_retire(rq);
    344	i915_request_mark_complete(rq);
    345
    346	__rq_cancel_watchdog(rq);
    347
    348	/*
    349	 * We know the GPU must have read the request to have
    350	 * sent us the seqno + interrupt, so use the position
    351	 * of tail of the request to update the last known position
    352	 * of the GPU head.
    353	 *
    354	 * Note this requires that we are always called in request
    355	 * completion order.
    356	 */
    357	GEM_BUG_ON(!list_is_first(&rq->link,
    358				  &i915_request_timeline(rq)->requests));
    359	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
    360		/* Poison before we release our space in the ring */
    361		__i915_request_fill(rq, POISON_FREE);
    362	rq->ring->head = rq->postfix;
    363
    364	if (!i915_request_signaled(rq)) {
    365		spin_lock_irq(&rq->lock);
    366		dma_fence_signal_locked(&rq->fence);
    367		spin_unlock_irq(&rq->lock);
    368	}
    369
    370	if (test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags))
    371		intel_rps_dec_waiters(&rq->engine->gt->rps);
    372
    373	/*
    374	 * We only loosely track inflight requests across preemption,
    375	 * and so we may find ourselves attempting to retire a _completed_
    376	 * request that we have removed from the HW and put back on a run
    377	 * queue.
    378	 *
    379	 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be
    380	 * after removing the breadcrumb and signaling it, so that we do not
    381	 * inadvertently attach the breadcrumb to a completed request.
    382	 */
    383	rq->engine->remove_active_request(rq);
    384	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
    385
    386	__list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
    387
    388	intel_context_exit(rq->context);
    389	intel_context_unpin(rq->context);
    390
    391	i915_sched_node_fini(&rq->sched);
    392	i915_request_put(rq);
    393
    394	return true;
    395}
    396
    397void i915_request_retire_upto(struct i915_request *rq)
    398{
    399	struct intel_timeline * const tl = i915_request_timeline(rq);
    400	struct i915_request *tmp;
    401
    402	RQ_TRACE(rq, "\n");
    403	GEM_BUG_ON(!__i915_request_is_complete(rq));
    404
    405	do {
    406		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
    407		GEM_BUG_ON(!i915_request_completed(tmp));
    408	} while (i915_request_retire(tmp) && tmp != rq);
    409}
    410
    411static struct i915_request * const *
    412__engine_active(struct intel_engine_cs *engine)
    413{
    414	return READ_ONCE(engine->execlists.active);
    415}
    416
    417static bool __request_in_flight(const struct i915_request *signal)
    418{
    419	struct i915_request * const *port, *rq;
    420	bool inflight = false;
    421
    422	if (!i915_request_is_ready(signal))
    423		return false;
    424
    425	/*
    426	 * Even if we have unwound the request, it may still be on
    427	 * the GPU (preempt-to-busy). If that request is inside an
    428	 * unpreemptible critical section, it will not be removed. Some
    429	 * GPU functions may even be stuck waiting for the paired request
    430	 * (__await_execution) to be submitted and cannot be preempted
    431	 * until the bond is executing.
    432	 *
    433	 * As we know that there are always preemption points between
    434	 * requests, we know that only the currently executing request
    435	 * may be still active even though we have cleared the flag.
    436	 * However, we can't rely on our tracking of ELSP[0] to know
    437	 * which request is currently active and so maybe stuck, as
    438	 * the tracking maybe an event behind. Instead assume that
    439	 * if the context is still inflight, then it is still active
    440	 * even if the active flag has been cleared.
    441	 *
    442	 * To further complicate matters, if there a pending promotion, the HW
    443	 * may either perform a context switch to the second inflight execlists,
    444	 * or it may switch to the pending set of execlists. In the case of the
    445	 * latter, it may send the ACK and we process the event copying the
    446	 * pending[] over top of inflight[], _overwriting_ our *active. Since
    447	 * this implies the HW is arbitrating and not struck in *active, we do
    448	 * not worry about complete accuracy, but we do require no read/write
    449	 * tearing of the pointer [the read of the pointer must be valid, even
    450	 * as the array is being overwritten, for which we require the writes
    451	 * to avoid tearing.]
    452	 *
    453	 * Note that the read of *execlists->active may race with the promotion
    454	 * of execlists->pending[] to execlists->inflight[], overwritting
    455	 * the value at *execlists->active. This is fine. The promotion implies
    456	 * that we received an ACK from the HW, and so the context is not
    457	 * stuck -- if we do not see ourselves in *active, the inflight status
    458	 * is valid. If instead we see ourselves being copied into *active,
    459	 * we are inflight and may signal the callback.
    460	 */
    461	if (!intel_context_inflight(signal->context))
    462		return false;
    463
    464	rcu_read_lock();
    465	for (port = __engine_active(signal->engine);
    466	     (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */
    467	     port++) {
    468		if (rq->context == signal->context) {
    469			inflight = i915_seqno_passed(rq->fence.seqno,
    470						     signal->fence.seqno);
    471			break;
    472		}
    473	}
    474	rcu_read_unlock();
    475
    476	return inflight;
    477}
    478
    479static int
    480__await_execution(struct i915_request *rq,
    481		  struct i915_request *signal,
    482		  gfp_t gfp)
    483{
    484	struct execute_cb *cb;
    485
    486	if (i915_request_is_active(signal))
    487		return 0;
    488
    489	cb = kmem_cache_alloc(slab_execute_cbs, gfp);
    490	if (!cb)
    491		return -ENOMEM;
    492
    493	cb->fence = &rq->submit;
    494	i915_sw_fence_await(cb->fence);
    495	init_irq_work(&cb->work, irq_execute_cb);
    496
    497	/*
    498	 * Register the callback first, then see if the signaler is already
    499	 * active. This ensures that if we race with the
    500	 * __notify_execute_cb from i915_request_submit() and we are not
    501	 * included in that list, we get a second bite of the cherry and
    502	 * execute it ourselves. After this point, a future
    503	 * i915_request_submit() will notify us.
    504	 *
    505	 * In i915_request_retire() we set the ACTIVE bit on a completed
    506	 * request (then flush the execute_cb). So by registering the
    507	 * callback first, then checking the ACTIVE bit, we serialise with
    508	 * the completed/retired request.
    509	 */
    510	if (llist_add(&cb->work.node.llist, &signal->execute_cb)) {
    511		if (i915_request_is_active(signal) ||
    512		    __request_in_flight(signal))
    513			i915_request_notify_execute_cb_imm(signal);
    514	}
    515
    516	return 0;
    517}
    518
    519static bool fatal_error(int error)
    520{
    521	switch (error) {
    522	case 0: /* not an error! */
    523	case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
    524	case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
    525		return false;
    526	default:
    527		return true;
    528	}
    529}
    530
    531void __i915_request_skip(struct i915_request *rq)
    532{
    533	GEM_BUG_ON(!fatal_error(rq->fence.error));
    534
    535	if (rq->infix == rq->postfix)
    536		return;
    537
    538	RQ_TRACE(rq, "error: %d\n", rq->fence.error);
    539
    540	/*
    541	 * As this request likely depends on state from the lost
    542	 * context, clear out all the user operations leaving the
    543	 * breadcrumb at the end (so we get the fence notifications).
    544	 */
    545	__i915_request_fill(rq, 0);
    546	rq->infix = rq->postfix;
    547}
    548
    549bool i915_request_set_error_once(struct i915_request *rq, int error)
    550{
    551	int old;
    552
    553	GEM_BUG_ON(!IS_ERR_VALUE((long)error));
    554
    555	if (i915_request_signaled(rq))
    556		return false;
    557
    558	old = READ_ONCE(rq->fence.error);
    559	do {
    560		if (fatal_error(old))
    561			return false;
    562	} while (!try_cmpxchg(&rq->fence.error, &old, error));
    563
    564	return true;
    565}
    566
    567struct i915_request *i915_request_mark_eio(struct i915_request *rq)
    568{
    569	if (__i915_request_is_complete(rq))
    570		return NULL;
    571
    572	GEM_BUG_ON(i915_request_signaled(rq));
    573
    574	/* As soon as the request is completed, it may be retired */
    575	rq = i915_request_get(rq);
    576
    577	i915_request_set_error_once(rq, -EIO);
    578	i915_request_mark_complete(rq);
    579
    580	return rq;
    581}
    582
    583bool __i915_request_submit(struct i915_request *request)
    584{
    585	struct intel_engine_cs *engine = request->engine;
    586	bool result = false;
    587
    588	RQ_TRACE(request, "\n");
    589
    590	GEM_BUG_ON(!irqs_disabled());
    591	lockdep_assert_held(&engine->sched_engine->lock);
    592
    593	/*
    594	 * With the advent of preempt-to-busy, we frequently encounter
    595	 * requests that we have unsubmitted from HW, but left running
    596	 * until the next ack and so have completed in the meantime. On
    597	 * resubmission of that completed request, we can skip
    598	 * updating the payload, and execlists can even skip submitting
    599	 * the request.
    600	 *
    601	 * We must remove the request from the caller's priority queue,
    602	 * and the caller must only call us when the request is in their
    603	 * priority queue, under the sched_engine->lock. This ensures that the
    604	 * request has *not* yet been retired and we can safely move
    605	 * the request into the engine->active.list where it will be
    606	 * dropped upon retiring. (Otherwise if resubmit a *retired*
    607	 * request, this would be a horrible use-after-free.)
    608	 */
    609	if (__i915_request_is_complete(request)) {
    610		list_del_init(&request->sched.link);
    611		goto active;
    612	}
    613
    614	if (unlikely(intel_context_is_banned(request->context)))
    615		i915_request_set_error_once(request, -EIO);
    616
    617	if (unlikely(fatal_error(request->fence.error)))
    618		__i915_request_skip(request);
    619
    620	/*
    621	 * Are we using semaphores when the gpu is already saturated?
    622	 *
    623	 * Using semaphores incurs a cost in having the GPU poll a
    624	 * memory location, busywaiting for it to change. The continual
    625	 * memory reads can have a noticeable impact on the rest of the
    626	 * system with the extra bus traffic, stalling the cpu as it too
    627	 * tries to access memory across the bus (perf stat -e bus-cycles).
    628	 *
    629	 * If we installed a semaphore on this request and we only submit
    630	 * the request after the signaler completed, that indicates the
    631	 * system is overloaded and using semaphores at this time only
    632	 * increases the amount of work we are doing. If so, we disable
    633	 * further use of semaphores until we are idle again, whence we
    634	 * optimistically try again.
    635	 */
    636	if (request->sched.semaphores &&
    637	    i915_sw_fence_signaled(&request->semaphore))
    638		engine->saturated |= request->sched.semaphores;
    639
    640	engine->emit_fini_breadcrumb(request,
    641				     request->ring->vaddr + request->postfix);
    642
    643	trace_i915_request_execute(request);
    644	if (engine->bump_serial)
    645		engine->bump_serial(engine);
    646	else
    647		engine->serial++;
    648
    649	result = true;
    650
    651	GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
    652	engine->add_active_request(request);
    653active:
    654	clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
    655	set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
    656
    657	/*
    658	 * XXX Rollback bonded-execution on __i915_request_unsubmit()?
    659	 *
    660	 * In the future, perhaps when we have an active time-slicing scheduler,
    661	 * it will be interesting to unsubmit parallel execution and remove
    662	 * busywaits from the GPU until their master is restarted. This is
    663	 * quite hairy, we have to carefully rollback the fence and do a
    664	 * preempt-to-idle cycle on the target engine, all the while the
    665	 * master execute_cb may refire.
    666	 */
    667	__notify_execute_cb_irq(request);
    668
    669	/* We may be recursing from the signal callback of another i915 fence */
    670	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
    671		i915_request_enable_breadcrumb(request);
    672
    673	return result;
    674}
    675
    676void i915_request_submit(struct i915_request *request)
    677{
    678	struct intel_engine_cs *engine = request->engine;
    679	unsigned long flags;
    680
    681	/* Will be called from irq-context when using foreign fences. */
    682	spin_lock_irqsave(&engine->sched_engine->lock, flags);
    683
    684	__i915_request_submit(request);
    685
    686	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
    687}
    688
    689void __i915_request_unsubmit(struct i915_request *request)
    690{
    691	struct intel_engine_cs *engine = request->engine;
    692
    693	/*
    694	 * Only unwind in reverse order, required so that the per-context list
    695	 * is kept in seqno/ring order.
    696	 */
    697	RQ_TRACE(request, "\n");
    698
    699	GEM_BUG_ON(!irqs_disabled());
    700	lockdep_assert_held(&engine->sched_engine->lock);
    701
    702	/*
    703	 * Before we remove this breadcrumb from the signal list, we have
    704	 * to ensure that a concurrent dma_fence_enable_signaling() does not
    705	 * attach itself. We first mark the request as no longer active and
    706	 * make sure that is visible to other cores, and then remove the
    707	 * breadcrumb if attached.
    708	 */
    709	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
    710	clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
    711	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
    712		i915_request_cancel_breadcrumb(request);
    713
    714	/* We've already spun, don't charge on resubmitting. */
    715	if (request->sched.semaphores && __i915_request_has_started(request))
    716		request->sched.semaphores = 0;
    717
    718	/*
    719	 * We don't need to wake_up any waiters on request->execute, they
    720	 * will get woken by any other event or us re-adding this request
    721	 * to the engine timeline (__i915_request_submit()). The waiters
    722	 * should be quite adapt at finding that the request now has a new
    723	 * global_seqno to the one they went to sleep on.
    724	 */
    725}
    726
    727void i915_request_unsubmit(struct i915_request *request)
    728{
    729	struct intel_engine_cs *engine = request->engine;
    730	unsigned long flags;
    731
    732	/* Will be called from irq-context when using foreign fences. */
    733	spin_lock_irqsave(&engine->sched_engine->lock, flags);
    734
    735	__i915_request_unsubmit(request);
    736
    737	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
    738}
    739
    740void i915_request_cancel(struct i915_request *rq, int error)
    741{
    742	if (!i915_request_set_error_once(rq, error))
    743		return;
    744
    745	set_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags);
    746
    747	intel_context_cancel_request(rq->context, rq);
    748}
    749
    750static int
    751submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
    752{
    753	struct i915_request *request =
    754		container_of(fence, typeof(*request), submit);
    755
    756	switch (state) {
    757	case FENCE_COMPLETE:
    758		trace_i915_request_submit(request);
    759
    760		if (unlikely(fence->error))
    761			i915_request_set_error_once(request, fence->error);
    762		else
    763			__rq_arm_watchdog(request);
    764
    765		/*
    766		 * We need to serialize use of the submit_request() callback
    767		 * with its hotplugging performed during an emergency
    768		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
    769		 * critical section in order to force i915_gem_set_wedged() to
    770		 * wait until the submit_request() is completed before
    771		 * proceeding.
    772		 */
    773		rcu_read_lock();
    774		request->engine->submit_request(request);
    775		rcu_read_unlock();
    776		break;
    777
    778	case FENCE_FREE:
    779		i915_request_put(request);
    780		break;
    781	}
    782
    783	return NOTIFY_DONE;
    784}
    785
    786static int
    787semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
    788{
    789	struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
    790
    791	switch (state) {
    792	case FENCE_COMPLETE:
    793		break;
    794
    795	case FENCE_FREE:
    796		i915_request_put(rq);
    797		break;
    798	}
    799
    800	return NOTIFY_DONE;
    801}
    802
    803static void retire_requests(struct intel_timeline *tl)
    804{
    805	struct i915_request *rq, *rn;
    806
    807	list_for_each_entry_safe(rq, rn, &tl->requests, link)
    808		if (!i915_request_retire(rq))
    809			break;
    810}
    811
    812static noinline struct i915_request *
    813request_alloc_slow(struct intel_timeline *tl,
    814		   struct i915_request **rsvd,
    815		   gfp_t gfp)
    816{
    817	struct i915_request *rq;
    818
    819	/* If we cannot wait, dip into our reserves */
    820	if (!gfpflags_allow_blocking(gfp)) {
    821		rq = xchg(rsvd, NULL);
    822		if (!rq) /* Use the normal failure path for one final WARN */
    823			goto out;
    824
    825		return rq;
    826	}
    827
    828	if (list_empty(&tl->requests))
    829		goto out;
    830
    831	/* Move our oldest request to the slab-cache (if not in use!) */
    832	rq = list_first_entry(&tl->requests, typeof(*rq), link);
    833	i915_request_retire(rq);
    834
    835	rq = kmem_cache_alloc(slab_requests,
    836			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
    837	if (rq)
    838		return rq;
    839
    840	/* Ratelimit ourselves to prevent oom from malicious clients */
    841	rq = list_last_entry(&tl->requests, typeof(*rq), link);
    842	cond_synchronize_rcu(rq->rcustate);
    843
    844	/* Retire our old requests in the hope that we free some */
    845	retire_requests(tl);
    846
    847out:
    848	return kmem_cache_alloc(slab_requests, gfp);
    849}
    850
    851static void __i915_request_ctor(void *arg)
    852{
    853	struct i915_request *rq = arg;
    854
    855	spin_lock_init(&rq->lock);
    856	i915_sched_node_init(&rq->sched);
    857	i915_sw_fence_init(&rq->submit, submit_notify);
    858	i915_sw_fence_init(&rq->semaphore, semaphore_notify);
    859
    860	clear_capture_list(rq);
    861	rq->batch_res = NULL;
    862
    863	init_llist_head(&rq->execute_cb);
    864}
    865
    866#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
    867#define clear_batch_ptr(_rq) ((_rq)->batch = NULL)
    868#else
    869#define clear_batch_ptr(_a) do {} while (0)
    870#endif
    871
    872struct i915_request *
    873__i915_request_create(struct intel_context *ce, gfp_t gfp)
    874{
    875	struct intel_timeline *tl = ce->timeline;
    876	struct i915_request *rq;
    877	u32 seqno;
    878	int ret;
    879
    880	might_alloc(gfp);
    881
    882	/* Check that the caller provided an already pinned context */
    883	__intel_context_pin(ce);
    884
    885	/*
    886	 * Beware: Dragons be flying overhead.
    887	 *
    888	 * We use RCU to look up requests in flight. The lookups may
    889	 * race with the request being allocated from the slab freelist.
    890	 * That is the request we are writing to here, may be in the process
    891	 * of being read by __i915_active_request_get_rcu(). As such,
    892	 * we have to be very careful when overwriting the contents. During
    893	 * the RCU lookup, we change chase the request->engine pointer,
    894	 * read the request->global_seqno and increment the reference count.
    895	 *
    896	 * The reference count is incremented atomically. If it is zero,
    897	 * the lookup knows the request is unallocated and complete. Otherwise,
    898	 * it is either still in use, or has been reallocated and reset
    899	 * with dma_fence_init(). This increment is safe for release as we
    900	 * check that the request we have a reference to and matches the active
    901	 * request.
    902	 *
    903	 * Before we increment the refcount, we chase the request->engine
    904	 * pointer. We must not call kmem_cache_zalloc() or else we set
    905	 * that pointer to NULL and cause a crash during the lookup. If
    906	 * we see the request is completed (based on the value of the
    907	 * old engine and seqno), the lookup is complete and reports NULL.
    908	 * If we decide the request is not completed (new engine or seqno),
    909	 * then we grab a reference and double check that it is still the
    910	 * active request - which it won't be and restart the lookup.
    911	 *
    912	 * Do not use kmem_cache_zalloc() here!
    913	 */
    914	rq = kmem_cache_alloc(slab_requests,
    915			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
    916	if (unlikely(!rq)) {
    917		rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
    918		if (!rq) {
    919			ret = -ENOMEM;
    920			goto err_unreserve;
    921		}
    922	}
    923
    924	/*
    925	 * Hold a reference to the intel_context over life of an i915_request.
    926	 * Without this an i915_request can exist after the context has been
    927	 * destroyed (e.g. request retired, context closed, but user space holds
    928	 * a reference to the request from an out fence). In the case of GuC
    929	 * submission + virtual engine, the engine that the request references
    930	 * is also destroyed which can trigger bad pointer dref in fence ops
    931	 * (e.g. i915_fence_get_driver_name). We could likely change these
    932	 * functions to avoid touching the engine but let's just be safe and
    933	 * hold the intel_context reference. In execlist mode the request always
    934	 * eventually points to a physical engine so this isn't an issue.
    935	 */
    936	rq->context = intel_context_get(ce);
    937	rq->engine = ce->engine;
    938	rq->ring = ce->ring;
    939	rq->execution_mask = ce->engine->mask;
    940
    941	ret = intel_timeline_get_seqno(tl, rq, &seqno);
    942	if (ret)
    943		goto err_free;
    944
    945	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
    946		       tl->fence_context, seqno);
    947
    948	RCU_INIT_POINTER(rq->timeline, tl);
    949	rq->hwsp_seqno = tl->hwsp_seqno;
    950	GEM_BUG_ON(__i915_request_is_complete(rq));
    951
    952	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
    953
    954	rq->guc_prio = GUC_PRIO_INIT;
    955
    956	/* We bump the ref for the fence chain */
    957	i915_sw_fence_reinit(&i915_request_get(rq)->submit);
    958	i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
    959
    960	i915_sched_node_reinit(&rq->sched);
    961
    962	/* No zalloc, everything must be cleared after use */
    963	clear_batch_ptr(rq);
    964	__rq_init_watchdog(rq);
    965	assert_capture_list_is_null(rq);
    966	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
    967	GEM_BUG_ON(rq->batch_res);
    968
    969	/*
    970	 * Reserve space in the ring buffer for all the commands required to
    971	 * eventually emit this request. This is to guarantee that the
    972	 * i915_request_add() call can't fail. Note that the reserve may need
    973	 * to be redone if the request is not actually submitted straight
    974	 * away, e.g. because a GPU scheduler has deferred it.
    975	 *
    976	 * Note that due to how we add reserved_space to intel_ring_begin()
    977	 * we need to double our request to ensure that if we need to wrap
    978	 * around inside i915_request_add() there is sufficient space at
    979	 * the beginning of the ring as well.
    980	 */
    981	rq->reserved_space =
    982		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
    983
    984	/*
    985	 * Record the position of the start of the request so that
    986	 * should we detect the updated seqno part-way through the
    987	 * GPU processing the request, we never over-estimate the
    988	 * position of the head.
    989	 */
    990	rq->head = rq->ring->emit;
    991
    992	ret = rq->engine->request_alloc(rq);
    993	if (ret)
    994		goto err_unwind;
    995
    996	rq->infix = rq->ring->emit; /* end of header; start of user payload */
    997
    998	intel_context_mark_active(ce);
    999	list_add_tail_rcu(&rq->link, &tl->requests);
   1000
   1001	return rq;
   1002
   1003err_unwind:
   1004	ce->ring->emit = rq->head;
   1005
   1006	/* Make sure we didn't add ourselves to external state before freeing */
   1007	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
   1008	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
   1009
   1010err_free:
   1011	intel_context_put(ce);
   1012	kmem_cache_free(slab_requests, rq);
   1013err_unreserve:
   1014	intel_context_unpin(ce);
   1015	return ERR_PTR(ret);
   1016}
   1017
   1018struct i915_request *
   1019i915_request_create(struct intel_context *ce)
   1020{
   1021	struct i915_request *rq;
   1022	struct intel_timeline *tl;
   1023
   1024	tl = intel_context_timeline_lock(ce);
   1025	if (IS_ERR(tl))
   1026		return ERR_CAST(tl);
   1027
   1028	/* Move our oldest request to the slab-cache (if not in use!) */
   1029	rq = list_first_entry(&tl->requests, typeof(*rq), link);
   1030	if (!list_is_last(&rq->link, &tl->requests))
   1031		i915_request_retire(rq);
   1032
   1033	intel_context_enter(ce);
   1034	rq = __i915_request_create(ce, GFP_KERNEL);
   1035	intel_context_exit(ce); /* active reference transferred to request */
   1036	if (IS_ERR(rq))
   1037		goto err_unlock;
   1038
   1039	/* Check that we do not interrupt ourselves with a new request */
   1040	rq->cookie = lockdep_pin_lock(&tl->mutex);
   1041
   1042	return rq;
   1043
   1044err_unlock:
   1045	intel_context_timeline_unlock(tl);
   1046	return rq;
   1047}
   1048
   1049static int
   1050i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
   1051{
   1052	struct dma_fence *fence;
   1053	int err;
   1054
   1055	if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
   1056		return 0;
   1057
   1058	if (i915_request_started(signal))
   1059		return 0;
   1060
   1061	/*
   1062	 * The caller holds a reference on @signal, but we do not serialise
   1063	 * against it being retired and removed from the lists.
   1064	 *
   1065	 * We do not hold a reference to the request before @signal, and
   1066	 * so must be very careful to ensure that it is not _recycled_ as
   1067	 * we follow the link backwards.
   1068	 */
   1069	fence = NULL;
   1070	rcu_read_lock();
   1071	do {
   1072		struct list_head *pos = READ_ONCE(signal->link.prev);
   1073		struct i915_request *prev;
   1074
   1075		/* Confirm signal has not been retired, the link is valid */
   1076		if (unlikely(__i915_request_has_started(signal)))
   1077			break;
   1078
   1079		/* Is signal the earliest request on its timeline? */
   1080		if (pos == &rcu_dereference(signal->timeline)->requests)
   1081			break;
   1082
   1083		/*
   1084		 * Peek at the request before us in the timeline. That
   1085		 * request will only be valid before it is retired, so
   1086		 * after acquiring a reference to it, confirm that it is
   1087		 * still part of the signaler's timeline.
   1088		 */
   1089		prev = list_entry(pos, typeof(*prev), link);
   1090		if (!i915_request_get_rcu(prev))
   1091			break;
   1092
   1093		/* After the strong barrier, confirm prev is still attached */
   1094		if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
   1095			i915_request_put(prev);
   1096			break;
   1097		}
   1098
   1099		fence = &prev->fence;
   1100	} while (0);
   1101	rcu_read_unlock();
   1102	if (!fence)
   1103		return 0;
   1104
   1105	err = 0;
   1106	if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
   1107		err = i915_sw_fence_await_dma_fence(&rq->submit,
   1108						    fence, 0,
   1109						    I915_FENCE_GFP);
   1110	dma_fence_put(fence);
   1111
   1112	return err;
   1113}
   1114
   1115static intel_engine_mask_t
   1116already_busywaiting(struct i915_request *rq)
   1117{
   1118	/*
   1119	 * Polling a semaphore causes bus traffic, delaying other users of
   1120	 * both the GPU and CPU. We want to limit the impact on others,
   1121	 * while taking advantage of early submission to reduce GPU
   1122	 * latency. Therefore we restrict ourselves to not using more
   1123	 * than one semaphore from each source, and not using a semaphore
   1124	 * if we have detected the engine is saturated (i.e. would not be
   1125	 * submitted early and cause bus traffic reading an already passed
   1126	 * semaphore).
   1127	 *
   1128	 * See the are-we-too-late? check in __i915_request_submit().
   1129	 */
   1130	return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
   1131}
   1132
   1133static int
   1134__emit_semaphore_wait(struct i915_request *to,
   1135		      struct i915_request *from,
   1136		      u32 seqno)
   1137{
   1138	const int has_token = GRAPHICS_VER(to->engine->i915) >= 12;
   1139	u32 hwsp_offset;
   1140	int len, err;
   1141	u32 *cs;
   1142
   1143	GEM_BUG_ON(GRAPHICS_VER(to->engine->i915) < 8);
   1144	GEM_BUG_ON(i915_request_has_initial_breadcrumb(to));
   1145
   1146	/* We need to pin the signaler's HWSP until we are finished reading. */
   1147	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
   1148	if (err)
   1149		return err;
   1150
   1151	len = 4;
   1152	if (has_token)
   1153		len += 2;
   1154
   1155	cs = intel_ring_begin(to, len);
   1156	if (IS_ERR(cs))
   1157		return PTR_ERR(cs);
   1158
   1159	/*
   1160	 * Using greater-than-or-equal here means we have to worry
   1161	 * about seqno wraparound. To side step that issue, we swap
   1162	 * the timeline HWSP upon wrapping, so that everyone listening
   1163	 * for the old (pre-wrap) values do not see the much smaller
   1164	 * (post-wrap) values than they were expecting (and so wait
   1165	 * forever).
   1166	 */
   1167	*cs++ = (MI_SEMAPHORE_WAIT |
   1168		 MI_SEMAPHORE_GLOBAL_GTT |
   1169		 MI_SEMAPHORE_POLL |
   1170		 MI_SEMAPHORE_SAD_GTE_SDD) +
   1171		has_token;
   1172	*cs++ = seqno;
   1173	*cs++ = hwsp_offset;
   1174	*cs++ = 0;
   1175	if (has_token) {
   1176		*cs++ = 0;
   1177		*cs++ = MI_NOOP;
   1178	}
   1179
   1180	intel_ring_advance(to, cs);
   1181	return 0;
   1182}
   1183
   1184static bool
   1185can_use_semaphore_wait(struct i915_request *to, struct i915_request *from)
   1186{
   1187	return to->engine->gt->ggtt == from->engine->gt->ggtt;
   1188}
   1189
   1190static int
   1191emit_semaphore_wait(struct i915_request *to,
   1192		    struct i915_request *from,
   1193		    gfp_t gfp)
   1194{
   1195	const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
   1196	struct i915_sw_fence *wait = &to->submit;
   1197
   1198	if (!can_use_semaphore_wait(to, from))
   1199		goto await_fence;
   1200
   1201	if (!intel_context_use_semaphores(to->context))
   1202		goto await_fence;
   1203
   1204	if (i915_request_has_initial_breadcrumb(to))
   1205		goto await_fence;
   1206
   1207	/*
   1208	 * If this or its dependents are waiting on an external fence
   1209	 * that may fail catastrophically, then we want to avoid using
   1210	 * sempahores as they bypass the fence signaling metadata, and we
   1211	 * lose the fence->error propagation.
   1212	 */
   1213	if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN)
   1214		goto await_fence;
   1215
   1216	/* Just emit the first semaphore we see as request space is limited. */
   1217	if (already_busywaiting(to) & mask)
   1218		goto await_fence;
   1219
   1220	if (i915_request_await_start(to, from) < 0)
   1221		goto await_fence;
   1222
   1223	/* Only submit our spinner after the signaler is running! */
   1224	if (__await_execution(to, from, gfp))
   1225		goto await_fence;
   1226
   1227	if (__emit_semaphore_wait(to, from, from->fence.seqno))
   1228		goto await_fence;
   1229
   1230	to->sched.semaphores |= mask;
   1231	wait = &to->semaphore;
   1232
   1233await_fence:
   1234	return i915_sw_fence_await_dma_fence(wait,
   1235					     &from->fence, 0,
   1236					     I915_FENCE_GFP);
   1237}
   1238
   1239static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
   1240					  struct dma_fence *fence)
   1241{
   1242	return __intel_timeline_sync_is_later(tl,
   1243					      fence->context,
   1244					      fence->seqno - 1);
   1245}
   1246
   1247static int intel_timeline_sync_set_start(struct intel_timeline *tl,
   1248					 const struct dma_fence *fence)
   1249{
   1250	return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
   1251}
   1252
   1253static int
   1254__i915_request_await_execution(struct i915_request *to,
   1255			       struct i915_request *from)
   1256{
   1257	int err;
   1258
   1259	GEM_BUG_ON(intel_context_is_barrier(from->context));
   1260
   1261	/* Submit both requests at the same time */
   1262	err = __await_execution(to, from, I915_FENCE_GFP);
   1263	if (err)
   1264		return err;
   1265
   1266	/* Squash repeated depenendices to the same timelines */
   1267	if (intel_timeline_sync_has_start(i915_request_timeline(to),
   1268					  &from->fence))
   1269		return 0;
   1270
   1271	/*
   1272	 * Wait until the start of this request.
   1273	 *
   1274	 * The execution cb fires when we submit the request to HW. But in
   1275	 * many cases this may be long before the request itself is ready to
   1276	 * run (consider that we submit 2 requests for the same context, where
   1277	 * the request of interest is behind an indefinite spinner). So we hook
   1278	 * up to both to reduce our queues and keep the execution lag minimised
   1279	 * in the worst case, though we hope that the await_start is elided.
   1280	 */
   1281	err = i915_request_await_start(to, from);
   1282	if (err < 0)
   1283		return err;
   1284
   1285	/*
   1286	 * Ensure both start together [after all semaphores in signal]
   1287	 *
   1288	 * Now that we are queued to the HW at roughly the same time (thanks
   1289	 * to the execute cb) and are ready to run at roughly the same time
   1290	 * (thanks to the await start), our signaler may still be indefinitely
   1291	 * delayed by waiting on a semaphore from a remote engine. If our
   1292	 * signaler depends on a semaphore, so indirectly do we, and we do not
   1293	 * want to start our payload until our signaler also starts theirs.
   1294	 * So we wait.
   1295	 *
   1296	 * However, there is also a second condition for which we need to wait
   1297	 * for the precise start of the signaler. Consider that the signaler
   1298	 * was submitted in a chain of requests following another context
   1299	 * (with just an ordinary intra-engine fence dependency between the
   1300	 * two). In this case the signaler is queued to HW, but not for
   1301	 * immediate execution, and so we must wait until it reaches the
   1302	 * active slot.
   1303	 */
   1304	if (can_use_semaphore_wait(to, from) &&
   1305	    intel_engine_has_semaphores(to->engine) &&
   1306	    !i915_request_has_initial_breadcrumb(to)) {
   1307		err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
   1308		if (err < 0)
   1309			return err;
   1310	}
   1311
   1312	/* Couple the dependency tree for PI on this exposed to->fence */
   1313	if (to->engine->sched_engine->schedule) {
   1314		err = i915_sched_node_add_dependency(&to->sched,
   1315						     &from->sched,
   1316						     I915_DEPENDENCY_WEAK);
   1317		if (err < 0)
   1318			return err;
   1319	}
   1320
   1321	return intel_timeline_sync_set_start(i915_request_timeline(to),
   1322					     &from->fence);
   1323}
   1324
   1325static void mark_external(struct i915_request *rq)
   1326{
   1327	/*
   1328	 * The downside of using semaphores is that we lose metadata passing
   1329	 * along the signaling chain. This is particularly nasty when we
   1330	 * need to pass along a fatal error such as EFAULT or EDEADLK. For
   1331	 * fatal errors we want to scrub the request before it is executed,
   1332	 * which means that we cannot preload the request onto HW and have
   1333	 * it wait upon a semaphore.
   1334	 */
   1335	rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
   1336}
   1337
   1338static int
   1339__i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
   1340{
   1341	mark_external(rq);
   1342	return i915_sw_fence_await_dma_fence(&rq->submit, fence,
   1343					     i915_fence_context_timeout(rq->engine->i915,
   1344									fence->context),
   1345					     I915_FENCE_GFP);
   1346}
   1347
   1348static int
   1349i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
   1350{
   1351	struct dma_fence *iter;
   1352	int err = 0;
   1353
   1354	if (!to_dma_fence_chain(fence))
   1355		return __i915_request_await_external(rq, fence);
   1356
   1357	dma_fence_chain_for_each(iter, fence) {
   1358		struct dma_fence_chain *chain = to_dma_fence_chain(iter);
   1359
   1360		if (!dma_fence_is_i915(chain->fence)) {
   1361			err = __i915_request_await_external(rq, iter);
   1362			break;
   1363		}
   1364
   1365		err = i915_request_await_dma_fence(rq, chain->fence);
   1366		if (err < 0)
   1367			break;
   1368	}
   1369
   1370	dma_fence_put(iter);
   1371	return err;
   1372}
   1373
   1374static inline bool is_parallel_rq(struct i915_request *rq)
   1375{
   1376	return intel_context_is_parallel(rq->context);
   1377}
   1378
   1379static inline struct intel_context *request_to_parent(struct i915_request *rq)
   1380{
   1381	return intel_context_to_parent(rq->context);
   1382}
   1383
   1384static bool is_same_parallel_context(struct i915_request *to,
   1385				     struct i915_request *from)
   1386{
   1387	if (is_parallel_rq(to))
   1388		return request_to_parent(to) == request_to_parent(from);
   1389
   1390	return false;
   1391}
   1392
   1393int
   1394i915_request_await_execution(struct i915_request *rq,
   1395			     struct dma_fence *fence)
   1396{
   1397	struct dma_fence **child = &fence;
   1398	unsigned int nchild = 1;
   1399	int ret;
   1400
   1401	if (dma_fence_is_array(fence)) {
   1402		struct dma_fence_array *array = to_dma_fence_array(fence);
   1403
   1404		/* XXX Error for signal-on-any fence arrays */
   1405
   1406		child = array->fences;
   1407		nchild = array->num_fences;
   1408		GEM_BUG_ON(!nchild);
   1409	}
   1410
   1411	do {
   1412		fence = *child++;
   1413		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
   1414			continue;
   1415
   1416		if (fence->context == rq->fence.context)
   1417			continue;
   1418
   1419		/*
   1420		 * We don't squash repeated fence dependencies here as we
   1421		 * want to run our callback in all cases.
   1422		 */
   1423
   1424		if (dma_fence_is_i915(fence)) {
   1425			if (is_same_parallel_context(rq, to_request(fence)))
   1426				continue;
   1427			ret = __i915_request_await_execution(rq,
   1428							     to_request(fence));
   1429		} else {
   1430			ret = i915_request_await_external(rq, fence);
   1431		}
   1432		if (ret < 0)
   1433			return ret;
   1434	} while (--nchild);
   1435
   1436	return 0;
   1437}
   1438
   1439static int
   1440await_request_submit(struct i915_request *to, struct i915_request *from)
   1441{
   1442	/*
   1443	 * If we are waiting on a virtual engine, then it may be
   1444	 * constrained to execute on a single engine *prior* to submission.
   1445	 * When it is submitted, it will be first submitted to the virtual
   1446	 * engine and then passed to the physical engine. We cannot allow
   1447	 * the waiter to be submitted immediately to the physical engine
   1448	 * as it may then bypass the virtual request.
   1449	 */
   1450	if (to->engine == READ_ONCE(from->engine))
   1451		return i915_sw_fence_await_sw_fence_gfp(&to->submit,
   1452							&from->submit,
   1453							I915_FENCE_GFP);
   1454	else
   1455		return __i915_request_await_execution(to, from);
   1456}
   1457
   1458static int
   1459i915_request_await_request(struct i915_request *to, struct i915_request *from)
   1460{
   1461	int ret;
   1462
   1463	GEM_BUG_ON(to == from);
   1464	GEM_BUG_ON(to->timeline == from->timeline);
   1465
   1466	if (i915_request_completed(from)) {
   1467		i915_sw_fence_set_error_once(&to->submit, from->fence.error);
   1468		return 0;
   1469	}
   1470
   1471	if (to->engine->sched_engine->schedule) {
   1472		ret = i915_sched_node_add_dependency(&to->sched,
   1473						     &from->sched,
   1474						     I915_DEPENDENCY_EXTERNAL);
   1475		if (ret < 0)
   1476			return ret;
   1477	}
   1478
   1479	if (!intel_engine_uses_guc(to->engine) &&
   1480	    is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask)))
   1481		ret = await_request_submit(to, from);
   1482	else
   1483		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
   1484	if (ret < 0)
   1485		return ret;
   1486
   1487	return 0;
   1488}
   1489
   1490int
   1491i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
   1492{
   1493	struct dma_fence **child = &fence;
   1494	unsigned int nchild = 1;
   1495	int ret;
   1496
   1497	/*
   1498	 * Note that if the fence-array was created in signal-on-any mode,
   1499	 * we should *not* decompose it into its individual fences. However,
   1500	 * we don't currently store which mode the fence-array is operating
   1501	 * in. Fortunately, the only user of signal-on-any is private to
   1502	 * amdgpu and we should not see any incoming fence-array from
   1503	 * sync-file being in signal-on-any mode.
   1504	 */
   1505	if (dma_fence_is_array(fence)) {
   1506		struct dma_fence_array *array = to_dma_fence_array(fence);
   1507
   1508		child = array->fences;
   1509		nchild = array->num_fences;
   1510		GEM_BUG_ON(!nchild);
   1511	}
   1512
   1513	do {
   1514		fence = *child++;
   1515		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
   1516			continue;
   1517
   1518		/*
   1519		 * Requests on the same timeline are explicitly ordered, along
   1520		 * with their dependencies, by i915_request_add() which ensures
   1521		 * that requests are submitted in-order through each ring.
   1522		 */
   1523		if (fence->context == rq->fence.context)
   1524			continue;
   1525
   1526		/* Squash repeated waits to the same timelines */
   1527		if (fence->context &&
   1528		    intel_timeline_sync_is_later(i915_request_timeline(rq),
   1529						 fence))
   1530			continue;
   1531
   1532		if (dma_fence_is_i915(fence)) {
   1533			if (is_same_parallel_context(rq, to_request(fence)))
   1534				continue;
   1535			ret = i915_request_await_request(rq, to_request(fence));
   1536		} else {
   1537			ret = i915_request_await_external(rq, fence);
   1538		}
   1539		if (ret < 0)
   1540			return ret;
   1541
   1542		/* Record the latest fence used against each timeline */
   1543		if (fence->context)
   1544			intel_timeline_sync_set(i915_request_timeline(rq),
   1545						fence);
   1546	} while (--nchild);
   1547
   1548	return 0;
   1549}
   1550
   1551/**
   1552 * i915_request_await_deps - set this request to (async) wait upon a struct
   1553 * i915_deps dma_fence collection
   1554 * @rq: request we are wishing to use
   1555 * @deps: The struct i915_deps containing the dependencies.
   1556 *
   1557 * Returns 0 if successful, negative error code on error.
   1558 */
   1559int i915_request_await_deps(struct i915_request *rq, const struct i915_deps *deps)
   1560{
   1561	int i, err;
   1562
   1563	for (i = 0; i < deps->num_deps; ++i) {
   1564		err = i915_request_await_dma_fence(rq, deps->fences[i]);
   1565		if (err)
   1566			return err;
   1567	}
   1568
   1569	return 0;
   1570}
   1571
   1572/**
   1573 * i915_request_await_object - set this request to (async) wait upon a bo
   1574 * @to: request we are wishing to use
   1575 * @obj: object which may be in use on another ring.
   1576 * @write: whether the wait is on behalf of a writer
   1577 *
   1578 * This code is meant to abstract object synchronization with the GPU.
   1579 * Conceptually we serialise writes between engines inside the GPU.
   1580 * We only allow one engine to write into a buffer at any time, but
   1581 * multiple readers. To ensure each has a coherent view of memory, we must:
   1582 *
   1583 * - If there is an outstanding write request to the object, the new
   1584 *   request must wait for it to complete (either CPU or in hw, requests
   1585 *   on the same ring will be naturally ordered).
   1586 *
   1587 * - If we are a write request (pending_write_domain is set), the new
   1588 *   request must wait for outstanding read requests to complete.
   1589 *
   1590 * Returns 0 if successful, else propagates up the lower layer error.
   1591 */
   1592int
   1593i915_request_await_object(struct i915_request *to,
   1594			  struct drm_i915_gem_object *obj,
   1595			  bool write)
   1596{
   1597	struct dma_resv_iter cursor;
   1598	struct dma_fence *fence;
   1599	int ret = 0;
   1600
   1601	dma_resv_for_each_fence(&cursor, obj->base.resv,
   1602				dma_resv_usage_rw(write), fence) {
   1603		ret = i915_request_await_dma_fence(to, fence);
   1604		if (ret)
   1605			break;
   1606	}
   1607
   1608	return ret;
   1609}
   1610
   1611static struct i915_request *
   1612__i915_request_ensure_parallel_ordering(struct i915_request *rq,
   1613					struct intel_timeline *timeline)
   1614{
   1615	struct i915_request *prev;
   1616
   1617	GEM_BUG_ON(!is_parallel_rq(rq));
   1618
   1619	prev = request_to_parent(rq)->parallel.last_rq;
   1620	if (prev) {
   1621		if (!__i915_request_is_complete(prev)) {
   1622			i915_sw_fence_await_sw_fence(&rq->submit,
   1623						     &prev->submit,
   1624						     &rq->submitq);
   1625
   1626			if (rq->engine->sched_engine->schedule)
   1627				__i915_sched_node_add_dependency(&rq->sched,
   1628								 &prev->sched,
   1629								 &rq->dep,
   1630								 0);
   1631		}
   1632		i915_request_put(prev);
   1633	}
   1634
   1635	request_to_parent(rq)->parallel.last_rq = i915_request_get(rq);
   1636
   1637	return to_request(__i915_active_fence_set(&timeline->last_request,
   1638						  &rq->fence));
   1639}
   1640
   1641static struct i915_request *
   1642__i915_request_ensure_ordering(struct i915_request *rq,
   1643			       struct intel_timeline *timeline)
   1644{
   1645	struct i915_request *prev;
   1646
   1647	GEM_BUG_ON(is_parallel_rq(rq));
   1648
   1649	prev = to_request(__i915_active_fence_set(&timeline->last_request,
   1650						  &rq->fence));
   1651
   1652	if (prev && !__i915_request_is_complete(prev)) {
   1653		bool uses_guc = intel_engine_uses_guc(rq->engine);
   1654		bool pow2 = is_power_of_2(READ_ONCE(prev->engine)->mask |
   1655					  rq->engine->mask);
   1656		bool same_context = prev->context == rq->context;
   1657
   1658		/*
   1659		 * The requests are supposed to be kept in order. However,
   1660		 * we need to be wary in case the timeline->last_request
   1661		 * is used as a barrier for external modification to this
   1662		 * context.
   1663		 */
   1664		GEM_BUG_ON(same_context &&
   1665			   i915_seqno_passed(prev->fence.seqno,
   1666					     rq->fence.seqno));
   1667
   1668		if ((same_context && uses_guc) || (!uses_guc && pow2))
   1669			i915_sw_fence_await_sw_fence(&rq->submit,
   1670						     &prev->submit,
   1671						     &rq->submitq);
   1672		else
   1673			__i915_sw_fence_await_dma_fence(&rq->submit,
   1674							&prev->fence,
   1675							&rq->dmaq);
   1676		if (rq->engine->sched_engine->schedule)
   1677			__i915_sched_node_add_dependency(&rq->sched,
   1678							 &prev->sched,
   1679							 &rq->dep,
   1680							 0);
   1681	}
   1682
   1683	return prev;
   1684}
   1685
   1686static struct i915_request *
   1687__i915_request_add_to_timeline(struct i915_request *rq)
   1688{
   1689	struct intel_timeline *timeline = i915_request_timeline(rq);
   1690	struct i915_request *prev;
   1691
   1692	/*
   1693	 * Dependency tracking and request ordering along the timeline
   1694	 * is special cased so that we can eliminate redundant ordering
   1695	 * operations while building the request (we know that the timeline
   1696	 * itself is ordered, and here we guarantee it).
   1697	 *
   1698	 * As we know we will need to emit tracking along the timeline,
   1699	 * we embed the hooks into our request struct -- at the cost of
   1700	 * having to have specialised no-allocation interfaces (which will
   1701	 * be beneficial elsewhere).
   1702	 *
   1703	 * A second benefit to open-coding i915_request_await_request is
   1704	 * that we can apply a slight variant of the rules specialised
   1705	 * for timelines that jump between engines (such as virtual engines).
   1706	 * If we consider the case of virtual engine, we must emit a dma-fence
   1707	 * to prevent scheduling of the second request until the first is
   1708	 * complete (to maximise our greedy late load balancing) and this
   1709	 * precludes optimising to use semaphores serialisation of a single
   1710	 * timeline across engines.
   1711	 *
   1712	 * We do not order parallel submission requests on the timeline as each
   1713	 * parallel submission context has its own timeline and the ordering
   1714	 * rules for parallel requests are that they must be submitted in the
   1715	 * order received from the execbuf IOCTL. So rather than using the
   1716	 * timeline we store a pointer to last request submitted in the
   1717	 * relationship in the gem context and insert a submission fence
   1718	 * between that request and request passed into this function or
   1719	 * alternatively we use completion fence if gem context has a single
   1720	 * timeline and this is the first submission of an execbuf IOCTL.
   1721	 */
   1722	if (likely(!is_parallel_rq(rq)))
   1723		prev = __i915_request_ensure_ordering(rq, timeline);
   1724	else
   1725		prev = __i915_request_ensure_parallel_ordering(rq, timeline);
   1726
   1727	/*
   1728	 * Make sure that no request gazumped us - if it was allocated after
   1729	 * our i915_request_alloc() and called __i915_request_add() before
   1730	 * us, the timeline will hold its seqno which is later than ours.
   1731	 */
   1732	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
   1733
   1734	return prev;
   1735}
   1736
   1737/*
   1738 * NB: This function is not allowed to fail. Doing so would mean the the
   1739 * request is not being tracked for completion but the work itself is
   1740 * going to happen on the hardware. This would be a Bad Thing(tm).
   1741 */
   1742struct i915_request *__i915_request_commit(struct i915_request *rq)
   1743{
   1744	struct intel_engine_cs *engine = rq->engine;
   1745	struct intel_ring *ring = rq->ring;
   1746	u32 *cs;
   1747
   1748	RQ_TRACE(rq, "\n");
   1749
   1750	/*
   1751	 * To ensure that this call will not fail, space for its emissions
   1752	 * should already have been reserved in the ring buffer. Let the ring
   1753	 * know that it is time to use that space up.
   1754	 */
   1755	GEM_BUG_ON(rq->reserved_space > ring->space);
   1756	rq->reserved_space = 0;
   1757	rq->emitted_jiffies = jiffies;
   1758
   1759	/*
   1760	 * Record the position of the start of the breadcrumb so that
   1761	 * should we detect the updated seqno part-way through the
   1762	 * GPU processing the request, we never over-estimate the
   1763	 * position of the ring's HEAD.
   1764	 */
   1765	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
   1766	GEM_BUG_ON(IS_ERR(cs));
   1767	rq->postfix = intel_ring_offset(rq, cs);
   1768
   1769	return __i915_request_add_to_timeline(rq);
   1770}
   1771
   1772void __i915_request_queue_bh(struct i915_request *rq)
   1773{
   1774	i915_sw_fence_commit(&rq->semaphore);
   1775	i915_sw_fence_commit(&rq->submit);
   1776}
   1777
   1778void __i915_request_queue(struct i915_request *rq,
   1779			  const struct i915_sched_attr *attr)
   1780{
   1781	/*
   1782	 * Let the backend know a new request has arrived that may need
   1783	 * to adjust the existing execution schedule due to a high priority
   1784	 * request - i.e. we may want to preempt the current request in order
   1785	 * to run a high priority dependency chain *before* we can execute this
   1786	 * request.
   1787	 *
   1788	 * This is called before the request is ready to run so that we can
   1789	 * decide whether to preempt the entire chain so that it is ready to
   1790	 * run at the earliest possible convenience.
   1791	 */
   1792	if (attr && rq->engine->sched_engine->schedule)
   1793		rq->engine->sched_engine->schedule(rq, attr);
   1794
   1795	local_bh_disable();
   1796	__i915_request_queue_bh(rq);
   1797	local_bh_enable(); /* kick tasklets */
   1798}
   1799
   1800void i915_request_add(struct i915_request *rq)
   1801{
   1802	struct intel_timeline * const tl = i915_request_timeline(rq);
   1803	struct i915_sched_attr attr = {};
   1804	struct i915_gem_context *ctx;
   1805
   1806	lockdep_assert_held(&tl->mutex);
   1807	lockdep_unpin_lock(&tl->mutex, rq->cookie);
   1808
   1809	trace_i915_request_add(rq);
   1810	__i915_request_commit(rq);
   1811
   1812	/* XXX placeholder for selftests */
   1813	rcu_read_lock();
   1814	ctx = rcu_dereference(rq->context->gem_context);
   1815	if (ctx)
   1816		attr = ctx->sched;
   1817	rcu_read_unlock();
   1818
   1819	__i915_request_queue(rq, &attr);
   1820
   1821	mutex_unlock(&tl->mutex);
   1822}
   1823
   1824static unsigned long local_clock_ns(unsigned int *cpu)
   1825{
   1826	unsigned long t;
   1827
   1828	/*
   1829	 * Cheaply and approximately convert from nanoseconds to microseconds.
   1830	 * The result and subsequent calculations are also defined in the same
   1831	 * approximate microseconds units. The principal source of timing
   1832	 * error here is from the simple truncation.
   1833	 *
   1834	 * Note that local_clock() is only defined wrt to the current CPU;
   1835	 * the comparisons are no longer valid if we switch CPUs. Instead of
   1836	 * blocking preemption for the entire busywait, we can detect the CPU
   1837	 * switch and use that as indicator of system load and a reason to
   1838	 * stop busywaiting, see busywait_stop().
   1839	 */
   1840	*cpu = get_cpu();
   1841	t = local_clock();
   1842	put_cpu();
   1843
   1844	return t;
   1845}
   1846
   1847static bool busywait_stop(unsigned long timeout, unsigned int cpu)
   1848{
   1849	unsigned int this_cpu;
   1850
   1851	if (time_after(local_clock_ns(&this_cpu), timeout))
   1852		return true;
   1853
   1854	return this_cpu != cpu;
   1855}
   1856
   1857static bool __i915_spin_request(struct i915_request * const rq, int state)
   1858{
   1859	unsigned long timeout_ns;
   1860	unsigned int cpu;
   1861
   1862	/*
   1863	 * Only wait for the request if we know it is likely to complete.
   1864	 *
   1865	 * We don't track the timestamps around requests, nor the average
   1866	 * request length, so we do not have a good indicator that this
   1867	 * request will complete within the timeout. What we do know is the
   1868	 * order in which requests are executed by the context and so we can
   1869	 * tell if the request has been started. If the request is not even
   1870	 * running yet, it is a fair assumption that it will not complete
   1871	 * within our relatively short timeout.
   1872	 */
   1873	if (!i915_request_is_running(rq))
   1874		return false;
   1875
   1876	/*
   1877	 * When waiting for high frequency requests, e.g. during synchronous
   1878	 * rendering split between the CPU and GPU, the finite amount of time
   1879	 * required to set up the irq and wait upon it limits the response
   1880	 * rate. By busywaiting on the request completion for a short while we
   1881	 * can service the high frequency waits as quick as possible. However,
   1882	 * if it is a slow request, we want to sleep as quickly as possible.
   1883	 * The tradeoff between waiting and sleeping is roughly the time it
   1884	 * takes to sleep on a request, on the order of a microsecond.
   1885	 */
   1886
   1887	timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
   1888	timeout_ns += local_clock_ns(&cpu);
   1889	do {
   1890		if (dma_fence_is_signaled(&rq->fence))
   1891			return true;
   1892
   1893		if (signal_pending_state(state, current))
   1894			break;
   1895
   1896		if (busywait_stop(timeout_ns, cpu))
   1897			break;
   1898
   1899		cpu_relax();
   1900	} while (!need_resched());
   1901
   1902	return false;
   1903}
   1904
   1905struct request_wait {
   1906	struct dma_fence_cb cb;
   1907	struct task_struct *tsk;
   1908};
   1909
   1910static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
   1911{
   1912	struct request_wait *wait = container_of(cb, typeof(*wait), cb);
   1913
   1914	wake_up_process(fetch_and_zero(&wait->tsk));
   1915}
   1916
   1917/**
   1918 * i915_request_wait_timeout - wait until execution of request has finished
   1919 * @rq: the request to wait upon
   1920 * @flags: how to wait
   1921 * @timeout: how long to wait in jiffies
   1922 *
   1923 * i915_request_wait_timeout() waits for the request to be completed, for a
   1924 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
   1925 * unbounded wait).
   1926 *
   1927 * Returns the remaining time (in jiffies) if the request completed, which may
   1928 * be zero if the request is unfinished after the timeout expires.
   1929 * If the timeout is 0, it will return 1 if the fence is signaled.
   1930 *
   1931 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
   1932 * pending before the request completes.
   1933 *
   1934 * NOTE: This function has the same wait semantics as dma-fence.
   1935 */
   1936long i915_request_wait_timeout(struct i915_request *rq,
   1937			       unsigned int flags,
   1938			       long timeout)
   1939{
   1940	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
   1941		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
   1942	struct request_wait wait;
   1943
   1944	might_sleep();
   1945	GEM_BUG_ON(timeout < 0);
   1946
   1947	if (dma_fence_is_signaled(&rq->fence))
   1948		return timeout ?: 1;
   1949
   1950	if (!timeout)
   1951		return -ETIME;
   1952
   1953	trace_i915_request_wait_begin(rq, flags);
   1954
   1955	/*
   1956	 * We must never wait on the GPU while holding a lock as we
   1957	 * may need to perform a GPU reset. So while we don't need to
   1958	 * serialise wait/reset with an explicit lock, we do want
   1959	 * lockdep to detect potential dependency cycles.
   1960	 */
   1961	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
   1962
   1963	/*
   1964	 * Optimistic spin before touching IRQs.
   1965	 *
   1966	 * We may use a rather large value here to offset the penalty of
   1967	 * switching away from the active task. Frequently, the client will
   1968	 * wait upon an old swapbuffer to throttle itself to remain within a
   1969	 * frame of the gpu. If the client is running in lockstep with the gpu,
   1970	 * then it should not be waiting long at all, and a sleep now will incur
   1971	 * extra scheduler latency in producing the next frame. To try to
   1972	 * avoid adding the cost of enabling/disabling the interrupt to the
   1973	 * short wait, we first spin to see if the request would have completed
   1974	 * in the time taken to setup the interrupt.
   1975	 *
   1976	 * We need upto 5us to enable the irq, and upto 20us to hide the
   1977	 * scheduler latency of a context switch, ignoring the secondary
   1978	 * impacts from a context switch such as cache eviction.
   1979	 *
   1980	 * The scheme used for low-latency IO is called "hybrid interrupt
   1981	 * polling". The suggestion there is to sleep until just before you
   1982	 * expect to be woken by the device interrupt and then poll for its
   1983	 * completion. That requires having a good predictor for the request
   1984	 * duration, which we currently lack.
   1985	 */
   1986	if (CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT &&
   1987	    __i915_spin_request(rq, state))
   1988		goto out;
   1989
   1990	/*
   1991	 * This client is about to stall waiting for the GPU. In many cases
   1992	 * this is undesirable and limits the throughput of the system, as
   1993	 * many clients cannot continue processing user input/output whilst
   1994	 * blocked. RPS autotuning may take tens of milliseconds to respond
   1995	 * to the GPU load and thus incurs additional latency for the client.
   1996	 * We can circumvent that by promoting the GPU frequency to maximum
   1997	 * before we sleep. This makes the GPU throttle up much more quickly
   1998	 * (good for benchmarks and user experience, e.g. window animations),
   1999	 * but at a cost of spending more power processing the workload
   2000	 * (bad for battery).
   2001	 */
   2002	if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq))
   2003		intel_rps_boost(rq);
   2004
   2005	wait.tsk = current;
   2006	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
   2007		goto out;
   2008
   2009	/*
   2010	 * Flush the submission tasklet, but only if it may help this request.
   2011	 *
   2012	 * We sometimes experience some latency between the HW interrupts and
   2013	 * tasklet execution (mostly due to ksoftirqd latency, but it can also
   2014	 * be due to lazy CS events), so lets run the tasklet manually if there
   2015	 * is a chance it may submit this request. If the request is not ready
   2016	 * to run, as it is waiting for other fences to be signaled, flushing
   2017	 * the tasklet is busy work without any advantage for this client.
   2018	 *
   2019	 * If the HW is being lazy, this is the last chance before we go to
   2020	 * sleep to catch any pending events. We will check periodically in
   2021	 * the heartbeat to flush the submission tasklets as a last resort
   2022	 * for unhappy HW.
   2023	 */
   2024	if (i915_request_is_ready(rq))
   2025		__intel_engine_flush_submission(rq->engine, false);
   2026
   2027	for (;;) {
   2028		set_current_state(state);
   2029
   2030		if (dma_fence_is_signaled(&rq->fence))
   2031			break;
   2032
   2033		if (signal_pending_state(state, current)) {
   2034			timeout = -ERESTARTSYS;
   2035			break;
   2036		}
   2037
   2038		if (!timeout) {
   2039			timeout = -ETIME;
   2040			break;
   2041		}
   2042
   2043		timeout = io_schedule_timeout(timeout);
   2044	}
   2045	__set_current_state(TASK_RUNNING);
   2046
   2047	if (READ_ONCE(wait.tsk))
   2048		dma_fence_remove_callback(&rq->fence, &wait.cb);
   2049	GEM_BUG_ON(!list_empty(&wait.cb.node));
   2050
   2051out:
   2052	mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
   2053	trace_i915_request_wait_end(rq);
   2054	return timeout;
   2055}
   2056
   2057/**
   2058 * i915_request_wait - wait until execution of request has finished
   2059 * @rq: the request to wait upon
   2060 * @flags: how to wait
   2061 * @timeout: how long to wait in jiffies
   2062 *
   2063 * i915_request_wait() waits for the request to be completed, for a
   2064 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
   2065 * unbounded wait).
   2066 *
   2067 * Returns the remaining time (in jiffies) if the request completed, which may
   2068 * be zero or -ETIME if the request is unfinished after the timeout expires.
   2069 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
   2070 * pending before the request completes.
   2071 *
   2072 * NOTE: This function behaves differently from dma-fence wait semantics for
   2073 * timeout = 0. It returns 0 on success, and -ETIME if not signaled.
   2074 */
   2075long i915_request_wait(struct i915_request *rq,
   2076		       unsigned int flags,
   2077		       long timeout)
   2078{
   2079	long ret = i915_request_wait_timeout(rq, flags, timeout);
   2080
   2081	if (!ret)
   2082		return -ETIME;
   2083
   2084	if (ret > 0 && !timeout)
   2085		return 0;
   2086
   2087	return ret;
   2088}
   2089
   2090static int print_sched_attr(const struct i915_sched_attr *attr,
   2091			    char *buf, int x, int len)
   2092{
   2093	if (attr->priority == I915_PRIORITY_INVALID)
   2094		return x;
   2095
   2096	x += snprintf(buf + x, len - x,
   2097		      " prio=%d", attr->priority);
   2098
   2099	return x;
   2100}
   2101
   2102static char queue_status(const struct i915_request *rq)
   2103{
   2104	if (i915_request_is_active(rq))
   2105		return 'E';
   2106
   2107	if (i915_request_is_ready(rq))
   2108		return intel_engine_is_virtual(rq->engine) ? 'V' : 'R';
   2109
   2110	return 'U';
   2111}
   2112
   2113static const char *run_status(const struct i915_request *rq)
   2114{
   2115	if (__i915_request_is_complete(rq))
   2116		return "!";
   2117
   2118	if (__i915_request_has_started(rq))
   2119		return "*";
   2120
   2121	if (!i915_sw_fence_signaled(&rq->semaphore))
   2122		return "&";
   2123
   2124	return "";
   2125}
   2126
   2127static const char *fence_status(const struct i915_request *rq)
   2128{
   2129	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
   2130		return "+";
   2131
   2132	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
   2133		return "-";
   2134
   2135	return "";
   2136}
   2137
   2138void i915_request_show(struct drm_printer *m,
   2139		       const struct i915_request *rq,
   2140		       const char *prefix,
   2141		       int indent)
   2142{
   2143	const char *name = rq->fence.ops->get_timeline_name((struct dma_fence *)&rq->fence);
   2144	char buf[80] = "";
   2145	int x = 0;
   2146
   2147	/*
   2148	 * The prefix is used to show the queue status, for which we use
   2149	 * the following flags:
   2150	 *
   2151	 *  U [Unready]
   2152	 *    - initial status upon being submitted by the user
   2153	 *
   2154	 *    - the request is not ready for execution as it is waiting
   2155	 *      for external fences
   2156	 *
   2157	 *  R [Ready]
   2158	 *    - all fences the request was waiting on have been signaled,
   2159	 *      and the request is now ready for execution and will be
   2160	 *      in a backend queue
   2161	 *
   2162	 *    - a ready request may still need to wait on semaphores
   2163	 *      [internal fences]
   2164	 *
   2165	 *  V [Ready/virtual]
   2166	 *    - same as ready, but queued over multiple backends
   2167	 *
   2168	 *  E [Executing]
   2169	 *    - the request has been transferred from the backend queue and
   2170	 *      submitted for execution on HW
   2171	 *
   2172	 *    - a completed request may still be regarded as executing, its
   2173	 *      status may not be updated until it is retired and removed
   2174	 *      from the lists
   2175	 */
   2176
   2177	x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf));
   2178
   2179	drm_printf(m, "%s%.*s%c %llx:%lld%s%s %s @ %dms: %s\n",
   2180		   prefix, indent, "                ",
   2181		   queue_status(rq),
   2182		   rq->fence.context, rq->fence.seqno,
   2183		   run_status(rq),
   2184		   fence_status(rq),
   2185		   buf,
   2186		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
   2187		   name);
   2188}
   2189
   2190static bool engine_match_ring(struct intel_engine_cs *engine, struct i915_request *rq)
   2191{
   2192	u32 ring = ENGINE_READ(engine, RING_START);
   2193
   2194	return ring == i915_ggtt_offset(rq->ring->vma);
   2195}
   2196
   2197static bool match_ring(struct i915_request *rq)
   2198{
   2199	struct intel_engine_cs *engine;
   2200	bool found;
   2201	int i;
   2202
   2203	if (!intel_engine_is_virtual(rq->engine))
   2204		return engine_match_ring(rq->engine, rq);
   2205
   2206	found = false;
   2207	i = 0;
   2208	while ((engine = intel_engine_get_sibling(rq->engine, i++))) {
   2209		found = engine_match_ring(engine, rq);
   2210		if (found)
   2211			break;
   2212	}
   2213
   2214	return found;
   2215}
   2216
   2217enum i915_request_state i915_test_request_state(struct i915_request *rq)
   2218{
   2219	if (i915_request_completed(rq))
   2220		return I915_REQUEST_COMPLETE;
   2221
   2222	if (!i915_request_started(rq))
   2223		return I915_REQUEST_PENDING;
   2224
   2225	if (match_ring(rq))
   2226		return I915_REQUEST_ACTIVE;
   2227
   2228	return I915_REQUEST_QUEUED;
   2229}
   2230
   2231#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
   2232#include "selftests/mock_request.c"
   2233#include "selftests/i915_request.c"
   2234#endif
   2235
   2236void i915_request_module_exit(void)
   2237{
   2238	kmem_cache_destroy(slab_execute_cbs);
   2239	kmem_cache_destroy(slab_requests);
   2240}
   2241
   2242int __init i915_request_module_init(void)
   2243{
   2244	slab_requests =
   2245		kmem_cache_create("i915_request",
   2246				  sizeof(struct i915_request),
   2247				  __alignof__(struct i915_request),
   2248				  SLAB_HWCACHE_ALIGN |
   2249				  SLAB_RECLAIM_ACCOUNT |
   2250				  SLAB_TYPESAFE_BY_RCU,
   2251				  __i915_request_ctor);
   2252	if (!slab_requests)
   2253		return -ENOMEM;
   2254
   2255	slab_execute_cbs = KMEM_CACHE(execute_cb,
   2256					     SLAB_HWCACHE_ALIGN |
   2257					     SLAB_RECLAIM_ACCOUNT |
   2258					     SLAB_TYPESAFE_BY_RCU);
   2259	if (!slab_execute_cbs)
   2260		goto err_requests;
   2261
   2262	return 0;
   2263
   2264err_requests:
   2265	kmem_cache_destroy(slab_requests);
   2266	return -ENOMEM;
   2267}