cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

i915_scheduler.c (13791B)


      1/*
      2 * SPDX-License-Identifier: MIT
      3 *
      4 * Copyright © 2018 Intel Corporation
      5 */
      6
      7#include <linux/mutex.h>
      8
      9#include "i915_drv.h"
     10#include "i915_request.h"
     11#include "i915_scheduler.h"
     12
     13static struct kmem_cache *slab_dependencies;
     14static struct kmem_cache *slab_priorities;
     15
     16static DEFINE_SPINLOCK(schedule_lock);
     17
     18static const struct i915_request *
     19node_to_request(const struct i915_sched_node *node)
     20{
     21	return container_of(node, const struct i915_request, sched);
     22}
     23
     24static inline bool node_started(const struct i915_sched_node *node)
     25{
     26	return i915_request_started(node_to_request(node));
     27}
     28
     29static inline bool node_signaled(const struct i915_sched_node *node)
     30{
     31	return i915_request_completed(node_to_request(node));
     32}
     33
     34static inline struct i915_priolist *to_priolist(struct rb_node *rb)
     35{
     36	return rb_entry(rb, struct i915_priolist, node);
     37}
     38
     39static void assert_priolists(struct i915_sched_engine * const sched_engine)
     40{
     41	struct rb_node *rb;
     42	long last_prio;
     43
     44	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
     45		return;
     46
     47	GEM_BUG_ON(rb_first_cached(&sched_engine->queue) !=
     48		   rb_first(&sched_engine->queue.rb_root));
     49
     50	last_prio = INT_MAX;
     51	for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) {
     52		const struct i915_priolist *p = to_priolist(rb);
     53
     54		GEM_BUG_ON(p->priority > last_prio);
     55		last_prio = p->priority;
     56	}
     57}
     58
     59struct list_head *
     60i915_sched_lookup_priolist(struct i915_sched_engine *sched_engine, int prio)
     61{
     62	struct i915_priolist *p;
     63	struct rb_node **parent, *rb;
     64	bool first = true;
     65
     66	lockdep_assert_held(&sched_engine->lock);
     67	assert_priolists(sched_engine);
     68
     69	if (unlikely(sched_engine->no_priolist))
     70		prio = I915_PRIORITY_NORMAL;
     71
     72find_priolist:
     73	/* most positive priority is scheduled first, equal priorities fifo */
     74	rb = NULL;
     75	parent = &sched_engine->queue.rb_root.rb_node;
     76	while (*parent) {
     77		rb = *parent;
     78		p = to_priolist(rb);
     79		if (prio > p->priority) {
     80			parent = &rb->rb_left;
     81		} else if (prio < p->priority) {
     82			parent = &rb->rb_right;
     83			first = false;
     84		} else {
     85			return &p->requests;
     86		}
     87	}
     88
     89	if (prio == I915_PRIORITY_NORMAL) {
     90		p = &sched_engine->default_priolist;
     91	} else {
     92		p = kmem_cache_alloc(slab_priorities, GFP_ATOMIC);
     93		/* Convert an allocation failure to a priority bump */
     94		if (unlikely(!p)) {
     95			prio = I915_PRIORITY_NORMAL; /* recurses just once */
     96
     97			/* To maintain ordering with all rendering, after an
     98			 * allocation failure we have to disable all scheduling.
     99			 * Requests will then be executed in fifo, and schedule
    100			 * will ensure that dependencies are emitted in fifo.
    101			 * There will be still some reordering with existing
    102			 * requests, so if userspace lied about their
    103			 * dependencies that reordering may be visible.
    104			 */
    105			sched_engine->no_priolist = true;
    106			goto find_priolist;
    107		}
    108	}
    109
    110	p->priority = prio;
    111	INIT_LIST_HEAD(&p->requests);
    112
    113	rb_link_node(&p->node, rb, parent);
    114	rb_insert_color_cached(&p->node, &sched_engine->queue, first);
    115
    116	return &p->requests;
    117}
    118
    119void __i915_priolist_free(struct i915_priolist *p)
    120{
    121	kmem_cache_free(slab_priorities, p);
    122}
    123
    124struct sched_cache {
    125	struct list_head *priolist;
    126};
    127
    128static struct i915_sched_engine *
    129lock_sched_engine(struct i915_sched_node *node,
    130		  struct i915_sched_engine *locked,
    131		  struct sched_cache *cache)
    132{
    133	const struct i915_request *rq = node_to_request(node);
    134	struct i915_sched_engine *sched_engine;
    135
    136	GEM_BUG_ON(!locked);
    137
    138	/*
    139	 * Virtual engines complicate acquiring the engine timeline lock,
    140	 * as their rq->engine pointer is not stable until under that
    141	 * engine lock. The simple ploy we use is to take the lock then
    142	 * check that the rq still belongs to the newly locked engine.
    143	 */
    144	while (locked != (sched_engine = READ_ONCE(rq->engine)->sched_engine)) {
    145		spin_unlock(&locked->lock);
    146		memset(cache, 0, sizeof(*cache));
    147		spin_lock(&sched_engine->lock);
    148		locked = sched_engine;
    149	}
    150
    151	GEM_BUG_ON(locked != sched_engine);
    152	return locked;
    153}
    154
    155static void __i915_schedule(struct i915_sched_node *node,
    156			    const struct i915_sched_attr *attr)
    157{
    158	const int prio = max(attr->priority, node->attr.priority);
    159	struct i915_sched_engine *sched_engine;
    160	struct i915_dependency *dep, *p;
    161	struct i915_dependency stack;
    162	struct sched_cache cache;
    163	LIST_HEAD(dfs);
    164
    165	/* Needed in order to use the temporary link inside i915_dependency */
    166	lockdep_assert_held(&schedule_lock);
    167	GEM_BUG_ON(prio == I915_PRIORITY_INVALID);
    168
    169	if (node_signaled(node))
    170		return;
    171
    172	stack.signaler = node;
    173	list_add(&stack.dfs_link, &dfs);
    174
    175	/*
    176	 * Recursively bump all dependent priorities to match the new request.
    177	 *
    178	 * A naive approach would be to use recursion:
    179	 * static void update_priorities(struct i915_sched_node *node, prio) {
    180	 *	list_for_each_entry(dep, &node->signalers_list, signal_link)
    181	 *		update_priorities(dep->signal, prio)
    182	 *	queue_request(node);
    183	 * }
    184	 * but that may have unlimited recursion depth and so runs a very
    185	 * real risk of overunning the kernel stack. Instead, we build
    186	 * a flat list of all dependencies starting with the current request.
    187	 * As we walk the list of dependencies, we add all of its dependencies
    188	 * to the end of the list (this may include an already visited
    189	 * request) and continue to walk onwards onto the new dependencies. The
    190	 * end result is a topological list of requests in reverse order, the
    191	 * last element in the list is the request we must execute first.
    192	 */
    193	list_for_each_entry(dep, &dfs, dfs_link) {
    194		struct i915_sched_node *node = dep->signaler;
    195
    196		/* If we are already flying, we know we have no signalers */
    197		if (node_started(node))
    198			continue;
    199
    200		/*
    201		 * Within an engine, there can be no cycle, but we may
    202		 * refer to the same dependency chain multiple times
    203		 * (redundant dependencies are not eliminated) and across
    204		 * engines.
    205		 */
    206		list_for_each_entry(p, &node->signalers_list, signal_link) {
    207			GEM_BUG_ON(p == dep); /* no cycles! */
    208
    209			if (node_signaled(p->signaler))
    210				continue;
    211
    212			if (prio > READ_ONCE(p->signaler->attr.priority))
    213				list_move_tail(&p->dfs_link, &dfs);
    214		}
    215	}
    216
    217	/*
    218	 * If we didn't need to bump any existing priorities, and we haven't
    219	 * yet submitted this request (i.e. there is no potential race with
    220	 * execlists_submit_request()), we can set our own priority and skip
    221	 * acquiring the engine locks.
    222	 */
    223	if (node->attr.priority == I915_PRIORITY_INVALID) {
    224		GEM_BUG_ON(!list_empty(&node->link));
    225		node->attr = *attr;
    226
    227		if (stack.dfs_link.next == stack.dfs_link.prev)
    228			return;
    229
    230		__list_del_entry(&stack.dfs_link);
    231	}
    232
    233	memset(&cache, 0, sizeof(cache));
    234	sched_engine = node_to_request(node)->engine->sched_engine;
    235	spin_lock(&sched_engine->lock);
    236
    237	/* Fifo and depth-first replacement ensure our deps execute before us */
    238	sched_engine = lock_sched_engine(node, sched_engine, &cache);
    239	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
    240		struct i915_request *from = container_of(dep->signaler,
    241							 struct i915_request,
    242							 sched);
    243		INIT_LIST_HEAD(&dep->dfs_link);
    244
    245		node = dep->signaler;
    246		sched_engine = lock_sched_engine(node, sched_engine, &cache);
    247		lockdep_assert_held(&sched_engine->lock);
    248
    249		/* Recheck after acquiring the engine->timeline.lock */
    250		if (prio <= node->attr.priority || node_signaled(node))
    251			continue;
    252
    253		GEM_BUG_ON(node_to_request(node)->engine->sched_engine !=
    254			   sched_engine);
    255
    256		/* Must be called before changing the nodes priority */
    257		if (sched_engine->bump_inflight_request_prio)
    258			sched_engine->bump_inflight_request_prio(from, prio);
    259
    260		WRITE_ONCE(node->attr.priority, prio);
    261
    262		/*
    263		 * Once the request is ready, it will be placed into the
    264		 * priority lists and then onto the HW runlist. Before the
    265		 * request is ready, it does not contribute to our preemption
    266		 * decisions and we can safely ignore it, as it will, and
    267		 * any preemption required, be dealt with upon submission.
    268		 * See engine->submit_request()
    269		 */
    270		if (list_empty(&node->link))
    271			continue;
    272
    273		if (i915_request_in_priority_queue(node_to_request(node))) {
    274			if (!cache.priolist)
    275				cache.priolist =
    276					i915_sched_lookup_priolist(sched_engine,
    277								   prio);
    278			list_move_tail(&node->link, cache.priolist);
    279		}
    280
    281		/* Defer (tasklet) submission until after all of our updates. */
    282		if (sched_engine->kick_backend)
    283			sched_engine->kick_backend(node_to_request(node), prio);
    284	}
    285
    286	spin_unlock(&sched_engine->lock);
    287}
    288
    289void i915_schedule(struct i915_request *rq, const struct i915_sched_attr *attr)
    290{
    291	spin_lock_irq(&schedule_lock);
    292	__i915_schedule(&rq->sched, attr);
    293	spin_unlock_irq(&schedule_lock);
    294}
    295
    296void i915_sched_node_init(struct i915_sched_node *node)
    297{
    298	INIT_LIST_HEAD(&node->signalers_list);
    299	INIT_LIST_HEAD(&node->waiters_list);
    300	INIT_LIST_HEAD(&node->link);
    301
    302	i915_sched_node_reinit(node);
    303}
    304
    305void i915_sched_node_reinit(struct i915_sched_node *node)
    306{
    307	node->attr.priority = I915_PRIORITY_INVALID;
    308	node->semaphores = 0;
    309	node->flags = 0;
    310
    311	GEM_BUG_ON(!list_empty(&node->signalers_list));
    312	GEM_BUG_ON(!list_empty(&node->waiters_list));
    313	GEM_BUG_ON(!list_empty(&node->link));
    314}
    315
    316static struct i915_dependency *
    317i915_dependency_alloc(void)
    318{
    319	return kmem_cache_alloc(slab_dependencies, GFP_KERNEL);
    320}
    321
    322static void
    323i915_dependency_free(struct i915_dependency *dep)
    324{
    325	kmem_cache_free(slab_dependencies, dep);
    326}
    327
    328bool __i915_sched_node_add_dependency(struct i915_sched_node *node,
    329				      struct i915_sched_node *signal,
    330				      struct i915_dependency *dep,
    331				      unsigned long flags)
    332{
    333	bool ret = false;
    334
    335	spin_lock_irq(&schedule_lock);
    336
    337	if (!node_signaled(signal)) {
    338		INIT_LIST_HEAD(&dep->dfs_link);
    339		dep->signaler = signal;
    340		dep->waiter = node;
    341		dep->flags = flags;
    342
    343		/* All set, now publish. Beware the lockless walkers. */
    344		list_add_rcu(&dep->signal_link, &node->signalers_list);
    345		list_add_rcu(&dep->wait_link, &signal->waiters_list);
    346
    347		/* Propagate the chains */
    348		node->flags |= signal->flags;
    349		ret = true;
    350	}
    351
    352	spin_unlock_irq(&schedule_lock);
    353
    354	return ret;
    355}
    356
    357int i915_sched_node_add_dependency(struct i915_sched_node *node,
    358				   struct i915_sched_node *signal,
    359				   unsigned long flags)
    360{
    361	struct i915_dependency *dep;
    362
    363	dep = i915_dependency_alloc();
    364	if (!dep)
    365		return -ENOMEM;
    366
    367	if (!__i915_sched_node_add_dependency(node, signal, dep,
    368					      flags | I915_DEPENDENCY_ALLOC))
    369		i915_dependency_free(dep);
    370
    371	return 0;
    372}
    373
    374void i915_sched_node_fini(struct i915_sched_node *node)
    375{
    376	struct i915_dependency *dep, *tmp;
    377
    378	spin_lock_irq(&schedule_lock);
    379
    380	/*
    381	 * Everyone we depended upon (the fences we wait to be signaled)
    382	 * should retire before us and remove themselves from our list.
    383	 * However, retirement is run independently on each timeline and
    384	 * so we may be called out-of-order.
    385	 */
    386	list_for_each_entry_safe(dep, tmp, &node->signalers_list, signal_link) {
    387		GEM_BUG_ON(!list_empty(&dep->dfs_link));
    388
    389		list_del_rcu(&dep->wait_link);
    390		if (dep->flags & I915_DEPENDENCY_ALLOC)
    391			i915_dependency_free(dep);
    392	}
    393	INIT_LIST_HEAD(&node->signalers_list);
    394
    395	/* Remove ourselves from everyone who depends upon us */
    396	list_for_each_entry_safe(dep, tmp, &node->waiters_list, wait_link) {
    397		GEM_BUG_ON(dep->signaler != node);
    398		GEM_BUG_ON(!list_empty(&dep->dfs_link));
    399
    400		list_del_rcu(&dep->signal_link);
    401		if (dep->flags & I915_DEPENDENCY_ALLOC)
    402			i915_dependency_free(dep);
    403	}
    404	INIT_LIST_HEAD(&node->waiters_list);
    405
    406	spin_unlock_irq(&schedule_lock);
    407}
    408
    409void i915_request_show_with_schedule(struct drm_printer *m,
    410				     const struct i915_request *rq,
    411				     const char *prefix,
    412				     int indent)
    413{
    414	struct i915_dependency *dep;
    415
    416	i915_request_show(m, rq, prefix, indent);
    417	if (i915_request_completed(rq))
    418		return;
    419
    420	rcu_read_lock();
    421	for_each_signaler(dep, rq) {
    422		const struct i915_request *signaler =
    423			node_to_request(dep->signaler);
    424
    425		/* Dependencies along the same timeline are expected. */
    426		if (signaler->timeline == rq->timeline)
    427			continue;
    428
    429		if (__i915_request_is_complete(signaler))
    430			continue;
    431
    432		i915_request_show(m, signaler, prefix, indent + 2);
    433	}
    434	rcu_read_unlock();
    435}
    436
    437static void default_destroy(struct kref *kref)
    438{
    439	struct i915_sched_engine *sched_engine =
    440		container_of(kref, typeof(*sched_engine), ref);
    441
    442	tasklet_kill(&sched_engine->tasklet); /* flush the callback */
    443	kfree(sched_engine);
    444}
    445
    446static bool default_disabled(struct i915_sched_engine *sched_engine)
    447{
    448	return false;
    449}
    450
    451struct i915_sched_engine *
    452i915_sched_engine_create(unsigned int subclass)
    453{
    454	struct i915_sched_engine *sched_engine;
    455
    456	sched_engine = kzalloc(sizeof(*sched_engine), GFP_KERNEL);
    457	if (!sched_engine)
    458		return NULL;
    459
    460	kref_init(&sched_engine->ref);
    461
    462	sched_engine->queue = RB_ROOT_CACHED;
    463	sched_engine->queue_priority_hint = INT_MIN;
    464	sched_engine->destroy = default_destroy;
    465	sched_engine->disabled = default_disabled;
    466
    467	INIT_LIST_HEAD(&sched_engine->requests);
    468	INIT_LIST_HEAD(&sched_engine->hold);
    469
    470	spin_lock_init(&sched_engine->lock);
    471	lockdep_set_subclass(&sched_engine->lock, subclass);
    472
    473	/*
    474	 * Due to an interesting quirk in lockdep's internal debug tracking,
    475	 * after setting a subclass we must ensure the lock is used. Otherwise,
    476	 * nr_unused_locks is incremented once too often.
    477	 */
    478#ifdef CONFIG_DEBUG_LOCK_ALLOC
    479	local_irq_disable();
    480	lock_map_acquire(&sched_engine->lock.dep_map);
    481	lock_map_release(&sched_engine->lock.dep_map);
    482	local_irq_enable();
    483#endif
    484
    485	return sched_engine;
    486}
    487
    488void i915_scheduler_module_exit(void)
    489{
    490	kmem_cache_destroy(slab_dependencies);
    491	kmem_cache_destroy(slab_priorities);
    492}
    493
    494int __init i915_scheduler_module_init(void)
    495{
    496	slab_dependencies = KMEM_CACHE(i915_dependency,
    497					      SLAB_HWCACHE_ALIGN |
    498					      SLAB_TYPESAFE_BY_RCU);
    499	if (!slab_dependencies)
    500		return -ENOMEM;
    501
    502	slab_priorities = KMEM_CACHE(i915_priolist, 0);
    503	if (!slab_priorities)
    504		goto err_priorities;
    505
    506	return 0;
    507
    508err_priorities:
    509	kmem_cache_destroy(slab_priorities);
    510	return -ENOMEM;
    511}