cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

i915_vgpu.c (11538B)


      1/*
      2 * Copyright(c) 2011-2015 Intel Corporation. All rights reserved.
      3 *
      4 * Permission is hereby granted, free of charge, to any person obtaining a
      5 * copy of this software and associated documentation files (the "Software"),
      6 * to deal in the Software without restriction, including without limitation
      7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8 * and/or sell copies of the Software, and to permit persons to whom the
      9 * Software is furnished to do so, subject to the following conditions:
     10 *
     11 * The above copyright notice and this permission notice (including the next
     12 * paragraph) shall be included in all copies or substantial portions of the
     13 * Software.
     14 *
     15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
     21 * SOFTWARE.
     22 */
     23
     24#include "i915_drv.h"
     25#include "i915_pvinfo.h"
     26#include "i915_vgpu.h"
     27
     28/**
     29 * DOC: Intel GVT-g guest support
     30 *
     31 * Intel GVT-g is a graphics virtualization technology which shares the
     32 * GPU among multiple virtual machines on a time-sharing basis. Each
     33 * virtual machine is presented a virtual GPU (vGPU), which has equivalent
     34 * features as the underlying physical GPU (pGPU), so i915 driver can run
     35 * seamlessly in a virtual machine. This file provides vGPU specific
     36 * optimizations when running in a virtual machine, to reduce the complexity
     37 * of vGPU emulation and to improve the overall performance.
     38 *
     39 * A primary function introduced here is so-called "address space ballooning"
     40 * technique. Intel GVT-g partitions global graphics memory among multiple VMs,
     41 * so each VM can directly access a portion of the memory without hypervisor's
     42 * intervention, e.g. filling textures or queuing commands. However with the
     43 * partitioning an unmodified i915 driver would assume a smaller graphics
     44 * memory starting from address ZERO, then requires vGPU emulation module to
     45 * translate the graphics address between 'guest view' and 'host view', for
     46 * all registers and command opcodes which contain a graphics memory address.
     47 * To reduce the complexity, Intel GVT-g introduces "address space ballooning",
     48 * by telling the exact partitioning knowledge to each guest i915 driver, which
     49 * then reserves and prevents non-allocated portions from allocation. Thus vGPU
     50 * emulation module only needs to scan and validate graphics addresses without
     51 * complexity of address translation.
     52 *
     53 */
     54
     55/**
     56 * intel_vgpu_detect - detect virtual GPU
     57 * @dev_priv: i915 device private
     58 *
     59 * This function is called at the initialization stage, to detect whether
     60 * running on a vGPU.
     61 */
     62void intel_vgpu_detect(struct drm_i915_private *dev_priv)
     63{
     64	struct pci_dev *pdev = to_pci_dev(dev_priv->drm.dev);
     65	u64 magic;
     66	u16 version_major;
     67	void __iomem *shared_area;
     68
     69	BUILD_BUG_ON(sizeof(struct vgt_if) != VGT_PVINFO_SIZE);
     70
     71	/*
     72	 * This is called before we setup the main MMIO BAR mappings used via
     73	 * the uncore structure, so we need to access the BAR directly. Since
     74	 * we do not support VGT on older gens, return early so we don't have
     75	 * to consider differently numbered or sized MMIO bars
     76	 */
     77	if (GRAPHICS_VER(dev_priv) < 6)
     78		return;
     79
     80	shared_area = pci_iomap_range(pdev, 0, VGT_PVINFO_PAGE, VGT_PVINFO_SIZE);
     81	if (!shared_area) {
     82		drm_err(&dev_priv->drm,
     83			"failed to map MMIO bar to check for VGT\n");
     84		return;
     85	}
     86
     87	magic = readq(shared_area + vgtif_offset(magic));
     88	if (magic != VGT_MAGIC)
     89		goto out;
     90
     91	version_major = readw(shared_area + vgtif_offset(version_major));
     92	if (version_major < VGT_VERSION_MAJOR) {
     93		drm_info(&dev_priv->drm, "VGT interface version mismatch!\n");
     94		goto out;
     95	}
     96
     97	dev_priv->vgpu.caps = readl(shared_area + vgtif_offset(vgt_caps));
     98
     99	dev_priv->vgpu.active = true;
    100	mutex_init(&dev_priv->vgpu.lock);
    101	drm_info(&dev_priv->drm, "Virtual GPU for Intel GVT-g detected.\n");
    102
    103out:
    104	pci_iounmap(pdev, shared_area);
    105}
    106
    107void intel_vgpu_register(struct drm_i915_private *i915)
    108{
    109	/*
    110	 * Notify a valid surface after modesetting, when running inside a VM.
    111	 */
    112	if (intel_vgpu_active(i915))
    113		intel_uncore_write(&i915->uncore, vgtif_reg(display_ready),
    114				   VGT_DRV_DISPLAY_READY);
    115}
    116
    117bool intel_vgpu_active(struct drm_i915_private *dev_priv)
    118{
    119	return dev_priv->vgpu.active;
    120}
    121
    122bool intel_vgpu_has_full_ppgtt(struct drm_i915_private *dev_priv)
    123{
    124	return dev_priv->vgpu.caps & VGT_CAPS_FULL_PPGTT;
    125}
    126
    127bool intel_vgpu_has_hwsp_emulation(struct drm_i915_private *dev_priv)
    128{
    129	return dev_priv->vgpu.caps & VGT_CAPS_HWSP_EMULATION;
    130}
    131
    132bool intel_vgpu_has_huge_gtt(struct drm_i915_private *dev_priv)
    133{
    134	return dev_priv->vgpu.caps & VGT_CAPS_HUGE_GTT;
    135}
    136
    137struct _balloon_info_ {
    138	/*
    139	 * There are up to 2 regions per mappable/unmappable graphic
    140	 * memory that might be ballooned. Here, index 0/1 is for mappable
    141	 * graphic memory, 2/3 for unmappable graphic memory.
    142	 */
    143	struct drm_mm_node space[4];
    144};
    145
    146static struct _balloon_info_ bl_info;
    147
    148static void vgt_deballoon_space(struct i915_ggtt *ggtt,
    149				struct drm_mm_node *node)
    150{
    151	struct drm_i915_private *dev_priv = ggtt->vm.i915;
    152	if (!drm_mm_node_allocated(node))
    153		return;
    154
    155	drm_dbg(&dev_priv->drm,
    156		"deballoon space: range [0x%llx - 0x%llx] %llu KiB.\n",
    157		node->start,
    158		node->start + node->size,
    159		node->size / 1024);
    160
    161	ggtt->vm.reserved -= node->size;
    162	drm_mm_remove_node(node);
    163}
    164
    165/**
    166 * intel_vgt_deballoon - deballoon reserved graphics address trunks
    167 * @ggtt: the global GGTT from which we reserved earlier
    168 *
    169 * This function is called to deallocate the ballooned-out graphic memory, when
    170 * driver is unloaded or when ballooning fails.
    171 */
    172void intel_vgt_deballoon(struct i915_ggtt *ggtt)
    173{
    174	struct drm_i915_private *dev_priv = ggtt->vm.i915;
    175	int i;
    176
    177	if (!intel_vgpu_active(ggtt->vm.i915))
    178		return;
    179
    180	drm_dbg(&dev_priv->drm, "VGT deballoon.\n");
    181
    182	for (i = 0; i < 4; i++)
    183		vgt_deballoon_space(ggtt, &bl_info.space[i]);
    184}
    185
    186static int vgt_balloon_space(struct i915_ggtt *ggtt,
    187			     struct drm_mm_node *node,
    188			     unsigned long start, unsigned long end)
    189{
    190	struct drm_i915_private *dev_priv = ggtt->vm.i915;
    191	unsigned long size = end - start;
    192	int ret;
    193
    194	if (start >= end)
    195		return -EINVAL;
    196
    197	drm_info(&dev_priv->drm,
    198		 "balloon space: range [ 0x%lx - 0x%lx ] %lu KiB.\n",
    199		 start, end, size / 1024);
    200	ret = i915_gem_gtt_reserve(&ggtt->vm, NULL, node,
    201				   size, start, I915_COLOR_UNEVICTABLE,
    202				   0);
    203	if (!ret)
    204		ggtt->vm.reserved += size;
    205
    206	return ret;
    207}
    208
    209/**
    210 * intel_vgt_balloon - balloon out reserved graphics address trunks
    211 * @ggtt: the global GGTT from which to reserve
    212 *
    213 * This function is called at the initialization stage, to balloon out the
    214 * graphic address space allocated to other vGPUs, by marking these spaces as
    215 * reserved. The ballooning related knowledge(starting address and size of
    216 * the mappable/unmappable graphic memory) is described in the vgt_if structure
    217 * in a reserved mmio range.
    218 *
    219 * To give an example, the drawing below depicts one typical scenario after
    220 * ballooning. Here the vGPU1 has 2 pieces of graphic address spaces ballooned
    221 * out each for the mappable and the non-mappable part. From the vGPU1 point of
    222 * view, the total size is the same as the physical one, with the start address
    223 * of its graphic space being zero. Yet there are some portions ballooned out(
    224 * the shadow part, which are marked as reserved by drm allocator). From the
    225 * host point of view, the graphic address space is partitioned by multiple
    226 * vGPUs in different VMs. ::
    227 *
    228 *                         vGPU1 view         Host view
    229 *              0 ------> +-----------+     +-----------+
    230 *                ^       |###########|     |   vGPU3   |
    231 *                |       |###########|     +-----------+
    232 *                |       |###########|     |   vGPU2   |
    233 *                |       +-----------+     +-----------+
    234 *         mappable GM    | available | ==> |   vGPU1   |
    235 *                |       +-----------+     +-----------+
    236 *                |       |###########|     |           |
    237 *                v       |###########|     |   Host    |
    238 *                +=======+===========+     +===========+
    239 *                ^       |###########|     |   vGPU3   |
    240 *                |       |###########|     +-----------+
    241 *                |       |###########|     |   vGPU2   |
    242 *                |       +-----------+     +-----------+
    243 *       unmappable GM    | available | ==> |   vGPU1   |
    244 *                |       +-----------+     +-----------+
    245 *                |       |###########|     |           |
    246 *                |       |###########|     |   Host    |
    247 *                v       |###########|     |           |
    248 *  total GM size ------> +-----------+     +-----------+
    249 *
    250 * Returns:
    251 * zero on success, non-zero if configuration invalid or ballooning failed
    252 */
    253int intel_vgt_balloon(struct i915_ggtt *ggtt)
    254{
    255	struct drm_i915_private *dev_priv = ggtt->vm.i915;
    256	struct intel_uncore *uncore = &dev_priv->uncore;
    257	unsigned long ggtt_end = ggtt->vm.total;
    258
    259	unsigned long mappable_base, mappable_size, mappable_end;
    260	unsigned long unmappable_base, unmappable_size, unmappable_end;
    261	int ret;
    262
    263	if (!intel_vgpu_active(ggtt->vm.i915))
    264		return 0;
    265
    266	mappable_base =
    267	  intel_uncore_read(uncore, vgtif_reg(avail_rs.mappable_gmadr.base));
    268	mappable_size =
    269	  intel_uncore_read(uncore, vgtif_reg(avail_rs.mappable_gmadr.size));
    270	unmappable_base =
    271	  intel_uncore_read(uncore, vgtif_reg(avail_rs.nonmappable_gmadr.base));
    272	unmappable_size =
    273	  intel_uncore_read(uncore, vgtif_reg(avail_rs.nonmappable_gmadr.size));
    274
    275	mappable_end = mappable_base + mappable_size;
    276	unmappable_end = unmappable_base + unmappable_size;
    277
    278	drm_info(&dev_priv->drm, "VGT ballooning configuration:\n");
    279	drm_info(&dev_priv->drm,
    280		 "Mappable graphic memory: base 0x%lx size %ldKiB\n",
    281		 mappable_base, mappable_size / 1024);
    282	drm_info(&dev_priv->drm,
    283		 "Unmappable graphic memory: base 0x%lx size %ldKiB\n",
    284		 unmappable_base, unmappable_size / 1024);
    285
    286	if (mappable_end > ggtt->mappable_end ||
    287	    unmappable_base < ggtt->mappable_end ||
    288	    unmappable_end > ggtt_end) {
    289		drm_err(&dev_priv->drm, "Invalid ballooning configuration!\n");
    290		return -EINVAL;
    291	}
    292
    293	/* Unmappable graphic memory ballooning */
    294	if (unmappable_base > ggtt->mappable_end) {
    295		ret = vgt_balloon_space(ggtt, &bl_info.space[2],
    296					ggtt->mappable_end, unmappable_base);
    297
    298		if (ret)
    299			goto err;
    300	}
    301
    302	if (unmappable_end < ggtt_end) {
    303		ret = vgt_balloon_space(ggtt, &bl_info.space[3],
    304					unmappable_end, ggtt_end);
    305		if (ret)
    306			goto err_upon_mappable;
    307	}
    308
    309	/* Mappable graphic memory ballooning */
    310	if (mappable_base) {
    311		ret = vgt_balloon_space(ggtt, &bl_info.space[0],
    312					0, mappable_base);
    313
    314		if (ret)
    315			goto err_upon_unmappable;
    316	}
    317
    318	if (mappable_end < ggtt->mappable_end) {
    319		ret = vgt_balloon_space(ggtt, &bl_info.space[1],
    320					mappable_end, ggtt->mappable_end);
    321
    322		if (ret)
    323			goto err_below_mappable;
    324	}
    325
    326	drm_info(&dev_priv->drm, "VGT balloon successfully\n");
    327	return 0;
    328
    329err_below_mappable:
    330	vgt_deballoon_space(ggtt, &bl_info.space[0]);
    331err_upon_unmappable:
    332	vgt_deballoon_space(ggtt, &bl_info.space[3]);
    333err_upon_mappable:
    334	vgt_deballoon_space(ggtt, &bl_info.space[2]);
    335err:
    336	drm_err(&dev_priv->drm, "VGT balloon fail\n");
    337	return ret;
    338}