intel_pm.c (251890B)
1/* 2 * Copyright © 2012 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 * Authors: 24 * Eugeni Dodonov <eugeni.dodonov@intel.com> 25 * 26 */ 27 28#include <linux/module.h> 29#include <linux/string_helpers.h> 30#include <linux/pm_runtime.h> 31 32#include <drm/drm_atomic_helper.h> 33#include <drm/drm_fourcc.h> 34#include <drm/drm_plane_helper.h> 35 36#include "display/intel_atomic.h" 37#include "display/intel_atomic_plane.h" 38#include "display/intel_bw.h" 39#include "display/intel_de.h" 40#include "display/intel_display_trace.h" 41#include "display/intel_display_types.h" 42#include "display/intel_fb.h" 43#include "display/intel_fbc.h" 44#include "display/intel_sprite.h" 45#include "display/skl_universal_plane.h" 46 47#include "gt/intel_engine_regs.h" 48#include "gt/intel_gt_regs.h" 49#include "gt/intel_llc.h" 50 51#include "i915_drv.h" 52#include "i915_fixed.h" 53#include "i915_irq.h" 54#include "intel_mchbar_regs.h" 55#include "intel_pcode.h" 56#include "intel_pm.h" 57#include "vlv_sideband.h" 58#include "../../../platform/x86/intel_ips.h" 59 60static void skl_sagv_disable(struct drm_i915_private *dev_priv); 61 62struct drm_i915_clock_gating_funcs { 63 void (*init_clock_gating)(struct drm_i915_private *i915); 64}; 65 66/* Stores plane specific WM parameters */ 67struct skl_wm_params { 68 bool x_tiled, y_tiled; 69 bool rc_surface; 70 bool is_planar; 71 u32 width; 72 u8 cpp; 73 u32 plane_pixel_rate; 74 u32 y_min_scanlines; 75 u32 plane_bytes_per_line; 76 uint_fixed_16_16_t plane_blocks_per_line; 77 uint_fixed_16_16_t y_tile_minimum; 78 u32 linetime_us; 79 u32 dbuf_block_size; 80}; 81 82/* used in computing the new watermarks state */ 83struct intel_wm_config { 84 unsigned int num_pipes_active; 85 bool sprites_enabled; 86 bool sprites_scaled; 87}; 88 89static void gen9_init_clock_gating(struct drm_i915_private *dev_priv) 90{ 91 if (HAS_LLC(dev_priv)) { 92 /* 93 * WaCompressedResourceDisplayNewHashMode:skl,kbl 94 * Display WA #0390: skl,kbl 95 * 96 * Must match Sampler, Pixel Back End, and Media. See 97 * WaCompressedResourceSamplerPbeMediaNewHashMode. 98 */ 99 intel_uncore_write(&dev_priv->uncore, CHICKEN_PAR1_1, 100 intel_uncore_read(&dev_priv->uncore, CHICKEN_PAR1_1) | 101 SKL_DE_COMPRESSED_HASH_MODE); 102 } 103 104 /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */ 105 intel_uncore_write(&dev_priv->uncore, CHICKEN_PAR1_1, 106 intel_uncore_read(&dev_priv->uncore, CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP); 107 108 /* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */ 109 intel_uncore_write(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1, 110 intel_uncore_read(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM); 111 112 /* 113 * WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl 114 * Display WA #0859: skl,bxt,kbl,glk,cfl 115 */ 116 intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) | 117 DISP_FBC_MEMORY_WAKE); 118} 119 120static void bxt_init_clock_gating(struct drm_i915_private *dev_priv) 121{ 122 gen9_init_clock_gating(dev_priv); 123 124 /* WaDisableSDEUnitClockGating:bxt */ 125 intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) | 126 GEN8_SDEUNIT_CLOCK_GATE_DISABLE); 127 128 /* 129 * FIXME: 130 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only. 131 */ 132 intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) | 133 GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ); 134 135 /* 136 * Wa: Backlight PWM may stop in the asserted state, causing backlight 137 * to stay fully on. 138 */ 139 intel_uncore_write(&dev_priv->uncore, GEN9_CLKGATE_DIS_0, intel_uncore_read(&dev_priv->uncore, GEN9_CLKGATE_DIS_0) | 140 PWM1_GATING_DIS | PWM2_GATING_DIS); 141 142 /* 143 * Lower the display internal timeout. 144 * This is needed to avoid any hard hangs when DSI port PLL 145 * is off and a MMIO access is attempted by any privilege 146 * application, using batch buffers or any other means. 147 */ 148 intel_uncore_write(&dev_priv->uncore, RM_TIMEOUT, MMIO_TIMEOUT_US(950)); 149 150 /* 151 * WaFbcTurnOffFbcWatermark:bxt 152 * Display WA #0562: bxt 153 */ 154 intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) | 155 DISP_FBC_WM_DIS); 156 157 /* 158 * WaFbcHighMemBwCorruptionAvoidance:bxt 159 * Display WA #0883: bxt 160 */ 161 intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN(INTEL_FBC_A), 162 intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN(INTEL_FBC_A)) | 163 DPFC_DISABLE_DUMMY0); 164} 165 166static void glk_init_clock_gating(struct drm_i915_private *dev_priv) 167{ 168 gen9_init_clock_gating(dev_priv); 169 170 /* 171 * WaDisablePWMClockGating:glk 172 * Backlight PWM may stop in the asserted state, causing backlight 173 * to stay fully on. 174 */ 175 intel_uncore_write(&dev_priv->uncore, GEN9_CLKGATE_DIS_0, intel_uncore_read(&dev_priv->uncore, GEN9_CLKGATE_DIS_0) | 176 PWM1_GATING_DIS | PWM2_GATING_DIS); 177} 178 179static void pnv_get_mem_freq(struct drm_i915_private *dev_priv) 180{ 181 u32 tmp; 182 183 tmp = intel_uncore_read(&dev_priv->uncore, CLKCFG); 184 185 switch (tmp & CLKCFG_FSB_MASK) { 186 case CLKCFG_FSB_533: 187 dev_priv->fsb_freq = 533; /* 133*4 */ 188 break; 189 case CLKCFG_FSB_800: 190 dev_priv->fsb_freq = 800; /* 200*4 */ 191 break; 192 case CLKCFG_FSB_667: 193 dev_priv->fsb_freq = 667; /* 167*4 */ 194 break; 195 case CLKCFG_FSB_400: 196 dev_priv->fsb_freq = 400; /* 100*4 */ 197 break; 198 } 199 200 switch (tmp & CLKCFG_MEM_MASK) { 201 case CLKCFG_MEM_533: 202 dev_priv->mem_freq = 533; 203 break; 204 case CLKCFG_MEM_667: 205 dev_priv->mem_freq = 667; 206 break; 207 case CLKCFG_MEM_800: 208 dev_priv->mem_freq = 800; 209 break; 210 } 211 212 /* detect pineview DDR3 setting */ 213 tmp = intel_uncore_read(&dev_priv->uncore, CSHRDDR3CTL); 214 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0; 215} 216 217static void ilk_get_mem_freq(struct drm_i915_private *dev_priv) 218{ 219 u16 ddrpll, csipll; 220 221 ddrpll = intel_uncore_read16(&dev_priv->uncore, DDRMPLL1); 222 csipll = intel_uncore_read16(&dev_priv->uncore, CSIPLL0); 223 224 switch (ddrpll & 0xff) { 225 case 0xc: 226 dev_priv->mem_freq = 800; 227 break; 228 case 0x10: 229 dev_priv->mem_freq = 1066; 230 break; 231 case 0x14: 232 dev_priv->mem_freq = 1333; 233 break; 234 case 0x18: 235 dev_priv->mem_freq = 1600; 236 break; 237 default: 238 drm_dbg(&dev_priv->drm, "unknown memory frequency 0x%02x\n", 239 ddrpll & 0xff); 240 dev_priv->mem_freq = 0; 241 break; 242 } 243 244 switch (csipll & 0x3ff) { 245 case 0x00c: 246 dev_priv->fsb_freq = 3200; 247 break; 248 case 0x00e: 249 dev_priv->fsb_freq = 3733; 250 break; 251 case 0x010: 252 dev_priv->fsb_freq = 4266; 253 break; 254 case 0x012: 255 dev_priv->fsb_freq = 4800; 256 break; 257 case 0x014: 258 dev_priv->fsb_freq = 5333; 259 break; 260 case 0x016: 261 dev_priv->fsb_freq = 5866; 262 break; 263 case 0x018: 264 dev_priv->fsb_freq = 6400; 265 break; 266 default: 267 drm_dbg(&dev_priv->drm, "unknown fsb frequency 0x%04x\n", 268 csipll & 0x3ff); 269 dev_priv->fsb_freq = 0; 270 break; 271 } 272} 273 274static const struct cxsr_latency cxsr_latency_table[] = { 275 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */ 276 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */ 277 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */ 278 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */ 279 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */ 280 281 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */ 282 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */ 283 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */ 284 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */ 285 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */ 286 287 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */ 288 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */ 289 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */ 290 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */ 291 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */ 292 293 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */ 294 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */ 295 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */ 296 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */ 297 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */ 298 299 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */ 300 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */ 301 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */ 302 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */ 303 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */ 304 305 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */ 306 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */ 307 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */ 308 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */ 309 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */ 310}; 311 312static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop, 313 bool is_ddr3, 314 int fsb, 315 int mem) 316{ 317 const struct cxsr_latency *latency; 318 int i; 319 320 if (fsb == 0 || mem == 0) 321 return NULL; 322 323 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) { 324 latency = &cxsr_latency_table[i]; 325 if (is_desktop == latency->is_desktop && 326 is_ddr3 == latency->is_ddr3 && 327 fsb == latency->fsb_freq && mem == latency->mem_freq) 328 return latency; 329 } 330 331 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n"); 332 333 return NULL; 334} 335 336static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable) 337{ 338 u32 val; 339 340 vlv_punit_get(dev_priv); 341 342 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2); 343 if (enable) 344 val &= ~FORCE_DDR_HIGH_FREQ; 345 else 346 val |= FORCE_DDR_HIGH_FREQ; 347 val &= ~FORCE_DDR_LOW_FREQ; 348 val |= FORCE_DDR_FREQ_REQ_ACK; 349 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val); 350 351 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) & 352 FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) 353 drm_err(&dev_priv->drm, 354 "timed out waiting for Punit DDR DVFS request\n"); 355 356 vlv_punit_put(dev_priv); 357} 358 359static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable) 360{ 361 u32 val; 362 363 vlv_punit_get(dev_priv); 364 365 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM); 366 if (enable) 367 val |= DSP_MAXFIFO_PM5_ENABLE; 368 else 369 val &= ~DSP_MAXFIFO_PM5_ENABLE; 370 vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val); 371 372 vlv_punit_put(dev_priv); 373} 374 375#define FW_WM(value, plane) \ 376 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK) 377 378static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable) 379{ 380 bool was_enabled; 381 u32 val; 382 383 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 384 was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF_VLV) & FW_CSPWRDWNEN; 385 intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0); 386 intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF_VLV); 387 } else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) { 388 was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN; 389 intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0); 390 intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF); 391 } else if (IS_PINEVIEW(dev_priv)) { 392 val = intel_uncore_read(&dev_priv->uncore, DSPFW3); 393 was_enabled = val & PINEVIEW_SELF_REFRESH_EN; 394 if (enable) 395 val |= PINEVIEW_SELF_REFRESH_EN; 396 else 397 val &= ~PINEVIEW_SELF_REFRESH_EN; 398 intel_uncore_write(&dev_priv->uncore, DSPFW3, val); 399 intel_uncore_posting_read(&dev_priv->uncore, DSPFW3); 400 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) { 401 was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN; 402 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) : 403 _MASKED_BIT_DISABLE(FW_BLC_SELF_EN); 404 intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, val); 405 intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF); 406 } else if (IS_I915GM(dev_priv)) { 407 /* 408 * FIXME can't find a bit like this for 915G, and 409 * and yet it does have the related watermark in 410 * FW_BLC_SELF. What's going on? 411 */ 412 was_enabled = intel_uncore_read(&dev_priv->uncore, INSTPM) & INSTPM_SELF_EN; 413 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) : 414 _MASKED_BIT_DISABLE(INSTPM_SELF_EN); 415 intel_uncore_write(&dev_priv->uncore, INSTPM, val); 416 intel_uncore_posting_read(&dev_priv->uncore, INSTPM); 417 } else { 418 return false; 419 } 420 421 trace_intel_memory_cxsr(dev_priv, was_enabled, enable); 422 423 drm_dbg_kms(&dev_priv->drm, "memory self-refresh is %s (was %s)\n", 424 str_enabled_disabled(enable), 425 str_enabled_disabled(was_enabled)); 426 427 return was_enabled; 428} 429 430/** 431 * intel_set_memory_cxsr - Configure CxSR state 432 * @dev_priv: i915 device 433 * @enable: Allow vs. disallow CxSR 434 * 435 * Allow or disallow the system to enter a special CxSR 436 * (C-state self refresh) state. What typically happens in CxSR mode 437 * is that several display FIFOs may get combined into a single larger 438 * FIFO for a particular plane (so called max FIFO mode) to allow the 439 * system to defer memory fetches longer, and the memory will enter 440 * self refresh. 441 * 442 * Note that enabling CxSR does not guarantee that the system enter 443 * this special mode, nor does it guarantee that the system stays 444 * in that mode once entered. So this just allows/disallows the system 445 * to autonomously utilize the CxSR mode. Other factors such as core 446 * C-states will affect when/if the system actually enters/exits the 447 * CxSR mode. 448 * 449 * Note that on VLV/CHV this actually only controls the max FIFO mode, 450 * and the system is free to enter/exit memory self refresh at any time 451 * even when the use of CxSR has been disallowed. 452 * 453 * While the system is actually in the CxSR/max FIFO mode, some plane 454 * control registers will not get latched on vblank. Thus in order to 455 * guarantee the system will respond to changes in the plane registers 456 * we must always disallow CxSR prior to making changes to those registers. 457 * Unfortunately the system will re-evaluate the CxSR conditions at 458 * frame start which happens after vblank start (which is when the plane 459 * registers would get latched), so we can't proceed with the plane update 460 * during the same frame where we disallowed CxSR. 461 * 462 * Certain platforms also have a deeper HPLL SR mode. Fortunately the 463 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold 464 * the hardware w.r.t. HPLL SR when writing to plane registers. 465 * Disallowing just CxSR is sufficient. 466 */ 467bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable) 468{ 469 bool ret; 470 471 mutex_lock(&dev_priv->wm.wm_mutex); 472 ret = _intel_set_memory_cxsr(dev_priv, enable); 473 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) 474 dev_priv->wm.vlv.cxsr = enable; 475 else if (IS_G4X(dev_priv)) 476 dev_priv->wm.g4x.cxsr = enable; 477 mutex_unlock(&dev_priv->wm.wm_mutex); 478 479 return ret; 480} 481 482/* 483 * Latency for FIFO fetches is dependent on several factors: 484 * - memory configuration (speed, channels) 485 * - chipset 486 * - current MCH state 487 * It can be fairly high in some situations, so here we assume a fairly 488 * pessimal value. It's a tradeoff between extra memory fetches (if we 489 * set this value too high, the FIFO will fetch frequently to stay full) 490 * and power consumption (set it too low to save power and we might see 491 * FIFO underruns and display "flicker"). 492 * 493 * A value of 5us seems to be a good balance; safe for very low end 494 * platforms but not overly aggressive on lower latency configs. 495 */ 496static const int pessimal_latency_ns = 5000; 497 498#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \ 499 ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8)) 500 501static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state) 502{ 503 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 504 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 505 struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state; 506 enum pipe pipe = crtc->pipe; 507 int sprite0_start, sprite1_start; 508 u32 dsparb, dsparb2, dsparb3; 509 510 switch (pipe) { 511 case PIPE_A: 512 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB); 513 dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2); 514 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0); 515 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4); 516 break; 517 case PIPE_B: 518 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB); 519 dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2); 520 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8); 521 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12); 522 break; 523 case PIPE_C: 524 dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2); 525 dsparb3 = intel_uncore_read(&dev_priv->uncore, DSPARB3); 526 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16); 527 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20); 528 break; 529 default: 530 MISSING_CASE(pipe); 531 return; 532 } 533 534 fifo_state->plane[PLANE_PRIMARY] = sprite0_start; 535 fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start; 536 fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start; 537 fifo_state->plane[PLANE_CURSOR] = 63; 538} 539 540static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, 541 enum i9xx_plane_id i9xx_plane) 542{ 543 u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB); 544 int size; 545 546 size = dsparb & 0x7f; 547 if (i9xx_plane == PLANE_B) 548 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size; 549 550 drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n", 551 dsparb, plane_name(i9xx_plane), size); 552 553 return size; 554} 555 556static int i830_get_fifo_size(struct drm_i915_private *dev_priv, 557 enum i9xx_plane_id i9xx_plane) 558{ 559 u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB); 560 int size; 561 562 size = dsparb & 0x1ff; 563 if (i9xx_plane == PLANE_B) 564 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size; 565 size >>= 1; /* Convert to cachelines */ 566 567 drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n", 568 dsparb, plane_name(i9xx_plane), size); 569 570 return size; 571} 572 573static int i845_get_fifo_size(struct drm_i915_private *dev_priv, 574 enum i9xx_plane_id i9xx_plane) 575{ 576 u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB); 577 int size; 578 579 size = dsparb & 0x7f; 580 size >>= 2; /* Convert to cachelines */ 581 582 drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n", 583 dsparb, plane_name(i9xx_plane), size); 584 585 return size; 586} 587 588/* Pineview has different values for various configs */ 589static const struct intel_watermark_params pnv_display_wm = { 590 .fifo_size = PINEVIEW_DISPLAY_FIFO, 591 .max_wm = PINEVIEW_MAX_WM, 592 .default_wm = PINEVIEW_DFT_WM, 593 .guard_size = PINEVIEW_GUARD_WM, 594 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE, 595}; 596 597static const struct intel_watermark_params pnv_display_hplloff_wm = { 598 .fifo_size = PINEVIEW_DISPLAY_FIFO, 599 .max_wm = PINEVIEW_MAX_WM, 600 .default_wm = PINEVIEW_DFT_HPLLOFF_WM, 601 .guard_size = PINEVIEW_GUARD_WM, 602 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE, 603}; 604 605static const struct intel_watermark_params pnv_cursor_wm = { 606 .fifo_size = PINEVIEW_CURSOR_FIFO, 607 .max_wm = PINEVIEW_CURSOR_MAX_WM, 608 .default_wm = PINEVIEW_CURSOR_DFT_WM, 609 .guard_size = PINEVIEW_CURSOR_GUARD_WM, 610 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE, 611}; 612 613static const struct intel_watermark_params pnv_cursor_hplloff_wm = { 614 .fifo_size = PINEVIEW_CURSOR_FIFO, 615 .max_wm = PINEVIEW_CURSOR_MAX_WM, 616 .default_wm = PINEVIEW_CURSOR_DFT_WM, 617 .guard_size = PINEVIEW_CURSOR_GUARD_WM, 618 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE, 619}; 620 621static const struct intel_watermark_params i965_cursor_wm_info = { 622 .fifo_size = I965_CURSOR_FIFO, 623 .max_wm = I965_CURSOR_MAX_WM, 624 .default_wm = I965_CURSOR_DFT_WM, 625 .guard_size = 2, 626 .cacheline_size = I915_FIFO_LINE_SIZE, 627}; 628 629static const struct intel_watermark_params i945_wm_info = { 630 .fifo_size = I945_FIFO_SIZE, 631 .max_wm = I915_MAX_WM, 632 .default_wm = 1, 633 .guard_size = 2, 634 .cacheline_size = I915_FIFO_LINE_SIZE, 635}; 636 637static const struct intel_watermark_params i915_wm_info = { 638 .fifo_size = I915_FIFO_SIZE, 639 .max_wm = I915_MAX_WM, 640 .default_wm = 1, 641 .guard_size = 2, 642 .cacheline_size = I915_FIFO_LINE_SIZE, 643}; 644 645static const struct intel_watermark_params i830_a_wm_info = { 646 .fifo_size = I855GM_FIFO_SIZE, 647 .max_wm = I915_MAX_WM, 648 .default_wm = 1, 649 .guard_size = 2, 650 .cacheline_size = I830_FIFO_LINE_SIZE, 651}; 652 653static const struct intel_watermark_params i830_bc_wm_info = { 654 .fifo_size = I855GM_FIFO_SIZE, 655 .max_wm = I915_MAX_WM/2, 656 .default_wm = 1, 657 .guard_size = 2, 658 .cacheline_size = I830_FIFO_LINE_SIZE, 659}; 660 661static const struct intel_watermark_params i845_wm_info = { 662 .fifo_size = I830_FIFO_SIZE, 663 .max_wm = I915_MAX_WM, 664 .default_wm = 1, 665 .guard_size = 2, 666 .cacheline_size = I830_FIFO_LINE_SIZE, 667}; 668 669/** 670 * intel_wm_method1 - Method 1 / "small buffer" watermark formula 671 * @pixel_rate: Pipe pixel rate in kHz 672 * @cpp: Plane bytes per pixel 673 * @latency: Memory wakeup latency in 0.1us units 674 * 675 * Compute the watermark using the method 1 or "small buffer" 676 * formula. The caller may additonally add extra cachelines 677 * to account for TLB misses and clock crossings. 678 * 679 * This method is concerned with the short term drain rate 680 * of the FIFO, ie. it does not account for blanking periods 681 * which would effectively reduce the average drain rate across 682 * a longer period. The name "small" refers to the fact the 683 * FIFO is relatively small compared to the amount of data 684 * fetched. 685 * 686 * The FIFO level vs. time graph might look something like: 687 * 688 * |\ |\ 689 * | \ | \ 690 * __---__---__ (- plane active, _ blanking) 691 * -> time 692 * 693 * or perhaps like this: 694 * 695 * |\|\ |\|\ 696 * __----__----__ (- plane active, _ blanking) 697 * -> time 698 * 699 * Returns: 700 * The watermark in bytes 701 */ 702static unsigned int intel_wm_method1(unsigned int pixel_rate, 703 unsigned int cpp, 704 unsigned int latency) 705{ 706 u64 ret; 707 708 ret = mul_u32_u32(pixel_rate, cpp * latency); 709 ret = DIV_ROUND_UP_ULL(ret, 10000); 710 711 return ret; 712} 713 714/** 715 * intel_wm_method2 - Method 2 / "large buffer" watermark formula 716 * @pixel_rate: Pipe pixel rate in kHz 717 * @htotal: Pipe horizontal total 718 * @width: Plane width in pixels 719 * @cpp: Plane bytes per pixel 720 * @latency: Memory wakeup latency in 0.1us units 721 * 722 * Compute the watermark using the method 2 or "large buffer" 723 * formula. The caller may additonally add extra cachelines 724 * to account for TLB misses and clock crossings. 725 * 726 * This method is concerned with the long term drain rate 727 * of the FIFO, ie. it does account for blanking periods 728 * which effectively reduce the average drain rate across 729 * a longer period. The name "large" refers to the fact the 730 * FIFO is relatively large compared to the amount of data 731 * fetched. 732 * 733 * The FIFO level vs. time graph might look something like: 734 * 735 * |\___ |\___ 736 * | \___ | \___ 737 * | \ | \ 738 * __ --__--__--__--__--__--__ (- plane active, _ blanking) 739 * -> time 740 * 741 * Returns: 742 * The watermark in bytes 743 */ 744static unsigned int intel_wm_method2(unsigned int pixel_rate, 745 unsigned int htotal, 746 unsigned int width, 747 unsigned int cpp, 748 unsigned int latency) 749{ 750 unsigned int ret; 751 752 /* 753 * FIXME remove once all users are computing 754 * watermarks in the correct place. 755 */ 756 if (WARN_ON_ONCE(htotal == 0)) 757 htotal = 1; 758 759 ret = (latency * pixel_rate) / (htotal * 10000); 760 ret = (ret + 1) * width * cpp; 761 762 return ret; 763} 764 765/** 766 * intel_calculate_wm - calculate watermark level 767 * @pixel_rate: pixel clock 768 * @wm: chip FIFO params 769 * @fifo_size: size of the FIFO buffer 770 * @cpp: bytes per pixel 771 * @latency_ns: memory latency for the platform 772 * 773 * Calculate the watermark level (the level at which the display plane will 774 * start fetching from memory again). Each chip has a different display 775 * FIFO size and allocation, so the caller needs to figure that out and pass 776 * in the correct intel_watermark_params structure. 777 * 778 * As the pixel clock runs, the FIFO will be drained at a rate that depends 779 * on the pixel size. When it reaches the watermark level, it'll start 780 * fetching FIFO line sized based chunks from memory until the FIFO fills 781 * past the watermark point. If the FIFO drains completely, a FIFO underrun 782 * will occur, and a display engine hang could result. 783 */ 784static unsigned int intel_calculate_wm(int pixel_rate, 785 const struct intel_watermark_params *wm, 786 int fifo_size, int cpp, 787 unsigned int latency_ns) 788{ 789 int entries, wm_size; 790 791 /* 792 * Note: we need to make sure we don't overflow for various clock & 793 * latency values. 794 * clocks go from a few thousand to several hundred thousand. 795 * latency is usually a few thousand 796 */ 797 entries = intel_wm_method1(pixel_rate, cpp, 798 latency_ns / 100); 799 entries = DIV_ROUND_UP(entries, wm->cacheline_size) + 800 wm->guard_size; 801 DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries); 802 803 wm_size = fifo_size - entries; 804 DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size); 805 806 /* Don't promote wm_size to unsigned... */ 807 if (wm_size > wm->max_wm) 808 wm_size = wm->max_wm; 809 if (wm_size <= 0) 810 wm_size = wm->default_wm; 811 812 /* 813 * Bspec seems to indicate that the value shouldn't be lower than 814 * 'burst size + 1'. Certainly 830 is quite unhappy with low values. 815 * Lets go for 8 which is the burst size since certain platforms 816 * already use a hardcoded 8 (which is what the spec says should be 817 * done). 818 */ 819 if (wm_size <= 8) 820 wm_size = 8; 821 822 return wm_size; 823} 824 825static bool is_disabling(int old, int new, int threshold) 826{ 827 return old >= threshold && new < threshold; 828} 829 830static bool is_enabling(int old, int new, int threshold) 831{ 832 return old < threshold && new >= threshold; 833} 834 835static int intel_wm_num_levels(struct drm_i915_private *dev_priv) 836{ 837 return dev_priv->wm.max_level + 1; 838} 839 840static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state, 841 const struct intel_plane_state *plane_state) 842{ 843 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 844 845 /* FIXME check the 'enable' instead */ 846 if (!crtc_state->hw.active) 847 return false; 848 849 /* 850 * Treat cursor with fb as always visible since cursor updates 851 * can happen faster than the vrefresh rate, and the current 852 * watermark code doesn't handle that correctly. Cursor updates 853 * which set/clear the fb or change the cursor size are going 854 * to get throttled by intel_legacy_cursor_update() to work 855 * around this problem with the watermark code. 856 */ 857 if (plane->id == PLANE_CURSOR) 858 return plane_state->hw.fb != NULL; 859 else 860 return plane_state->uapi.visible; 861} 862 863static bool intel_crtc_active(struct intel_crtc *crtc) 864{ 865 /* Be paranoid as we can arrive here with only partial 866 * state retrieved from the hardware during setup. 867 * 868 * We can ditch the adjusted_mode.crtc_clock check as soon 869 * as Haswell has gained clock readout/fastboot support. 870 * 871 * We can ditch the crtc->primary->state->fb check as soon as we can 872 * properly reconstruct framebuffers. 873 * 874 * FIXME: The intel_crtc->active here should be switched to 875 * crtc->state->active once we have proper CRTC states wired up 876 * for atomic. 877 */ 878 return crtc && crtc->active && crtc->base.primary->state->fb && 879 crtc->config->hw.adjusted_mode.crtc_clock; 880} 881 882static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv) 883{ 884 struct intel_crtc *crtc, *enabled = NULL; 885 886 for_each_intel_crtc(&dev_priv->drm, crtc) { 887 if (intel_crtc_active(crtc)) { 888 if (enabled) 889 return NULL; 890 enabled = crtc; 891 } 892 } 893 894 return enabled; 895} 896 897static void pnv_update_wm(struct drm_i915_private *dev_priv) 898{ 899 struct intel_crtc *crtc; 900 const struct cxsr_latency *latency; 901 u32 reg; 902 unsigned int wm; 903 904 latency = intel_get_cxsr_latency(!IS_MOBILE(dev_priv), 905 dev_priv->is_ddr3, 906 dev_priv->fsb_freq, 907 dev_priv->mem_freq); 908 if (!latency) { 909 drm_dbg_kms(&dev_priv->drm, 910 "Unknown FSB/MEM found, disable CxSR\n"); 911 intel_set_memory_cxsr(dev_priv, false); 912 return; 913 } 914 915 crtc = single_enabled_crtc(dev_priv); 916 if (crtc) { 917 const struct drm_framebuffer *fb = 918 crtc->base.primary->state->fb; 919 int pixel_rate = crtc->config->pixel_rate; 920 int cpp = fb->format->cpp[0]; 921 922 /* Display SR */ 923 wm = intel_calculate_wm(pixel_rate, &pnv_display_wm, 924 pnv_display_wm.fifo_size, 925 cpp, latency->display_sr); 926 reg = intel_uncore_read(&dev_priv->uncore, DSPFW1); 927 reg &= ~DSPFW_SR_MASK; 928 reg |= FW_WM(wm, SR); 929 intel_uncore_write(&dev_priv->uncore, DSPFW1, reg); 930 drm_dbg_kms(&dev_priv->drm, "DSPFW1 register is %x\n", reg); 931 932 /* cursor SR */ 933 wm = intel_calculate_wm(pixel_rate, &pnv_cursor_wm, 934 pnv_display_wm.fifo_size, 935 4, latency->cursor_sr); 936 reg = intel_uncore_read(&dev_priv->uncore, DSPFW3); 937 reg &= ~DSPFW_CURSOR_SR_MASK; 938 reg |= FW_WM(wm, CURSOR_SR); 939 intel_uncore_write(&dev_priv->uncore, DSPFW3, reg); 940 941 /* Display HPLL off SR */ 942 wm = intel_calculate_wm(pixel_rate, &pnv_display_hplloff_wm, 943 pnv_display_hplloff_wm.fifo_size, 944 cpp, latency->display_hpll_disable); 945 reg = intel_uncore_read(&dev_priv->uncore, DSPFW3); 946 reg &= ~DSPFW_HPLL_SR_MASK; 947 reg |= FW_WM(wm, HPLL_SR); 948 intel_uncore_write(&dev_priv->uncore, DSPFW3, reg); 949 950 /* cursor HPLL off SR */ 951 wm = intel_calculate_wm(pixel_rate, &pnv_cursor_hplloff_wm, 952 pnv_display_hplloff_wm.fifo_size, 953 4, latency->cursor_hpll_disable); 954 reg = intel_uncore_read(&dev_priv->uncore, DSPFW3); 955 reg &= ~DSPFW_HPLL_CURSOR_MASK; 956 reg |= FW_WM(wm, HPLL_CURSOR); 957 intel_uncore_write(&dev_priv->uncore, DSPFW3, reg); 958 drm_dbg_kms(&dev_priv->drm, "DSPFW3 register is %x\n", reg); 959 960 intel_set_memory_cxsr(dev_priv, true); 961 } else { 962 intel_set_memory_cxsr(dev_priv, false); 963 } 964} 965 966/* 967 * Documentation says: 968 * "If the line size is small, the TLB fetches can get in the way of the 969 * data fetches, causing some lag in the pixel data return which is not 970 * accounted for in the above formulas. The following adjustment only 971 * needs to be applied if eight whole lines fit in the buffer at once. 972 * The WM is adjusted upwards by the difference between the FIFO size 973 * and the size of 8 whole lines. This adjustment is always performed 974 * in the actual pixel depth regardless of whether FBC is enabled or not." 975 */ 976static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp) 977{ 978 int tlb_miss = fifo_size * 64 - width * cpp * 8; 979 980 return max(0, tlb_miss); 981} 982 983static void g4x_write_wm_values(struct drm_i915_private *dev_priv, 984 const struct g4x_wm_values *wm) 985{ 986 enum pipe pipe; 987 988 for_each_pipe(dev_priv, pipe) 989 trace_g4x_wm(intel_crtc_for_pipe(dev_priv, pipe), wm); 990 991 intel_uncore_write(&dev_priv->uncore, DSPFW1, 992 FW_WM(wm->sr.plane, SR) | 993 FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) | 994 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) | 995 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA)); 996 intel_uncore_write(&dev_priv->uncore, DSPFW2, 997 (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) | 998 FW_WM(wm->sr.fbc, FBC_SR) | 999 FW_WM(wm->hpll.fbc, FBC_HPLL_SR) | 1000 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) | 1001 FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) | 1002 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA)); 1003 intel_uncore_write(&dev_priv->uncore, DSPFW3, 1004 (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) | 1005 FW_WM(wm->sr.cursor, CURSOR_SR) | 1006 FW_WM(wm->hpll.cursor, HPLL_CURSOR) | 1007 FW_WM(wm->hpll.plane, HPLL_SR)); 1008 1009 intel_uncore_posting_read(&dev_priv->uncore, DSPFW1); 1010} 1011 1012#define FW_WM_VLV(value, plane) \ 1013 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV) 1014 1015static void vlv_write_wm_values(struct drm_i915_private *dev_priv, 1016 const struct vlv_wm_values *wm) 1017{ 1018 enum pipe pipe; 1019 1020 for_each_pipe(dev_priv, pipe) { 1021 trace_vlv_wm(intel_crtc_for_pipe(dev_priv, pipe), wm); 1022 1023 intel_uncore_write(&dev_priv->uncore, VLV_DDL(pipe), 1024 (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) | 1025 (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) | 1026 (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) | 1027 (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT)); 1028 } 1029 1030 /* 1031 * Zero the (unused) WM1 watermarks, and also clear all the 1032 * high order bits so that there are no out of bounds values 1033 * present in the registers during the reprogramming. 1034 */ 1035 intel_uncore_write(&dev_priv->uncore, DSPHOWM, 0); 1036 intel_uncore_write(&dev_priv->uncore, DSPHOWM1, 0); 1037 intel_uncore_write(&dev_priv->uncore, DSPFW4, 0); 1038 intel_uncore_write(&dev_priv->uncore, DSPFW5, 0); 1039 intel_uncore_write(&dev_priv->uncore, DSPFW6, 0); 1040 1041 intel_uncore_write(&dev_priv->uncore, DSPFW1, 1042 FW_WM(wm->sr.plane, SR) | 1043 FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) | 1044 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) | 1045 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA)); 1046 intel_uncore_write(&dev_priv->uncore, DSPFW2, 1047 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) | 1048 FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) | 1049 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA)); 1050 intel_uncore_write(&dev_priv->uncore, DSPFW3, 1051 FW_WM(wm->sr.cursor, CURSOR_SR)); 1052 1053 if (IS_CHERRYVIEW(dev_priv)) { 1054 intel_uncore_write(&dev_priv->uncore, DSPFW7_CHV, 1055 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) | 1056 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC)); 1057 intel_uncore_write(&dev_priv->uncore, DSPFW8_CHV, 1058 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) | 1059 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE)); 1060 intel_uncore_write(&dev_priv->uncore, DSPFW9_CHV, 1061 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) | 1062 FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC)); 1063 intel_uncore_write(&dev_priv->uncore, DSPHOWM, 1064 FW_WM(wm->sr.plane >> 9, SR_HI) | 1065 FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) | 1066 FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) | 1067 FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) | 1068 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) | 1069 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) | 1070 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) | 1071 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) | 1072 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) | 1073 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI)); 1074 } else { 1075 intel_uncore_write(&dev_priv->uncore, DSPFW7, 1076 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) | 1077 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC)); 1078 intel_uncore_write(&dev_priv->uncore, DSPHOWM, 1079 FW_WM(wm->sr.plane >> 9, SR_HI) | 1080 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) | 1081 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) | 1082 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) | 1083 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) | 1084 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) | 1085 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI)); 1086 } 1087 1088 intel_uncore_posting_read(&dev_priv->uncore, DSPFW1); 1089} 1090 1091#undef FW_WM_VLV 1092 1093static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv) 1094{ 1095 /* all latencies in usec */ 1096 dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5; 1097 dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12; 1098 dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35; 1099 1100 dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL; 1101} 1102 1103static int g4x_plane_fifo_size(enum plane_id plane_id, int level) 1104{ 1105 /* 1106 * DSPCNTR[13] supposedly controls whether the 1107 * primary plane can use the FIFO space otherwise 1108 * reserved for the sprite plane. It's not 100% clear 1109 * what the actual FIFO size is, but it looks like we 1110 * can happily set both primary and sprite watermarks 1111 * up to 127 cachelines. So that would seem to mean 1112 * that either DSPCNTR[13] doesn't do anything, or that 1113 * the total FIFO is >= 256 cachelines in size. Either 1114 * way, we don't seem to have to worry about this 1115 * repartitioning as the maximum watermark value the 1116 * register can hold for each plane is lower than the 1117 * minimum FIFO size. 1118 */ 1119 switch (plane_id) { 1120 case PLANE_CURSOR: 1121 return 63; 1122 case PLANE_PRIMARY: 1123 return level == G4X_WM_LEVEL_NORMAL ? 127 : 511; 1124 case PLANE_SPRITE0: 1125 return level == G4X_WM_LEVEL_NORMAL ? 127 : 0; 1126 default: 1127 MISSING_CASE(plane_id); 1128 return 0; 1129 } 1130} 1131 1132static int g4x_fbc_fifo_size(int level) 1133{ 1134 switch (level) { 1135 case G4X_WM_LEVEL_SR: 1136 return 7; 1137 case G4X_WM_LEVEL_HPLL: 1138 return 15; 1139 default: 1140 MISSING_CASE(level); 1141 return 0; 1142 } 1143} 1144 1145static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state, 1146 const struct intel_plane_state *plane_state, 1147 int level) 1148{ 1149 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 1150 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 1151 const struct drm_display_mode *pipe_mode = 1152 &crtc_state->hw.pipe_mode; 1153 unsigned int latency = dev_priv->wm.pri_latency[level] * 10; 1154 unsigned int pixel_rate, htotal, cpp, width, wm; 1155 1156 if (latency == 0) 1157 return USHRT_MAX; 1158 1159 if (!intel_wm_plane_visible(crtc_state, plane_state)) 1160 return 0; 1161 1162 cpp = plane_state->hw.fb->format->cpp[0]; 1163 1164 /* 1165 * WaUse32BppForSRWM:ctg,elk 1166 * 1167 * The spec fails to list this restriction for the 1168 * HPLL watermark, which seems a little strange. 1169 * Let's use 32bpp for the HPLL watermark as well. 1170 */ 1171 if (plane->id == PLANE_PRIMARY && 1172 level != G4X_WM_LEVEL_NORMAL) 1173 cpp = max(cpp, 4u); 1174 1175 pixel_rate = crtc_state->pixel_rate; 1176 htotal = pipe_mode->crtc_htotal; 1177 width = drm_rect_width(&plane_state->uapi.src) >> 16; 1178 1179 if (plane->id == PLANE_CURSOR) { 1180 wm = intel_wm_method2(pixel_rate, htotal, width, cpp, latency); 1181 } else if (plane->id == PLANE_PRIMARY && 1182 level == G4X_WM_LEVEL_NORMAL) { 1183 wm = intel_wm_method1(pixel_rate, cpp, latency); 1184 } else { 1185 unsigned int small, large; 1186 1187 small = intel_wm_method1(pixel_rate, cpp, latency); 1188 large = intel_wm_method2(pixel_rate, htotal, width, cpp, latency); 1189 1190 wm = min(small, large); 1191 } 1192 1193 wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level), 1194 width, cpp); 1195 1196 wm = DIV_ROUND_UP(wm, 64) + 2; 1197 1198 return min_t(unsigned int, wm, USHRT_MAX); 1199} 1200 1201static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state, 1202 int level, enum plane_id plane_id, u16 value) 1203{ 1204 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 1205 bool dirty = false; 1206 1207 for (; level < intel_wm_num_levels(dev_priv); level++) { 1208 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level]; 1209 1210 dirty |= raw->plane[plane_id] != value; 1211 raw->plane[plane_id] = value; 1212 } 1213 1214 return dirty; 1215} 1216 1217static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state, 1218 int level, u16 value) 1219{ 1220 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 1221 bool dirty = false; 1222 1223 /* NORMAL level doesn't have an FBC watermark */ 1224 level = max(level, G4X_WM_LEVEL_SR); 1225 1226 for (; level < intel_wm_num_levels(dev_priv); level++) { 1227 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level]; 1228 1229 dirty |= raw->fbc != value; 1230 raw->fbc = value; 1231 } 1232 1233 return dirty; 1234} 1235 1236static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state, 1237 const struct intel_plane_state *plane_state, 1238 u32 pri_val); 1239 1240static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state, 1241 const struct intel_plane_state *plane_state) 1242{ 1243 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 1244 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 1245 int num_levels = intel_wm_num_levels(to_i915(plane->base.dev)); 1246 enum plane_id plane_id = plane->id; 1247 bool dirty = false; 1248 int level; 1249 1250 if (!intel_wm_plane_visible(crtc_state, plane_state)) { 1251 dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0); 1252 if (plane_id == PLANE_PRIMARY) 1253 dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0); 1254 goto out; 1255 } 1256 1257 for (level = 0; level < num_levels; level++) { 1258 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level]; 1259 int wm, max_wm; 1260 1261 wm = g4x_compute_wm(crtc_state, plane_state, level); 1262 max_wm = g4x_plane_fifo_size(plane_id, level); 1263 1264 if (wm > max_wm) 1265 break; 1266 1267 dirty |= raw->plane[plane_id] != wm; 1268 raw->plane[plane_id] = wm; 1269 1270 if (plane_id != PLANE_PRIMARY || 1271 level == G4X_WM_LEVEL_NORMAL) 1272 continue; 1273 1274 wm = ilk_compute_fbc_wm(crtc_state, plane_state, 1275 raw->plane[plane_id]); 1276 max_wm = g4x_fbc_fifo_size(level); 1277 1278 /* 1279 * FBC wm is not mandatory as we 1280 * can always just disable its use. 1281 */ 1282 if (wm > max_wm) 1283 wm = USHRT_MAX; 1284 1285 dirty |= raw->fbc != wm; 1286 raw->fbc = wm; 1287 } 1288 1289 /* mark watermarks as invalid */ 1290 dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX); 1291 1292 if (plane_id == PLANE_PRIMARY) 1293 dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX); 1294 1295 out: 1296 if (dirty) { 1297 drm_dbg_kms(&dev_priv->drm, 1298 "%s watermarks: normal=%d, SR=%d, HPLL=%d\n", 1299 plane->base.name, 1300 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id], 1301 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id], 1302 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]); 1303 1304 if (plane_id == PLANE_PRIMARY) 1305 drm_dbg_kms(&dev_priv->drm, 1306 "FBC watermarks: SR=%d, HPLL=%d\n", 1307 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc, 1308 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc); 1309 } 1310 1311 return dirty; 1312} 1313 1314static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state, 1315 enum plane_id plane_id, int level) 1316{ 1317 const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level]; 1318 1319 return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level); 1320} 1321 1322static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, 1323 int level) 1324{ 1325 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 1326 1327 if (level > dev_priv->wm.max_level) 1328 return false; 1329 1330 return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) && 1331 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) && 1332 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level); 1333} 1334 1335/* mark all levels starting from 'level' as invalid */ 1336static void g4x_invalidate_wms(struct intel_crtc *crtc, 1337 struct g4x_wm_state *wm_state, int level) 1338{ 1339 if (level <= G4X_WM_LEVEL_NORMAL) { 1340 enum plane_id plane_id; 1341 1342 for_each_plane_id_on_crtc(crtc, plane_id) 1343 wm_state->wm.plane[plane_id] = USHRT_MAX; 1344 } 1345 1346 if (level <= G4X_WM_LEVEL_SR) { 1347 wm_state->cxsr = false; 1348 wm_state->sr.cursor = USHRT_MAX; 1349 wm_state->sr.plane = USHRT_MAX; 1350 wm_state->sr.fbc = USHRT_MAX; 1351 } 1352 1353 if (level <= G4X_WM_LEVEL_HPLL) { 1354 wm_state->hpll_en = false; 1355 wm_state->hpll.cursor = USHRT_MAX; 1356 wm_state->hpll.plane = USHRT_MAX; 1357 wm_state->hpll.fbc = USHRT_MAX; 1358 } 1359} 1360 1361static bool g4x_compute_fbc_en(const struct g4x_wm_state *wm_state, 1362 int level) 1363{ 1364 if (level < G4X_WM_LEVEL_SR) 1365 return false; 1366 1367 if (level >= G4X_WM_LEVEL_SR && 1368 wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR)) 1369 return false; 1370 1371 if (level >= G4X_WM_LEVEL_HPLL && 1372 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL)) 1373 return false; 1374 1375 return true; 1376} 1377 1378static int g4x_compute_pipe_wm(struct intel_atomic_state *state, 1379 struct intel_crtc *crtc) 1380{ 1381 struct intel_crtc_state *crtc_state = 1382 intel_atomic_get_new_crtc_state(state, crtc); 1383 struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal; 1384 u8 active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR); 1385 const struct g4x_pipe_wm *raw; 1386 const struct intel_plane_state *old_plane_state; 1387 const struct intel_plane_state *new_plane_state; 1388 struct intel_plane *plane; 1389 enum plane_id plane_id; 1390 int i, level; 1391 unsigned int dirty = 0; 1392 1393 for_each_oldnew_intel_plane_in_state(state, plane, 1394 old_plane_state, 1395 new_plane_state, i) { 1396 if (new_plane_state->hw.crtc != &crtc->base && 1397 old_plane_state->hw.crtc != &crtc->base) 1398 continue; 1399 1400 if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state)) 1401 dirty |= BIT(plane->id); 1402 } 1403 1404 if (!dirty) 1405 return 0; 1406 1407 level = G4X_WM_LEVEL_NORMAL; 1408 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level)) 1409 goto out; 1410 1411 raw = &crtc_state->wm.g4x.raw[level]; 1412 for_each_plane_id_on_crtc(crtc, plane_id) 1413 wm_state->wm.plane[plane_id] = raw->plane[plane_id]; 1414 1415 level = G4X_WM_LEVEL_SR; 1416 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level)) 1417 goto out; 1418 1419 raw = &crtc_state->wm.g4x.raw[level]; 1420 wm_state->sr.plane = raw->plane[PLANE_PRIMARY]; 1421 wm_state->sr.cursor = raw->plane[PLANE_CURSOR]; 1422 wm_state->sr.fbc = raw->fbc; 1423 1424 wm_state->cxsr = active_planes == BIT(PLANE_PRIMARY); 1425 1426 level = G4X_WM_LEVEL_HPLL; 1427 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level)) 1428 goto out; 1429 1430 raw = &crtc_state->wm.g4x.raw[level]; 1431 wm_state->hpll.plane = raw->plane[PLANE_PRIMARY]; 1432 wm_state->hpll.cursor = raw->plane[PLANE_CURSOR]; 1433 wm_state->hpll.fbc = raw->fbc; 1434 1435 wm_state->hpll_en = wm_state->cxsr; 1436 1437 level++; 1438 1439 out: 1440 if (level == G4X_WM_LEVEL_NORMAL) 1441 return -EINVAL; 1442 1443 /* invalidate the higher levels */ 1444 g4x_invalidate_wms(crtc, wm_state, level); 1445 1446 /* 1447 * Determine if the FBC watermark(s) can be used. IF 1448 * this isn't the case we prefer to disable the FBC 1449 * watermark(s) rather than disable the SR/HPLL 1450 * level(s) entirely. 'level-1' is the highest valid 1451 * level here. 1452 */ 1453 wm_state->fbc_en = g4x_compute_fbc_en(wm_state, level - 1); 1454 1455 return 0; 1456} 1457 1458static int g4x_compute_intermediate_wm(struct intel_atomic_state *state, 1459 struct intel_crtc *crtc) 1460{ 1461 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1462 struct intel_crtc_state *new_crtc_state = 1463 intel_atomic_get_new_crtc_state(state, crtc); 1464 const struct intel_crtc_state *old_crtc_state = 1465 intel_atomic_get_old_crtc_state(state, crtc); 1466 struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate; 1467 const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal; 1468 const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal; 1469 enum plane_id plane_id; 1470 1471 if (!new_crtc_state->hw.active || 1472 drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) { 1473 *intermediate = *optimal; 1474 1475 intermediate->cxsr = false; 1476 intermediate->hpll_en = false; 1477 goto out; 1478 } 1479 1480 intermediate->cxsr = optimal->cxsr && active->cxsr && 1481 !new_crtc_state->disable_cxsr; 1482 intermediate->hpll_en = optimal->hpll_en && active->hpll_en && 1483 !new_crtc_state->disable_cxsr; 1484 intermediate->fbc_en = optimal->fbc_en && active->fbc_en; 1485 1486 for_each_plane_id_on_crtc(crtc, plane_id) { 1487 intermediate->wm.plane[plane_id] = 1488 max(optimal->wm.plane[plane_id], 1489 active->wm.plane[plane_id]); 1490 1491 drm_WARN_ON(&dev_priv->drm, intermediate->wm.plane[plane_id] > 1492 g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL)); 1493 } 1494 1495 intermediate->sr.plane = max(optimal->sr.plane, 1496 active->sr.plane); 1497 intermediate->sr.cursor = max(optimal->sr.cursor, 1498 active->sr.cursor); 1499 intermediate->sr.fbc = max(optimal->sr.fbc, 1500 active->sr.fbc); 1501 1502 intermediate->hpll.plane = max(optimal->hpll.plane, 1503 active->hpll.plane); 1504 intermediate->hpll.cursor = max(optimal->hpll.cursor, 1505 active->hpll.cursor); 1506 intermediate->hpll.fbc = max(optimal->hpll.fbc, 1507 active->hpll.fbc); 1508 1509 drm_WARN_ON(&dev_priv->drm, 1510 (intermediate->sr.plane > 1511 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) || 1512 intermediate->sr.cursor > 1513 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) && 1514 intermediate->cxsr); 1515 drm_WARN_ON(&dev_priv->drm, 1516 (intermediate->sr.plane > 1517 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) || 1518 intermediate->sr.cursor > 1519 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) && 1520 intermediate->hpll_en); 1521 1522 drm_WARN_ON(&dev_priv->drm, 1523 intermediate->sr.fbc > g4x_fbc_fifo_size(1) && 1524 intermediate->fbc_en && intermediate->cxsr); 1525 drm_WARN_ON(&dev_priv->drm, 1526 intermediate->hpll.fbc > g4x_fbc_fifo_size(2) && 1527 intermediate->fbc_en && intermediate->hpll_en); 1528 1529out: 1530 /* 1531 * If our intermediate WM are identical to the final WM, then we can 1532 * omit the post-vblank programming; only update if it's different. 1533 */ 1534 if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0) 1535 new_crtc_state->wm.need_postvbl_update = true; 1536 1537 return 0; 1538} 1539 1540static void g4x_merge_wm(struct drm_i915_private *dev_priv, 1541 struct g4x_wm_values *wm) 1542{ 1543 struct intel_crtc *crtc; 1544 int num_active_pipes = 0; 1545 1546 wm->cxsr = true; 1547 wm->hpll_en = true; 1548 wm->fbc_en = true; 1549 1550 for_each_intel_crtc(&dev_priv->drm, crtc) { 1551 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x; 1552 1553 if (!crtc->active) 1554 continue; 1555 1556 if (!wm_state->cxsr) 1557 wm->cxsr = false; 1558 if (!wm_state->hpll_en) 1559 wm->hpll_en = false; 1560 if (!wm_state->fbc_en) 1561 wm->fbc_en = false; 1562 1563 num_active_pipes++; 1564 } 1565 1566 if (num_active_pipes != 1) { 1567 wm->cxsr = false; 1568 wm->hpll_en = false; 1569 wm->fbc_en = false; 1570 } 1571 1572 for_each_intel_crtc(&dev_priv->drm, crtc) { 1573 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x; 1574 enum pipe pipe = crtc->pipe; 1575 1576 wm->pipe[pipe] = wm_state->wm; 1577 if (crtc->active && wm->cxsr) 1578 wm->sr = wm_state->sr; 1579 if (crtc->active && wm->hpll_en) 1580 wm->hpll = wm_state->hpll; 1581 } 1582} 1583 1584static void g4x_program_watermarks(struct drm_i915_private *dev_priv) 1585{ 1586 struct g4x_wm_values *old_wm = &dev_priv->wm.g4x; 1587 struct g4x_wm_values new_wm = {}; 1588 1589 g4x_merge_wm(dev_priv, &new_wm); 1590 1591 if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0) 1592 return; 1593 1594 if (is_disabling(old_wm->cxsr, new_wm.cxsr, true)) 1595 _intel_set_memory_cxsr(dev_priv, false); 1596 1597 g4x_write_wm_values(dev_priv, &new_wm); 1598 1599 if (is_enabling(old_wm->cxsr, new_wm.cxsr, true)) 1600 _intel_set_memory_cxsr(dev_priv, true); 1601 1602 *old_wm = new_wm; 1603} 1604 1605static void g4x_initial_watermarks(struct intel_atomic_state *state, 1606 struct intel_crtc *crtc) 1607{ 1608 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1609 const struct intel_crtc_state *crtc_state = 1610 intel_atomic_get_new_crtc_state(state, crtc); 1611 1612 mutex_lock(&dev_priv->wm.wm_mutex); 1613 crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate; 1614 g4x_program_watermarks(dev_priv); 1615 mutex_unlock(&dev_priv->wm.wm_mutex); 1616} 1617 1618static void g4x_optimize_watermarks(struct intel_atomic_state *state, 1619 struct intel_crtc *crtc) 1620{ 1621 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1622 const struct intel_crtc_state *crtc_state = 1623 intel_atomic_get_new_crtc_state(state, crtc); 1624 1625 if (!crtc_state->wm.need_postvbl_update) 1626 return; 1627 1628 mutex_lock(&dev_priv->wm.wm_mutex); 1629 crtc->wm.active.g4x = crtc_state->wm.g4x.optimal; 1630 g4x_program_watermarks(dev_priv); 1631 mutex_unlock(&dev_priv->wm.wm_mutex); 1632} 1633 1634/* latency must be in 0.1us units. */ 1635static unsigned int vlv_wm_method2(unsigned int pixel_rate, 1636 unsigned int htotal, 1637 unsigned int width, 1638 unsigned int cpp, 1639 unsigned int latency) 1640{ 1641 unsigned int ret; 1642 1643 ret = intel_wm_method2(pixel_rate, htotal, 1644 width, cpp, latency); 1645 ret = DIV_ROUND_UP(ret, 64); 1646 1647 return ret; 1648} 1649 1650static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv) 1651{ 1652 /* all latencies in usec */ 1653 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3; 1654 1655 dev_priv->wm.max_level = VLV_WM_LEVEL_PM2; 1656 1657 if (IS_CHERRYVIEW(dev_priv)) { 1658 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12; 1659 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33; 1660 1661 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS; 1662 } 1663} 1664 1665static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state, 1666 const struct intel_plane_state *plane_state, 1667 int level) 1668{ 1669 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 1670 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 1671 const struct drm_display_mode *pipe_mode = 1672 &crtc_state->hw.pipe_mode; 1673 unsigned int pixel_rate, htotal, cpp, width, wm; 1674 1675 if (dev_priv->wm.pri_latency[level] == 0) 1676 return USHRT_MAX; 1677 1678 if (!intel_wm_plane_visible(crtc_state, plane_state)) 1679 return 0; 1680 1681 cpp = plane_state->hw.fb->format->cpp[0]; 1682 pixel_rate = crtc_state->pixel_rate; 1683 htotal = pipe_mode->crtc_htotal; 1684 width = drm_rect_width(&plane_state->uapi.src) >> 16; 1685 1686 if (plane->id == PLANE_CURSOR) { 1687 /* 1688 * FIXME the formula gives values that are 1689 * too big for the cursor FIFO, and hence we 1690 * would never be able to use cursors. For 1691 * now just hardcode the watermark. 1692 */ 1693 wm = 63; 1694 } else { 1695 wm = vlv_wm_method2(pixel_rate, htotal, width, cpp, 1696 dev_priv->wm.pri_latency[level] * 10); 1697 } 1698 1699 return min_t(unsigned int, wm, USHRT_MAX); 1700} 1701 1702static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes) 1703{ 1704 return (active_planes & (BIT(PLANE_SPRITE0) | 1705 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1); 1706} 1707 1708static int vlv_compute_fifo(struct intel_crtc_state *crtc_state) 1709{ 1710 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1711 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1712 const struct g4x_pipe_wm *raw = 1713 &crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2]; 1714 struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state; 1715 u8 active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR); 1716 int num_active_planes = hweight8(active_planes); 1717 const int fifo_size = 511; 1718 int fifo_extra, fifo_left = fifo_size; 1719 int sprite0_fifo_extra = 0; 1720 unsigned int total_rate; 1721 enum plane_id plane_id; 1722 1723 /* 1724 * When enabling sprite0 after sprite1 has already been enabled 1725 * we tend to get an underrun unless sprite0 already has some 1726 * FIFO space allcoated. Hence we always allocate at least one 1727 * cacheline for sprite0 whenever sprite1 is enabled. 1728 * 1729 * All other plane enable sequences appear immune to this problem. 1730 */ 1731 if (vlv_need_sprite0_fifo_workaround(active_planes)) 1732 sprite0_fifo_extra = 1; 1733 1734 total_rate = raw->plane[PLANE_PRIMARY] + 1735 raw->plane[PLANE_SPRITE0] + 1736 raw->plane[PLANE_SPRITE1] + 1737 sprite0_fifo_extra; 1738 1739 if (total_rate > fifo_size) 1740 return -EINVAL; 1741 1742 if (total_rate == 0) 1743 total_rate = 1; 1744 1745 for_each_plane_id_on_crtc(crtc, plane_id) { 1746 unsigned int rate; 1747 1748 if ((active_planes & BIT(plane_id)) == 0) { 1749 fifo_state->plane[plane_id] = 0; 1750 continue; 1751 } 1752 1753 rate = raw->plane[plane_id]; 1754 fifo_state->plane[plane_id] = fifo_size * rate / total_rate; 1755 fifo_left -= fifo_state->plane[plane_id]; 1756 } 1757 1758 fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra; 1759 fifo_left -= sprite0_fifo_extra; 1760 1761 fifo_state->plane[PLANE_CURSOR] = 63; 1762 1763 fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1); 1764 1765 /* spread the remainder evenly */ 1766 for_each_plane_id_on_crtc(crtc, plane_id) { 1767 int plane_extra; 1768 1769 if (fifo_left == 0) 1770 break; 1771 1772 if ((active_planes & BIT(plane_id)) == 0) 1773 continue; 1774 1775 plane_extra = min(fifo_extra, fifo_left); 1776 fifo_state->plane[plane_id] += plane_extra; 1777 fifo_left -= plane_extra; 1778 } 1779 1780 drm_WARN_ON(&dev_priv->drm, active_planes != 0 && fifo_left != 0); 1781 1782 /* give it all to the first plane if none are active */ 1783 if (active_planes == 0) { 1784 drm_WARN_ON(&dev_priv->drm, fifo_left != fifo_size); 1785 fifo_state->plane[PLANE_PRIMARY] = fifo_left; 1786 } 1787 1788 return 0; 1789} 1790 1791/* mark all levels starting from 'level' as invalid */ 1792static void vlv_invalidate_wms(struct intel_crtc *crtc, 1793 struct vlv_wm_state *wm_state, int level) 1794{ 1795 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1796 1797 for (; level < intel_wm_num_levels(dev_priv); level++) { 1798 enum plane_id plane_id; 1799 1800 for_each_plane_id_on_crtc(crtc, plane_id) 1801 wm_state->wm[level].plane[plane_id] = USHRT_MAX; 1802 1803 wm_state->sr[level].cursor = USHRT_MAX; 1804 wm_state->sr[level].plane = USHRT_MAX; 1805 } 1806} 1807 1808static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size) 1809{ 1810 if (wm > fifo_size) 1811 return USHRT_MAX; 1812 else 1813 return fifo_size - wm; 1814} 1815 1816/* 1817 * Starting from 'level' set all higher 1818 * levels to 'value' in the "raw" watermarks. 1819 */ 1820static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state, 1821 int level, enum plane_id plane_id, u16 value) 1822{ 1823 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 1824 int num_levels = intel_wm_num_levels(dev_priv); 1825 bool dirty = false; 1826 1827 for (; level < num_levels; level++) { 1828 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level]; 1829 1830 dirty |= raw->plane[plane_id] != value; 1831 raw->plane[plane_id] = value; 1832 } 1833 1834 return dirty; 1835} 1836 1837static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state, 1838 const struct intel_plane_state *plane_state) 1839{ 1840 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 1841 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 1842 enum plane_id plane_id = plane->id; 1843 int num_levels = intel_wm_num_levels(to_i915(plane->base.dev)); 1844 int level; 1845 bool dirty = false; 1846 1847 if (!intel_wm_plane_visible(crtc_state, plane_state)) { 1848 dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0); 1849 goto out; 1850 } 1851 1852 for (level = 0; level < num_levels; level++) { 1853 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level]; 1854 int wm = vlv_compute_wm_level(crtc_state, plane_state, level); 1855 int max_wm = plane_id == PLANE_CURSOR ? 63 : 511; 1856 1857 if (wm > max_wm) 1858 break; 1859 1860 dirty |= raw->plane[plane_id] != wm; 1861 raw->plane[plane_id] = wm; 1862 } 1863 1864 /* mark all higher levels as invalid */ 1865 dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX); 1866 1867out: 1868 if (dirty) 1869 drm_dbg_kms(&dev_priv->drm, 1870 "%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n", 1871 plane->base.name, 1872 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id], 1873 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id], 1874 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]); 1875 1876 return dirty; 1877} 1878 1879static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state, 1880 enum plane_id plane_id, int level) 1881{ 1882 const struct g4x_pipe_wm *raw = 1883 &crtc_state->wm.vlv.raw[level]; 1884 const struct vlv_fifo_state *fifo_state = 1885 &crtc_state->wm.vlv.fifo_state; 1886 1887 return raw->plane[plane_id] <= fifo_state->plane[plane_id]; 1888} 1889 1890static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level) 1891{ 1892 return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) && 1893 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) && 1894 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) && 1895 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level); 1896} 1897 1898static int vlv_compute_pipe_wm(struct intel_atomic_state *state, 1899 struct intel_crtc *crtc) 1900{ 1901 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1902 struct intel_crtc_state *crtc_state = 1903 intel_atomic_get_new_crtc_state(state, crtc); 1904 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal; 1905 const struct vlv_fifo_state *fifo_state = 1906 &crtc_state->wm.vlv.fifo_state; 1907 u8 active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR); 1908 int num_active_planes = hweight8(active_planes); 1909 bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->uapi); 1910 const struct intel_plane_state *old_plane_state; 1911 const struct intel_plane_state *new_plane_state; 1912 struct intel_plane *plane; 1913 enum plane_id plane_id; 1914 int level, ret, i; 1915 unsigned int dirty = 0; 1916 1917 for_each_oldnew_intel_plane_in_state(state, plane, 1918 old_plane_state, 1919 new_plane_state, i) { 1920 if (new_plane_state->hw.crtc != &crtc->base && 1921 old_plane_state->hw.crtc != &crtc->base) 1922 continue; 1923 1924 if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state)) 1925 dirty |= BIT(plane->id); 1926 } 1927 1928 /* 1929 * DSPARB registers may have been reset due to the 1930 * power well being turned off. Make sure we restore 1931 * them to a consistent state even if no primary/sprite 1932 * planes are initially active. 1933 */ 1934 if (needs_modeset) 1935 crtc_state->fifo_changed = true; 1936 1937 if (!dirty) 1938 return 0; 1939 1940 /* cursor changes don't warrant a FIFO recompute */ 1941 if (dirty & ~BIT(PLANE_CURSOR)) { 1942 const struct intel_crtc_state *old_crtc_state = 1943 intel_atomic_get_old_crtc_state(state, crtc); 1944 const struct vlv_fifo_state *old_fifo_state = 1945 &old_crtc_state->wm.vlv.fifo_state; 1946 1947 ret = vlv_compute_fifo(crtc_state); 1948 if (ret) 1949 return ret; 1950 1951 if (needs_modeset || 1952 memcmp(old_fifo_state, fifo_state, 1953 sizeof(*fifo_state)) != 0) 1954 crtc_state->fifo_changed = true; 1955 } 1956 1957 /* initially allow all levels */ 1958 wm_state->num_levels = intel_wm_num_levels(dev_priv); 1959 /* 1960 * Note that enabling cxsr with no primary/sprite planes 1961 * enabled can wedge the pipe. Hence we only allow cxsr 1962 * with exactly one enabled primary/sprite plane. 1963 */ 1964 wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1; 1965 1966 for (level = 0; level < wm_state->num_levels; level++) { 1967 const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level]; 1968 const int sr_fifo_size = INTEL_NUM_PIPES(dev_priv) * 512 - 1; 1969 1970 if (!vlv_raw_crtc_wm_is_valid(crtc_state, level)) 1971 break; 1972 1973 for_each_plane_id_on_crtc(crtc, plane_id) { 1974 wm_state->wm[level].plane[plane_id] = 1975 vlv_invert_wm_value(raw->plane[plane_id], 1976 fifo_state->plane[plane_id]); 1977 } 1978 1979 wm_state->sr[level].plane = 1980 vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY], 1981 raw->plane[PLANE_SPRITE0], 1982 raw->plane[PLANE_SPRITE1]), 1983 sr_fifo_size); 1984 1985 wm_state->sr[level].cursor = 1986 vlv_invert_wm_value(raw->plane[PLANE_CURSOR], 1987 63); 1988 } 1989 1990 if (level == 0) 1991 return -EINVAL; 1992 1993 /* limit to only levels we can actually handle */ 1994 wm_state->num_levels = level; 1995 1996 /* invalidate the higher levels */ 1997 vlv_invalidate_wms(crtc, wm_state, level); 1998 1999 return 0; 2000} 2001 2002#define VLV_FIFO(plane, value) \ 2003 (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV) 2004 2005static void vlv_atomic_update_fifo(struct intel_atomic_state *state, 2006 struct intel_crtc *crtc) 2007{ 2008 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2009 struct intel_uncore *uncore = &dev_priv->uncore; 2010 const struct intel_crtc_state *crtc_state = 2011 intel_atomic_get_new_crtc_state(state, crtc); 2012 const struct vlv_fifo_state *fifo_state = 2013 &crtc_state->wm.vlv.fifo_state; 2014 int sprite0_start, sprite1_start, fifo_size; 2015 u32 dsparb, dsparb2, dsparb3; 2016 2017 if (!crtc_state->fifo_changed) 2018 return; 2019 2020 sprite0_start = fifo_state->plane[PLANE_PRIMARY]; 2021 sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start; 2022 fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start; 2023 2024 drm_WARN_ON(&dev_priv->drm, fifo_state->plane[PLANE_CURSOR] != 63); 2025 drm_WARN_ON(&dev_priv->drm, fifo_size != 511); 2026 2027 trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size); 2028 2029 /* 2030 * uncore.lock serves a double purpose here. It allows us to 2031 * use the less expensive I915_{READ,WRITE}_FW() functions, and 2032 * it protects the DSPARB registers from getting clobbered by 2033 * parallel updates from multiple pipes. 2034 * 2035 * intel_pipe_update_start() has already disabled interrupts 2036 * for us, so a plain spin_lock() is sufficient here. 2037 */ 2038 spin_lock(&uncore->lock); 2039 2040 switch (crtc->pipe) { 2041 case PIPE_A: 2042 dsparb = intel_uncore_read_fw(uncore, DSPARB); 2043 dsparb2 = intel_uncore_read_fw(uncore, DSPARB2); 2044 2045 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) | 2046 VLV_FIFO(SPRITEB, 0xff)); 2047 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) | 2048 VLV_FIFO(SPRITEB, sprite1_start)); 2049 2050 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) | 2051 VLV_FIFO(SPRITEB_HI, 0x1)); 2052 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) | 2053 VLV_FIFO(SPRITEB_HI, sprite1_start >> 8)); 2054 2055 intel_uncore_write_fw(uncore, DSPARB, dsparb); 2056 intel_uncore_write_fw(uncore, DSPARB2, dsparb2); 2057 break; 2058 case PIPE_B: 2059 dsparb = intel_uncore_read_fw(uncore, DSPARB); 2060 dsparb2 = intel_uncore_read_fw(uncore, DSPARB2); 2061 2062 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) | 2063 VLV_FIFO(SPRITED, 0xff)); 2064 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) | 2065 VLV_FIFO(SPRITED, sprite1_start)); 2066 2067 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) | 2068 VLV_FIFO(SPRITED_HI, 0xff)); 2069 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) | 2070 VLV_FIFO(SPRITED_HI, sprite1_start >> 8)); 2071 2072 intel_uncore_write_fw(uncore, DSPARB, dsparb); 2073 intel_uncore_write_fw(uncore, DSPARB2, dsparb2); 2074 break; 2075 case PIPE_C: 2076 dsparb3 = intel_uncore_read_fw(uncore, DSPARB3); 2077 dsparb2 = intel_uncore_read_fw(uncore, DSPARB2); 2078 2079 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) | 2080 VLV_FIFO(SPRITEF, 0xff)); 2081 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) | 2082 VLV_FIFO(SPRITEF, sprite1_start)); 2083 2084 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) | 2085 VLV_FIFO(SPRITEF_HI, 0xff)); 2086 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) | 2087 VLV_FIFO(SPRITEF_HI, sprite1_start >> 8)); 2088 2089 intel_uncore_write_fw(uncore, DSPARB3, dsparb3); 2090 intel_uncore_write_fw(uncore, DSPARB2, dsparb2); 2091 break; 2092 default: 2093 break; 2094 } 2095 2096 intel_uncore_posting_read_fw(uncore, DSPARB); 2097 2098 spin_unlock(&uncore->lock); 2099} 2100 2101#undef VLV_FIFO 2102 2103static int vlv_compute_intermediate_wm(struct intel_atomic_state *state, 2104 struct intel_crtc *crtc) 2105{ 2106 struct intel_crtc_state *new_crtc_state = 2107 intel_atomic_get_new_crtc_state(state, crtc); 2108 const struct intel_crtc_state *old_crtc_state = 2109 intel_atomic_get_old_crtc_state(state, crtc); 2110 struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate; 2111 const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal; 2112 const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal; 2113 int level; 2114 2115 if (!new_crtc_state->hw.active || 2116 drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) { 2117 *intermediate = *optimal; 2118 2119 intermediate->cxsr = false; 2120 goto out; 2121 } 2122 2123 intermediate->num_levels = min(optimal->num_levels, active->num_levels); 2124 intermediate->cxsr = optimal->cxsr && active->cxsr && 2125 !new_crtc_state->disable_cxsr; 2126 2127 for (level = 0; level < intermediate->num_levels; level++) { 2128 enum plane_id plane_id; 2129 2130 for_each_plane_id_on_crtc(crtc, plane_id) { 2131 intermediate->wm[level].plane[plane_id] = 2132 min(optimal->wm[level].plane[plane_id], 2133 active->wm[level].plane[plane_id]); 2134 } 2135 2136 intermediate->sr[level].plane = min(optimal->sr[level].plane, 2137 active->sr[level].plane); 2138 intermediate->sr[level].cursor = min(optimal->sr[level].cursor, 2139 active->sr[level].cursor); 2140 } 2141 2142 vlv_invalidate_wms(crtc, intermediate, level); 2143 2144out: 2145 /* 2146 * If our intermediate WM are identical to the final WM, then we can 2147 * omit the post-vblank programming; only update if it's different. 2148 */ 2149 if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0) 2150 new_crtc_state->wm.need_postvbl_update = true; 2151 2152 return 0; 2153} 2154 2155static void vlv_merge_wm(struct drm_i915_private *dev_priv, 2156 struct vlv_wm_values *wm) 2157{ 2158 struct intel_crtc *crtc; 2159 int num_active_pipes = 0; 2160 2161 wm->level = dev_priv->wm.max_level; 2162 wm->cxsr = true; 2163 2164 for_each_intel_crtc(&dev_priv->drm, crtc) { 2165 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv; 2166 2167 if (!crtc->active) 2168 continue; 2169 2170 if (!wm_state->cxsr) 2171 wm->cxsr = false; 2172 2173 num_active_pipes++; 2174 wm->level = min_t(int, wm->level, wm_state->num_levels - 1); 2175 } 2176 2177 if (num_active_pipes != 1) 2178 wm->cxsr = false; 2179 2180 if (num_active_pipes > 1) 2181 wm->level = VLV_WM_LEVEL_PM2; 2182 2183 for_each_intel_crtc(&dev_priv->drm, crtc) { 2184 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv; 2185 enum pipe pipe = crtc->pipe; 2186 2187 wm->pipe[pipe] = wm_state->wm[wm->level]; 2188 if (crtc->active && wm->cxsr) 2189 wm->sr = wm_state->sr[wm->level]; 2190 2191 wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2; 2192 wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2; 2193 wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2; 2194 wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2; 2195 } 2196} 2197 2198static void vlv_program_watermarks(struct drm_i915_private *dev_priv) 2199{ 2200 struct vlv_wm_values *old_wm = &dev_priv->wm.vlv; 2201 struct vlv_wm_values new_wm = {}; 2202 2203 vlv_merge_wm(dev_priv, &new_wm); 2204 2205 if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0) 2206 return; 2207 2208 if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS)) 2209 chv_set_memory_dvfs(dev_priv, false); 2210 2211 if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5)) 2212 chv_set_memory_pm5(dev_priv, false); 2213 2214 if (is_disabling(old_wm->cxsr, new_wm.cxsr, true)) 2215 _intel_set_memory_cxsr(dev_priv, false); 2216 2217 vlv_write_wm_values(dev_priv, &new_wm); 2218 2219 if (is_enabling(old_wm->cxsr, new_wm.cxsr, true)) 2220 _intel_set_memory_cxsr(dev_priv, true); 2221 2222 if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5)) 2223 chv_set_memory_pm5(dev_priv, true); 2224 2225 if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS)) 2226 chv_set_memory_dvfs(dev_priv, true); 2227 2228 *old_wm = new_wm; 2229} 2230 2231static void vlv_initial_watermarks(struct intel_atomic_state *state, 2232 struct intel_crtc *crtc) 2233{ 2234 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2235 const struct intel_crtc_state *crtc_state = 2236 intel_atomic_get_new_crtc_state(state, crtc); 2237 2238 mutex_lock(&dev_priv->wm.wm_mutex); 2239 crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate; 2240 vlv_program_watermarks(dev_priv); 2241 mutex_unlock(&dev_priv->wm.wm_mutex); 2242} 2243 2244static void vlv_optimize_watermarks(struct intel_atomic_state *state, 2245 struct intel_crtc *crtc) 2246{ 2247 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 2248 const struct intel_crtc_state *crtc_state = 2249 intel_atomic_get_new_crtc_state(state, crtc); 2250 2251 if (!crtc_state->wm.need_postvbl_update) 2252 return; 2253 2254 mutex_lock(&dev_priv->wm.wm_mutex); 2255 crtc->wm.active.vlv = crtc_state->wm.vlv.optimal; 2256 vlv_program_watermarks(dev_priv); 2257 mutex_unlock(&dev_priv->wm.wm_mutex); 2258} 2259 2260static void i965_update_wm(struct drm_i915_private *dev_priv) 2261{ 2262 struct intel_crtc *crtc; 2263 int srwm = 1; 2264 int cursor_sr = 16; 2265 bool cxsr_enabled; 2266 2267 /* Calc sr entries for one plane configs */ 2268 crtc = single_enabled_crtc(dev_priv); 2269 if (crtc) { 2270 /* self-refresh has much higher latency */ 2271 static const int sr_latency_ns = 12000; 2272 const struct drm_display_mode *pipe_mode = 2273 &crtc->config->hw.pipe_mode; 2274 const struct drm_framebuffer *fb = 2275 crtc->base.primary->state->fb; 2276 int pixel_rate = crtc->config->pixel_rate; 2277 int htotal = pipe_mode->crtc_htotal; 2278 int width = drm_rect_width(&crtc->base.primary->state->src) >> 16; 2279 int cpp = fb->format->cpp[0]; 2280 int entries; 2281 2282 entries = intel_wm_method2(pixel_rate, htotal, 2283 width, cpp, sr_latency_ns / 100); 2284 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE); 2285 srwm = I965_FIFO_SIZE - entries; 2286 if (srwm < 0) 2287 srwm = 1; 2288 srwm &= 0x1ff; 2289 drm_dbg_kms(&dev_priv->drm, 2290 "self-refresh entries: %d, wm: %d\n", 2291 entries, srwm); 2292 2293 entries = intel_wm_method2(pixel_rate, htotal, 2294 crtc->base.cursor->state->crtc_w, 4, 2295 sr_latency_ns / 100); 2296 entries = DIV_ROUND_UP(entries, 2297 i965_cursor_wm_info.cacheline_size) + 2298 i965_cursor_wm_info.guard_size; 2299 2300 cursor_sr = i965_cursor_wm_info.fifo_size - entries; 2301 if (cursor_sr > i965_cursor_wm_info.max_wm) 2302 cursor_sr = i965_cursor_wm_info.max_wm; 2303 2304 drm_dbg_kms(&dev_priv->drm, 2305 "self-refresh watermark: display plane %d " 2306 "cursor %d\n", srwm, cursor_sr); 2307 2308 cxsr_enabled = true; 2309 } else { 2310 cxsr_enabled = false; 2311 /* Turn off self refresh if both pipes are enabled */ 2312 intel_set_memory_cxsr(dev_priv, false); 2313 } 2314 2315 drm_dbg_kms(&dev_priv->drm, 2316 "Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n", 2317 srwm); 2318 2319 /* 965 has limitations... */ 2320 intel_uncore_write(&dev_priv->uncore, DSPFW1, FW_WM(srwm, SR) | 2321 FW_WM(8, CURSORB) | 2322 FW_WM(8, PLANEB) | 2323 FW_WM(8, PLANEA)); 2324 intel_uncore_write(&dev_priv->uncore, DSPFW2, FW_WM(8, CURSORA) | 2325 FW_WM(8, PLANEC_OLD)); 2326 /* update cursor SR watermark */ 2327 intel_uncore_write(&dev_priv->uncore, DSPFW3, FW_WM(cursor_sr, CURSOR_SR)); 2328 2329 if (cxsr_enabled) 2330 intel_set_memory_cxsr(dev_priv, true); 2331} 2332 2333#undef FW_WM 2334 2335static struct intel_crtc *intel_crtc_for_plane(struct drm_i915_private *i915, 2336 enum i9xx_plane_id i9xx_plane) 2337{ 2338 struct intel_plane *plane; 2339 2340 for_each_intel_plane(&i915->drm, plane) { 2341 if (plane->id == PLANE_PRIMARY && 2342 plane->i9xx_plane == i9xx_plane) 2343 return intel_crtc_for_pipe(i915, plane->pipe); 2344 } 2345 2346 return NULL; 2347} 2348 2349static void i9xx_update_wm(struct drm_i915_private *dev_priv) 2350{ 2351 const struct intel_watermark_params *wm_info; 2352 u32 fwater_lo; 2353 u32 fwater_hi; 2354 int cwm, srwm = 1; 2355 int fifo_size; 2356 int planea_wm, planeb_wm; 2357 struct intel_crtc *crtc; 2358 2359 if (IS_I945GM(dev_priv)) 2360 wm_info = &i945_wm_info; 2361 else if (DISPLAY_VER(dev_priv) != 2) 2362 wm_info = &i915_wm_info; 2363 else 2364 wm_info = &i830_a_wm_info; 2365 2366 if (DISPLAY_VER(dev_priv) == 2) 2367 fifo_size = i830_get_fifo_size(dev_priv, PLANE_A); 2368 else 2369 fifo_size = i9xx_get_fifo_size(dev_priv, PLANE_A); 2370 crtc = intel_crtc_for_plane(dev_priv, PLANE_A); 2371 if (intel_crtc_active(crtc)) { 2372 const struct drm_framebuffer *fb = 2373 crtc->base.primary->state->fb; 2374 int cpp; 2375 2376 if (DISPLAY_VER(dev_priv) == 2) 2377 cpp = 4; 2378 else 2379 cpp = fb->format->cpp[0]; 2380 2381 planea_wm = intel_calculate_wm(crtc->config->pixel_rate, 2382 wm_info, fifo_size, cpp, 2383 pessimal_latency_ns); 2384 } else { 2385 planea_wm = fifo_size - wm_info->guard_size; 2386 if (planea_wm > (long)wm_info->max_wm) 2387 planea_wm = wm_info->max_wm; 2388 } 2389 2390 if (DISPLAY_VER(dev_priv) == 2) 2391 wm_info = &i830_bc_wm_info; 2392 2393 if (DISPLAY_VER(dev_priv) == 2) 2394 fifo_size = i830_get_fifo_size(dev_priv, PLANE_B); 2395 else 2396 fifo_size = i9xx_get_fifo_size(dev_priv, PLANE_B); 2397 crtc = intel_crtc_for_plane(dev_priv, PLANE_B); 2398 if (intel_crtc_active(crtc)) { 2399 const struct drm_framebuffer *fb = 2400 crtc->base.primary->state->fb; 2401 int cpp; 2402 2403 if (DISPLAY_VER(dev_priv) == 2) 2404 cpp = 4; 2405 else 2406 cpp = fb->format->cpp[0]; 2407 2408 planeb_wm = intel_calculate_wm(crtc->config->pixel_rate, 2409 wm_info, fifo_size, cpp, 2410 pessimal_latency_ns); 2411 } else { 2412 planeb_wm = fifo_size - wm_info->guard_size; 2413 if (planeb_wm > (long)wm_info->max_wm) 2414 planeb_wm = wm_info->max_wm; 2415 } 2416 2417 drm_dbg_kms(&dev_priv->drm, 2418 "FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm); 2419 2420 crtc = single_enabled_crtc(dev_priv); 2421 if (IS_I915GM(dev_priv) && crtc) { 2422 struct drm_i915_gem_object *obj; 2423 2424 obj = intel_fb_obj(crtc->base.primary->state->fb); 2425 2426 /* self-refresh seems busted with untiled */ 2427 if (!i915_gem_object_is_tiled(obj)) 2428 crtc = NULL; 2429 } 2430 2431 /* 2432 * Overlay gets an aggressive default since video jitter is bad. 2433 */ 2434 cwm = 2; 2435 2436 /* Play safe and disable self-refresh before adjusting watermarks. */ 2437 intel_set_memory_cxsr(dev_priv, false); 2438 2439 /* Calc sr entries for one plane configs */ 2440 if (HAS_FW_BLC(dev_priv) && crtc) { 2441 /* self-refresh has much higher latency */ 2442 static const int sr_latency_ns = 6000; 2443 const struct drm_display_mode *pipe_mode = 2444 &crtc->config->hw.pipe_mode; 2445 const struct drm_framebuffer *fb = 2446 crtc->base.primary->state->fb; 2447 int pixel_rate = crtc->config->pixel_rate; 2448 int htotal = pipe_mode->crtc_htotal; 2449 int width = drm_rect_width(&crtc->base.primary->state->src) >> 16; 2450 int cpp; 2451 int entries; 2452 2453 if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv)) 2454 cpp = 4; 2455 else 2456 cpp = fb->format->cpp[0]; 2457 2458 entries = intel_wm_method2(pixel_rate, htotal, width, cpp, 2459 sr_latency_ns / 100); 2460 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size); 2461 drm_dbg_kms(&dev_priv->drm, 2462 "self-refresh entries: %d\n", entries); 2463 srwm = wm_info->fifo_size - entries; 2464 if (srwm < 0) 2465 srwm = 1; 2466 2467 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) 2468 intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, 2469 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff)); 2470 else 2471 intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, srwm & 0x3f); 2472 } 2473 2474 drm_dbg_kms(&dev_priv->drm, 2475 "Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n", 2476 planea_wm, planeb_wm, cwm, srwm); 2477 2478 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f); 2479 fwater_hi = (cwm & 0x1f); 2480 2481 /* Set request length to 8 cachelines per fetch */ 2482 fwater_lo = fwater_lo | (1 << 24) | (1 << 8); 2483 fwater_hi = fwater_hi | (1 << 8); 2484 2485 intel_uncore_write(&dev_priv->uncore, FW_BLC, fwater_lo); 2486 intel_uncore_write(&dev_priv->uncore, FW_BLC2, fwater_hi); 2487 2488 if (crtc) 2489 intel_set_memory_cxsr(dev_priv, true); 2490} 2491 2492static void i845_update_wm(struct drm_i915_private *dev_priv) 2493{ 2494 struct intel_crtc *crtc; 2495 u32 fwater_lo; 2496 int planea_wm; 2497 2498 crtc = single_enabled_crtc(dev_priv); 2499 if (crtc == NULL) 2500 return; 2501 2502 planea_wm = intel_calculate_wm(crtc->config->pixel_rate, 2503 &i845_wm_info, 2504 i845_get_fifo_size(dev_priv, PLANE_A), 2505 4, pessimal_latency_ns); 2506 fwater_lo = intel_uncore_read(&dev_priv->uncore, FW_BLC) & ~0xfff; 2507 fwater_lo |= (3<<8) | planea_wm; 2508 2509 drm_dbg_kms(&dev_priv->drm, 2510 "Setting FIFO watermarks - A: %d\n", planea_wm); 2511 2512 intel_uncore_write(&dev_priv->uncore, FW_BLC, fwater_lo); 2513} 2514 2515/* latency must be in 0.1us units. */ 2516static unsigned int ilk_wm_method1(unsigned int pixel_rate, 2517 unsigned int cpp, 2518 unsigned int latency) 2519{ 2520 unsigned int ret; 2521 2522 ret = intel_wm_method1(pixel_rate, cpp, latency); 2523 ret = DIV_ROUND_UP(ret, 64) + 2; 2524 2525 return ret; 2526} 2527 2528/* latency must be in 0.1us units. */ 2529static unsigned int ilk_wm_method2(unsigned int pixel_rate, 2530 unsigned int htotal, 2531 unsigned int width, 2532 unsigned int cpp, 2533 unsigned int latency) 2534{ 2535 unsigned int ret; 2536 2537 ret = intel_wm_method2(pixel_rate, htotal, 2538 width, cpp, latency); 2539 ret = DIV_ROUND_UP(ret, 64) + 2; 2540 2541 return ret; 2542} 2543 2544static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp) 2545{ 2546 /* 2547 * Neither of these should be possible since this function shouldn't be 2548 * called if the CRTC is off or the plane is invisible. But let's be 2549 * extra paranoid to avoid a potential divide-by-zero if we screw up 2550 * elsewhere in the driver. 2551 */ 2552 if (WARN_ON(!cpp)) 2553 return 0; 2554 if (WARN_ON(!horiz_pixels)) 2555 return 0; 2556 2557 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2; 2558} 2559 2560struct ilk_wm_maximums { 2561 u16 pri; 2562 u16 spr; 2563 u16 cur; 2564 u16 fbc; 2565}; 2566 2567/* 2568 * For both WM_PIPE and WM_LP. 2569 * mem_value must be in 0.1us units. 2570 */ 2571static u32 ilk_compute_pri_wm(const struct intel_crtc_state *crtc_state, 2572 const struct intel_plane_state *plane_state, 2573 u32 mem_value, bool is_lp) 2574{ 2575 u32 method1, method2; 2576 int cpp; 2577 2578 if (mem_value == 0) 2579 return U32_MAX; 2580 2581 if (!intel_wm_plane_visible(crtc_state, plane_state)) 2582 return 0; 2583 2584 cpp = plane_state->hw.fb->format->cpp[0]; 2585 2586 method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value); 2587 2588 if (!is_lp) 2589 return method1; 2590 2591 method2 = ilk_wm_method2(crtc_state->pixel_rate, 2592 crtc_state->hw.pipe_mode.crtc_htotal, 2593 drm_rect_width(&plane_state->uapi.src) >> 16, 2594 cpp, mem_value); 2595 2596 return min(method1, method2); 2597} 2598 2599/* 2600 * For both WM_PIPE and WM_LP. 2601 * mem_value must be in 0.1us units. 2602 */ 2603static u32 ilk_compute_spr_wm(const struct intel_crtc_state *crtc_state, 2604 const struct intel_plane_state *plane_state, 2605 u32 mem_value) 2606{ 2607 u32 method1, method2; 2608 int cpp; 2609 2610 if (mem_value == 0) 2611 return U32_MAX; 2612 2613 if (!intel_wm_plane_visible(crtc_state, plane_state)) 2614 return 0; 2615 2616 cpp = plane_state->hw.fb->format->cpp[0]; 2617 2618 method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value); 2619 method2 = ilk_wm_method2(crtc_state->pixel_rate, 2620 crtc_state->hw.pipe_mode.crtc_htotal, 2621 drm_rect_width(&plane_state->uapi.src) >> 16, 2622 cpp, mem_value); 2623 return min(method1, method2); 2624} 2625 2626/* 2627 * For both WM_PIPE and WM_LP. 2628 * mem_value must be in 0.1us units. 2629 */ 2630static u32 ilk_compute_cur_wm(const struct intel_crtc_state *crtc_state, 2631 const struct intel_plane_state *plane_state, 2632 u32 mem_value) 2633{ 2634 int cpp; 2635 2636 if (mem_value == 0) 2637 return U32_MAX; 2638 2639 if (!intel_wm_plane_visible(crtc_state, plane_state)) 2640 return 0; 2641 2642 cpp = plane_state->hw.fb->format->cpp[0]; 2643 2644 return ilk_wm_method2(crtc_state->pixel_rate, 2645 crtc_state->hw.pipe_mode.crtc_htotal, 2646 drm_rect_width(&plane_state->uapi.src) >> 16, 2647 cpp, mem_value); 2648} 2649 2650/* Only for WM_LP. */ 2651static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state, 2652 const struct intel_plane_state *plane_state, 2653 u32 pri_val) 2654{ 2655 int cpp; 2656 2657 if (!intel_wm_plane_visible(crtc_state, plane_state)) 2658 return 0; 2659 2660 cpp = plane_state->hw.fb->format->cpp[0]; 2661 2662 return ilk_wm_fbc(pri_val, drm_rect_width(&plane_state->uapi.src) >> 16, 2663 cpp); 2664} 2665 2666static unsigned int 2667ilk_display_fifo_size(const struct drm_i915_private *dev_priv) 2668{ 2669 if (DISPLAY_VER(dev_priv) >= 8) 2670 return 3072; 2671 else if (DISPLAY_VER(dev_priv) >= 7) 2672 return 768; 2673 else 2674 return 512; 2675} 2676 2677static unsigned int 2678ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv, 2679 int level, bool is_sprite) 2680{ 2681 if (DISPLAY_VER(dev_priv) >= 8) 2682 /* BDW primary/sprite plane watermarks */ 2683 return level == 0 ? 255 : 2047; 2684 else if (DISPLAY_VER(dev_priv) >= 7) 2685 /* IVB/HSW primary/sprite plane watermarks */ 2686 return level == 0 ? 127 : 1023; 2687 else if (!is_sprite) 2688 /* ILK/SNB primary plane watermarks */ 2689 return level == 0 ? 127 : 511; 2690 else 2691 /* ILK/SNB sprite plane watermarks */ 2692 return level == 0 ? 63 : 255; 2693} 2694 2695static unsigned int 2696ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level) 2697{ 2698 if (DISPLAY_VER(dev_priv) >= 7) 2699 return level == 0 ? 63 : 255; 2700 else 2701 return level == 0 ? 31 : 63; 2702} 2703 2704static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv) 2705{ 2706 if (DISPLAY_VER(dev_priv) >= 8) 2707 return 31; 2708 else 2709 return 15; 2710} 2711 2712/* Calculate the maximum primary/sprite plane watermark */ 2713static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv, 2714 int level, 2715 const struct intel_wm_config *config, 2716 enum intel_ddb_partitioning ddb_partitioning, 2717 bool is_sprite) 2718{ 2719 unsigned int fifo_size = ilk_display_fifo_size(dev_priv); 2720 2721 /* if sprites aren't enabled, sprites get nothing */ 2722 if (is_sprite && !config->sprites_enabled) 2723 return 0; 2724 2725 /* HSW allows LP1+ watermarks even with multiple pipes */ 2726 if (level == 0 || config->num_pipes_active > 1) { 2727 fifo_size /= INTEL_NUM_PIPES(dev_priv); 2728 2729 /* 2730 * For some reason the non self refresh 2731 * FIFO size is only half of the self 2732 * refresh FIFO size on ILK/SNB. 2733 */ 2734 if (DISPLAY_VER(dev_priv) <= 6) 2735 fifo_size /= 2; 2736 } 2737 2738 if (config->sprites_enabled) { 2739 /* level 0 is always calculated with 1:1 split */ 2740 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) { 2741 if (is_sprite) 2742 fifo_size *= 5; 2743 fifo_size /= 6; 2744 } else { 2745 fifo_size /= 2; 2746 } 2747 } 2748 2749 /* clamp to max that the registers can hold */ 2750 return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite)); 2751} 2752 2753/* Calculate the maximum cursor plane watermark */ 2754static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv, 2755 int level, 2756 const struct intel_wm_config *config) 2757{ 2758 /* HSW LP1+ watermarks w/ multiple pipes */ 2759 if (level > 0 && config->num_pipes_active > 1) 2760 return 64; 2761 2762 /* otherwise just report max that registers can hold */ 2763 return ilk_cursor_wm_reg_max(dev_priv, level); 2764} 2765 2766static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv, 2767 int level, 2768 const struct intel_wm_config *config, 2769 enum intel_ddb_partitioning ddb_partitioning, 2770 struct ilk_wm_maximums *max) 2771{ 2772 max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false); 2773 max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true); 2774 max->cur = ilk_cursor_wm_max(dev_priv, level, config); 2775 max->fbc = ilk_fbc_wm_reg_max(dev_priv); 2776} 2777 2778static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv, 2779 int level, 2780 struct ilk_wm_maximums *max) 2781{ 2782 max->pri = ilk_plane_wm_reg_max(dev_priv, level, false); 2783 max->spr = ilk_plane_wm_reg_max(dev_priv, level, true); 2784 max->cur = ilk_cursor_wm_reg_max(dev_priv, level); 2785 max->fbc = ilk_fbc_wm_reg_max(dev_priv); 2786} 2787 2788static bool ilk_validate_wm_level(int level, 2789 const struct ilk_wm_maximums *max, 2790 struct intel_wm_level *result) 2791{ 2792 bool ret; 2793 2794 /* already determined to be invalid? */ 2795 if (!result->enable) 2796 return false; 2797 2798 result->enable = result->pri_val <= max->pri && 2799 result->spr_val <= max->spr && 2800 result->cur_val <= max->cur; 2801 2802 ret = result->enable; 2803 2804 /* 2805 * HACK until we can pre-compute everything, 2806 * and thus fail gracefully if LP0 watermarks 2807 * are exceeded... 2808 */ 2809 if (level == 0 && !result->enable) { 2810 if (result->pri_val > max->pri) 2811 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n", 2812 level, result->pri_val, max->pri); 2813 if (result->spr_val > max->spr) 2814 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n", 2815 level, result->spr_val, max->spr); 2816 if (result->cur_val > max->cur) 2817 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n", 2818 level, result->cur_val, max->cur); 2819 2820 result->pri_val = min_t(u32, result->pri_val, max->pri); 2821 result->spr_val = min_t(u32, result->spr_val, max->spr); 2822 result->cur_val = min_t(u32, result->cur_val, max->cur); 2823 result->enable = true; 2824 } 2825 2826 return ret; 2827} 2828 2829static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv, 2830 const struct intel_crtc *crtc, 2831 int level, 2832 struct intel_crtc_state *crtc_state, 2833 const struct intel_plane_state *pristate, 2834 const struct intel_plane_state *sprstate, 2835 const struct intel_plane_state *curstate, 2836 struct intel_wm_level *result) 2837{ 2838 u16 pri_latency = dev_priv->wm.pri_latency[level]; 2839 u16 spr_latency = dev_priv->wm.spr_latency[level]; 2840 u16 cur_latency = dev_priv->wm.cur_latency[level]; 2841 2842 /* WM1+ latency values stored in 0.5us units */ 2843 if (level > 0) { 2844 pri_latency *= 5; 2845 spr_latency *= 5; 2846 cur_latency *= 5; 2847 } 2848 2849 if (pristate) { 2850 result->pri_val = ilk_compute_pri_wm(crtc_state, pristate, 2851 pri_latency, level); 2852 result->fbc_val = ilk_compute_fbc_wm(crtc_state, pristate, result->pri_val); 2853 } 2854 2855 if (sprstate) 2856 result->spr_val = ilk_compute_spr_wm(crtc_state, sprstate, spr_latency); 2857 2858 if (curstate) 2859 result->cur_val = ilk_compute_cur_wm(crtc_state, curstate, cur_latency); 2860 2861 result->enable = true; 2862} 2863 2864static void intel_read_wm_latency(struct drm_i915_private *dev_priv, 2865 u16 wm[]) 2866{ 2867 struct intel_uncore *uncore = &dev_priv->uncore; 2868 2869 if (DISPLAY_VER(dev_priv) >= 9) { 2870 u32 val; 2871 int ret, i; 2872 int level, max_level = ilk_wm_max_level(dev_priv); 2873 int mult = IS_DG2(dev_priv) ? 2 : 1; 2874 2875 /* read the first set of memory latencies[0:3] */ 2876 val = 0; /* data0 to be programmed to 0 for first set */ 2877 ret = snb_pcode_read(dev_priv, GEN9_PCODE_READ_MEM_LATENCY, 2878 &val, NULL); 2879 2880 if (ret) { 2881 drm_err(&dev_priv->drm, 2882 "SKL Mailbox read error = %d\n", ret); 2883 return; 2884 } 2885 2886 wm[0] = (val & GEN9_MEM_LATENCY_LEVEL_MASK) * mult; 2887 wm[1] = ((val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) & 2888 GEN9_MEM_LATENCY_LEVEL_MASK) * mult; 2889 wm[2] = ((val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) & 2890 GEN9_MEM_LATENCY_LEVEL_MASK) * mult; 2891 wm[3] = ((val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) & 2892 GEN9_MEM_LATENCY_LEVEL_MASK) * mult; 2893 2894 /* read the second set of memory latencies[4:7] */ 2895 val = 1; /* data0 to be programmed to 1 for second set */ 2896 ret = snb_pcode_read(dev_priv, GEN9_PCODE_READ_MEM_LATENCY, 2897 &val, NULL); 2898 if (ret) { 2899 drm_err(&dev_priv->drm, 2900 "SKL Mailbox read error = %d\n", ret); 2901 return; 2902 } 2903 2904 wm[4] = (val & GEN9_MEM_LATENCY_LEVEL_MASK) * mult; 2905 wm[5] = ((val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) & 2906 GEN9_MEM_LATENCY_LEVEL_MASK) * mult; 2907 wm[6] = ((val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) & 2908 GEN9_MEM_LATENCY_LEVEL_MASK) * mult; 2909 wm[7] = ((val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) & 2910 GEN9_MEM_LATENCY_LEVEL_MASK) * mult; 2911 2912 /* 2913 * If a level n (n > 1) has a 0us latency, all levels m (m >= n) 2914 * need to be disabled. We make sure to sanitize the values out 2915 * of the punit to satisfy this requirement. 2916 */ 2917 for (level = 1; level <= max_level; level++) { 2918 if (wm[level] == 0) { 2919 for (i = level + 1; i <= max_level; i++) 2920 wm[i] = 0; 2921 2922 max_level = level - 1; 2923 2924 break; 2925 } 2926 } 2927 2928 /* 2929 * WaWmMemoryReadLatency 2930 * 2931 * punit doesn't take into account the read latency so we need 2932 * to add proper adjustement to each valid level we retrieve 2933 * from the punit when level 0 response data is 0us. 2934 */ 2935 if (wm[0] == 0) { 2936 u8 adjust = DISPLAY_VER(dev_priv) >= 12 ? 3 : 2; 2937 2938 for (level = 0; level <= max_level; level++) 2939 wm[level] += adjust; 2940 } 2941 2942 /* 2943 * WA Level-0 adjustment for 16GB DIMMs: SKL+ 2944 * If we could not get dimm info enable this WA to prevent from 2945 * any underrun. If not able to get Dimm info assume 16GB dimm 2946 * to avoid any underrun. 2947 */ 2948 if (dev_priv->dram_info.wm_lv_0_adjust_needed) 2949 wm[0] += 1; 2950 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { 2951 u64 sskpd = intel_uncore_read64(uncore, MCH_SSKPD); 2952 2953 wm[0] = REG_FIELD_GET64(SSKPD_NEW_WM0_MASK_HSW, sskpd); 2954 if (wm[0] == 0) 2955 wm[0] = REG_FIELD_GET64(SSKPD_OLD_WM0_MASK_HSW, sskpd); 2956 wm[1] = REG_FIELD_GET64(SSKPD_WM1_MASK_HSW, sskpd); 2957 wm[2] = REG_FIELD_GET64(SSKPD_WM2_MASK_HSW, sskpd); 2958 wm[3] = REG_FIELD_GET64(SSKPD_WM3_MASK_HSW, sskpd); 2959 wm[4] = REG_FIELD_GET64(SSKPD_WM4_MASK_HSW, sskpd); 2960 } else if (DISPLAY_VER(dev_priv) >= 6) { 2961 u32 sskpd = intel_uncore_read(uncore, MCH_SSKPD); 2962 2963 wm[0] = REG_FIELD_GET(SSKPD_WM0_MASK_SNB, sskpd); 2964 wm[1] = REG_FIELD_GET(SSKPD_WM1_MASK_SNB, sskpd); 2965 wm[2] = REG_FIELD_GET(SSKPD_WM2_MASK_SNB, sskpd); 2966 wm[3] = REG_FIELD_GET(SSKPD_WM3_MASK_SNB, sskpd); 2967 } else if (DISPLAY_VER(dev_priv) >= 5) { 2968 u32 mltr = intel_uncore_read(uncore, MLTR_ILK); 2969 2970 /* ILK primary LP0 latency is 700 ns */ 2971 wm[0] = 7; 2972 wm[1] = REG_FIELD_GET(MLTR_WM1_MASK, mltr); 2973 wm[2] = REG_FIELD_GET(MLTR_WM2_MASK, mltr); 2974 } else { 2975 MISSING_CASE(INTEL_DEVID(dev_priv)); 2976 } 2977} 2978 2979static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv, 2980 u16 wm[5]) 2981{ 2982 /* ILK sprite LP0 latency is 1300 ns */ 2983 if (DISPLAY_VER(dev_priv) == 5) 2984 wm[0] = 13; 2985} 2986 2987static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv, 2988 u16 wm[5]) 2989{ 2990 /* ILK cursor LP0 latency is 1300 ns */ 2991 if (DISPLAY_VER(dev_priv) == 5) 2992 wm[0] = 13; 2993} 2994 2995int ilk_wm_max_level(const struct drm_i915_private *dev_priv) 2996{ 2997 /* how many WM levels are we expecting */ 2998 if (HAS_HW_SAGV_WM(dev_priv)) 2999 return 5; 3000 else if (DISPLAY_VER(dev_priv) >= 9) 3001 return 7; 3002 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) 3003 return 4; 3004 else if (DISPLAY_VER(dev_priv) >= 6) 3005 return 3; 3006 else 3007 return 2; 3008} 3009 3010static void intel_print_wm_latency(struct drm_i915_private *dev_priv, 3011 const char *name, 3012 const u16 wm[]) 3013{ 3014 int level, max_level = ilk_wm_max_level(dev_priv); 3015 3016 for (level = 0; level <= max_level; level++) { 3017 unsigned int latency = wm[level]; 3018 3019 if (latency == 0) { 3020 drm_dbg_kms(&dev_priv->drm, 3021 "%s WM%d latency not provided\n", 3022 name, level); 3023 continue; 3024 } 3025 3026 /* 3027 * - latencies are in us on gen9. 3028 * - before then, WM1+ latency values are in 0.5us units 3029 */ 3030 if (DISPLAY_VER(dev_priv) >= 9) 3031 latency *= 10; 3032 else if (level > 0) 3033 latency *= 5; 3034 3035 drm_dbg_kms(&dev_priv->drm, 3036 "%s WM%d latency %u (%u.%u usec)\n", name, level, 3037 wm[level], latency / 10, latency % 10); 3038 } 3039} 3040 3041static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv, 3042 u16 wm[5], u16 min) 3043{ 3044 int level, max_level = ilk_wm_max_level(dev_priv); 3045 3046 if (wm[0] >= min) 3047 return false; 3048 3049 wm[0] = max(wm[0], min); 3050 for (level = 1; level <= max_level; level++) 3051 wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5)); 3052 3053 return true; 3054} 3055 3056static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv) 3057{ 3058 bool changed; 3059 3060 /* 3061 * The BIOS provided WM memory latency values are often 3062 * inadequate for high resolution displays. Adjust them. 3063 */ 3064 changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12); 3065 changed |= ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12); 3066 changed |= ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12); 3067 3068 if (!changed) 3069 return; 3070 3071 drm_dbg_kms(&dev_priv->drm, 3072 "WM latency values increased to avoid potential underruns\n"); 3073 intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency); 3074 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency); 3075 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency); 3076} 3077 3078static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv) 3079{ 3080 /* 3081 * On some SNB machines (Thinkpad X220 Tablet at least) 3082 * LP3 usage can cause vblank interrupts to be lost. 3083 * The DEIIR bit will go high but it looks like the CPU 3084 * never gets interrupted. 3085 * 3086 * It's not clear whether other interrupt source could 3087 * be affected or if this is somehow limited to vblank 3088 * interrupts only. To play it safe we disable LP3 3089 * watermarks entirely. 3090 */ 3091 if (dev_priv->wm.pri_latency[3] == 0 && 3092 dev_priv->wm.spr_latency[3] == 0 && 3093 dev_priv->wm.cur_latency[3] == 0) 3094 return; 3095 3096 dev_priv->wm.pri_latency[3] = 0; 3097 dev_priv->wm.spr_latency[3] = 0; 3098 dev_priv->wm.cur_latency[3] = 0; 3099 3100 drm_dbg_kms(&dev_priv->drm, 3101 "LP3 watermarks disabled due to potential for lost interrupts\n"); 3102 intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency); 3103 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency); 3104 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency); 3105} 3106 3107static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv) 3108{ 3109 intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency); 3110 3111 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency, 3112 sizeof(dev_priv->wm.pri_latency)); 3113 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency, 3114 sizeof(dev_priv->wm.pri_latency)); 3115 3116 intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency); 3117 intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency); 3118 3119 intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency); 3120 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency); 3121 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency); 3122 3123 if (DISPLAY_VER(dev_priv) == 6) { 3124 snb_wm_latency_quirk(dev_priv); 3125 snb_wm_lp3_irq_quirk(dev_priv); 3126 } 3127} 3128 3129static void skl_setup_wm_latency(struct drm_i915_private *dev_priv) 3130{ 3131 intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency); 3132 intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency); 3133} 3134 3135static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv, 3136 struct intel_pipe_wm *pipe_wm) 3137{ 3138 /* LP0 watermark maximums depend on this pipe alone */ 3139 const struct intel_wm_config config = { 3140 .num_pipes_active = 1, 3141 .sprites_enabled = pipe_wm->sprites_enabled, 3142 .sprites_scaled = pipe_wm->sprites_scaled, 3143 }; 3144 struct ilk_wm_maximums max; 3145 3146 /* LP0 watermarks always use 1/2 DDB partitioning */ 3147 ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max); 3148 3149 /* At least LP0 must be valid */ 3150 if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) { 3151 drm_dbg_kms(&dev_priv->drm, "LP0 watermark invalid\n"); 3152 return false; 3153 } 3154 3155 return true; 3156} 3157 3158/* Compute new watermarks for the pipe */ 3159static int ilk_compute_pipe_wm(struct intel_atomic_state *state, 3160 struct intel_crtc *crtc) 3161{ 3162 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 3163 struct intel_crtc_state *crtc_state = 3164 intel_atomic_get_new_crtc_state(state, crtc); 3165 struct intel_pipe_wm *pipe_wm; 3166 struct intel_plane *plane; 3167 const struct intel_plane_state *plane_state; 3168 const struct intel_plane_state *pristate = NULL; 3169 const struct intel_plane_state *sprstate = NULL; 3170 const struct intel_plane_state *curstate = NULL; 3171 int level, max_level = ilk_wm_max_level(dev_priv), usable_level; 3172 struct ilk_wm_maximums max; 3173 3174 pipe_wm = &crtc_state->wm.ilk.optimal; 3175 3176 intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) { 3177 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY) 3178 pristate = plane_state; 3179 else if (plane->base.type == DRM_PLANE_TYPE_OVERLAY) 3180 sprstate = plane_state; 3181 else if (plane->base.type == DRM_PLANE_TYPE_CURSOR) 3182 curstate = plane_state; 3183 } 3184 3185 pipe_wm->pipe_enabled = crtc_state->hw.active; 3186 pipe_wm->sprites_enabled = crtc_state->active_planes & BIT(PLANE_SPRITE0); 3187 pipe_wm->sprites_scaled = crtc_state->scaled_planes & BIT(PLANE_SPRITE0); 3188 3189 usable_level = max_level; 3190 3191 /* ILK/SNB: LP2+ watermarks only w/o sprites */ 3192 if (DISPLAY_VER(dev_priv) <= 6 && pipe_wm->sprites_enabled) 3193 usable_level = 1; 3194 3195 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */ 3196 if (pipe_wm->sprites_scaled) 3197 usable_level = 0; 3198 3199 memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm)); 3200 ilk_compute_wm_level(dev_priv, crtc, 0, crtc_state, 3201 pristate, sprstate, curstate, &pipe_wm->wm[0]); 3202 3203 if (!ilk_validate_pipe_wm(dev_priv, pipe_wm)) 3204 return -EINVAL; 3205 3206 ilk_compute_wm_reg_maximums(dev_priv, 1, &max); 3207 3208 for (level = 1; level <= usable_level; level++) { 3209 struct intel_wm_level *wm = &pipe_wm->wm[level]; 3210 3211 ilk_compute_wm_level(dev_priv, crtc, level, crtc_state, 3212 pristate, sprstate, curstate, wm); 3213 3214 /* 3215 * Disable any watermark level that exceeds the 3216 * register maximums since such watermarks are 3217 * always invalid. 3218 */ 3219 if (!ilk_validate_wm_level(level, &max, wm)) { 3220 memset(wm, 0, sizeof(*wm)); 3221 break; 3222 } 3223 } 3224 3225 return 0; 3226} 3227 3228/* 3229 * Build a set of 'intermediate' watermark values that satisfy both the old 3230 * state and the new state. These can be programmed to the hardware 3231 * immediately. 3232 */ 3233static int ilk_compute_intermediate_wm(struct intel_atomic_state *state, 3234 struct intel_crtc *crtc) 3235{ 3236 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3237 struct intel_crtc_state *new_crtc_state = 3238 intel_atomic_get_new_crtc_state(state, crtc); 3239 const struct intel_crtc_state *old_crtc_state = 3240 intel_atomic_get_old_crtc_state(state, crtc); 3241 struct intel_pipe_wm *a = &new_crtc_state->wm.ilk.intermediate; 3242 const struct intel_pipe_wm *b = &old_crtc_state->wm.ilk.optimal; 3243 int level, max_level = ilk_wm_max_level(dev_priv); 3244 3245 /* 3246 * Start with the final, target watermarks, then combine with the 3247 * currently active watermarks to get values that are safe both before 3248 * and after the vblank. 3249 */ 3250 *a = new_crtc_state->wm.ilk.optimal; 3251 if (!new_crtc_state->hw.active || 3252 drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi) || 3253 state->skip_intermediate_wm) 3254 return 0; 3255 3256 a->pipe_enabled |= b->pipe_enabled; 3257 a->sprites_enabled |= b->sprites_enabled; 3258 a->sprites_scaled |= b->sprites_scaled; 3259 3260 for (level = 0; level <= max_level; level++) { 3261 struct intel_wm_level *a_wm = &a->wm[level]; 3262 const struct intel_wm_level *b_wm = &b->wm[level]; 3263 3264 a_wm->enable &= b_wm->enable; 3265 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val); 3266 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val); 3267 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val); 3268 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val); 3269 } 3270 3271 /* 3272 * We need to make sure that these merged watermark values are 3273 * actually a valid configuration themselves. If they're not, 3274 * there's no safe way to transition from the old state to 3275 * the new state, so we need to fail the atomic transaction. 3276 */ 3277 if (!ilk_validate_pipe_wm(dev_priv, a)) 3278 return -EINVAL; 3279 3280 /* 3281 * If our intermediate WM are identical to the final WM, then we can 3282 * omit the post-vblank programming; only update if it's different. 3283 */ 3284 if (memcmp(a, &new_crtc_state->wm.ilk.optimal, sizeof(*a)) != 0) 3285 new_crtc_state->wm.need_postvbl_update = true; 3286 3287 return 0; 3288} 3289 3290/* 3291 * Merge the watermarks from all active pipes for a specific level. 3292 */ 3293static void ilk_merge_wm_level(struct drm_i915_private *dev_priv, 3294 int level, 3295 struct intel_wm_level *ret_wm) 3296{ 3297 const struct intel_crtc *crtc; 3298 3299 ret_wm->enable = true; 3300 3301 for_each_intel_crtc(&dev_priv->drm, crtc) { 3302 const struct intel_pipe_wm *active = &crtc->wm.active.ilk; 3303 const struct intel_wm_level *wm = &active->wm[level]; 3304 3305 if (!active->pipe_enabled) 3306 continue; 3307 3308 /* 3309 * The watermark values may have been used in the past, 3310 * so we must maintain them in the registers for some 3311 * time even if the level is now disabled. 3312 */ 3313 if (!wm->enable) 3314 ret_wm->enable = false; 3315 3316 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val); 3317 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val); 3318 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val); 3319 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val); 3320 } 3321} 3322 3323/* 3324 * Merge all low power watermarks for all active pipes. 3325 */ 3326static void ilk_wm_merge(struct drm_i915_private *dev_priv, 3327 const struct intel_wm_config *config, 3328 const struct ilk_wm_maximums *max, 3329 struct intel_pipe_wm *merged) 3330{ 3331 int level, max_level = ilk_wm_max_level(dev_priv); 3332 int last_enabled_level = max_level; 3333 3334 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */ 3335 if ((DISPLAY_VER(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) && 3336 config->num_pipes_active > 1) 3337 last_enabled_level = 0; 3338 3339 /* ILK: FBC WM must be disabled always */ 3340 merged->fbc_wm_enabled = DISPLAY_VER(dev_priv) >= 6; 3341 3342 /* merge each WM1+ level */ 3343 for (level = 1; level <= max_level; level++) { 3344 struct intel_wm_level *wm = &merged->wm[level]; 3345 3346 ilk_merge_wm_level(dev_priv, level, wm); 3347 3348 if (level > last_enabled_level) 3349 wm->enable = false; 3350 else if (!ilk_validate_wm_level(level, max, wm)) 3351 /* make sure all following levels get disabled */ 3352 last_enabled_level = level - 1; 3353 3354 /* 3355 * The spec says it is preferred to disable 3356 * FBC WMs instead of disabling a WM level. 3357 */ 3358 if (wm->fbc_val > max->fbc) { 3359 if (wm->enable) 3360 merged->fbc_wm_enabled = false; 3361 wm->fbc_val = 0; 3362 } 3363 } 3364 3365 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */ 3366 if (DISPLAY_VER(dev_priv) == 5 && HAS_FBC(dev_priv) && 3367 dev_priv->params.enable_fbc && !merged->fbc_wm_enabled) { 3368 for (level = 2; level <= max_level; level++) { 3369 struct intel_wm_level *wm = &merged->wm[level]; 3370 3371 wm->enable = false; 3372 } 3373 } 3374} 3375 3376static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm) 3377{ 3378 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */ 3379 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable); 3380} 3381 3382/* The value we need to program into the WM_LPx latency field */ 3383static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv, 3384 int level) 3385{ 3386 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) 3387 return 2 * level; 3388 else 3389 return dev_priv->wm.pri_latency[level]; 3390} 3391 3392static void ilk_compute_wm_results(struct drm_i915_private *dev_priv, 3393 const struct intel_pipe_wm *merged, 3394 enum intel_ddb_partitioning partitioning, 3395 struct ilk_wm_values *results) 3396{ 3397 struct intel_crtc *crtc; 3398 int level, wm_lp; 3399 3400 results->enable_fbc_wm = merged->fbc_wm_enabled; 3401 results->partitioning = partitioning; 3402 3403 /* LP1+ register values */ 3404 for (wm_lp = 1; wm_lp <= 3; wm_lp++) { 3405 const struct intel_wm_level *r; 3406 3407 level = ilk_wm_lp_to_level(wm_lp, merged); 3408 3409 r = &merged->wm[level]; 3410 3411 /* 3412 * Maintain the watermark values even if the level is 3413 * disabled. Doing otherwise could cause underruns. 3414 */ 3415 results->wm_lp[wm_lp - 1] = 3416 WM_LP_LATENCY(ilk_wm_lp_latency(dev_priv, level)) | 3417 WM_LP_PRIMARY(r->pri_val) | 3418 WM_LP_CURSOR(r->cur_val); 3419 3420 if (r->enable) 3421 results->wm_lp[wm_lp - 1] |= WM_LP_ENABLE; 3422 3423 if (DISPLAY_VER(dev_priv) >= 8) 3424 results->wm_lp[wm_lp - 1] |= WM_LP_FBC_BDW(r->fbc_val); 3425 else 3426 results->wm_lp[wm_lp - 1] |= WM_LP_FBC_ILK(r->fbc_val); 3427 3428 results->wm_lp_spr[wm_lp - 1] = WM_LP_SPRITE(r->spr_val); 3429 3430 /* 3431 * Always set WM_LP_SPRITE_EN when spr_val != 0, even if the 3432 * level is disabled. Doing otherwise could cause underruns. 3433 */ 3434 if (DISPLAY_VER(dev_priv) <= 6 && r->spr_val) { 3435 drm_WARN_ON(&dev_priv->drm, wm_lp != 1); 3436 results->wm_lp_spr[wm_lp - 1] |= WM_LP_SPRITE_ENABLE; 3437 } 3438 } 3439 3440 /* LP0 register values */ 3441 for_each_intel_crtc(&dev_priv->drm, crtc) { 3442 enum pipe pipe = crtc->pipe; 3443 const struct intel_pipe_wm *pipe_wm = &crtc->wm.active.ilk; 3444 const struct intel_wm_level *r = &pipe_wm->wm[0]; 3445 3446 if (drm_WARN_ON(&dev_priv->drm, !r->enable)) 3447 continue; 3448 3449 results->wm_pipe[pipe] = 3450 WM0_PIPE_PRIMARY(r->pri_val) | 3451 WM0_PIPE_SPRITE(r->spr_val) | 3452 WM0_PIPE_CURSOR(r->cur_val); 3453 } 3454} 3455 3456/* Find the result with the highest level enabled. Check for enable_fbc_wm in 3457 * case both are at the same level. Prefer r1 in case they're the same. */ 3458static struct intel_pipe_wm * 3459ilk_find_best_result(struct drm_i915_private *dev_priv, 3460 struct intel_pipe_wm *r1, 3461 struct intel_pipe_wm *r2) 3462{ 3463 int level, max_level = ilk_wm_max_level(dev_priv); 3464 int level1 = 0, level2 = 0; 3465 3466 for (level = 1; level <= max_level; level++) { 3467 if (r1->wm[level].enable) 3468 level1 = level; 3469 if (r2->wm[level].enable) 3470 level2 = level; 3471 } 3472 3473 if (level1 == level2) { 3474 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled) 3475 return r2; 3476 else 3477 return r1; 3478 } else if (level1 > level2) { 3479 return r1; 3480 } else { 3481 return r2; 3482 } 3483} 3484 3485/* dirty bits used to track which watermarks need changes */ 3486#define WM_DIRTY_PIPE(pipe) (1 << (pipe)) 3487#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp))) 3488#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3)) 3489#define WM_DIRTY_FBC (1 << 24) 3490#define WM_DIRTY_DDB (1 << 25) 3491 3492static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv, 3493 const struct ilk_wm_values *old, 3494 const struct ilk_wm_values *new) 3495{ 3496 unsigned int dirty = 0; 3497 enum pipe pipe; 3498 int wm_lp; 3499 3500 for_each_pipe(dev_priv, pipe) { 3501 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) { 3502 dirty |= WM_DIRTY_PIPE(pipe); 3503 /* Must disable LP1+ watermarks too */ 3504 dirty |= WM_DIRTY_LP_ALL; 3505 } 3506 } 3507 3508 if (old->enable_fbc_wm != new->enable_fbc_wm) { 3509 dirty |= WM_DIRTY_FBC; 3510 /* Must disable LP1+ watermarks too */ 3511 dirty |= WM_DIRTY_LP_ALL; 3512 } 3513 3514 if (old->partitioning != new->partitioning) { 3515 dirty |= WM_DIRTY_DDB; 3516 /* Must disable LP1+ watermarks too */ 3517 dirty |= WM_DIRTY_LP_ALL; 3518 } 3519 3520 /* LP1+ watermarks already deemed dirty, no need to continue */ 3521 if (dirty & WM_DIRTY_LP_ALL) 3522 return dirty; 3523 3524 /* Find the lowest numbered LP1+ watermark in need of an update... */ 3525 for (wm_lp = 1; wm_lp <= 3; wm_lp++) { 3526 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] || 3527 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1]) 3528 break; 3529 } 3530 3531 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */ 3532 for (; wm_lp <= 3; wm_lp++) 3533 dirty |= WM_DIRTY_LP(wm_lp); 3534 3535 return dirty; 3536} 3537 3538static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv, 3539 unsigned int dirty) 3540{ 3541 struct ilk_wm_values *previous = &dev_priv->wm.hw; 3542 bool changed = false; 3543 3544 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM_LP_ENABLE) { 3545 previous->wm_lp[2] &= ~WM_LP_ENABLE; 3546 intel_uncore_write(&dev_priv->uncore, WM3_LP_ILK, previous->wm_lp[2]); 3547 changed = true; 3548 } 3549 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM_LP_ENABLE) { 3550 previous->wm_lp[1] &= ~WM_LP_ENABLE; 3551 intel_uncore_write(&dev_priv->uncore, WM2_LP_ILK, previous->wm_lp[1]); 3552 changed = true; 3553 } 3554 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM_LP_ENABLE) { 3555 previous->wm_lp[0] &= ~WM_LP_ENABLE; 3556 intel_uncore_write(&dev_priv->uncore, WM1_LP_ILK, previous->wm_lp[0]); 3557 changed = true; 3558 } 3559 3560 /* 3561 * Don't touch WM_LP_SPRITE_ENABLE here. 3562 * Doing so could cause underruns. 3563 */ 3564 3565 return changed; 3566} 3567 3568/* 3569 * The spec says we shouldn't write when we don't need, because every write 3570 * causes WMs to be re-evaluated, expending some power. 3571 */ 3572static void ilk_write_wm_values(struct drm_i915_private *dev_priv, 3573 struct ilk_wm_values *results) 3574{ 3575 struct ilk_wm_values *previous = &dev_priv->wm.hw; 3576 unsigned int dirty; 3577 u32 val; 3578 3579 dirty = ilk_compute_wm_dirty(dev_priv, previous, results); 3580 if (!dirty) 3581 return; 3582 3583 _ilk_disable_lp_wm(dev_priv, dirty); 3584 3585 if (dirty & WM_DIRTY_PIPE(PIPE_A)) 3586 intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_A), results->wm_pipe[0]); 3587 if (dirty & WM_DIRTY_PIPE(PIPE_B)) 3588 intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_B), results->wm_pipe[1]); 3589 if (dirty & WM_DIRTY_PIPE(PIPE_C)) 3590 intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_C), results->wm_pipe[2]); 3591 3592 if (dirty & WM_DIRTY_DDB) { 3593 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { 3594 val = intel_uncore_read(&dev_priv->uncore, WM_MISC); 3595 if (results->partitioning == INTEL_DDB_PART_1_2) 3596 val &= ~WM_MISC_DATA_PARTITION_5_6; 3597 else 3598 val |= WM_MISC_DATA_PARTITION_5_6; 3599 intel_uncore_write(&dev_priv->uncore, WM_MISC, val); 3600 } else { 3601 val = intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL2); 3602 if (results->partitioning == INTEL_DDB_PART_1_2) 3603 val &= ~DISP_DATA_PARTITION_5_6; 3604 else 3605 val |= DISP_DATA_PARTITION_5_6; 3606 intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL2, val); 3607 } 3608 } 3609 3610 if (dirty & WM_DIRTY_FBC) { 3611 val = intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL); 3612 if (results->enable_fbc_wm) 3613 val &= ~DISP_FBC_WM_DIS; 3614 else 3615 val |= DISP_FBC_WM_DIS; 3616 intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, val); 3617 } 3618 3619 if (dirty & WM_DIRTY_LP(1) && 3620 previous->wm_lp_spr[0] != results->wm_lp_spr[0]) 3621 intel_uncore_write(&dev_priv->uncore, WM1S_LP_ILK, results->wm_lp_spr[0]); 3622 3623 if (DISPLAY_VER(dev_priv) >= 7) { 3624 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1]) 3625 intel_uncore_write(&dev_priv->uncore, WM2S_LP_IVB, results->wm_lp_spr[1]); 3626 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2]) 3627 intel_uncore_write(&dev_priv->uncore, WM3S_LP_IVB, results->wm_lp_spr[2]); 3628 } 3629 3630 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0]) 3631 intel_uncore_write(&dev_priv->uncore, WM1_LP_ILK, results->wm_lp[0]); 3632 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1]) 3633 intel_uncore_write(&dev_priv->uncore, WM2_LP_ILK, results->wm_lp[1]); 3634 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2]) 3635 intel_uncore_write(&dev_priv->uncore, WM3_LP_ILK, results->wm_lp[2]); 3636 3637 dev_priv->wm.hw = *results; 3638} 3639 3640bool ilk_disable_lp_wm(struct drm_i915_private *dev_priv) 3641{ 3642 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL); 3643} 3644 3645u8 intel_enabled_dbuf_slices_mask(struct drm_i915_private *dev_priv) 3646{ 3647 u8 enabled_slices = 0; 3648 enum dbuf_slice slice; 3649 3650 for_each_dbuf_slice(dev_priv, slice) { 3651 if (intel_uncore_read(&dev_priv->uncore, 3652 DBUF_CTL_S(slice)) & DBUF_POWER_STATE) 3653 enabled_slices |= BIT(slice); 3654 } 3655 3656 return enabled_slices; 3657} 3658 3659/* 3660 * FIXME: We still don't have the proper code detect if we need to apply the WA, 3661 * so assume we'll always need it in order to avoid underruns. 3662 */ 3663static bool skl_needs_memory_bw_wa(struct drm_i915_private *dev_priv) 3664{ 3665 return DISPLAY_VER(dev_priv) == 9; 3666} 3667 3668static bool 3669intel_has_sagv(struct drm_i915_private *dev_priv) 3670{ 3671 return DISPLAY_VER(dev_priv) >= 9 && !IS_LP(dev_priv) && 3672 dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED; 3673} 3674 3675static u32 3676intel_sagv_block_time(struct drm_i915_private *dev_priv) 3677{ 3678 if (DISPLAY_VER(dev_priv) >= 12) { 3679 u32 val = 0; 3680 int ret; 3681 3682 ret = snb_pcode_read(dev_priv, 3683 GEN12_PCODE_READ_SAGV_BLOCK_TIME_US, 3684 &val, NULL); 3685 if (ret) { 3686 drm_dbg_kms(&dev_priv->drm, "Couldn't read SAGV block time!\n"); 3687 return 0; 3688 } 3689 3690 return val; 3691 } else if (DISPLAY_VER(dev_priv) == 11) { 3692 return 10; 3693 } else if (DISPLAY_VER(dev_priv) == 9 && !IS_LP(dev_priv)) { 3694 return 30; 3695 } else { 3696 return 0; 3697 } 3698} 3699 3700static void intel_sagv_init(struct drm_i915_private *i915) 3701{ 3702 if (!intel_has_sagv(i915)) 3703 i915->sagv_status = I915_SAGV_NOT_CONTROLLED; 3704 3705 /* 3706 * Probe to see if we have working SAGV control. 3707 * For icl+ this was already determined by intel_bw_init_hw(). 3708 */ 3709 if (DISPLAY_VER(i915) < 11) 3710 skl_sagv_disable(i915); 3711 3712 drm_WARN_ON(&i915->drm, i915->sagv_status == I915_SAGV_UNKNOWN); 3713 3714 i915->sagv_block_time_us = intel_sagv_block_time(i915); 3715 3716 drm_dbg_kms(&i915->drm, "SAGV supported: %s, original SAGV block time: %u us\n", 3717 str_yes_no(intel_has_sagv(i915)), i915->sagv_block_time_us); 3718 3719 /* avoid overflow when adding with wm0 latency/etc. */ 3720 if (drm_WARN(&i915->drm, i915->sagv_block_time_us > U16_MAX, 3721 "Excessive SAGV block time %u, ignoring\n", 3722 i915->sagv_block_time_us)) 3723 i915->sagv_block_time_us = 0; 3724 3725 if (!intel_has_sagv(i915)) 3726 i915->sagv_block_time_us = 0; 3727} 3728 3729/* 3730 * SAGV dynamically adjusts the system agent voltage and clock frequencies 3731 * depending on power and performance requirements. The display engine access 3732 * to system memory is blocked during the adjustment time. Because of the 3733 * blocking time, having this enabled can cause full system hangs and/or pipe 3734 * underruns if we don't meet all of the following requirements: 3735 * 3736 * - <= 1 pipe enabled 3737 * - All planes can enable watermarks for latencies >= SAGV engine block time 3738 * - We're not using an interlaced display configuration 3739 */ 3740static void skl_sagv_enable(struct drm_i915_private *dev_priv) 3741{ 3742 int ret; 3743 3744 if (!intel_has_sagv(dev_priv)) 3745 return; 3746 3747 if (dev_priv->sagv_status == I915_SAGV_ENABLED) 3748 return; 3749 3750 drm_dbg_kms(&dev_priv->drm, "Enabling SAGV\n"); 3751 ret = snb_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL, 3752 GEN9_SAGV_ENABLE); 3753 3754 /* We don't need to wait for SAGV when enabling */ 3755 3756 /* 3757 * Some skl systems, pre-release machines in particular, 3758 * don't actually have SAGV. 3759 */ 3760 if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) { 3761 drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n"); 3762 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED; 3763 return; 3764 } else if (ret < 0) { 3765 drm_err(&dev_priv->drm, "Failed to enable SAGV\n"); 3766 return; 3767 } 3768 3769 dev_priv->sagv_status = I915_SAGV_ENABLED; 3770} 3771 3772static void skl_sagv_disable(struct drm_i915_private *dev_priv) 3773{ 3774 int ret; 3775 3776 if (!intel_has_sagv(dev_priv)) 3777 return; 3778 3779 if (dev_priv->sagv_status == I915_SAGV_DISABLED) 3780 return; 3781 3782 drm_dbg_kms(&dev_priv->drm, "Disabling SAGV\n"); 3783 /* bspec says to keep retrying for at least 1 ms */ 3784 ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL, 3785 GEN9_SAGV_DISABLE, 3786 GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED, 3787 1); 3788 /* 3789 * Some skl systems, pre-release machines in particular, 3790 * don't actually have SAGV. 3791 */ 3792 if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) { 3793 drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n"); 3794 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED; 3795 return; 3796 } else if (ret < 0) { 3797 drm_err(&dev_priv->drm, "Failed to disable SAGV (%d)\n", ret); 3798 return; 3799 } 3800 3801 dev_priv->sagv_status = I915_SAGV_DISABLED; 3802} 3803 3804static void skl_sagv_pre_plane_update(struct intel_atomic_state *state) 3805{ 3806 struct drm_i915_private *i915 = to_i915(state->base.dev); 3807 const struct intel_bw_state *new_bw_state = 3808 intel_atomic_get_new_bw_state(state); 3809 3810 if (!new_bw_state) 3811 return; 3812 3813 if (!intel_can_enable_sagv(i915, new_bw_state)) 3814 skl_sagv_disable(i915); 3815} 3816 3817static void skl_sagv_post_plane_update(struct intel_atomic_state *state) 3818{ 3819 struct drm_i915_private *i915 = to_i915(state->base.dev); 3820 const struct intel_bw_state *new_bw_state = 3821 intel_atomic_get_new_bw_state(state); 3822 3823 if (!new_bw_state) 3824 return; 3825 3826 if (intel_can_enable_sagv(i915, new_bw_state)) 3827 skl_sagv_enable(i915); 3828} 3829 3830static void icl_sagv_pre_plane_update(struct intel_atomic_state *state) 3831{ 3832 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 3833 const struct intel_bw_state *old_bw_state = 3834 intel_atomic_get_old_bw_state(state); 3835 const struct intel_bw_state *new_bw_state = 3836 intel_atomic_get_new_bw_state(state); 3837 u16 old_mask, new_mask; 3838 3839 if (!new_bw_state) 3840 return; 3841 3842 old_mask = old_bw_state->qgv_points_mask; 3843 new_mask = old_bw_state->qgv_points_mask | new_bw_state->qgv_points_mask; 3844 3845 if (old_mask == new_mask) 3846 return; 3847 3848 WARN_ON(!new_bw_state->base.changed); 3849 3850 drm_dbg_kms(&dev_priv->drm, "Restricting QGV points: 0x%x -> 0x%x\n", 3851 old_mask, new_mask); 3852 3853 /* 3854 * Restrict required qgv points before updating the configuration. 3855 * According to BSpec we can't mask and unmask qgv points at the same 3856 * time. Also masking should be done before updating the configuration 3857 * and unmasking afterwards. 3858 */ 3859 icl_pcode_restrict_qgv_points(dev_priv, new_mask); 3860} 3861 3862static void icl_sagv_post_plane_update(struct intel_atomic_state *state) 3863{ 3864 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 3865 const struct intel_bw_state *old_bw_state = 3866 intel_atomic_get_old_bw_state(state); 3867 const struct intel_bw_state *new_bw_state = 3868 intel_atomic_get_new_bw_state(state); 3869 u16 old_mask, new_mask; 3870 3871 if (!new_bw_state) 3872 return; 3873 3874 old_mask = old_bw_state->qgv_points_mask | new_bw_state->qgv_points_mask; 3875 new_mask = new_bw_state->qgv_points_mask; 3876 3877 if (old_mask == new_mask) 3878 return; 3879 3880 WARN_ON(!new_bw_state->base.changed); 3881 3882 drm_dbg_kms(&dev_priv->drm, "Relaxing QGV points: 0x%x -> 0x%x\n", 3883 old_mask, new_mask); 3884 3885 /* 3886 * Allow required qgv points after updating the configuration. 3887 * According to BSpec we can't mask and unmask qgv points at the same 3888 * time. Also masking should be done before updating the configuration 3889 * and unmasking afterwards. 3890 */ 3891 icl_pcode_restrict_qgv_points(dev_priv, new_mask); 3892} 3893 3894void intel_sagv_pre_plane_update(struct intel_atomic_state *state) 3895{ 3896 struct drm_i915_private *i915 = to_i915(state->base.dev); 3897 3898 /* 3899 * Just return if we can't control SAGV or don't have it. 3900 * This is different from situation when we have SAGV but just can't 3901 * afford it due to DBuf limitation - in case if SAGV is completely 3902 * disabled in a BIOS, we are not even allowed to send a PCode request, 3903 * as it will throw an error. So have to check it here. 3904 */ 3905 if (!intel_has_sagv(i915)) 3906 return; 3907 3908 if (DISPLAY_VER(i915) >= 11) 3909 icl_sagv_pre_plane_update(state); 3910 else 3911 skl_sagv_pre_plane_update(state); 3912} 3913 3914void intel_sagv_post_plane_update(struct intel_atomic_state *state) 3915{ 3916 struct drm_i915_private *i915 = to_i915(state->base.dev); 3917 3918 /* 3919 * Just return if we can't control SAGV or don't have it. 3920 * This is different from situation when we have SAGV but just can't 3921 * afford it due to DBuf limitation - in case if SAGV is completely 3922 * disabled in a BIOS, we are not even allowed to send a PCode request, 3923 * as it will throw an error. So have to check it here. 3924 */ 3925 if (!intel_has_sagv(i915)) 3926 return; 3927 3928 if (DISPLAY_VER(i915) >= 11) 3929 icl_sagv_post_plane_update(state); 3930 else 3931 skl_sagv_post_plane_update(state); 3932} 3933 3934static bool skl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state) 3935{ 3936 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3937 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 3938 enum plane_id plane_id; 3939 int max_level = INT_MAX; 3940 3941 if (!intel_has_sagv(dev_priv)) 3942 return false; 3943 3944 if (!crtc_state->hw.active) 3945 return true; 3946 3947 if (crtc_state->hw.pipe_mode.flags & DRM_MODE_FLAG_INTERLACE) 3948 return false; 3949 3950 for_each_plane_id_on_crtc(crtc, plane_id) { 3951 const struct skl_plane_wm *wm = 3952 &crtc_state->wm.skl.optimal.planes[plane_id]; 3953 int level; 3954 3955 /* Skip this plane if it's not enabled */ 3956 if (!wm->wm[0].enable) 3957 continue; 3958 3959 /* Find the highest enabled wm level for this plane */ 3960 for (level = ilk_wm_max_level(dev_priv); 3961 !wm->wm[level].enable; --level) 3962 { } 3963 3964 /* Highest common enabled wm level for all planes */ 3965 max_level = min(level, max_level); 3966 } 3967 3968 /* No enabled planes? */ 3969 if (max_level == INT_MAX) 3970 return true; 3971 3972 for_each_plane_id_on_crtc(crtc, plane_id) { 3973 const struct skl_plane_wm *wm = 3974 &crtc_state->wm.skl.optimal.planes[plane_id]; 3975 3976 /* 3977 * All enabled planes must have enabled a common wm level that 3978 * can tolerate memory latencies higher than sagv_block_time_us 3979 */ 3980 if (wm->wm[0].enable && !wm->wm[max_level].can_sagv) 3981 return false; 3982 } 3983 3984 return true; 3985} 3986 3987static bool tgl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state) 3988{ 3989 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 3990 enum plane_id plane_id; 3991 3992 if (!crtc_state->hw.active) 3993 return true; 3994 3995 for_each_plane_id_on_crtc(crtc, plane_id) { 3996 const struct skl_plane_wm *wm = 3997 &crtc_state->wm.skl.optimal.planes[plane_id]; 3998 3999 if (wm->wm[0].enable && !wm->sagv.wm0.enable) 4000 return false; 4001 } 4002 4003 return true; 4004} 4005 4006static bool intel_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state) 4007{ 4008 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4009 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4010 4011 if (DISPLAY_VER(dev_priv) >= 12) 4012 return tgl_crtc_can_enable_sagv(crtc_state); 4013 else 4014 return skl_crtc_can_enable_sagv(crtc_state); 4015} 4016 4017bool intel_can_enable_sagv(struct drm_i915_private *dev_priv, 4018 const struct intel_bw_state *bw_state) 4019{ 4020 if (DISPLAY_VER(dev_priv) < 11 && 4021 bw_state->active_pipes && !is_power_of_2(bw_state->active_pipes)) 4022 return false; 4023 4024 return bw_state->pipe_sagv_reject == 0; 4025} 4026 4027static int intel_compute_sagv_mask(struct intel_atomic_state *state) 4028{ 4029 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 4030 int ret; 4031 struct intel_crtc *crtc; 4032 struct intel_crtc_state *new_crtc_state; 4033 struct intel_bw_state *new_bw_state = NULL; 4034 const struct intel_bw_state *old_bw_state = NULL; 4035 int i; 4036 4037 for_each_new_intel_crtc_in_state(state, crtc, 4038 new_crtc_state, i) { 4039 new_bw_state = intel_atomic_get_bw_state(state); 4040 if (IS_ERR(new_bw_state)) 4041 return PTR_ERR(new_bw_state); 4042 4043 old_bw_state = intel_atomic_get_old_bw_state(state); 4044 4045 if (intel_crtc_can_enable_sagv(new_crtc_state)) 4046 new_bw_state->pipe_sagv_reject &= ~BIT(crtc->pipe); 4047 else 4048 new_bw_state->pipe_sagv_reject |= BIT(crtc->pipe); 4049 } 4050 4051 if (!new_bw_state) 4052 return 0; 4053 4054 new_bw_state->active_pipes = 4055 intel_calc_active_pipes(state, old_bw_state->active_pipes); 4056 4057 if (new_bw_state->active_pipes != old_bw_state->active_pipes) { 4058 ret = intel_atomic_lock_global_state(&new_bw_state->base); 4059 if (ret) 4060 return ret; 4061 } 4062 4063 if (intel_can_enable_sagv(dev_priv, new_bw_state) != 4064 intel_can_enable_sagv(dev_priv, old_bw_state)) { 4065 ret = intel_atomic_serialize_global_state(&new_bw_state->base); 4066 if (ret) 4067 return ret; 4068 } else if (new_bw_state->pipe_sagv_reject != old_bw_state->pipe_sagv_reject) { 4069 ret = intel_atomic_lock_global_state(&new_bw_state->base); 4070 if (ret) 4071 return ret; 4072 } 4073 4074 for_each_new_intel_crtc_in_state(state, crtc, 4075 new_crtc_state, i) { 4076 struct skl_pipe_wm *pipe_wm = &new_crtc_state->wm.skl.optimal; 4077 4078 /* 4079 * We store use_sagv_wm in the crtc state rather than relying on 4080 * that bw state since we have no convenient way to get at the 4081 * latter from the plane commit hooks (especially in the legacy 4082 * cursor case) 4083 */ 4084 pipe_wm->use_sagv_wm = !HAS_HW_SAGV_WM(dev_priv) && 4085 DISPLAY_VER(dev_priv) >= 12 && 4086 intel_can_enable_sagv(dev_priv, new_bw_state); 4087 } 4088 4089 return 0; 4090} 4091 4092static u16 skl_ddb_entry_init(struct skl_ddb_entry *entry, 4093 u16 start, u16 end) 4094{ 4095 entry->start = start; 4096 entry->end = end; 4097 4098 return end; 4099} 4100 4101static int intel_dbuf_slice_size(struct drm_i915_private *dev_priv) 4102{ 4103 return INTEL_INFO(dev_priv)->dbuf.size / 4104 hweight8(INTEL_INFO(dev_priv)->dbuf.slice_mask); 4105} 4106 4107static void 4108skl_ddb_entry_for_slices(struct drm_i915_private *dev_priv, u8 slice_mask, 4109 struct skl_ddb_entry *ddb) 4110{ 4111 int slice_size = intel_dbuf_slice_size(dev_priv); 4112 4113 if (!slice_mask) { 4114 ddb->start = 0; 4115 ddb->end = 0; 4116 return; 4117 } 4118 4119 ddb->start = (ffs(slice_mask) - 1) * slice_size; 4120 ddb->end = fls(slice_mask) * slice_size; 4121 4122 WARN_ON(ddb->start >= ddb->end); 4123 WARN_ON(ddb->end > INTEL_INFO(dev_priv)->dbuf.size); 4124} 4125 4126static unsigned int mbus_ddb_offset(struct drm_i915_private *i915, u8 slice_mask) 4127{ 4128 struct skl_ddb_entry ddb; 4129 4130 if (slice_mask & (BIT(DBUF_S1) | BIT(DBUF_S2))) 4131 slice_mask = BIT(DBUF_S1); 4132 else if (slice_mask & (BIT(DBUF_S3) | BIT(DBUF_S4))) 4133 slice_mask = BIT(DBUF_S3); 4134 4135 skl_ddb_entry_for_slices(i915, slice_mask, &ddb); 4136 4137 return ddb.start; 4138} 4139 4140u32 skl_ddb_dbuf_slice_mask(struct drm_i915_private *dev_priv, 4141 const struct skl_ddb_entry *entry) 4142{ 4143 int slice_size = intel_dbuf_slice_size(dev_priv); 4144 enum dbuf_slice start_slice, end_slice; 4145 u8 slice_mask = 0; 4146 4147 if (!skl_ddb_entry_size(entry)) 4148 return 0; 4149 4150 start_slice = entry->start / slice_size; 4151 end_slice = (entry->end - 1) / slice_size; 4152 4153 /* 4154 * Per plane DDB entry can in a really worst case be on multiple slices 4155 * but single entry is anyway contigious. 4156 */ 4157 while (start_slice <= end_slice) { 4158 slice_mask |= BIT(start_slice); 4159 start_slice++; 4160 } 4161 4162 return slice_mask; 4163} 4164 4165static unsigned int intel_crtc_ddb_weight(const struct intel_crtc_state *crtc_state) 4166{ 4167 const struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode; 4168 int hdisplay, vdisplay; 4169 4170 if (!crtc_state->hw.active) 4171 return 0; 4172 4173 /* 4174 * Watermark/ddb requirement highly depends upon width of the 4175 * framebuffer, So instead of allocating DDB equally among pipes 4176 * distribute DDB based on resolution/width of the display. 4177 */ 4178 drm_mode_get_hv_timing(pipe_mode, &hdisplay, &vdisplay); 4179 4180 return hdisplay; 4181} 4182 4183static void intel_crtc_dbuf_weights(const struct intel_dbuf_state *dbuf_state, 4184 enum pipe for_pipe, 4185 unsigned int *weight_start, 4186 unsigned int *weight_end, 4187 unsigned int *weight_total) 4188{ 4189 struct drm_i915_private *dev_priv = 4190 to_i915(dbuf_state->base.state->base.dev); 4191 enum pipe pipe; 4192 4193 *weight_start = 0; 4194 *weight_end = 0; 4195 *weight_total = 0; 4196 4197 for_each_pipe(dev_priv, pipe) { 4198 int weight = dbuf_state->weight[pipe]; 4199 4200 /* 4201 * Do not account pipes using other slice sets 4202 * luckily as of current BSpec slice sets do not partially 4203 * intersect(pipes share either same one slice or same slice set 4204 * i.e no partial intersection), so it is enough to check for 4205 * equality for now. 4206 */ 4207 if (dbuf_state->slices[pipe] != dbuf_state->slices[for_pipe]) 4208 continue; 4209 4210 *weight_total += weight; 4211 if (pipe < for_pipe) { 4212 *weight_start += weight; 4213 *weight_end += weight; 4214 } else if (pipe == for_pipe) { 4215 *weight_end += weight; 4216 } 4217 } 4218} 4219 4220static int 4221skl_crtc_allocate_ddb(struct intel_atomic_state *state, struct intel_crtc *crtc) 4222{ 4223 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4224 unsigned int weight_total, weight_start, weight_end; 4225 const struct intel_dbuf_state *old_dbuf_state = 4226 intel_atomic_get_old_dbuf_state(state); 4227 struct intel_dbuf_state *new_dbuf_state = 4228 intel_atomic_get_new_dbuf_state(state); 4229 struct intel_crtc_state *crtc_state; 4230 struct skl_ddb_entry ddb_slices; 4231 enum pipe pipe = crtc->pipe; 4232 unsigned int mbus_offset = 0; 4233 u32 ddb_range_size; 4234 u32 dbuf_slice_mask; 4235 u32 start, end; 4236 int ret; 4237 4238 if (new_dbuf_state->weight[pipe] == 0) { 4239 skl_ddb_entry_init(&new_dbuf_state->ddb[pipe], 0, 0); 4240 goto out; 4241 } 4242 4243 dbuf_slice_mask = new_dbuf_state->slices[pipe]; 4244 4245 skl_ddb_entry_for_slices(dev_priv, dbuf_slice_mask, &ddb_slices); 4246 mbus_offset = mbus_ddb_offset(dev_priv, dbuf_slice_mask); 4247 ddb_range_size = skl_ddb_entry_size(&ddb_slices); 4248 4249 intel_crtc_dbuf_weights(new_dbuf_state, pipe, 4250 &weight_start, &weight_end, &weight_total); 4251 4252 start = ddb_range_size * weight_start / weight_total; 4253 end = ddb_range_size * weight_end / weight_total; 4254 4255 skl_ddb_entry_init(&new_dbuf_state->ddb[pipe], 4256 ddb_slices.start - mbus_offset + start, 4257 ddb_slices.start - mbus_offset + end); 4258 4259out: 4260 if (old_dbuf_state->slices[pipe] == new_dbuf_state->slices[pipe] && 4261 skl_ddb_entry_equal(&old_dbuf_state->ddb[pipe], 4262 &new_dbuf_state->ddb[pipe])) 4263 return 0; 4264 4265 ret = intel_atomic_lock_global_state(&new_dbuf_state->base); 4266 if (ret) 4267 return ret; 4268 4269 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); 4270 if (IS_ERR(crtc_state)) 4271 return PTR_ERR(crtc_state); 4272 4273 /* 4274 * Used for checking overlaps, so we need absolute 4275 * offsets instead of MBUS relative offsets. 4276 */ 4277 crtc_state->wm.skl.ddb.start = mbus_offset + new_dbuf_state->ddb[pipe].start; 4278 crtc_state->wm.skl.ddb.end = mbus_offset + new_dbuf_state->ddb[pipe].end; 4279 4280 drm_dbg_kms(&dev_priv->drm, 4281 "[CRTC:%d:%s] dbuf slices 0x%x -> 0x%x, ddb (%d - %d) -> (%d - %d), active pipes 0x%x -> 0x%x\n", 4282 crtc->base.base.id, crtc->base.name, 4283 old_dbuf_state->slices[pipe], new_dbuf_state->slices[pipe], 4284 old_dbuf_state->ddb[pipe].start, old_dbuf_state->ddb[pipe].end, 4285 new_dbuf_state->ddb[pipe].start, new_dbuf_state->ddb[pipe].end, 4286 old_dbuf_state->active_pipes, new_dbuf_state->active_pipes); 4287 4288 return 0; 4289} 4290 4291static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state, 4292 int width, const struct drm_format_info *format, 4293 u64 modifier, unsigned int rotation, 4294 u32 plane_pixel_rate, struct skl_wm_params *wp, 4295 int color_plane); 4296 4297static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state, 4298 struct intel_plane *plane, 4299 int level, 4300 unsigned int latency, 4301 const struct skl_wm_params *wp, 4302 const struct skl_wm_level *result_prev, 4303 struct skl_wm_level *result /* out */); 4304 4305static unsigned int 4306skl_cursor_allocation(const struct intel_crtc_state *crtc_state, 4307 int num_active) 4308{ 4309 struct intel_plane *plane = to_intel_plane(crtc_state->uapi.crtc->cursor); 4310 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 4311 int level, max_level = ilk_wm_max_level(dev_priv); 4312 struct skl_wm_level wm = {}; 4313 int ret, min_ddb_alloc = 0; 4314 struct skl_wm_params wp; 4315 4316 ret = skl_compute_wm_params(crtc_state, 256, 4317 drm_format_info(DRM_FORMAT_ARGB8888), 4318 DRM_FORMAT_MOD_LINEAR, 4319 DRM_MODE_ROTATE_0, 4320 crtc_state->pixel_rate, &wp, 0); 4321 drm_WARN_ON(&dev_priv->drm, ret); 4322 4323 for (level = 0; level <= max_level; level++) { 4324 unsigned int latency = dev_priv->wm.skl_latency[level]; 4325 4326 skl_compute_plane_wm(crtc_state, plane, level, latency, &wp, &wm, &wm); 4327 if (wm.min_ddb_alloc == U16_MAX) 4328 break; 4329 4330 min_ddb_alloc = wm.min_ddb_alloc; 4331 } 4332 4333 return max(num_active == 1 ? 32 : 8, min_ddb_alloc); 4334} 4335 4336static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg) 4337{ 4338 skl_ddb_entry_init(entry, 4339 REG_FIELD_GET(PLANE_BUF_START_MASK, reg), 4340 REG_FIELD_GET(PLANE_BUF_END_MASK, reg)); 4341 if (entry->end) 4342 entry->end++; 4343} 4344 4345static void 4346skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv, 4347 const enum pipe pipe, 4348 const enum plane_id plane_id, 4349 struct skl_ddb_entry *ddb, 4350 struct skl_ddb_entry *ddb_y) 4351{ 4352 u32 val; 4353 4354 /* Cursor doesn't support NV12/planar, so no extra calculation needed */ 4355 if (plane_id == PLANE_CURSOR) { 4356 val = intel_uncore_read(&dev_priv->uncore, CUR_BUF_CFG(pipe)); 4357 skl_ddb_entry_init_from_hw(ddb, val); 4358 return; 4359 } 4360 4361 val = intel_uncore_read(&dev_priv->uncore, PLANE_BUF_CFG(pipe, plane_id)); 4362 skl_ddb_entry_init_from_hw(ddb, val); 4363 4364 if (DISPLAY_VER(dev_priv) >= 11) 4365 return; 4366 4367 val = intel_uncore_read(&dev_priv->uncore, PLANE_NV12_BUF_CFG(pipe, plane_id)); 4368 skl_ddb_entry_init_from_hw(ddb_y, val); 4369} 4370 4371void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc, 4372 struct skl_ddb_entry *ddb, 4373 struct skl_ddb_entry *ddb_y) 4374{ 4375 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4376 enum intel_display_power_domain power_domain; 4377 enum pipe pipe = crtc->pipe; 4378 intel_wakeref_t wakeref; 4379 enum plane_id plane_id; 4380 4381 power_domain = POWER_DOMAIN_PIPE(pipe); 4382 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); 4383 if (!wakeref) 4384 return; 4385 4386 for_each_plane_id_on_crtc(crtc, plane_id) 4387 skl_ddb_get_hw_plane_state(dev_priv, pipe, 4388 plane_id, 4389 &ddb[plane_id], 4390 &ddb_y[plane_id]); 4391 4392 intel_display_power_put(dev_priv, power_domain, wakeref); 4393} 4394 4395struct dbuf_slice_conf_entry { 4396 u8 active_pipes; 4397 u8 dbuf_mask[I915_MAX_PIPES]; 4398 bool join_mbus; 4399}; 4400 4401/* 4402 * Table taken from Bspec 12716 4403 * Pipes do have some preferred DBuf slice affinity, 4404 * plus there are some hardcoded requirements on how 4405 * those should be distributed for multipipe scenarios. 4406 * For more DBuf slices algorithm can get even more messy 4407 * and less readable, so decided to use a table almost 4408 * as is from BSpec itself - that way it is at least easier 4409 * to compare, change and check. 4410 */ 4411static const struct dbuf_slice_conf_entry icl_allowed_dbufs[] = 4412/* Autogenerated with igt/tools/intel_dbuf_map tool: */ 4413{ 4414 { 4415 .active_pipes = BIT(PIPE_A), 4416 .dbuf_mask = { 4417 [PIPE_A] = BIT(DBUF_S1), 4418 }, 4419 }, 4420 { 4421 .active_pipes = BIT(PIPE_B), 4422 .dbuf_mask = { 4423 [PIPE_B] = BIT(DBUF_S1), 4424 }, 4425 }, 4426 { 4427 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B), 4428 .dbuf_mask = { 4429 [PIPE_A] = BIT(DBUF_S1), 4430 [PIPE_B] = BIT(DBUF_S2), 4431 }, 4432 }, 4433 { 4434 .active_pipes = BIT(PIPE_C), 4435 .dbuf_mask = { 4436 [PIPE_C] = BIT(DBUF_S2), 4437 }, 4438 }, 4439 { 4440 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C), 4441 .dbuf_mask = { 4442 [PIPE_A] = BIT(DBUF_S1), 4443 [PIPE_C] = BIT(DBUF_S2), 4444 }, 4445 }, 4446 { 4447 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C), 4448 .dbuf_mask = { 4449 [PIPE_B] = BIT(DBUF_S1), 4450 [PIPE_C] = BIT(DBUF_S2), 4451 }, 4452 }, 4453 { 4454 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C), 4455 .dbuf_mask = { 4456 [PIPE_A] = BIT(DBUF_S1), 4457 [PIPE_B] = BIT(DBUF_S1), 4458 [PIPE_C] = BIT(DBUF_S2), 4459 }, 4460 }, 4461 {} 4462}; 4463 4464/* 4465 * Table taken from Bspec 49255 4466 * Pipes do have some preferred DBuf slice affinity, 4467 * plus there are some hardcoded requirements on how 4468 * those should be distributed for multipipe scenarios. 4469 * For more DBuf slices algorithm can get even more messy 4470 * and less readable, so decided to use a table almost 4471 * as is from BSpec itself - that way it is at least easier 4472 * to compare, change and check. 4473 */ 4474static const struct dbuf_slice_conf_entry tgl_allowed_dbufs[] = 4475/* Autogenerated with igt/tools/intel_dbuf_map tool: */ 4476{ 4477 { 4478 .active_pipes = BIT(PIPE_A), 4479 .dbuf_mask = { 4480 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), 4481 }, 4482 }, 4483 { 4484 .active_pipes = BIT(PIPE_B), 4485 .dbuf_mask = { 4486 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2), 4487 }, 4488 }, 4489 { 4490 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B), 4491 .dbuf_mask = { 4492 [PIPE_A] = BIT(DBUF_S2), 4493 [PIPE_B] = BIT(DBUF_S1), 4494 }, 4495 }, 4496 { 4497 .active_pipes = BIT(PIPE_C), 4498 .dbuf_mask = { 4499 [PIPE_C] = BIT(DBUF_S2) | BIT(DBUF_S1), 4500 }, 4501 }, 4502 { 4503 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C), 4504 .dbuf_mask = { 4505 [PIPE_A] = BIT(DBUF_S1), 4506 [PIPE_C] = BIT(DBUF_S2), 4507 }, 4508 }, 4509 { 4510 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C), 4511 .dbuf_mask = { 4512 [PIPE_B] = BIT(DBUF_S1), 4513 [PIPE_C] = BIT(DBUF_S2), 4514 }, 4515 }, 4516 { 4517 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C), 4518 .dbuf_mask = { 4519 [PIPE_A] = BIT(DBUF_S1), 4520 [PIPE_B] = BIT(DBUF_S1), 4521 [PIPE_C] = BIT(DBUF_S2), 4522 }, 4523 }, 4524 { 4525 .active_pipes = BIT(PIPE_D), 4526 .dbuf_mask = { 4527 [PIPE_D] = BIT(DBUF_S2) | BIT(DBUF_S1), 4528 }, 4529 }, 4530 { 4531 .active_pipes = BIT(PIPE_A) | BIT(PIPE_D), 4532 .dbuf_mask = { 4533 [PIPE_A] = BIT(DBUF_S1), 4534 [PIPE_D] = BIT(DBUF_S2), 4535 }, 4536 }, 4537 { 4538 .active_pipes = BIT(PIPE_B) | BIT(PIPE_D), 4539 .dbuf_mask = { 4540 [PIPE_B] = BIT(DBUF_S1), 4541 [PIPE_D] = BIT(DBUF_S2), 4542 }, 4543 }, 4544 { 4545 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D), 4546 .dbuf_mask = { 4547 [PIPE_A] = BIT(DBUF_S1), 4548 [PIPE_B] = BIT(DBUF_S1), 4549 [PIPE_D] = BIT(DBUF_S2), 4550 }, 4551 }, 4552 { 4553 .active_pipes = BIT(PIPE_C) | BIT(PIPE_D), 4554 .dbuf_mask = { 4555 [PIPE_C] = BIT(DBUF_S1), 4556 [PIPE_D] = BIT(DBUF_S2), 4557 }, 4558 }, 4559 { 4560 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D), 4561 .dbuf_mask = { 4562 [PIPE_A] = BIT(DBUF_S1), 4563 [PIPE_C] = BIT(DBUF_S2), 4564 [PIPE_D] = BIT(DBUF_S2), 4565 }, 4566 }, 4567 { 4568 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D), 4569 .dbuf_mask = { 4570 [PIPE_B] = BIT(DBUF_S1), 4571 [PIPE_C] = BIT(DBUF_S2), 4572 [PIPE_D] = BIT(DBUF_S2), 4573 }, 4574 }, 4575 { 4576 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D), 4577 .dbuf_mask = { 4578 [PIPE_A] = BIT(DBUF_S1), 4579 [PIPE_B] = BIT(DBUF_S1), 4580 [PIPE_C] = BIT(DBUF_S2), 4581 [PIPE_D] = BIT(DBUF_S2), 4582 }, 4583 }, 4584 {} 4585}; 4586 4587static const struct dbuf_slice_conf_entry dg2_allowed_dbufs[] = { 4588 { 4589 .active_pipes = BIT(PIPE_A), 4590 .dbuf_mask = { 4591 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), 4592 }, 4593 }, 4594 { 4595 .active_pipes = BIT(PIPE_B), 4596 .dbuf_mask = { 4597 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2), 4598 }, 4599 }, 4600 { 4601 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B), 4602 .dbuf_mask = { 4603 [PIPE_A] = BIT(DBUF_S1), 4604 [PIPE_B] = BIT(DBUF_S2), 4605 }, 4606 }, 4607 { 4608 .active_pipes = BIT(PIPE_C), 4609 .dbuf_mask = { 4610 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), 4611 }, 4612 }, 4613 { 4614 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C), 4615 .dbuf_mask = { 4616 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), 4617 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), 4618 }, 4619 }, 4620 { 4621 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C), 4622 .dbuf_mask = { 4623 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2), 4624 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), 4625 }, 4626 }, 4627 { 4628 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C), 4629 .dbuf_mask = { 4630 [PIPE_A] = BIT(DBUF_S1), 4631 [PIPE_B] = BIT(DBUF_S2), 4632 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), 4633 }, 4634 }, 4635 { 4636 .active_pipes = BIT(PIPE_D), 4637 .dbuf_mask = { 4638 [PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4), 4639 }, 4640 }, 4641 { 4642 .active_pipes = BIT(PIPE_A) | BIT(PIPE_D), 4643 .dbuf_mask = { 4644 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), 4645 [PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4), 4646 }, 4647 }, 4648 { 4649 .active_pipes = BIT(PIPE_B) | BIT(PIPE_D), 4650 .dbuf_mask = { 4651 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2), 4652 [PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4), 4653 }, 4654 }, 4655 { 4656 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D), 4657 .dbuf_mask = { 4658 [PIPE_A] = BIT(DBUF_S1), 4659 [PIPE_B] = BIT(DBUF_S2), 4660 [PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4), 4661 }, 4662 }, 4663 { 4664 .active_pipes = BIT(PIPE_C) | BIT(PIPE_D), 4665 .dbuf_mask = { 4666 [PIPE_C] = BIT(DBUF_S3), 4667 [PIPE_D] = BIT(DBUF_S4), 4668 }, 4669 }, 4670 { 4671 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D), 4672 .dbuf_mask = { 4673 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), 4674 [PIPE_C] = BIT(DBUF_S3), 4675 [PIPE_D] = BIT(DBUF_S4), 4676 }, 4677 }, 4678 { 4679 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D), 4680 .dbuf_mask = { 4681 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2), 4682 [PIPE_C] = BIT(DBUF_S3), 4683 [PIPE_D] = BIT(DBUF_S4), 4684 }, 4685 }, 4686 { 4687 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D), 4688 .dbuf_mask = { 4689 [PIPE_A] = BIT(DBUF_S1), 4690 [PIPE_B] = BIT(DBUF_S2), 4691 [PIPE_C] = BIT(DBUF_S3), 4692 [PIPE_D] = BIT(DBUF_S4), 4693 }, 4694 }, 4695 {} 4696}; 4697 4698static const struct dbuf_slice_conf_entry adlp_allowed_dbufs[] = { 4699 /* 4700 * Keep the join_mbus cases first so check_mbus_joined() 4701 * will prefer them over the !join_mbus cases. 4702 */ 4703 { 4704 .active_pipes = BIT(PIPE_A), 4705 .dbuf_mask = { 4706 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2) | BIT(DBUF_S3) | BIT(DBUF_S4), 4707 }, 4708 .join_mbus = true, 4709 }, 4710 { 4711 .active_pipes = BIT(PIPE_B), 4712 .dbuf_mask = { 4713 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2) | BIT(DBUF_S3) | BIT(DBUF_S4), 4714 }, 4715 .join_mbus = true, 4716 }, 4717 { 4718 .active_pipes = BIT(PIPE_A), 4719 .dbuf_mask = { 4720 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), 4721 }, 4722 .join_mbus = false, 4723 }, 4724 { 4725 .active_pipes = BIT(PIPE_B), 4726 .dbuf_mask = { 4727 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4), 4728 }, 4729 .join_mbus = false, 4730 }, 4731 { 4732 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B), 4733 .dbuf_mask = { 4734 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), 4735 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4), 4736 }, 4737 }, 4738 { 4739 .active_pipes = BIT(PIPE_C), 4740 .dbuf_mask = { 4741 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), 4742 }, 4743 }, 4744 { 4745 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C), 4746 .dbuf_mask = { 4747 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), 4748 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), 4749 }, 4750 }, 4751 { 4752 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C), 4753 .dbuf_mask = { 4754 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4), 4755 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), 4756 }, 4757 }, 4758 { 4759 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C), 4760 .dbuf_mask = { 4761 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), 4762 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4), 4763 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), 4764 }, 4765 }, 4766 { 4767 .active_pipes = BIT(PIPE_D), 4768 .dbuf_mask = { 4769 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2), 4770 }, 4771 }, 4772 { 4773 .active_pipes = BIT(PIPE_A) | BIT(PIPE_D), 4774 .dbuf_mask = { 4775 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), 4776 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2), 4777 }, 4778 }, 4779 { 4780 .active_pipes = BIT(PIPE_B) | BIT(PIPE_D), 4781 .dbuf_mask = { 4782 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4), 4783 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2), 4784 }, 4785 }, 4786 { 4787 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D), 4788 .dbuf_mask = { 4789 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), 4790 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4), 4791 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2), 4792 }, 4793 }, 4794 { 4795 .active_pipes = BIT(PIPE_C) | BIT(PIPE_D), 4796 .dbuf_mask = { 4797 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), 4798 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2), 4799 }, 4800 }, 4801 { 4802 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D), 4803 .dbuf_mask = { 4804 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), 4805 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), 4806 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2), 4807 }, 4808 }, 4809 { 4810 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D), 4811 .dbuf_mask = { 4812 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4), 4813 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), 4814 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2), 4815 }, 4816 }, 4817 { 4818 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D), 4819 .dbuf_mask = { 4820 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), 4821 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4), 4822 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), 4823 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2), 4824 }, 4825 }, 4826 {} 4827 4828}; 4829 4830static bool check_mbus_joined(u8 active_pipes, 4831 const struct dbuf_slice_conf_entry *dbuf_slices) 4832{ 4833 int i; 4834 4835 for (i = 0; dbuf_slices[i].active_pipes != 0; i++) { 4836 if (dbuf_slices[i].active_pipes == active_pipes) 4837 return dbuf_slices[i].join_mbus; 4838 } 4839 return false; 4840} 4841 4842static bool adlp_check_mbus_joined(u8 active_pipes) 4843{ 4844 return check_mbus_joined(active_pipes, adlp_allowed_dbufs); 4845} 4846 4847static u8 compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus, 4848 const struct dbuf_slice_conf_entry *dbuf_slices) 4849{ 4850 int i; 4851 4852 for (i = 0; dbuf_slices[i].active_pipes != 0; i++) { 4853 if (dbuf_slices[i].active_pipes == active_pipes && 4854 dbuf_slices[i].join_mbus == join_mbus) 4855 return dbuf_slices[i].dbuf_mask[pipe]; 4856 } 4857 return 0; 4858} 4859 4860/* 4861 * This function finds an entry with same enabled pipe configuration and 4862 * returns correspondent DBuf slice mask as stated in BSpec for particular 4863 * platform. 4864 */ 4865static u8 icl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus) 4866{ 4867 /* 4868 * FIXME: For ICL this is still a bit unclear as prev BSpec revision 4869 * required calculating "pipe ratio" in order to determine 4870 * if one or two slices can be used for single pipe configurations 4871 * as additional constraint to the existing table. 4872 * However based on recent info, it should be not "pipe ratio" 4873 * but rather ratio between pixel_rate and cdclk with additional 4874 * constants, so for now we are using only table until this is 4875 * clarified. Also this is the reason why crtc_state param is 4876 * still here - we will need it once those additional constraints 4877 * pop up. 4878 */ 4879 return compute_dbuf_slices(pipe, active_pipes, join_mbus, 4880 icl_allowed_dbufs); 4881} 4882 4883static u8 tgl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus) 4884{ 4885 return compute_dbuf_slices(pipe, active_pipes, join_mbus, 4886 tgl_allowed_dbufs); 4887} 4888 4889static u8 adlp_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus) 4890{ 4891 return compute_dbuf_slices(pipe, active_pipes, join_mbus, 4892 adlp_allowed_dbufs); 4893} 4894 4895static u8 dg2_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus) 4896{ 4897 return compute_dbuf_slices(pipe, active_pipes, join_mbus, 4898 dg2_allowed_dbufs); 4899} 4900 4901static u8 skl_compute_dbuf_slices(struct intel_crtc *crtc, u8 active_pipes, bool join_mbus) 4902{ 4903 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 4904 enum pipe pipe = crtc->pipe; 4905 4906 if (IS_DG2(dev_priv)) 4907 return dg2_compute_dbuf_slices(pipe, active_pipes, join_mbus); 4908 else if (IS_ALDERLAKE_P(dev_priv)) 4909 return adlp_compute_dbuf_slices(pipe, active_pipes, join_mbus); 4910 else if (DISPLAY_VER(dev_priv) == 12) 4911 return tgl_compute_dbuf_slices(pipe, active_pipes, join_mbus); 4912 else if (DISPLAY_VER(dev_priv) == 11) 4913 return icl_compute_dbuf_slices(pipe, active_pipes, join_mbus); 4914 /* 4915 * For anything else just return one slice yet. 4916 * Should be extended for other platforms. 4917 */ 4918 return active_pipes & BIT(pipe) ? BIT(DBUF_S1) : 0; 4919} 4920 4921static bool 4922use_minimal_wm0_only(const struct intel_crtc_state *crtc_state, 4923 struct intel_plane *plane) 4924{ 4925 struct drm_i915_private *i915 = to_i915(plane->base.dev); 4926 4927 return DISPLAY_VER(i915) >= 13 && 4928 crtc_state->uapi.async_flip && 4929 plane->async_flip; 4930} 4931 4932static u64 4933skl_total_relative_data_rate(const struct intel_crtc_state *crtc_state) 4934{ 4935 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 4936 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 4937 enum plane_id plane_id; 4938 u64 data_rate = 0; 4939 4940 for_each_plane_id_on_crtc(crtc, plane_id) { 4941 if (plane_id == PLANE_CURSOR) 4942 continue; 4943 4944 data_rate += crtc_state->rel_data_rate[plane_id]; 4945 4946 if (DISPLAY_VER(i915) < 11) 4947 data_rate += crtc_state->rel_data_rate_y[plane_id]; 4948 } 4949 4950 return data_rate; 4951} 4952 4953const struct skl_wm_level * 4954skl_plane_wm_level(const struct skl_pipe_wm *pipe_wm, 4955 enum plane_id plane_id, 4956 int level) 4957{ 4958 const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id]; 4959 4960 if (level == 0 && pipe_wm->use_sagv_wm) 4961 return &wm->sagv.wm0; 4962 4963 return &wm->wm[level]; 4964} 4965 4966const struct skl_wm_level * 4967skl_plane_trans_wm(const struct skl_pipe_wm *pipe_wm, 4968 enum plane_id plane_id) 4969{ 4970 const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id]; 4971 4972 if (pipe_wm->use_sagv_wm) 4973 return &wm->sagv.trans_wm; 4974 4975 return &wm->trans_wm; 4976} 4977 4978/* 4979 * We only disable the watermarks for each plane if 4980 * they exceed the ddb allocation of said plane. This 4981 * is done so that we don't end up touching cursor 4982 * watermarks needlessly when some other plane reduces 4983 * our max possible watermark level. 4984 * 4985 * Bspec has this to say about the PLANE_WM enable bit: 4986 * "All the watermarks at this level for all enabled 4987 * planes must be enabled before the level will be used." 4988 * So this is actually safe to do. 4989 */ 4990static void 4991skl_check_wm_level(struct skl_wm_level *wm, const struct skl_ddb_entry *ddb) 4992{ 4993 if (wm->min_ddb_alloc > skl_ddb_entry_size(ddb)) 4994 memset(wm, 0, sizeof(*wm)); 4995} 4996 4997static void 4998skl_check_nv12_wm_level(struct skl_wm_level *wm, struct skl_wm_level *uv_wm, 4999 const struct skl_ddb_entry *ddb_y, const struct skl_ddb_entry *ddb) 5000{ 5001 if (wm->min_ddb_alloc > skl_ddb_entry_size(ddb_y) || 5002 uv_wm->min_ddb_alloc > skl_ddb_entry_size(ddb)) { 5003 memset(wm, 0, sizeof(*wm)); 5004 memset(uv_wm, 0, sizeof(*uv_wm)); 5005 } 5006} 5007 5008static bool icl_need_wm1_wa(struct drm_i915_private *i915, 5009 enum plane_id plane_id) 5010{ 5011 /* 5012 * Wa_1408961008:icl, ehl 5013 * Wa_14012656716:tgl, adl 5014 * Underruns with WM1+ disabled 5015 */ 5016 return DISPLAY_VER(i915) == 11 || 5017 (IS_DISPLAY_VER(i915, 12, 13) && plane_id == PLANE_CURSOR); 5018} 5019 5020struct skl_plane_ddb_iter { 5021 u64 data_rate; 5022 u16 start, size; 5023}; 5024 5025static void 5026skl_allocate_plane_ddb(struct skl_plane_ddb_iter *iter, 5027 struct skl_ddb_entry *ddb, 5028 const struct skl_wm_level *wm, 5029 u64 data_rate) 5030{ 5031 u16 size, extra = 0; 5032 5033 if (data_rate) { 5034 extra = min_t(u16, iter->size, 5035 DIV64_U64_ROUND_UP(iter->size * data_rate, 5036 iter->data_rate)); 5037 iter->size -= extra; 5038 iter->data_rate -= data_rate; 5039 } 5040 5041 /* 5042 * Keep ddb entry of all disabled planes explicitly zeroed 5043 * to avoid skl_ddb_add_affected_planes() adding them to 5044 * the state when other planes change their allocations. 5045 */ 5046 size = wm->min_ddb_alloc + extra; 5047 if (size) 5048 iter->start = skl_ddb_entry_init(ddb, iter->start, 5049 iter->start + size); 5050} 5051 5052static int 5053skl_crtc_allocate_plane_ddb(struct intel_atomic_state *state, 5054 struct intel_crtc *crtc) 5055{ 5056 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5057 struct intel_crtc_state *crtc_state = 5058 intel_atomic_get_new_crtc_state(state, crtc); 5059 const struct intel_dbuf_state *dbuf_state = 5060 intel_atomic_get_new_dbuf_state(state); 5061 const struct skl_ddb_entry *alloc = &dbuf_state->ddb[crtc->pipe]; 5062 int num_active = hweight8(dbuf_state->active_pipes); 5063 struct skl_plane_ddb_iter iter; 5064 enum plane_id plane_id; 5065 u16 cursor_size; 5066 u32 blocks; 5067 int level; 5068 5069 /* Clear the partitioning for disabled planes. */ 5070 memset(crtc_state->wm.skl.plane_ddb, 0, sizeof(crtc_state->wm.skl.plane_ddb)); 5071 memset(crtc_state->wm.skl.plane_ddb_y, 0, sizeof(crtc_state->wm.skl.plane_ddb_y)); 5072 5073 if (!crtc_state->hw.active) 5074 return 0; 5075 5076 iter.start = alloc->start; 5077 iter.size = skl_ddb_entry_size(alloc); 5078 if (iter.size == 0) 5079 return 0; 5080 5081 /* Allocate fixed number of blocks for cursor. */ 5082 cursor_size = skl_cursor_allocation(crtc_state, num_active); 5083 iter.size -= cursor_size; 5084 skl_ddb_entry_init(&crtc_state->wm.skl.plane_ddb[PLANE_CURSOR], 5085 alloc->end - cursor_size, alloc->end); 5086 5087 iter.data_rate = skl_total_relative_data_rate(crtc_state); 5088 5089 /* 5090 * Find the highest watermark level for which we can satisfy the block 5091 * requirement of active planes. 5092 */ 5093 for (level = ilk_wm_max_level(dev_priv); level >= 0; level--) { 5094 blocks = 0; 5095 for_each_plane_id_on_crtc(crtc, plane_id) { 5096 const struct skl_plane_wm *wm = 5097 &crtc_state->wm.skl.optimal.planes[plane_id]; 5098 5099 if (plane_id == PLANE_CURSOR) { 5100 const struct skl_ddb_entry *ddb = 5101 &crtc_state->wm.skl.plane_ddb[plane_id]; 5102 5103 if (wm->wm[level].min_ddb_alloc > skl_ddb_entry_size(ddb)) { 5104 drm_WARN_ON(&dev_priv->drm, 5105 wm->wm[level].min_ddb_alloc != U16_MAX); 5106 blocks = U32_MAX; 5107 break; 5108 } 5109 continue; 5110 } 5111 5112 blocks += wm->wm[level].min_ddb_alloc; 5113 blocks += wm->uv_wm[level].min_ddb_alloc; 5114 } 5115 5116 if (blocks <= iter.size) { 5117 iter.size -= blocks; 5118 break; 5119 } 5120 } 5121 5122 if (level < 0) { 5123 drm_dbg_kms(&dev_priv->drm, 5124 "Requested display configuration exceeds system DDB limitations"); 5125 drm_dbg_kms(&dev_priv->drm, "minimum required %d/%d\n", 5126 blocks, iter.size); 5127 return -EINVAL; 5128 } 5129 5130 /* avoid the WARN later when we don't allocate any extra DDB */ 5131 if (iter.data_rate == 0) 5132 iter.size = 0; 5133 5134 /* 5135 * Grant each plane the blocks it requires at the highest achievable 5136 * watermark level, plus an extra share of the leftover blocks 5137 * proportional to its relative data rate. 5138 */ 5139 for_each_plane_id_on_crtc(crtc, plane_id) { 5140 struct skl_ddb_entry *ddb = 5141 &crtc_state->wm.skl.plane_ddb[plane_id]; 5142 struct skl_ddb_entry *ddb_y = 5143 &crtc_state->wm.skl.plane_ddb_y[plane_id]; 5144 const struct skl_plane_wm *wm = 5145 &crtc_state->wm.skl.optimal.planes[plane_id]; 5146 5147 if (plane_id == PLANE_CURSOR) 5148 continue; 5149 5150 if (DISPLAY_VER(dev_priv) < 11 && 5151 crtc_state->nv12_planes & BIT(plane_id)) { 5152 skl_allocate_plane_ddb(&iter, ddb_y, &wm->wm[level], 5153 crtc_state->rel_data_rate_y[plane_id]); 5154 skl_allocate_plane_ddb(&iter, ddb, &wm->uv_wm[level], 5155 crtc_state->rel_data_rate[plane_id]); 5156 } else { 5157 skl_allocate_plane_ddb(&iter, ddb, &wm->wm[level], 5158 crtc_state->rel_data_rate[plane_id]); 5159 } 5160 } 5161 drm_WARN_ON(&dev_priv->drm, iter.size != 0 || iter.data_rate != 0); 5162 5163 /* 5164 * When we calculated watermark values we didn't know how high 5165 * of a level we'd actually be able to hit, so we just marked 5166 * all levels as "enabled." Go back now and disable the ones 5167 * that aren't actually possible. 5168 */ 5169 for (level++; level <= ilk_wm_max_level(dev_priv); level++) { 5170 for_each_plane_id_on_crtc(crtc, plane_id) { 5171 const struct skl_ddb_entry *ddb = 5172 &crtc_state->wm.skl.plane_ddb[plane_id]; 5173 const struct skl_ddb_entry *ddb_y = 5174 &crtc_state->wm.skl.plane_ddb_y[plane_id]; 5175 struct skl_plane_wm *wm = 5176 &crtc_state->wm.skl.optimal.planes[plane_id]; 5177 5178 if (DISPLAY_VER(dev_priv) < 11 && 5179 crtc_state->nv12_planes & BIT(plane_id)) 5180 skl_check_nv12_wm_level(&wm->wm[level], 5181 &wm->uv_wm[level], 5182 ddb_y, ddb); 5183 else 5184 skl_check_wm_level(&wm->wm[level], ddb); 5185 5186 if (icl_need_wm1_wa(dev_priv, plane_id) && 5187 level == 1 && wm->wm[0].enable) { 5188 wm->wm[level].blocks = wm->wm[0].blocks; 5189 wm->wm[level].lines = wm->wm[0].lines; 5190 wm->wm[level].ignore_lines = wm->wm[0].ignore_lines; 5191 } 5192 } 5193 } 5194 5195 /* 5196 * Go back and disable the transition and SAGV watermarks 5197 * if it turns out we don't have enough DDB blocks for them. 5198 */ 5199 for_each_plane_id_on_crtc(crtc, plane_id) { 5200 const struct skl_ddb_entry *ddb = 5201 &crtc_state->wm.skl.plane_ddb[plane_id]; 5202 const struct skl_ddb_entry *ddb_y = 5203 &crtc_state->wm.skl.plane_ddb_y[plane_id]; 5204 struct skl_plane_wm *wm = 5205 &crtc_state->wm.skl.optimal.planes[plane_id]; 5206 5207 if (DISPLAY_VER(dev_priv) < 11 && 5208 crtc_state->nv12_planes & BIT(plane_id)) { 5209 skl_check_wm_level(&wm->trans_wm, ddb_y); 5210 } else { 5211 WARN_ON(skl_ddb_entry_size(ddb_y)); 5212 5213 skl_check_wm_level(&wm->trans_wm, ddb); 5214 } 5215 5216 skl_check_wm_level(&wm->sagv.wm0, ddb); 5217 skl_check_wm_level(&wm->sagv.trans_wm, ddb); 5218 } 5219 5220 return 0; 5221} 5222 5223/* 5224 * The max latency should be 257 (max the punit can code is 255 and we add 2us 5225 * for the read latency) and cpp should always be <= 8, so that 5226 * should allow pixel_rate up to ~2 GHz which seems sufficient since max 5227 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that. 5228*/ 5229static uint_fixed_16_16_t 5230skl_wm_method1(const struct drm_i915_private *dev_priv, u32 pixel_rate, 5231 u8 cpp, u32 latency, u32 dbuf_block_size) 5232{ 5233 u32 wm_intermediate_val; 5234 uint_fixed_16_16_t ret; 5235 5236 if (latency == 0) 5237 return FP_16_16_MAX; 5238 5239 wm_intermediate_val = latency * pixel_rate * cpp; 5240 ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size); 5241 5242 if (DISPLAY_VER(dev_priv) >= 10) 5243 ret = add_fixed16_u32(ret, 1); 5244 5245 return ret; 5246} 5247 5248static uint_fixed_16_16_t 5249skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency, 5250 uint_fixed_16_16_t plane_blocks_per_line) 5251{ 5252 u32 wm_intermediate_val; 5253 uint_fixed_16_16_t ret; 5254 5255 if (latency == 0) 5256 return FP_16_16_MAX; 5257 5258 wm_intermediate_val = latency * pixel_rate; 5259 wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val, 5260 pipe_htotal * 1000); 5261 ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line); 5262 return ret; 5263} 5264 5265static uint_fixed_16_16_t 5266intel_get_linetime_us(const struct intel_crtc_state *crtc_state) 5267{ 5268 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 5269 u32 pixel_rate; 5270 u32 crtc_htotal; 5271 uint_fixed_16_16_t linetime_us; 5272 5273 if (!crtc_state->hw.active) 5274 return u32_to_fixed16(0); 5275 5276 pixel_rate = crtc_state->pixel_rate; 5277 5278 if (drm_WARN_ON(&dev_priv->drm, pixel_rate == 0)) 5279 return u32_to_fixed16(0); 5280 5281 crtc_htotal = crtc_state->hw.pipe_mode.crtc_htotal; 5282 linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate); 5283 5284 return linetime_us; 5285} 5286 5287static int 5288skl_compute_wm_params(const struct intel_crtc_state *crtc_state, 5289 int width, const struct drm_format_info *format, 5290 u64 modifier, unsigned int rotation, 5291 u32 plane_pixel_rate, struct skl_wm_params *wp, 5292 int color_plane) 5293{ 5294 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5295 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5296 u32 interm_pbpl; 5297 5298 /* only planar format has two planes */ 5299 if (color_plane == 1 && 5300 !intel_format_info_is_yuv_semiplanar(format, modifier)) { 5301 drm_dbg_kms(&dev_priv->drm, 5302 "Non planar format have single plane\n"); 5303 return -EINVAL; 5304 } 5305 5306 wp->y_tiled = modifier == I915_FORMAT_MOD_Y_TILED || 5307 modifier == I915_FORMAT_MOD_4_TILED || 5308 modifier == I915_FORMAT_MOD_Yf_TILED || 5309 modifier == I915_FORMAT_MOD_Y_TILED_CCS || 5310 modifier == I915_FORMAT_MOD_Yf_TILED_CCS; 5311 wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED; 5312 wp->rc_surface = modifier == I915_FORMAT_MOD_Y_TILED_CCS || 5313 modifier == I915_FORMAT_MOD_Yf_TILED_CCS; 5314 wp->is_planar = intel_format_info_is_yuv_semiplanar(format, modifier); 5315 5316 wp->width = width; 5317 if (color_plane == 1 && wp->is_planar) 5318 wp->width /= 2; 5319 5320 wp->cpp = format->cpp[color_plane]; 5321 wp->plane_pixel_rate = plane_pixel_rate; 5322 5323 if (DISPLAY_VER(dev_priv) >= 11 && 5324 modifier == I915_FORMAT_MOD_Yf_TILED && wp->cpp == 1) 5325 wp->dbuf_block_size = 256; 5326 else 5327 wp->dbuf_block_size = 512; 5328 5329 if (drm_rotation_90_or_270(rotation)) { 5330 switch (wp->cpp) { 5331 case 1: 5332 wp->y_min_scanlines = 16; 5333 break; 5334 case 2: 5335 wp->y_min_scanlines = 8; 5336 break; 5337 case 4: 5338 wp->y_min_scanlines = 4; 5339 break; 5340 default: 5341 MISSING_CASE(wp->cpp); 5342 return -EINVAL; 5343 } 5344 } else { 5345 wp->y_min_scanlines = 4; 5346 } 5347 5348 if (skl_needs_memory_bw_wa(dev_priv)) 5349 wp->y_min_scanlines *= 2; 5350 5351 wp->plane_bytes_per_line = wp->width * wp->cpp; 5352 if (wp->y_tiled) { 5353 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line * 5354 wp->y_min_scanlines, 5355 wp->dbuf_block_size); 5356 5357 if (DISPLAY_VER(dev_priv) >= 10) 5358 interm_pbpl++; 5359 5360 wp->plane_blocks_per_line = div_fixed16(interm_pbpl, 5361 wp->y_min_scanlines); 5362 } else { 5363 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line, 5364 wp->dbuf_block_size); 5365 5366 if (!wp->x_tiled || DISPLAY_VER(dev_priv) >= 10) 5367 interm_pbpl++; 5368 5369 wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl); 5370 } 5371 5372 wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines, 5373 wp->plane_blocks_per_line); 5374 5375 wp->linetime_us = fixed16_to_u32_round_up( 5376 intel_get_linetime_us(crtc_state)); 5377 5378 return 0; 5379} 5380 5381static int 5382skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state, 5383 const struct intel_plane_state *plane_state, 5384 struct skl_wm_params *wp, int color_plane) 5385{ 5386 const struct drm_framebuffer *fb = plane_state->hw.fb; 5387 int width; 5388 5389 /* 5390 * Src coordinates are already rotated by 270 degrees for 5391 * the 90/270 degree plane rotation cases (to match the 5392 * GTT mapping), hence no need to account for rotation here. 5393 */ 5394 width = drm_rect_width(&plane_state->uapi.src) >> 16; 5395 5396 return skl_compute_wm_params(crtc_state, width, 5397 fb->format, fb->modifier, 5398 plane_state->hw.rotation, 5399 intel_plane_pixel_rate(crtc_state, plane_state), 5400 wp, color_plane); 5401} 5402 5403static bool skl_wm_has_lines(struct drm_i915_private *dev_priv, int level) 5404{ 5405 if (DISPLAY_VER(dev_priv) >= 10) 5406 return true; 5407 5408 /* The number of lines are ignored for the level 0 watermark. */ 5409 return level > 0; 5410} 5411 5412static int skl_wm_max_lines(struct drm_i915_private *dev_priv) 5413{ 5414 if (DISPLAY_VER(dev_priv) >= 13) 5415 return 255; 5416 else 5417 return 31; 5418} 5419 5420static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state, 5421 struct intel_plane *plane, 5422 int level, 5423 unsigned int latency, 5424 const struct skl_wm_params *wp, 5425 const struct skl_wm_level *result_prev, 5426 struct skl_wm_level *result /* out */) 5427{ 5428 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 5429 uint_fixed_16_16_t method1, method2; 5430 uint_fixed_16_16_t selected_result; 5431 u32 blocks, lines, min_ddb_alloc = 0; 5432 5433 if (latency == 0 || 5434 (use_minimal_wm0_only(crtc_state, plane) && level > 0)) { 5435 /* reject it */ 5436 result->min_ddb_alloc = U16_MAX; 5437 return; 5438 } 5439 5440 /* 5441 * WaIncreaseLatencyIPCEnabled: kbl,cfl 5442 * Display WA #1141: kbl,cfl 5443 */ 5444 if ((IS_KABYLAKE(dev_priv) || 5445 IS_COFFEELAKE(dev_priv) || 5446 IS_COMETLAKE(dev_priv)) && 5447 dev_priv->ipc_enabled) 5448 latency += 4; 5449 5450 if (skl_needs_memory_bw_wa(dev_priv) && wp->x_tiled) 5451 latency += 15; 5452 5453 method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate, 5454 wp->cpp, latency, wp->dbuf_block_size); 5455 method2 = skl_wm_method2(wp->plane_pixel_rate, 5456 crtc_state->hw.pipe_mode.crtc_htotal, 5457 latency, 5458 wp->plane_blocks_per_line); 5459 5460 if (wp->y_tiled) { 5461 selected_result = max_fixed16(method2, wp->y_tile_minimum); 5462 } else { 5463 if ((wp->cpp * crtc_state->hw.pipe_mode.crtc_htotal / 5464 wp->dbuf_block_size < 1) && 5465 (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) { 5466 selected_result = method2; 5467 } else if (latency >= wp->linetime_us) { 5468 if (DISPLAY_VER(dev_priv) == 9) 5469 selected_result = min_fixed16(method1, method2); 5470 else 5471 selected_result = method2; 5472 } else { 5473 selected_result = method1; 5474 } 5475 } 5476 5477 blocks = fixed16_to_u32_round_up(selected_result) + 1; 5478 /* 5479 * Lets have blocks at minimum equivalent to plane_blocks_per_line 5480 * as there will be at minimum one line for lines configuration. This 5481 * is a work around for FIFO underruns observed with resolutions like 5482 * 4k 60 Hz in single channel DRAM configurations. 5483 * 5484 * As per the Bspec 49325, if the ddb allocation can hold at least 5485 * one plane_blocks_per_line, we should have selected method2 in 5486 * the above logic. Assuming that modern versions have enough dbuf 5487 * and method2 guarantees blocks equivalent to at least 1 line, 5488 * select the blocks as plane_blocks_per_line. 5489 * 5490 * TODO: Revisit the logic when we have better understanding on DRAM 5491 * channels' impact on the level 0 memory latency and the relevant 5492 * wm calculations. 5493 */ 5494 if (skl_wm_has_lines(dev_priv, level)) 5495 blocks = max(blocks, 5496 fixed16_to_u32_round_up(wp->plane_blocks_per_line)); 5497 lines = div_round_up_fixed16(selected_result, 5498 wp->plane_blocks_per_line); 5499 5500 if (DISPLAY_VER(dev_priv) == 9) { 5501 /* Display WA #1125: skl,bxt,kbl */ 5502 if (level == 0 && wp->rc_surface) 5503 blocks += fixed16_to_u32_round_up(wp->y_tile_minimum); 5504 5505 /* Display WA #1126: skl,bxt,kbl */ 5506 if (level >= 1 && level <= 7) { 5507 if (wp->y_tiled) { 5508 blocks += fixed16_to_u32_round_up(wp->y_tile_minimum); 5509 lines += wp->y_min_scanlines; 5510 } else { 5511 blocks++; 5512 } 5513 5514 /* 5515 * Make sure result blocks for higher latency levels are 5516 * atleast as high as level below the current level. 5517 * Assumption in DDB algorithm optimization for special 5518 * cases. Also covers Display WA #1125 for RC. 5519 */ 5520 if (result_prev->blocks > blocks) 5521 blocks = result_prev->blocks; 5522 } 5523 } 5524 5525 if (DISPLAY_VER(dev_priv) >= 11) { 5526 if (wp->y_tiled) { 5527 int extra_lines; 5528 5529 if (lines % wp->y_min_scanlines == 0) 5530 extra_lines = wp->y_min_scanlines; 5531 else 5532 extra_lines = wp->y_min_scanlines * 2 - 5533 lines % wp->y_min_scanlines; 5534 5535 min_ddb_alloc = mul_round_up_u32_fixed16(lines + extra_lines, 5536 wp->plane_blocks_per_line); 5537 } else { 5538 min_ddb_alloc = blocks + DIV_ROUND_UP(blocks, 10); 5539 } 5540 } 5541 5542 if (!skl_wm_has_lines(dev_priv, level)) 5543 lines = 0; 5544 5545 if (lines > skl_wm_max_lines(dev_priv)) { 5546 /* reject it */ 5547 result->min_ddb_alloc = U16_MAX; 5548 return; 5549 } 5550 5551 /* 5552 * If lines is valid, assume we can use this watermark level 5553 * for now. We'll come back and disable it after we calculate the 5554 * DDB allocation if it turns out we don't actually have enough 5555 * blocks to satisfy it. 5556 */ 5557 result->blocks = blocks; 5558 result->lines = lines; 5559 /* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */ 5560 result->min_ddb_alloc = max(min_ddb_alloc, blocks) + 1; 5561 result->enable = true; 5562 5563 if (DISPLAY_VER(dev_priv) < 12 && dev_priv->sagv_block_time_us) 5564 result->can_sagv = latency >= dev_priv->sagv_block_time_us; 5565} 5566 5567static void 5568skl_compute_wm_levels(const struct intel_crtc_state *crtc_state, 5569 struct intel_plane *plane, 5570 const struct skl_wm_params *wm_params, 5571 struct skl_wm_level *levels) 5572{ 5573 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 5574 int level, max_level = ilk_wm_max_level(dev_priv); 5575 struct skl_wm_level *result_prev = &levels[0]; 5576 5577 for (level = 0; level <= max_level; level++) { 5578 struct skl_wm_level *result = &levels[level]; 5579 unsigned int latency = dev_priv->wm.skl_latency[level]; 5580 5581 skl_compute_plane_wm(crtc_state, plane, level, latency, 5582 wm_params, result_prev, result); 5583 5584 result_prev = result; 5585 } 5586} 5587 5588static void tgl_compute_sagv_wm(const struct intel_crtc_state *crtc_state, 5589 struct intel_plane *plane, 5590 const struct skl_wm_params *wm_params, 5591 struct skl_plane_wm *plane_wm) 5592{ 5593 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 5594 struct skl_wm_level *sagv_wm = &plane_wm->sagv.wm0; 5595 struct skl_wm_level *levels = plane_wm->wm; 5596 unsigned int latency = 0; 5597 5598 if (dev_priv->sagv_block_time_us) 5599 latency = dev_priv->sagv_block_time_us + dev_priv->wm.skl_latency[0]; 5600 5601 skl_compute_plane_wm(crtc_state, plane, 0, latency, 5602 wm_params, &levels[0], 5603 sagv_wm); 5604} 5605 5606static void skl_compute_transition_wm(struct drm_i915_private *dev_priv, 5607 struct skl_wm_level *trans_wm, 5608 const struct skl_wm_level *wm0, 5609 const struct skl_wm_params *wp) 5610{ 5611 u16 trans_min, trans_amount, trans_y_tile_min; 5612 u16 wm0_blocks, trans_offset, blocks; 5613 5614 /* Transition WM don't make any sense if ipc is disabled */ 5615 if (!dev_priv->ipc_enabled) 5616 return; 5617 5618 /* 5619 * WaDisableTWM:skl,kbl,cfl,bxt 5620 * Transition WM are not recommended by HW team for GEN9 5621 */ 5622 if (DISPLAY_VER(dev_priv) == 9) 5623 return; 5624 5625 if (DISPLAY_VER(dev_priv) >= 11) 5626 trans_min = 4; 5627 else 5628 trans_min = 14; 5629 5630 /* Display WA #1140: glk,cnl */ 5631 if (DISPLAY_VER(dev_priv) == 10) 5632 trans_amount = 0; 5633 else 5634 trans_amount = 10; /* This is configurable amount */ 5635 5636 trans_offset = trans_min + trans_amount; 5637 5638 /* 5639 * The spec asks for Selected Result Blocks for wm0 (the real value), 5640 * not Result Blocks (the integer value). Pay attention to the capital 5641 * letters. The value wm_l0->blocks is actually Result Blocks, but 5642 * since Result Blocks is the ceiling of Selected Result Blocks plus 1, 5643 * and since we later will have to get the ceiling of the sum in the 5644 * transition watermarks calculation, we can just pretend Selected 5645 * Result Blocks is Result Blocks minus 1 and it should work for the 5646 * current platforms. 5647 */ 5648 wm0_blocks = wm0->blocks - 1; 5649 5650 if (wp->y_tiled) { 5651 trans_y_tile_min = 5652 (u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum); 5653 blocks = max(wm0_blocks, trans_y_tile_min) + trans_offset; 5654 } else { 5655 blocks = wm0_blocks + trans_offset; 5656 } 5657 blocks++; 5658 5659 /* 5660 * Just assume we can enable the transition watermark. After 5661 * computing the DDB we'll come back and disable it if that 5662 * assumption turns out to be false. 5663 */ 5664 trans_wm->blocks = blocks; 5665 trans_wm->min_ddb_alloc = max_t(u16, wm0->min_ddb_alloc, blocks + 1); 5666 trans_wm->enable = true; 5667} 5668 5669static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state, 5670 const struct intel_plane_state *plane_state, 5671 struct intel_plane *plane, int color_plane) 5672{ 5673 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 5674 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5675 struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane->id]; 5676 struct skl_wm_params wm_params; 5677 int ret; 5678 5679 ret = skl_compute_plane_wm_params(crtc_state, plane_state, 5680 &wm_params, color_plane); 5681 if (ret) 5682 return ret; 5683 5684 skl_compute_wm_levels(crtc_state, plane, &wm_params, wm->wm); 5685 5686 skl_compute_transition_wm(dev_priv, &wm->trans_wm, 5687 &wm->wm[0], &wm_params); 5688 5689 if (DISPLAY_VER(dev_priv) >= 12) { 5690 tgl_compute_sagv_wm(crtc_state, plane, &wm_params, wm); 5691 5692 skl_compute_transition_wm(dev_priv, &wm->sagv.trans_wm, 5693 &wm->sagv.wm0, &wm_params); 5694 } 5695 5696 return 0; 5697} 5698 5699static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state, 5700 const struct intel_plane_state *plane_state, 5701 struct intel_plane *plane) 5702{ 5703 struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane->id]; 5704 struct skl_wm_params wm_params; 5705 int ret; 5706 5707 wm->is_planar = true; 5708 5709 /* uv plane watermarks must also be validated for NV12/Planar */ 5710 ret = skl_compute_plane_wm_params(crtc_state, plane_state, 5711 &wm_params, 1); 5712 if (ret) 5713 return ret; 5714 5715 skl_compute_wm_levels(crtc_state, plane, &wm_params, wm->uv_wm); 5716 5717 return 0; 5718} 5719 5720static int skl_build_plane_wm(struct intel_crtc_state *crtc_state, 5721 const struct intel_plane_state *plane_state) 5722{ 5723 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 5724 enum plane_id plane_id = plane->id; 5725 struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id]; 5726 const struct drm_framebuffer *fb = plane_state->hw.fb; 5727 int ret; 5728 5729 memset(wm, 0, sizeof(*wm)); 5730 5731 if (!intel_wm_plane_visible(crtc_state, plane_state)) 5732 return 0; 5733 5734 ret = skl_build_plane_wm_single(crtc_state, plane_state, 5735 plane, 0); 5736 if (ret) 5737 return ret; 5738 5739 if (fb->format->is_yuv && fb->format->num_planes > 1) { 5740 ret = skl_build_plane_wm_uv(crtc_state, plane_state, 5741 plane); 5742 if (ret) 5743 return ret; 5744 } 5745 5746 return 0; 5747} 5748 5749static int icl_build_plane_wm(struct intel_crtc_state *crtc_state, 5750 const struct intel_plane_state *plane_state) 5751{ 5752 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 5753 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 5754 enum plane_id plane_id = plane->id; 5755 struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id]; 5756 int ret; 5757 5758 /* Watermarks calculated in master */ 5759 if (plane_state->planar_slave) 5760 return 0; 5761 5762 memset(wm, 0, sizeof(*wm)); 5763 5764 if (plane_state->planar_linked_plane) { 5765 const struct drm_framebuffer *fb = plane_state->hw.fb; 5766 5767 drm_WARN_ON(&dev_priv->drm, 5768 !intel_wm_plane_visible(crtc_state, plane_state)); 5769 drm_WARN_ON(&dev_priv->drm, !fb->format->is_yuv || 5770 fb->format->num_planes == 1); 5771 5772 ret = skl_build_plane_wm_single(crtc_state, plane_state, 5773 plane_state->planar_linked_plane, 0); 5774 if (ret) 5775 return ret; 5776 5777 ret = skl_build_plane_wm_single(crtc_state, plane_state, 5778 plane, 1); 5779 if (ret) 5780 return ret; 5781 } else if (intel_wm_plane_visible(crtc_state, plane_state)) { 5782 ret = skl_build_plane_wm_single(crtc_state, plane_state, 5783 plane, 0); 5784 if (ret) 5785 return ret; 5786 } 5787 5788 return 0; 5789} 5790 5791static int skl_build_pipe_wm(struct intel_atomic_state *state, 5792 struct intel_crtc *crtc) 5793{ 5794 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5795 struct intel_crtc_state *crtc_state = 5796 intel_atomic_get_new_crtc_state(state, crtc); 5797 const struct intel_plane_state *plane_state; 5798 struct intel_plane *plane; 5799 int ret, i; 5800 5801 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 5802 /* 5803 * FIXME should perhaps check {old,new}_plane_crtc->hw.crtc 5804 * instead but we don't populate that correctly for NV12 Y 5805 * planes so for now hack this. 5806 */ 5807 if (plane->pipe != crtc->pipe) 5808 continue; 5809 5810 if (DISPLAY_VER(dev_priv) >= 11) 5811 ret = icl_build_plane_wm(crtc_state, plane_state); 5812 else 5813 ret = skl_build_plane_wm(crtc_state, plane_state); 5814 if (ret) 5815 return ret; 5816 } 5817 5818 crtc_state->wm.skl.optimal = crtc_state->wm.skl.raw; 5819 5820 return 0; 5821} 5822 5823static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, 5824 i915_reg_t reg, 5825 const struct skl_ddb_entry *entry) 5826{ 5827 if (entry->end) 5828 intel_de_write_fw(dev_priv, reg, 5829 PLANE_BUF_END(entry->end - 1) | 5830 PLANE_BUF_START(entry->start)); 5831 else 5832 intel_de_write_fw(dev_priv, reg, 0); 5833} 5834 5835static void skl_write_wm_level(struct drm_i915_private *dev_priv, 5836 i915_reg_t reg, 5837 const struct skl_wm_level *level) 5838{ 5839 u32 val = 0; 5840 5841 if (level->enable) 5842 val |= PLANE_WM_EN; 5843 if (level->ignore_lines) 5844 val |= PLANE_WM_IGNORE_LINES; 5845 val |= REG_FIELD_PREP(PLANE_WM_BLOCKS_MASK, level->blocks); 5846 val |= REG_FIELD_PREP(PLANE_WM_LINES_MASK, level->lines); 5847 5848 intel_de_write_fw(dev_priv, reg, val); 5849} 5850 5851void skl_write_plane_wm(struct intel_plane *plane, 5852 const struct intel_crtc_state *crtc_state) 5853{ 5854 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 5855 int level, max_level = ilk_wm_max_level(dev_priv); 5856 enum plane_id plane_id = plane->id; 5857 enum pipe pipe = plane->pipe; 5858 const struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal; 5859 const struct skl_ddb_entry *ddb = 5860 &crtc_state->wm.skl.plane_ddb[plane_id]; 5861 const struct skl_ddb_entry *ddb_y = 5862 &crtc_state->wm.skl.plane_ddb_y[plane_id]; 5863 5864 for (level = 0; level <= max_level; level++) 5865 skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level), 5866 skl_plane_wm_level(pipe_wm, plane_id, level)); 5867 5868 skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id), 5869 skl_plane_trans_wm(pipe_wm, plane_id)); 5870 5871 if (HAS_HW_SAGV_WM(dev_priv)) { 5872 const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id]; 5873 5874 skl_write_wm_level(dev_priv, PLANE_WM_SAGV(pipe, plane_id), 5875 &wm->sagv.wm0); 5876 skl_write_wm_level(dev_priv, PLANE_WM_SAGV_TRANS(pipe, plane_id), 5877 &wm->sagv.trans_wm); 5878 } 5879 5880 skl_ddb_entry_write(dev_priv, 5881 PLANE_BUF_CFG(pipe, plane_id), ddb); 5882 5883 if (DISPLAY_VER(dev_priv) < 11) 5884 skl_ddb_entry_write(dev_priv, 5885 PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_y); 5886} 5887 5888void skl_write_cursor_wm(struct intel_plane *plane, 5889 const struct intel_crtc_state *crtc_state) 5890{ 5891 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 5892 int level, max_level = ilk_wm_max_level(dev_priv); 5893 enum plane_id plane_id = plane->id; 5894 enum pipe pipe = plane->pipe; 5895 const struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal; 5896 const struct skl_ddb_entry *ddb = 5897 &crtc_state->wm.skl.plane_ddb[plane_id]; 5898 5899 for (level = 0; level <= max_level; level++) 5900 skl_write_wm_level(dev_priv, CUR_WM(pipe, level), 5901 skl_plane_wm_level(pipe_wm, plane_id, level)); 5902 5903 skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), 5904 skl_plane_trans_wm(pipe_wm, plane_id)); 5905 5906 if (HAS_HW_SAGV_WM(dev_priv)) { 5907 const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id]; 5908 5909 skl_write_wm_level(dev_priv, CUR_WM_SAGV(pipe), 5910 &wm->sagv.wm0); 5911 skl_write_wm_level(dev_priv, CUR_WM_SAGV_TRANS(pipe), 5912 &wm->sagv.trans_wm); 5913 } 5914 5915 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), ddb); 5916} 5917 5918bool skl_wm_level_equals(const struct skl_wm_level *l1, 5919 const struct skl_wm_level *l2) 5920{ 5921 return l1->enable == l2->enable && 5922 l1->ignore_lines == l2->ignore_lines && 5923 l1->lines == l2->lines && 5924 l1->blocks == l2->blocks; 5925} 5926 5927static bool skl_plane_wm_equals(struct drm_i915_private *dev_priv, 5928 const struct skl_plane_wm *wm1, 5929 const struct skl_plane_wm *wm2) 5930{ 5931 int level, max_level = ilk_wm_max_level(dev_priv); 5932 5933 for (level = 0; level <= max_level; level++) { 5934 /* 5935 * We don't check uv_wm as the hardware doesn't actually 5936 * use it. It only gets used for calculating the required 5937 * ddb allocation. 5938 */ 5939 if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level])) 5940 return false; 5941 } 5942 5943 return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm) && 5944 skl_wm_level_equals(&wm1->sagv.wm0, &wm2->sagv.wm0) && 5945 skl_wm_level_equals(&wm1->sagv.trans_wm, &wm2->sagv.trans_wm); 5946} 5947 5948static bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a, 5949 const struct skl_ddb_entry *b) 5950{ 5951 return a->start < b->end && b->start < a->end; 5952} 5953 5954static void skl_ddb_entry_union(struct skl_ddb_entry *a, 5955 const struct skl_ddb_entry *b) 5956{ 5957 if (a->end && b->end) { 5958 a->start = min(a->start, b->start); 5959 a->end = max(a->end, b->end); 5960 } else if (b->end) { 5961 a->start = b->start; 5962 a->end = b->end; 5963 } 5964} 5965 5966bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb, 5967 const struct skl_ddb_entry *entries, 5968 int num_entries, int ignore_idx) 5969{ 5970 int i; 5971 5972 for (i = 0; i < num_entries; i++) { 5973 if (i != ignore_idx && 5974 skl_ddb_entries_overlap(ddb, &entries[i])) 5975 return true; 5976 } 5977 5978 return false; 5979} 5980 5981static int 5982skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state, 5983 struct intel_crtc_state *new_crtc_state) 5984{ 5985 struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->uapi.state); 5986 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 5987 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 5988 struct intel_plane *plane; 5989 5990 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 5991 struct intel_plane_state *plane_state; 5992 enum plane_id plane_id = plane->id; 5993 5994 if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb[plane_id], 5995 &new_crtc_state->wm.skl.plane_ddb[plane_id]) && 5996 skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id], 5997 &new_crtc_state->wm.skl.plane_ddb_y[plane_id])) 5998 continue; 5999 6000 plane_state = intel_atomic_get_plane_state(state, plane); 6001 if (IS_ERR(plane_state)) 6002 return PTR_ERR(plane_state); 6003 6004 new_crtc_state->update_planes |= BIT(plane_id); 6005 } 6006 6007 return 0; 6008} 6009 6010static u8 intel_dbuf_enabled_slices(const struct intel_dbuf_state *dbuf_state) 6011{ 6012 struct drm_i915_private *dev_priv = to_i915(dbuf_state->base.state->base.dev); 6013 u8 enabled_slices; 6014 enum pipe pipe; 6015 6016 /* 6017 * FIXME: For now we always enable slice S1 as per 6018 * the Bspec display initialization sequence. 6019 */ 6020 enabled_slices = BIT(DBUF_S1); 6021 6022 for_each_pipe(dev_priv, pipe) 6023 enabled_slices |= dbuf_state->slices[pipe]; 6024 6025 return enabled_slices; 6026} 6027 6028static int 6029skl_compute_ddb(struct intel_atomic_state *state) 6030{ 6031 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 6032 const struct intel_dbuf_state *old_dbuf_state; 6033 struct intel_dbuf_state *new_dbuf_state = NULL; 6034 const struct intel_crtc_state *old_crtc_state; 6035 struct intel_crtc_state *new_crtc_state; 6036 struct intel_crtc *crtc; 6037 int ret, i; 6038 6039 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 6040 new_dbuf_state = intel_atomic_get_dbuf_state(state); 6041 if (IS_ERR(new_dbuf_state)) 6042 return PTR_ERR(new_dbuf_state); 6043 6044 old_dbuf_state = intel_atomic_get_old_dbuf_state(state); 6045 break; 6046 } 6047 6048 if (!new_dbuf_state) 6049 return 0; 6050 6051 new_dbuf_state->active_pipes = 6052 intel_calc_active_pipes(state, old_dbuf_state->active_pipes); 6053 6054 if (old_dbuf_state->active_pipes != new_dbuf_state->active_pipes) { 6055 ret = intel_atomic_lock_global_state(&new_dbuf_state->base); 6056 if (ret) 6057 return ret; 6058 } 6059 6060 if (HAS_MBUS_JOINING(dev_priv)) 6061 new_dbuf_state->joined_mbus = 6062 adlp_check_mbus_joined(new_dbuf_state->active_pipes); 6063 6064 for_each_intel_crtc(&dev_priv->drm, crtc) { 6065 enum pipe pipe = crtc->pipe; 6066 6067 new_dbuf_state->slices[pipe] = 6068 skl_compute_dbuf_slices(crtc, new_dbuf_state->active_pipes, 6069 new_dbuf_state->joined_mbus); 6070 6071 if (old_dbuf_state->slices[pipe] == new_dbuf_state->slices[pipe]) 6072 continue; 6073 6074 ret = intel_atomic_lock_global_state(&new_dbuf_state->base); 6075 if (ret) 6076 return ret; 6077 } 6078 6079 new_dbuf_state->enabled_slices = intel_dbuf_enabled_slices(new_dbuf_state); 6080 6081 if (old_dbuf_state->enabled_slices != new_dbuf_state->enabled_slices || 6082 old_dbuf_state->joined_mbus != new_dbuf_state->joined_mbus) { 6083 ret = intel_atomic_serialize_global_state(&new_dbuf_state->base); 6084 if (ret) 6085 return ret; 6086 6087 if (old_dbuf_state->joined_mbus != new_dbuf_state->joined_mbus) { 6088 /* TODO: Implement vblank synchronized MBUS joining changes */ 6089 ret = intel_modeset_all_pipes(state); 6090 if (ret) 6091 return ret; 6092 } 6093 6094 drm_dbg_kms(&dev_priv->drm, 6095 "Enabled dbuf slices 0x%x -> 0x%x (total dbuf slices 0x%x), mbus joined? %s->%s\n", 6096 old_dbuf_state->enabled_slices, 6097 new_dbuf_state->enabled_slices, 6098 INTEL_INFO(dev_priv)->dbuf.slice_mask, 6099 str_yes_no(old_dbuf_state->joined_mbus), 6100 str_yes_no(new_dbuf_state->joined_mbus)); 6101 } 6102 6103 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 6104 enum pipe pipe = crtc->pipe; 6105 6106 new_dbuf_state->weight[pipe] = intel_crtc_ddb_weight(new_crtc_state); 6107 6108 if (old_dbuf_state->weight[pipe] == new_dbuf_state->weight[pipe]) 6109 continue; 6110 6111 ret = intel_atomic_lock_global_state(&new_dbuf_state->base); 6112 if (ret) 6113 return ret; 6114 } 6115 6116 for_each_intel_crtc(&dev_priv->drm, crtc) { 6117 ret = skl_crtc_allocate_ddb(state, crtc); 6118 if (ret) 6119 return ret; 6120 } 6121 6122 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 6123 new_crtc_state, i) { 6124 ret = skl_crtc_allocate_plane_ddb(state, crtc); 6125 if (ret) 6126 return ret; 6127 6128 ret = skl_ddb_add_affected_planes(old_crtc_state, 6129 new_crtc_state); 6130 if (ret) 6131 return ret; 6132 } 6133 6134 return 0; 6135} 6136 6137static char enast(bool enable) 6138{ 6139 return enable ? '*' : ' '; 6140} 6141 6142static void 6143skl_print_wm_changes(struct intel_atomic_state *state) 6144{ 6145 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 6146 const struct intel_crtc_state *old_crtc_state; 6147 const struct intel_crtc_state *new_crtc_state; 6148 struct intel_plane *plane; 6149 struct intel_crtc *crtc; 6150 int i; 6151 6152 if (!drm_debug_enabled(DRM_UT_KMS)) 6153 return; 6154 6155 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 6156 new_crtc_state, i) { 6157 const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm; 6158 6159 old_pipe_wm = &old_crtc_state->wm.skl.optimal; 6160 new_pipe_wm = &new_crtc_state->wm.skl.optimal; 6161 6162 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 6163 enum plane_id plane_id = plane->id; 6164 const struct skl_ddb_entry *old, *new; 6165 6166 old = &old_crtc_state->wm.skl.plane_ddb[plane_id]; 6167 new = &new_crtc_state->wm.skl.plane_ddb[plane_id]; 6168 6169 if (skl_ddb_entry_equal(old, new)) 6170 continue; 6171 6172 drm_dbg_kms(&dev_priv->drm, 6173 "[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n", 6174 plane->base.base.id, plane->base.name, 6175 old->start, old->end, new->start, new->end, 6176 skl_ddb_entry_size(old), skl_ddb_entry_size(new)); 6177 } 6178 6179 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 6180 enum plane_id plane_id = plane->id; 6181 const struct skl_plane_wm *old_wm, *new_wm; 6182 6183 old_wm = &old_pipe_wm->planes[plane_id]; 6184 new_wm = &new_pipe_wm->planes[plane_id]; 6185 6186 if (skl_plane_wm_equals(dev_priv, old_wm, new_wm)) 6187 continue; 6188 6189 drm_dbg_kms(&dev_priv->drm, 6190 "[PLANE:%d:%s] level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm,%cstwm" 6191 " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm,%cstwm\n", 6192 plane->base.base.id, plane->base.name, 6193 enast(old_wm->wm[0].enable), enast(old_wm->wm[1].enable), 6194 enast(old_wm->wm[2].enable), enast(old_wm->wm[3].enable), 6195 enast(old_wm->wm[4].enable), enast(old_wm->wm[5].enable), 6196 enast(old_wm->wm[6].enable), enast(old_wm->wm[7].enable), 6197 enast(old_wm->trans_wm.enable), 6198 enast(old_wm->sagv.wm0.enable), 6199 enast(old_wm->sagv.trans_wm.enable), 6200 enast(new_wm->wm[0].enable), enast(new_wm->wm[1].enable), 6201 enast(new_wm->wm[2].enable), enast(new_wm->wm[3].enable), 6202 enast(new_wm->wm[4].enable), enast(new_wm->wm[5].enable), 6203 enast(new_wm->wm[6].enable), enast(new_wm->wm[7].enable), 6204 enast(new_wm->trans_wm.enable), 6205 enast(new_wm->sagv.wm0.enable), 6206 enast(new_wm->sagv.trans_wm.enable)); 6207 6208 drm_dbg_kms(&dev_priv->drm, 6209 "[PLANE:%d:%s] lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%4d" 6210 " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%4d\n", 6211 plane->base.base.id, plane->base.name, 6212 enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].lines, 6213 enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].lines, 6214 enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].lines, 6215 enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].lines, 6216 enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].lines, 6217 enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].lines, 6218 enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].lines, 6219 enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].lines, 6220 enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.lines, 6221 enast(old_wm->sagv.wm0.ignore_lines), old_wm->sagv.wm0.lines, 6222 enast(old_wm->sagv.trans_wm.ignore_lines), old_wm->sagv.trans_wm.lines, 6223 enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].lines, 6224 enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].lines, 6225 enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].lines, 6226 enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].lines, 6227 enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].lines, 6228 enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].lines, 6229 enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].lines, 6230 enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].lines, 6231 enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.lines, 6232 enast(new_wm->sagv.wm0.ignore_lines), new_wm->sagv.wm0.lines, 6233 enast(new_wm->sagv.trans_wm.ignore_lines), new_wm->sagv.trans_wm.lines); 6234 6235 drm_dbg_kms(&dev_priv->drm, 6236 "[PLANE:%d:%s] blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d" 6237 " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d\n", 6238 plane->base.base.id, plane->base.name, 6239 old_wm->wm[0].blocks, old_wm->wm[1].blocks, 6240 old_wm->wm[2].blocks, old_wm->wm[3].blocks, 6241 old_wm->wm[4].blocks, old_wm->wm[5].blocks, 6242 old_wm->wm[6].blocks, old_wm->wm[7].blocks, 6243 old_wm->trans_wm.blocks, 6244 old_wm->sagv.wm0.blocks, 6245 old_wm->sagv.trans_wm.blocks, 6246 new_wm->wm[0].blocks, new_wm->wm[1].blocks, 6247 new_wm->wm[2].blocks, new_wm->wm[3].blocks, 6248 new_wm->wm[4].blocks, new_wm->wm[5].blocks, 6249 new_wm->wm[6].blocks, new_wm->wm[7].blocks, 6250 new_wm->trans_wm.blocks, 6251 new_wm->sagv.wm0.blocks, 6252 new_wm->sagv.trans_wm.blocks); 6253 6254 drm_dbg_kms(&dev_priv->drm, 6255 "[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d" 6256 " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d\n", 6257 plane->base.base.id, plane->base.name, 6258 old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc, 6259 old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc, 6260 old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc, 6261 old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc, 6262 old_wm->trans_wm.min_ddb_alloc, 6263 old_wm->sagv.wm0.min_ddb_alloc, 6264 old_wm->sagv.trans_wm.min_ddb_alloc, 6265 new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc, 6266 new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc, 6267 new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc, 6268 new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc, 6269 new_wm->trans_wm.min_ddb_alloc, 6270 new_wm->sagv.wm0.min_ddb_alloc, 6271 new_wm->sagv.trans_wm.min_ddb_alloc); 6272 } 6273 } 6274} 6275 6276static bool skl_plane_selected_wm_equals(struct intel_plane *plane, 6277 const struct skl_pipe_wm *old_pipe_wm, 6278 const struct skl_pipe_wm *new_pipe_wm) 6279{ 6280 struct drm_i915_private *i915 = to_i915(plane->base.dev); 6281 int level, max_level = ilk_wm_max_level(i915); 6282 6283 for (level = 0; level <= max_level; level++) { 6284 /* 6285 * We don't check uv_wm as the hardware doesn't actually 6286 * use it. It only gets used for calculating the required 6287 * ddb allocation. 6288 */ 6289 if (!skl_wm_level_equals(skl_plane_wm_level(old_pipe_wm, plane->id, level), 6290 skl_plane_wm_level(new_pipe_wm, plane->id, level))) 6291 return false; 6292 } 6293 6294 if (HAS_HW_SAGV_WM(i915)) { 6295 const struct skl_plane_wm *old_wm = &old_pipe_wm->planes[plane->id]; 6296 const struct skl_plane_wm *new_wm = &new_pipe_wm->planes[plane->id]; 6297 6298 if (!skl_wm_level_equals(&old_wm->sagv.wm0, &new_wm->sagv.wm0) || 6299 !skl_wm_level_equals(&old_wm->sagv.trans_wm, &new_wm->sagv.trans_wm)) 6300 return false; 6301 } 6302 6303 return skl_wm_level_equals(skl_plane_trans_wm(old_pipe_wm, plane->id), 6304 skl_plane_trans_wm(new_pipe_wm, plane->id)); 6305} 6306 6307/* 6308 * To make sure the cursor watermark registers are always consistent 6309 * with our computed state the following scenario needs special 6310 * treatment: 6311 * 6312 * 1. enable cursor 6313 * 2. move cursor entirely offscreen 6314 * 3. disable cursor 6315 * 6316 * Step 2. does call .disable_plane() but does not zero the watermarks 6317 * (since we consider an offscreen cursor still active for the purposes 6318 * of watermarks). Step 3. would not normally call .disable_plane() 6319 * because the actual plane visibility isn't changing, and we don't 6320 * deallocate the cursor ddb until the pipe gets disabled. So we must 6321 * force step 3. to call .disable_plane() to update the watermark 6322 * registers properly. 6323 * 6324 * Other planes do not suffer from this issues as their watermarks are 6325 * calculated based on the actual plane visibility. The only time this 6326 * can trigger for the other planes is during the initial readout as the 6327 * default value of the watermarks registers is not zero. 6328 */ 6329static int skl_wm_add_affected_planes(struct intel_atomic_state *state, 6330 struct intel_crtc *crtc) 6331{ 6332 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6333 const struct intel_crtc_state *old_crtc_state = 6334 intel_atomic_get_old_crtc_state(state, crtc); 6335 struct intel_crtc_state *new_crtc_state = 6336 intel_atomic_get_new_crtc_state(state, crtc); 6337 struct intel_plane *plane; 6338 6339 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { 6340 struct intel_plane_state *plane_state; 6341 enum plane_id plane_id = plane->id; 6342 6343 /* 6344 * Force a full wm update for every plane on modeset. 6345 * Required because the reset value of the wm registers 6346 * is non-zero, whereas we want all disabled planes to 6347 * have zero watermarks. So if we turn off the relevant 6348 * power well the hardware state will go out of sync 6349 * with the software state. 6350 */ 6351 if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi) && 6352 skl_plane_selected_wm_equals(plane, 6353 &old_crtc_state->wm.skl.optimal, 6354 &new_crtc_state->wm.skl.optimal)) 6355 continue; 6356 6357 plane_state = intel_atomic_get_plane_state(state, plane); 6358 if (IS_ERR(plane_state)) 6359 return PTR_ERR(plane_state); 6360 6361 new_crtc_state->update_planes |= BIT(plane_id); 6362 } 6363 6364 return 0; 6365} 6366 6367static int 6368skl_compute_wm(struct intel_atomic_state *state) 6369{ 6370 struct intel_crtc *crtc; 6371 struct intel_crtc_state *new_crtc_state; 6372 int ret, i; 6373 6374 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 6375 ret = skl_build_pipe_wm(state, crtc); 6376 if (ret) 6377 return ret; 6378 } 6379 6380 ret = skl_compute_ddb(state); 6381 if (ret) 6382 return ret; 6383 6384 ret = intel_compute_sagv_mask(state); 6385 if (ret) 6386 return ret; 6387 6388 /* 6389 * skl_compute_ddb() will have adjusted the final watermarks 6390 * based on how much ddb is available. Now we can actually 6391 * check if the final watermarks changed. 6392 */ 6393 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 6394 ret = skl_wm_add_affected_planes(state, crtc); 6395 if (ret) 6396 return ret; 6397 } 6398 6399 skl_print_wm_changes(state); 6400 6401 return 0; 6402} 6403 6404static void ilk_compute_wm_config(struct drm_i915_private *dev_priv, 6405 struct intel_wm_config *config) 6406{ 6407 struct intel_crtc *crtc; 6408 6409 /* Compute the currently _active_ config */ 6410 for_each_intel_crtc(&dev_priv->drm, crtc) { 6411 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk; 6412 6413 if (!wm->pipe_enabled) 6414 continue; 6415 6416 config->sprites_enabled |= wm->sprites_enabled; 6417 config->sprites_scaled |= wm->sprites_scaled; 6418 config->num_pipes_active++; 6419 } 6420} 6421 6422static void ilk_program_watermarks(struct drm_i915_private *dev_priv) 6423{ 6424 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm; 6425 struct ilk_wm_maximums max; 6426 struct intel_wm_config config = {}; 6427 struct ilk_wm_values results = {}; 6428 enum intel_ddb_partitioning partitioning; 6429 6430 ilk_compute_wm_config(dev_priv, &config); 6431 6432 ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max); 6433 ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2); 6434 6435 /* 5/6 split only in single pipe config on IVB+ */ 6436 if (DISPLAY_VER(dev_priv) >= 7 && 6437 config.num_pipes_active == 1 && config.sprites_enabled) { 6438 ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max); 6439 ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6); 6440 6441 best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6); 6442 } else { 6443 best_lp_wm = &lp_wm_1_2; 6444 } 6445 6446 partitioning = (best_lp_wm == &lp_wm_1_2) ? 6447 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6; 6448 6449 ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results); 6450 6451 ilk_write_wm_values(dev_priv, &results); 6452} 6453 6454static void ilk_initial_watermarks(struct intel_atomic_state *state, 6455 struct intel_crtc *crtc) 6456{ 6457 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6458 const struct intel_crtc_state *crtc_state = 6459 intel_atomic_get_new_crtc_state(state, crtc); 6460 6461 mutex_lock(&dev_priv->wm.wm_mutex); 6462 crtc->wm.active.ilk = crtc_state->wm.ilk.intermediate; 6463 ilk_program_watermarks(dev_priv); 6464 mutex_unlock(&dev_priv->wm.wm_mutex); 6465} 6466 6467static void ilk_optimize_watermarks(struct intel_atomic_state *state, 6468 struct intel_crtc *crtc) 6469{ 6470 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6471 const struct intel_crtc_state *crtc_state = 6472 intel_atomic_get_new_crtc_state(state, crtc); 6473 6474 if (!crtc_state->wm.need_postvbl_update) 6475 return; 6476 6477 mutex_lock(&dev_priv->wm.wm_mutex); 6478 crtc->wm.active.ilk = crtc_state->wm.ilk.optimal; 6479 ilk_program_watermarks(dev_priv); 6480 mutex_unlock(&dev_priv->wm.wm_mutex); 6481} 6482 6483static void skl_wm_level_from_reg_val(u32 val, struct skl_wm_level *level) 6484{ 6485 level->enable = val & PLANE_WM_EN; 6486 level->ignore_lines = val & PLANE_WM_IGNORE_LINES; 6487 level->blocks = REG_FIELD_GET(PLANE_WM_BLOCKS_MASK, val); 6488 level->lines = REG_FIELD_GET(PLANE_WM_LINES_MASK, val); 6489} 6490 6491void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc, 6492 struct skl_pipe_wm *out) 6493{ 6494 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 6495 enum pipe pipe = crtc->pipe; 6496 int level, max_level; 6497 enum plane_id plane_id; 6498 u32 val; 6499 6500 max_level = ilk_wm_max_level(dev_priv); 6501 6502 for_each_plane_id_on_crtc(crtc, plane_id) { 6503 struct skl_plane_wm *wm = &out->planes[plane_id]; 6504 6505 for (level = 0; level <= max_level; level++) { 6506 if (plane_id != PLANE_CURSOR) 6507 val = intel_uncore_read(&dev_priv->uncore, PLANE_WM(pipe, plane_id, level)); 6508 else 6509 val = intel_uncore_read(&dev_priv->uncore, CUR_WM(pipe, level)); 6510 6511 skl_wm_level_from_reg_val(val, &wm->wm[level]); 6512 } 6513 6514 if (plane_id != PLANE_CURSOR) 6515 val = intel_uncore_read(&dev_priv->uncore, PLANE_WM_TRANS(pipe, plane_id)); 6516 else 6517 val = intel_uncore_read(&dev_priv->uncore, CUR_WM_TRANS(pipe)); 6518 6519 skl_wm_level_from_reg_val(val, &wm->trans_wm); 6520 6521 if (HAS_HW_SAGV_WM(dev_priv)) { 6522 if (plane_id != PLANE_CURSOR) 6523 val = intel_uncore_read(&dev_priv->uncore, 6524 PLANE_WM_SAGV(pipe, plane_id)); 6525 else 6526 val = intel_uncore_read(&dev_priv->uncore, 6527 CUR_WM_SAGV(pipe)); 6528 6529 skl_wm_level_from_reg_val(val, &wm->sagv.wm0); 6530 6531 if (plane_id != PLANE_CURSOR) 6532 val = intel_uncore_read(&dev_priv->uncore, 6533 PLANE_WM_SAGV_TRANS(pipe, plane_id)); 6534 else 6535 val = intel_uncore_read(&dev_priv->uncore, 6536 CUR_WM_SAGV_TRANS(pipe)); 6537 6538 skl_wm_level_from_reg_val(val, &wm->sagv.trans_wm); 6539 } else if (DISPLAY_VER(dev_priv) >= 12) { 6540 wm->sagv.wm0 = wm->wm[0]; 6541 wm->sagv.trans_wm = wm->trans_wm; 6542 } 6543 } 6544} 6545 6546void skl_wm_get_hw_state(struct drm_i915_private *dev_priv) 6547{ 6548 struct intel_dbuf_state *dbuf_state = 6549 to_intel_dbuf_state(dev_priv->dbuf.obj.state); 6550 struct intel_crtc *crtc; 6551 6552 if (HAS_MBUS_JOINING(dev_priv)) 6553 dbuf_state->joined_mbus = intel_de_read(dev_priv, MBUS_CTL) & MBUS_JOIN; 6554 6555 for_each_intel_crtc(&dev_priv->drm, crtc) { 6556 struct intel_crtc_state *crtc_state = 6557 to_intel_crtc_state(crtc->base.state); 6558 enum pipe pipe = crtc->pipe; 6559 unsigned int mbus_offset; 6560 enum plane_id plane_id; 6561 u8 slices; 6562 6563 skl_pipe_wm_get_hw_state(crtc, &crtc_state->wm.skl.optimal); 6564 crtc_state->wm.skl.raw = crtc_state->wm.skl.optimal; 6565 6566 memset(&dbuf_state->ddb[pipe], 0, sizeof(dbuf_state->ddb[pipe])); 6567 6568 for_each_plane_id_on_crtc(crtc, plane_id) { 6569 struct skl_ddb_entry *ddb = 6570 &crtc_state->wm.skl.plane_ddb[plane_id]; 6571 struct skl_ddb_entry *ddb_y = 6572 &crtc_state->wm.skl.plane_ddb_y[plane_id]; 6573 6574 skl_ddb_get_hw_plane_state(dev_priv, crtc->pipe, 6575 plane_id, ddb, ddb_y); 6576 6577 skl_ddb_entry_union(&dbuf_state->ddb[pipe], ddb); 6578 skl_ddb_entry_union(&dbuf_state->ddb[pipe], ddb_y); 6579 } 6580 6581 dbuf_state->weight[pipe] = intel_crtc_ddb_weight(crtc_state); 6582 6583 /* 6584 * Used for checking overlaps, so we need absolute 6585 * offsets instead of MBUS relative offsets. 6586 */ 6587 slices = skl_compute_dbuf_slices(crtc, dbuf_state->active_pipes, 6588 dbuf_state->joined_mbus); 6589 mbus_offset = mbus_ddb_offset(dev_priv, slices); 6590 crtc_state->wm.skl.ddb.start = mbus_offset + dbuf_state->ddb[pipe].start; 6591 crtc_state->wm.skl.ddb.end = mbus_offset + dbuf_state->ddb[pipe].end; 6592 6593 /* The slices actually used by the planes on the pipe */ 6594 dbuf_state->slices[pipe] = 6595 skl_ddb_dbuf_slice_mask(dev_priv, &crtc_state->wm.skl.ddb); 6596 6597 drm_dbg_kms(&dev_priv->drm, 6598 "[CRTC:%d:%s] dbuf slices 0x%x, ddb (%d - %d), active pipes 0x%x, mbus joined: %s\n", 6599 crtc->base.base.id, crtc->base.name, 6600 dbuf_state->slices[pipe], dbuf_state->ddb[pipe].start, 6601 dbuf_state->ddb[pipe].end, dbuf_state->active_pipes, 6602 str_yes_no(dbuf_state->joined_mbus)); 6603 } 6604 6605 dbuf_state->enabled_slices = dev_priv->dbuf.enabled_slices; 6606} 6607 6608static bool skl_dbuf_is_misconfigured(struct drm_i915_private *i915) 6609{ 6610 const struct intel_dbuf_state *dbuf_state = 6611 to_intel_dbuf_state(i915->dbuf.obj.state); 6612 struct skl_ddb_entry entries[I915_MAX_PIPES] = {}; 6613 struct intel_crtc *crtc; 6614 6615 for_each_intel_crtc(&i915->drm, crtc) { 6616 const struct intel_crtc_state *crtc_state = 6617 to_intel_crtc_state(crtc->base.state); 6618 6619 entries[crtc->pipe] = crtc_state->wm.skl.ddb; 6620 } 6621 6622 for_each_intel_crtc(&i915->drm, crtc) { 6623 const struct intel_crtc_state *crtc_state = 6624 to_intel_crtc_state(crtc->base.state); 6625 u8 slices; 6626 6627 slices = skl_compute_dbuf_slices(crtc, dbuf_state->active_pipes, 6628 dbuf_state->joined_mbus); 6629 if (dbuf_state->slices[crtc->pipe] & ~slices) 6630 return true; 6631 6632 if (skl_ddb_allocation_overlaps(&crtc_state->wm.skl.ddb, entries, 6633 I915_MAX_PIPES, crtc->pipe)) 6634 return true; 6635 } 6636 6637 return false; 6638} 6639 6640void skl_wm_sanitize(struct drm_i915_private *i915) 6641{ 6642 struct intel_crtc *crtc; 6643 6644 /* 6645 * On TGL/RKL (at least) the BIOS likes to assign the planes 6646 * to the wrong DBUF slices. This will cause an infinite loop 6647 * in skl_commit_modeset_enables() as it can't find a way to 6648 * transition between the old bogus DBUF layout to the new 6649 * proper DBUF layout without DBUF allocation overlaps between 6650 * the planes (which cannot be allowed or else the hardware 6651 * may hang). If we detect a bogus DBUF layout just turn off 6652 * all the planes so that skl_commit_modeset_enables() can 6653 * simply ignore them. 6654 */ 6655 if (!skl_dbuf_is_misconfigured(i915)) 6656 return; 6657 6658 drm_dbg_kms(&i915->drm, "BIOS has misprogrammed the DBUF, disabling all planes\n"); 6659 6660 for_each_intel_crtc(&i915->drm, crtc) { 6661 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 6662 const struct intel_plane_state *plane_state = 6663 to_intel_plane_state(plane->base.state); 6664 struct intel_crtc_state *crtc_state = 6665 to_intel_crtc_state(crtc->base.state); 6666 6667 if (plane_state->uapi.visible) 6668 intel_plane_disable_noatomic(crtc, plane); 6669 6670 drm_WARN_ON(&i915->drm, crtc_state->active_planes != 0); 6671 6672 memset(&crtc_state->wm.skl.ddb, 0, sizeof(crtc_state->wm.skl.ddb)); 6673 } 6674} 6675 6676static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc) 6677{ 6678 struct drm_device *dev = crtc->base.dev; 6679 struct drm_i915_private *dev_priv = to_i915(dev); 6680 struct ilk_wm_values *hw = &dev_priv->wm.hw; 6681 struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); 6682 struct intel_pipe_wm *active = &crtc_state->wm.ilk.optimal; 6683 enum pipe pipe = crtc->pipe; 6684 6685 hw->wm_pipe[pipe] = intel_uncore_read(&dev_priv->uncore, WM0_PIPE_ILK(pipe)); 6686 6687 memset(active, 0, sizeof(*active)); 6688 6689 active->pipe_enabled = crtc->active; 6690 6691 if (active->pipe_enabled) { 6692 u32 tmp = hw->wm_pipe[pipe]; 6693 6694 /* 6695 * For active pipes LP0 watermark is marked as 6696 * enabled, and LP1+ watermaks as disabled since 6697 * we can't really reverse compute them in case 6698 * multiple pipes are active. 6699 */ 6700 active->wm[0].enable = true; 6701 active->wm[0].pri_val = REG_FIELD_GET(WM0_PIPE_PRIMARY_MASK, tmp); 6702 active->wm[0].spr_val = REG_FIELD_GET(WM0_PIPE_SPRITE_MASK, tmp); 6703 active->wm[0].cur_val = REG_FIELD_GET(WM0_PIPE_CURSOR_MASK, tmp); 6704 } else { 6705 int level, max_level = ilk_wm_max_level(dev_priv); 6706 6707 /* 6708 * For inactive pipes, all watermark levels 6709 * should be marked as enabled but zeroed, 6710 * which is what we'd compute them to. 6711 */ 6712 for (level = 0; level <= max_level; level++) 6713 active->wm[level].enable = true; 6714 } 6715 6716 crtc->wm.active.ilk = *active; 6717} 6718 6719#define _FW_WM(value, plane) \ 6720 (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT) 6721#define _FW_WM_VLV(value, plane) \ 6722 (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT) 6723 6724static void g4x_read_wm_values(struct drm_i915_private *dev_priv, 6725 struct g4x_wm_values *wm) 6726{ 6727 u32 tmp; 6728 6729 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW1); 6730 wm->sr.plane = _FW_WM(tmp, SR); 6731 wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB); 6732 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB); 6733 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA); 6734 6735 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW2); 6736 wm->fbc_en = tmp & DSPFW_FBC_SR_EN; 6737 wm->sr.fbc = _FW_WM(tmp, FBC_SR); 6738 wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR); 6739 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB); 6740 wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA); 6741 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA); 6742 6743 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW3); 6744 wm->hpll_en = tmp & DSPFW_HPLL_SR_EN; 6745 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR); 6746 wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR); 6747 wm->hpll.plane = _FW_WM(tmp, HPLL_SR); 6748} 6749 6750static void vlv_read_wm_values(struct drm_i915_private *dev_priv, 6751 struct vlv_wm_values *wm) 6752{ 6753 enum pipe pipe; 6754 u32 tmp; 6755 6756 for_each_pipe(dev_priv, pipe) { 6757 tmp = intel_uncore_read(&dev_priv->uncore, VLV_DDL(pipe)); 6758 6759 wm->ddl[pipe].plane[PLANE_PRIMARY] = 6760 (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK); 6761 wm->ddl[pipe].plane[PLANE_CURSOR] = 6762 (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK); 6763 wm->ddl[pipe].plane[PLANE_SPRITE0] = 6764 (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK); 6765 wm->ddl[pipe].plane[PLANE_SPRITE1] = 6766 (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK); 6767 } 6768 6769 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW1); 6770 wm->sr.plane = _FW_WM(tmp, SR); 6771 wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB); 6772 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB); 6773 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA); 6774 6775 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW2); 6776 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB); 6777 wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA); 6778 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA); 6779 6780 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW3); 6781 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR); 6782 6783 if (IS_CHERRYVIEW(dev_priv)) { 6784 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW7_CHV); 6785 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED); 6786 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC); 6787 6788 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW8_CHV); 6789 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF); 6790 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE); 6791 6792 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW9_CHV); 6793 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC); 6794 wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC); 6795 6796 tmp = intel_uncore_read(&dev_priv->uncore, DSPHOWM); 6797 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9; 6798 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8; 6799 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8; 6800 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8; 6801 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8; 6802 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8; 6803 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8; 6804 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8; 6805 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8; 6806 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8; 6807 } else { 6808 tmp = intel_uncore_read(&dev_priv->uncore, DSPFW7); 6809 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED); 6810 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC); 6811 6812 tmp = intel_uncore_read(&dev_priv->uncore, DSPHOWM); 6813 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9; 6814 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8; 6815 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8; 6816 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8; 6817 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8; 6818 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8; 6819 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8; 6820 } 6821} 6822 6823#undef _FW_WM 6824#undef _FW_WM_VLV 6825 6826void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv) 6827{ 6828 struct g4x_wm_values *wm = &dev_priv->wm.g4x; 6829 struct intel_crtc *crtc; 6830 6831 g4x_read_wm_values(dev_priv, wm); 6832 6833 wm->cxsr = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN; 6834 6835 for_each_intel_crtc(&dev_priv->drm, crtc) { 6836 struct intel_crtc_state *crtc_state = 6837 to_intel_crtc_state(crtc->base.state); 6838 struct g4x_wm_state *active = &crtc->wm.active.g4x; 6839 struct g4x_pipe_wm *raw; 6840 enum pipe pipe = crtc->pipe; 6841 enum plane_id plane_id; 6842 int level, max_level; 6843 6844 active->cxsr = wm->cxsr; 6845 active->hpll_en = wm->hpll_en; 6846 active->fbc_en = wm->fbc_en; 6847 6848 active->sr = wm->sr; 6849 active->hpll = wm->hpll; 6850 6851 for_each_plane_id_on_crtc(crtc, plane_id) { 6852 active->wm.plane[plane_id] = 6853 wm->pipe[pipe].plane[plane_id]; 6854 } 6855 6856 if (wm->cxsr && wm->hpll_en) 6857 max_level = G4X_WM_LEVEL_HPLL; 6858 else if (wm->cxsr) 6859 max_level = G4X_WM_LEVEL_SR; 6860 else 6861 max_level = G4X_WM_LEVEL_NORMAL; 6862 6863 level = G4X_WM_LEVEL_NORMAL; 6864 raw = &crtc_state->wm.g4x.raw[level]; 6865 for_each_plane_id_on_crtc(crtc, plane_id) 6866 raw->plane[plane_id] = active->wm.plane[plane_id]; 6867 6868 level = G4X_WM_LEVEL_SR; 6869 if (level > max_level) 6870 goto out; 6871 6872 raw = &crtc_state->wm.g4x.raw[level]; 6873 raw->plane[PLANE_PRIMARY] = active->sr.plane; 6874 raw->plane[PLANE_CURSOR] = active->sr.cursor; 6875 raw->plane[PLANE_SPRITE0] = 0; 6876 raw->fbc = active->sr.fbc; 6877 6878 level = G4X_WM_LEVEL_HPLL; 6879 if (level > max_level) 6880 goto out; 6881 6882 raw = &crtc_state->wm.g4x.raw[level]; 6883 raw->plane[PLANE_PRIMARY] = active->hpll.plane; 6884 raw->plane[PLANE_CURSOR] = active->hpll.cursor; 6885 raw->plane[PLANE_SPRITE0] = 0; 6886 raw->fbc = active->hpll.fbc; 6887 6888 level++; 6889 out: 6890 for_each_plane_id_on_crtc(crtc, plane_id) 6891 g4x_raw_plane_wm_set(crtc_state, level, 6892 plane_id, USHRT_MAX); 6893 g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX); 6894 6895 crtc_state->wm.g4x.optimal = *active; 6896 crtc_state->wm.g4x.intermediate = *active; 6897 6898 drm_dbg_kms(&dev_priv->drm, 6899 "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n", 6900 pipe_name(pipe), 6901 wm->pipe[pipe].plane[PLANE_PRIMARY], 6902 wm->pipe[pipe].plane[PLANE_CURSOR], 6903 wm->pipe[pipe].plane[PLANE_SPRITE0]); 6904 } 6905 6906 drm_dbg_kms(&dev_priv->drm, 6907 "Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n", 6908 wm->sr.plane, wm->sr.cursor, wm->sr.fbc); 6909 drm_dbg_kms(&dev_priv->drm, 6910 "Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n", 6911 wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc); 6912 drm_dbg_kms(&dev_priv->drm, "Initial SR=%s HPLL=%s FBC=%s\n", 6913 str_yes_no(wm->cxsr), str_yes_no(wm->hpll_en), 6914 str_yes_no(wm->fbc_en)); 6915} 6916 6917void g4x_wm_sanitize(struct drm_i915_private *dev_priv) 6918{ 6919 struct intel_plane *plane; 6920 struct intel_crtc *crtc; 6921 6922 mutex_lock(&dev_priv->wm.wm_mutex); 6923 6924 for_each_intel_plane(&dev_priv->drm, plane) { 6925 struct intel_crtc *crtc = 6926 intel_crtc_for_pipe(dev_priv, plane->pipe); 6927 struct intel_crtc_state *crtc_state = 6928 to_intel_crtc_state(crtc->base.state); 6929 struct intel_plane_state *plane_state = 6930 to_intel_plane_state(plane->base.state); 6931 struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal; 6932 enum plane_id plane_id = plane->id; 6933 int level; 6934 6935 if (plane_state->uapi.visible) 6936 continue; 6937 6938 for (level = 0; level < 3; level++) { 6939 struct g4x_pipe_wm *raw = 6940 &crtc_state->wm.g4x.raw[level]; 6941 6942 raw->plane[plane_id] = 0; 6943 wm_state->wm.plane[plane_id] = 0; 6944 } 6945 6946 if (plane_id == PLANE_PRIMARY) { 6947 for (level = 0; level < 3; level++) { 6948 struct g4x_pipe_wm *raw = 6949 &crtc_state->wm.g4x.raw[level]; 6950 raw->fbc = 0; 6951 } 6952 6953 wm_state->sr.fbc = 0; 6954 wm_state->hpll.fbc = 0; 6955 wm_state->fbc_en = false; 6956 } 6957 } 6958 6959 for_each_intel_crtc(&dev_priv->drm, crtc) { 6960 struct intel_crtc_state *crtc_state = 6961 to_intel_crtc_state(crtc->base.state); 6962 6963 crtc_state->wm.g4x.intermediate = 6964 crtc_state->wm.g4x.optimal; 6965 crtc->wm.active.g4x = crtc_state->wm.g4x.optimal; 6966 } 6967 6968 g4x_program_watermarks(dev_priv); 6969 6970 mutex_unlock(&dev_priv->wm.wm_mutex); 6971} 6972 6973void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv) 6974{ 6975 struct vlv_wm_values *wm = &dev_priv->wm.vlv; 6976 struct intel_crtc *crtc; 6977 u32 val; 6978 6979 vlv_read_wm_values(dev_priv, wm); 6980 6981 wm->cxsr = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF_VLV) & FW_CSPWRDWNEN; 6982 wm->level = VLV_WM_LEVEL_PM2; 6983 6984 if (IS_CHERRYVIEW(dev_priv)) { 6985 vlv_punit_get(dev_priv); 6986 6987 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM); 6988 if (val & DSP_MAXFIFO_PM5_ENABLE) 6989 wm->level = VLV_WM_LEVEL_PM5; 6990 6991 /* 6992 * If DDR DVFS is disabled in the BIOS, Punit 6993 * will never ack the request. So if that happens 6994 * assume we don't have to enable/disable DDR DVFS 6995 * dynamically. To test that just set the REQ_ACK 6996 * bit to poke the Punit, but don't change the 6997 * HIGH/LOW bits so that we don't actually change 6998 * the current state. 6999 */ 7000 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2); 7001 val |= FORCE_DDR_FREQ_REQ_ACK; 7002 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val); 7003 7004 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) & 7005 FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) { 7006 drm_dbg_kms(&dev_priv->drm, 7007 "Punit not acking DDR DVFS request, " 7008 "assuming DDR DVFS is disabled\n"); 7009 dev_priv->wm.max_level = VLV_WM_LEVEL_PM5; 7010 } else { 7011 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2); 7012 if ((val & FORCE_DDR_HIGH_FREQ) == 0) 7013 wm->level = VLV_WM_LEVEL_DDR_DVFS; 7014 } 7015 7016 vlv_punit_put(dev_priv); 7017 } 7018 7019 for_each_intel_crtc(&dev_priv->drm, crtc) { 7020 struct intel_crtc_state *crtc_state = 7021 to_intel_crtc_state(crtc->base.state); 7022 struct vlv_wm_state *active = &crtc->wm.active.vlv; 7023 const struct vlv_fifo_state *fifo_state = 7024 &crtc_state->wm.vlv.fifo_state; 7025 enum pipe pipe = crtc->pipe; 7026 enum plane_id plane_id; 7027 int level; 7028 7029 vlv_get_fifo_size(crtc_state); 7030 7031 active->num_levels = wm->level + 1; 7032 active->cxsr = wm->cxsr; 7033 7034 for (level = 0; level < active->num_levels; level++) { 7035 struct g4x_pipe_wm *raw = 7036 &crtc_state->wm.vlv.raw[level]; 7037 7038 active->sr[level].plane = wm->sr.plane; 7039 active->sr[level].cursor = wm->sr.cursor; 7040 7041 for_each_plane_id_on_crtc(crtc, plane_id) { 7042 active->wm[level].plane[plane_id] = 7043 wm->pipe[pipe].plane[plane_id]; 7044 7045 raw->plane[plane_id] = 7046 vlv_invert_wm_value(active->wm[level].plane[plane_id], 7047 fifo_state->plane[plane_id]); 7048 } 7049 } 7050 7051 for_each_plane_id_on_crtc(crtc, plane_id) 7052 vlv_raw_plane_wm_set(crtc_state, level, 7053 plane_id, USHRT_MAX); 7054 vlv_invalidate_wms(crtc, active, level); 7055 7056 crtc_state->wm.vlv.optimal = *active; 7057 crtc_state->wm.vlv.intermediate = *active; 7058 7059 drm_dbg_kms(&dev_priv->drm, 7060 "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n", 7061 pipe_name(pipe), 7062 wm->pipe[pipe].plane[PLANE_PRIMARY], 7063 wm->pipe[pipe].plane[PLANE_CURSOR], 7064 wm->pipe[pipe].plane[PLANE_SPRITE0], 7065 wm->pipe[pipe].plane[PLANE_SPRITE1]); 7066 } 7067 7068 drm_dbg_kms(&dev_priv->drm, 7069 "Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n", 7070 wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr); 7071} 7072 7073void vlv_wm_sanitize(struct drm_i915_private *dev_priv) 7074{ 7075 struct intel_plane *plane; 7076 struct intel_crtc *crtc; 7077 7078 mutex_lock(&dev_priv->wm.wm_mutex); 7079 7080 for_each_intel_plane(&dev_priv->drm, plane) { 7081 struct intel_crtc *crtc = 7082 intel_crtc_for_pipe(dev_priv, plane->pipe); 7083 struct intel_crtc_state *crtc_state = 7084 to_intel_crtc_state(crtc->base.state); 7085 struct intel_plane_state *plane_state = 7086 to_intel_plane_state(plane->base.state); 7087 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal; 7088 const struct vlv_fifo_state *fifo_state = 7089 &crtc_state->wm.vlv.fifo_state; 7090 enum plane_id plane_id = plane->id; 7091 int level; 7092 7093 if (plane_state->uapi.visible) 7094 continue; 7095 7096 for (level = 0; level < wm_state->num_levels; level++) { 7097 struct g4x_pipe_wm *raw = 7098 &crtc_state->wm.vlv.raw[level]; 7099 7100 raw->plane[plane_id] = 0; 7101 7102 wm_state->wm[level].plane[plane_id] = 7103 vlv_invert_wm_value(raw->plane[plane_id], 7104 fifo_state->plane[plane_id]); 7105 } 7106 } 7107 7108 for_each_intel_crtc(&dev_priv->drm, crtc) { 7109 struct intel_crtc_state *crtc_state = 7110 to_intel_crtc_state(crtc->base.state); 7111 7112 crtc_state->wm.vlv.intermediate = 7113 crtc_state->wm.vlv.optimal; 7114 crtc->wm.active.vlv = crtc_state->wm.vlv.optimal; 7115 } 7116 7117 vlv_program_watermarks(dev_priv); 7118 7119 mutex_unlock(&dev_priv->wm.wm_mutex); 7120} 7121 7122/* 7123 * FIXME should probably kill this and improve 7124 * the real watermark readout/sanitation instead 7125 */ 7126static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv) 7127{ 7128 intel_uncore_write(&dev_priv->uncore, WM3_LP_ILK, intel_uncore_read(&dev_priv->uncore, WM3_LP_ILK) & ~WM_LP_ENABLE); 7129 intel_uncore_write(&dev_priv->uncore, WM2_LP_ILK, intel_uncore_read(&dev_priv->uncore, WM2_LP_ILK) & ~WM_LP_ENABLE); 7130 intel_uncore_write(&dev_priv->uncore, WM1_LP_ILK, intel_uncore_read(&dev_priv->uncore, WM1_LP_ILK) & ~WM_LP_ENABLE); 7131 7132 /* 7133 * Don't touch WM_LP_SPRITE_ENABLE here. 7134 * Doing so could cause underruns. 7135 */ 7136} 7137 7138void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv) 7139{ 7140 struct ilk_wm_values *hw = &dev_priv->wm.hw; 7141 struct intel_crtc *crtc; 7142 7143 ilk_init_lp_watermarks(dev_priv); 7144 7145 for_each_intel_crtc(&dev_priv->drm, crtc) 7146 ilk_pipe_wm_get_hw_state(crtc); 7147 7148 hw->wm_lp[0] = intel_uncore_read(&dev_priv->uncore, WM1_LP_ILK); 7149 hw->wm_lp[1] = intel_uncore_read(&dev_priv->uncore, WM2_LP_ILK); 7150 hw->wm_lp[2] = intel_uncore_read(&dev_priv->uncore, WM3_LP_ILK); 7151 7152 hw->wm_lp_spr[0] = intel_uncore_read(&dev_priv->uncore, WM1S_LP_ILK); 7153 if (DISPLAY_VER(dev_priv) >= 7) { 7154 hw->wm_lp_spr[1] = intel_uncore_read(&dev_priv->uncore, WM2S_LP_IVB); 7155 hw->wm_lp_spr[2] = intel_uncore_read(&dev_priv->uncore, WM3S_LP_IVB); 7156 } 7157 7158 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) 7159 hw->partitioning = (intel_uncore_read(&dev_priv->uncore, WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ? 7160 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2; 7161 else if (IS_IVYBRIDGE(dev_priv)) 7162 hw->partitioning = (intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ? 7163 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2; 7164 7165 hw->enable_fbc_wm = 7166 !(intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) & DISP_FBC_WM_DIS); 7167} 7168 7169void intel_enable_ipc(struct drm_i915_private *dev_priv) 7170{ 7171 u32 val; 7172 7173 if (!HAS_IPC(dev_priv)) 7174 return; 7175 7176 val = intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL2); 7177 7178 if (dev_priv->ipc_enabled) 7179 val |= DISP_IPC_ENABLE; 7180 else 7181 val &= ~DISP_IPC_ENABLE; 7182 7183 intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL2, val); 7184} 7185 7186static bool intel_can_enable_ipc(struct drm_i915_private *dev_priv) 7187{ 7188 /* Display WA #0477 WaDisableIPC: skl */ 7189 if (IS_SKYLAKE(dev_priv)) 7190 return false; 7191 7192 /* Display WA #1141: SKL:all KBL:all CFL */ 7193 if (IS_KABYLAKE(dev_priv) || 7194 IS_COFFEELAKE(dev_priv) || 7195 IS_COMETLAKE(dev_priv)) 7196 return dev_priv->dram_info.symmetric_memory; 7197 7198 return true; 7199} 7200 7201void intel_init_ipc(struct drm_i915_private *dev_priv) 7202{ 7203 if (!HAS_IPC(dev_priv)) 7204 return; 7205 7206 dev_priv->ipc_enabled = intel_can_enable_ipc(dev_priv); 7207 7208 intel_enable_ipc(dev_priv); 7209} 7210 7211static void ibx_init_clock_gating(struct drm_i915_private *dev_priv) 7212{ 7213 /* 7214 * On Ibex Peak and Cougar Point, we need to disable clock 7215 * gating for the panel power sequencer or it will fail to 7216 * start up when no ports are active. 7217 */ 7218 intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE); 7219} 7220 7221static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv) 7222{ 7223 enum pipe pipe; 7224 7225 for_each_pipe(dev_priv, pipe) { 7226 intel_uncore_write(&dev_priv->uncore, DSPCNTR(pipe), 7227 intel_uncore_read(&dev_priv->uncore, DSPCNTR(pipe)) | 7228 DISP_TRICKLE_FEED_DISABLE); 7229 7230 intel_uncore_write(&dev_priv->uncore, DSPSURF(pipe), intel_uncore_read(&dev_priv->uncore, DSPSURF(pipe))); 7231 intel_uncore_posting_read(&dev_priv->uncore, DSPSURF(pipe)); 7232 } 7233} 7234 7235static void ilk_init_clock_gating(struct drm_i915_private *dev_priv) 7236{ 7237 u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE; 7238 7239 /* 7240 * Required for FBC 7241 * WaFbcDisableDpfcClockGating:ilk 7242 */ 7243 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE | 7244 ILK_DPFCUNIT_CLOCK_GATE_DISABLE | 7245 ILK_DPFDUNIT_CLOCK_GATE_ENABLE; 7246 7247 intel_uncore_write(&dev_priv->uncore, PCH_3DCGDIS0, 7248 MARIUNIT_CLOCK_GATE_DISABLE | 7249 SVSMUNIT_CLOCK_GATE_DISABLE); 7250 intel_uncore_write(&dev_priv->uncore, PCH_3DCGDIS1, 7251 VFMUNIT_CLOCK_GATE_DISABLE); 7252 7253 /* 7254 * According to the spec the following bits should be set in 7255 * order to enable memory self-refresh 7256 * The bit 22/21 of 0x42004 7257 * The bit 5 of 0x42020 7258 * The bit 15 of 0x45000 7259 */ 7260 intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2, 7261 (intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) | 7262 ILK_DPARB_GATE | ILK_VSDPFD_FULL)); 7263 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE; 7264 intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, 7265 (intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) | 7266 DISP_FBC_WM_DIS)); 7267 7268 /* 7269 * Based on the document from hardware guys the following bits 7270 * should be set unconditionally in order to enable FBC. 7271 * The bit 22 of 0x42000 7272 * The bit 22 of 0x42004 7273 * The bit 7,8,9 of 0x42020. 7274 */ 7275 if (IS_IRONLAKE_M(dev_priv)) { 7276 /* WaFbcAsynchFlipDisableFbcQueue:ilk */ 7277 intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1, 7278 intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1) | 7279 ILK_FBCQ_DIS); 7280 intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2, 7281 intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) | 7282 ILK_DPARB_GATE); 7283 } 7284 7285 intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D, dspclk_gate); 7286 7287 intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2, 7288 intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) | 7289 ILK_ELPIN_409_SELECT); 7290 7291 g4x_disable_trickle_feed(dev_priv); 7292 7293 ibx_init_clock_gating(dev_priv); 7294} 7295 7296static void cpt_init_clock_gating(struct drm_i915_private *dev_priv) 7297{ 7298 enum pipe pipe; 7299 u32 val; 7300 7301 /* 7302 * On Ibex Peak and Cougar Point, we need to disable clock 7303 * gating for the panel power sequencer or it will fail to 7304 * start up when no ports are active. 7305 */ 7306 intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE | 7307 PCH_DPLUNIT_CLOCK_GATE_DISABLE | 7308 PCH_CPUNIT_CLOCK_GATE_DISABLE); 7309 intel_uncore_write(&dev_priv->uncore, SOUTH_CHICKEN2, intel_uncore_read(&dev_priv->uncore, SOUTH_CHICKEN2) | 7310 DPLS_EDP_PPS_FIX_DIS); 7311 /* The below fixes the weird display corruption, a few pixels shifted 7312 * downward, on (only) LVDS of some HP laptops with IVY. 7313 */ 7314 for_each_pipe(dev_priv, pipe) { 7315 val = intel_uncore_read(&dev_priv->uncore, TRANS_CHICKEN2(pipe)); 7316 val |= TRANS_CHICKEN2_TIMING_OVERRIDE; 7317 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED; 7318 if (dev_priv->vbt.fdi_rx_polarity_inverted) 7319 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED; 7320 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER; 7321 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH; 7322 intel_uncore_write(&dev_priv->uncore, TRANS_CHICKEN2(pipe), val); 7323 } 7324 /* WADP0ClockGatingDisable */ 7325 for_each_pipe(dev_priv, pipe) { 7326 intel_uncore_write(&dev_priv->uncore, TRANS_CHICKEN1(pipe), 7327 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE); 7328 } 7329} 7330 7331static void gen6_check_mch_setup(struct drm_i915_private *dev_priv) 7332{ 7333 u32 tmp; 7334 7335 tmp = intel_uncore_read(&dev_priv->uncore, MCH_SSKPD); 7336 if (REG_FIELD_GET(SSKPD_WM0_MASK_SNB, tmp) != 12) 7337 drm_dbg_kms(&dev_priv->drm, 7338 "Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n", 7339 tmp); 7340} 7341 7342static void gen6_init_clock_gating(struct drm_i915_private *dev_priv) 7343{ 7344 u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE; 7345 7346 intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D, dspclk_gate); 7347 7348 intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2, 7349 intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) | 7350 ILK_ELPIN_409_SELECT); 7351 7352 intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL1, 7353 intel_uncore_read(&dev_priv->uncore, GEN6_UCGCTL1) | 7354 GEN6_BLBUNIT_CLOCK_GATE_DISABLE | 7355 GEN6_CSUNIT_CLOCK_GATE_DISABLE); 7356 7357 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock 7358 * gating disable must be set. Failure to set it results in 7359 * flickering pixels due to Z write ordering failures after 7360 * some amount of runtime in the Mesa "fire" demo, and Unigine 7361 * Sanctuary and Tropics, and apparently anything else with 7362 * alpha test or pixel discard. 7363 * 7364 * According to the spec, bit 11 (RCCUNIT) must also be set, 7365 * but we didn't debug actual testcases to find it out. 7366 * 7367 * WaDisableRCCUnitClockGating:snb 7368 * WaDisableRCPBUnitClockGating:snb 7369 */ 7370 intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL2, 7371 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE | 7372 GEN6_RCCUNIT_CLOCK_GATE_DISABLE); 7373 7374 /* 7375 * According to the spec the following bits should be 7376 * set in order to enable memory self-refresh and fbc: 7377 * The bit21 and bit22 of 0x42000 7378 * The bit21 and bit22 of 0x42004 7379 * The bit5 and bit7 of 0x42020 7380 * The bit14 of 0x70180 7381 * The bit14 of 0x71180 7382 * 7383 * WaFbcAsynchFlipDisableFbcQueue:snb 7384 */ 7385 intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1, 7386 intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1) | 7387 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS); 7388 intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2, 7389 intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) | 7390 ILK_DPARB_GATE | ILK_VSDPFD_FULL); 7391 intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D, 7392 intel_uncore_read(&dev_priv->uncore, ILK_DSPCLK_GATE_D) | 7393 ILK_DPARBUNIT_CLOCK_GATE_ENABLE | 7394 ILK_DPFDUNIT_CLOCK_GATE_ENABLE); 7395 7396 g4x_disable_trickle_feed(dev_priv); 7397 7398 cpt_init_clock_gating(dev_priv); 7399 7400 gen6_check_mch_setup(dev_priv); 7401} 7402 7403static void lpt_init_clock_gating(struct drm_i915_private *dev_priv) 7404{ 7405 /* 7406 * TODO: this bit should only be enabled when really needed, then 7407 * disabled when not needed anymore in order to save power. 7408 */ 7409 if (HAS_PCH_LPT_LP(dev_priv)) 7410 intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, 7411 intel_uncore_read(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D) | 7412 PCH_LP_PARTITION_LEVEL_DISABLE); 7413 7414 /* WADPOClockGatingDisable:hsw */ 7415 intel_uncore_write(&dev_priv->uncore, TRANS_CHICKEN1(PIPE_A), 7416 intel_uncore_read(&dev_priv->uncore, TRANS_CHICKEN1(PIPE_A)) | 7417 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE); 7418} 7419 7420static void lpt_suspend_hw(struct drm_i915_private *dev_priv) 7421{ 7422 if (HAS_PCH_LPT_LP(dev_priv)) { 7423 u32 val = intel_uncore_read(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D); 7424 7425 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE; 7426 intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, val); 7427 } 7428} 7429 7430static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv, 7431 int general_prio_credits, 7432 int high_prio_credits) 7433{ 7434 u32 misccpctl; 7435 u32 val; 7436 7437 /* WaTempDisableDOPClkGating:bdw */ 7438 misccpctl = intel_uncore_read(&dev_priv->uncore, GEN7_MISCCPCTL); 7439 intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE); 7440 7441 val = intel_uncore_read(&dev_priv->uncore, GEN8_L3SQCREG1); 7442 val &= ~L3_PRIO_CREDITS_MASK; 7443 val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits); 7444 val |= L3_HIGH_PRIO_CREDITS(high_prio_credits); 7445 intel_uncore_write(&dev_priv->uncore, GEN8_L3SQCREG1, val); 7446 7447 /* 7448 * Wait at least 100 clocks before re-enabling clock gating. 7449 * See the definition of L3SQCREG1 in BSpec. 7450 */ 7451 intel_uncore_posting_read(&dev_priv->uncore, GEN8_L3SQCREG1); 7452 udelay(1); 7453 intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, misccpctl); 7454} 7455 7456static void icl_init_clock_gating(struct drm_i915_private *dev_priv) 7457{ 7458 /* Wa_1409120013:icl,ehl */ 7459 intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN(INTEL_FBC_A), 7460 DPFC_CHICKEN_COMP_DUMMY_PIXEL); 7461 7462 /*Wa_14010594013:icl, ehl */ 7463 intel_uncore_rmw(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1, 7464 0, ICL_DELAY_PMRSP); 7465} 7466 7467static void gen12lp_init_clock_gating(struct drm_i915_private *dev_priv) 7468{ 7469 /* Wa_1409120013:tgl,rkl,adl-s,dg1,dg2 */ 7470 if (IS_TIGERLAKE(dev_priv) || IS_ROCKETLAKE(dev_priv) || 7471 IS_ALDERLAKE_S(dev_priv) || IS_DG1(dev_priv) || IS_DG2(dev_priv)) 7472 intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN(INTEL_FBC_A), 7473 DPFC_CHICKEN_COMP_DUMMY_PIXEL); 7474 7475 /* Wa_1409825376:tgl (pre-prod)*/ 7476 if (IS_TGL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_C0)) 7477 intel_uncore_write(&dev_priv->uncore, GEN9_CLKGATE_DIS_3, intel_uncore_read(&dev_priv->uncore, GEN9_CLKGATE_DIS_3) | 7478 TGL_VRH_GATING_DIS); 7479 7480 /* Wa_14013723622:tgl,rkl,dg1,adl-s */ 7481 if (DISPLAY_VER(dev_priv) == 12) 7482 intel_uncore_rmw(&dev_priv->uncore, CLKREQ_POLICY, 7483 CLKREQ_POLICY_MEM_UP_OVRD, 0); 7484} 7485 7486static void adlp_init_clock_gating(struct drm_i915_private *dev_priv) 7487{ 7488 gen12lp_init_clock_gating(dev_priv); 7489 7490 /* Wa_22011091694:adlp */ 7491 intel_de_rmw(dev_priv, GEN9_CLKGATE_DIS_5, 0, DPCE_GATING_DIS); 7492 7493 /* Bspec/49189 Initialize Sequence */ 7494 intel_de_rmw(dev_priv, GEN8_CHICKEN_DCPR_1, DDI_CLOCK_REG_ACCESS, 0); 7495} 7496 7497static void dg1_init_clock_gating(struct drm_i915_private *dev_priv) 7498{ 7499 gen12lp_init_clock_gating(dev_priv); 7500 7501 /* Wa_1409836686:dg1[a0] */ 7502 if (IS_DG1_GRAPHICS_STEP(dev_priv, STEP_A0, STEP_B0)) 7503 intel_uncore_write(&dev_priv->uncore, GEN9_CLKGATE_DIS_3, intel_uncore_read(&dev_priv->uncore, GEN9_CLKGATE_DIS_3) | 7504 DPT_GATING_DIS); 7505} 7506 7507static void xehpsdv_init_clock_gating(struct drm_i915_private *dev_priv) 7508{ 7509 /* Wa_22010146351:xehpsdv */ 7510 if (IS_XEHPSDV_GRAPHICS_STEP(dev_priv, STEP_A0, STEP_B0)) 7511 intel_uncore_rmw(&dev_priv->uncore, XEHP_CLOCK_GATE_DIS, 0, SGR_DIS); 7512} 7513 7514static void dg2_init_clock_gating(struct drm_i915_private *i915) 7515{ 7516 /* Wa_22010954014:dg2_g10 */ 7517 if (IS_DG2_G10(i915)) 7518 intel_uncore_rmw(&i915->uncore, XEHP_CLOCK_GATE_DIS, 0, 7519 SGSI_SIDECLK_DIS); 7520 7521 /* 7522 * Wa_14010733611:dg2_g10 7523 * Wa_22010146351:dg2_g10 7524 */ 7525 if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_A0, STEP_B0)) 7526 intel_uncore_rmw(&i915->uncore, XEHP_CLOCK_GATE_DIS, 0, 7527 SGR_DIS | SGGI_DIS); 7528} 7529 7530static void cnp_init_clock_gating(struct drm_i915_private *dev_priv) 7531{ 7532 if (!HAS_PCH_CNP(dev_priv)) 7533 return; 7534 7535 /* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */ 7536 intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, intel_uncore_read(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D) | 7537 CNP_PWM_CGE_GATING_DISABLE); 7538} 7539 7540static void cfl_init_clock_gating(struct drm_i915_private *dev_priv) 7541{ 7542 cnp_init_clock_gating(dev_priv); 7543 gen9_init_clock_gating(dev_priv); 7544 7545 /* WAC6entrylatency:cfl */ 7546 intel_uncore_write(&dev_priv->uncore, FBC_LLC_READ_CTRL, intel_uncore_read(&dev_priv->uncore, FBC_LLC_READ_CTRL) | 7547 FBC_LLC_FULLY_OPEN); 7548 7549 /* 7550 * WaFbcTurnOffFbcWatermark:cfl 7551 * Display WA #0562: cfl 7552 */ 7553 intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) | 7554 DISP_FBC_WM_DIS); 7555 7556 /* 7557 * WaFbcNukeOnHostModify:cfl 7558 * Display WA #0873: cfl 7559 */ 7560 intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN(INTEL_FBC_A), 7561 intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN(INTEL_FBC_A)) | 7562 DPFC_NUKE_ON_ANY_MODIFICATION); 7563} 7564 7565static void kbl_init_clock_gating(struct drm_i915_private *dev_priv) 7566{ 7567 gen9_init_clock_gating(dev_priv); 7568 7569 /* WAC6entrylatency:kbl */ 7570 intel_uncore_write(&dev_priv->uncore, FBC_LLC_READ_CTRL, intel_uncore_read(&dev_priv->uncore, FBC_LLC_READ_CTRL) | 7571 FBC_LLC_FULLY_OPEN); 7572 7573 /* WaDisableSDEUnitClockGating:kbl */ 7574 if (IS_KBL_GRAPHICS_STEP(dev_priv, 0, STEP_C0)) 7575 intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) | 7576 GEN8_SDEUNIT_CLOCK_GATE_DISABLE); 7577 7578 /* WaDisableGamClockGating:kbl */ 7579 if (IS_KBL_GRAPHICS_STEP(dev_priv, 0, STEP_C0)) 7580 intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL1, intel_uncore_read(&dev_priv->uncore, GEN6_UCGCTL1) | 7581 GEN6_GAMUNIT_CLOCK_GATE_DISABLE); 7582 7583 /* 7584 * WaFbcTurnOffFbcWatermark:kbl 7585 * Display WA #0562: kbl 7586 */ 7587 intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) | 7588 DISP_FBC_WM_DIS); 7589 7590 /* 7591 * WaFbcNukeOnHostModify:kbl 7592 * Display WA #0873: kbl 7593 */ 7594 intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN(INTEL_FBC_A), 7595 intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN(INTEL_FBC_A)) | 7596 DPFC_NUKE_ON_ANY_MODIFICATION); 7597} 7598 7599static void skl_init_clock_gating(struct drm_i915_private *dev_priv) 7600{ 7601 gen9_init_clock_gating(dev_priv); 7602 7603 /* WaDisableDopClockGating:skl */ 7604 intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, intel_uncore_read(&dev_priv->uncore, GEN7_MISCCPCTL) & 7605 ~GEN7_DOP_CLOCK_GATE_ENABLE); 7606 7607 /* WAC6entrylatency:skl */ 7608 intel_uncore_write(&dev_priv->uncore, FBC_LLC_READ_CTRL, intel_uncore_read(&dev_priv->uncore, FBC_LLC_READ_CTRL) | 7609 FBC_LLC_FULLY_OPEN); 7610 7611 /* 7612 * WaFbcTurnOffFbcWatermark:skl 7613 * Display WA #0562: skl 7614 */ 7615 intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) | 7616 DISP_FBC_WM_DIS); 7617 7618 /* 7619 * WaFbcNukeOnHostModify:skl 7620 * Display WA #0873: skl 7621 */ 7622 intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN(INTEL_FBC_A), 7623 intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN(INTEL_FBC_A)) | 7624 DPFC_NUKE_ON_ANY_MODIFICATION); 7625 7626 /* 7627 * WaFbcHighMemBwCorruptionAvoidance:skl 7628 * Display WA #0883: skl 7629 */ 7630 intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN(INTEL_FBC_A), 7631 intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN(INTEL_FBC_A)) | 7632 DPFC_DISABLE_DUMMY0); 7633} 7634 7635static void bdw_init_clock_gating(struct drm_i915_private *dev_priv) 7636{ 7637 enum pipe pipe; 7638 7639 /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */ 7640 intel_uncore_write(&dev_priv->uncore, CHICKEN_PIPESL_1(PIPE_A), 7641 intel_uncore_read(&dev_priv->uncore, CHICKEN_PIPESL_1(PIPE_A)) | 7642 HSW_FBCQ_DIS); 7643 7644 /* WaSwitchSolVfFArbitrationPriority:bdw */ 7645 intel_uncore_write(&dev_priv->uncore, GAM_ECOCHK, intel_uncore_read(&dev_priv->uncore, GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL); 7646 7647 /* WaPsrDPAMaskVBlankInSRD:bdw */ 7648 intel_uncore_write(&dev_priv->uncore, CHICKEN_PAR1_1, 7649 intel_uncore_read(&dev_priv->uncore, CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD); 7650 7651 for_each_pipe(dev_priv, pipe) { 7652 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */ 7653 intel_uncore_write(&dev_priv->uncore, CHICKEN_PIPESL_1(pipe), 7654 intel_uncore_read(&dev_priv->uncore, CHICKEN_PIPESL_1(pipe)) | 7655 BDW_DPRS_MASK_VBLANK_SRD); 7656 } 7657 7658 /* WaVSRefCountFullforceMissDisable:bdw */ 7659 /* WaDSRefCountFullforceMissDisable:bdw */ 7660 intel_uncore_write(&dev_priv->uncore, GEN7_FF_THREAD_MODE, 7661 intel_uncore_read(&dev_priv->uncore, GEN7_FF_THREAD_MODE) & 7662 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME)); 7663 7664 intel_uncore_write(&dev_priv->uncore, RING_PSMI_CTL(RENDER_RING_BASE), 7665 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE)); 7666 7667 /* WaDisableSDEUnitClockGating:bdw */ 7668 intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) | 7669 GEN8_SDEUNIT_CLOCK_GATE_DISABLE); 7670 7671 /* WaProgramL3SqcReg1Default:bdw */ 7672 gen8_set_l3sqc_credits(dev_priv, 30, 2); 7673 7674 /* WaKVMNotificationOnConfigChange:bdw */ 7675 intel_uncore_write(&dev_priv->uncore, CHICKEN_PAR2_1, intel_uncore_read(&dev_priv->uncore, CHICKEN_PAR2_1) 7676 | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT); 7677 7678 lpt_init_clock_gating(dev_priv); 7679 7680 /* WaDisableDopClockGating:bdw 7681 * 7682 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP 7683 * clock gating. 7684 */ 7685 intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL1, 7686 intel_uncore_read(&dev_priv->uncore, GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE); 7687} 7688 7689static void hsw_init_clock_gating(struct drm_i915_private *dev_priv) 7690{ 7691 /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */ 7692 intel_uncore_write(&dev_priv->uncore, CHICKEN_PIPESL_1(PIPE_A), 7693 intel_uncore_read(&dev_priv->uncore, CHICKEN_PIPESL_1(PIPE_A)) | 7694 HSW_FBCQ_DIS); 7695 7696 /* This is required by WaCatErrorRejectionIssue:hsw */ 7697 intel_uncore_write(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG, 7698 intel_uncore_read(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) | 7699 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB); 7700 7701 /* WaSwitchSolVfFArbitrationPriority:hsw */ 7702 intel_uncore_write(&dev_priv->uncore, GAM_ECOCHK, intel_uncore_read(&dev_priv->uncore, GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL); 7703 7704 lpt_init_clock_gating(dev_priv); 7705} 7706 7707static void ivb_init_clock_gating(struct drm_i915_private *dev_priv) 7708{ 7709 u32 snpcr; 7710 7711 intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE); 7712 7713 /* WaFbcAsynchFlipDisableFbcQueue:ivb */ 7714 intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1, 7715 intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1) | 7716 ILK_FBCQ_DIS); 7717 7718 /* WaDisableBackToBackFlipFix:ivb */ 7719 intel_uncore_write(&dev_priv->uncore, IVB_CHICKEN3, 7720 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE | 7721 CHICKEN3_DGMG_DONE_FIX_DISABLE); 7722 7723 if (IS_IVB_GT1(dev_priv)) 7724 intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2, 7725 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE)); 7726 else { 7727 /* must write both registers */ 7728 intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2, 7729 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE)); 7730 intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2_GT2, 7731 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE)); 7732 } 7733 7734 /* 7735 * According to the spec, bit 13 (RCZUNIT) must be set on IVB. 7736 * This implements the WaDisableRCZUnitClockGating:ivb workaround. 7737 */ 7738 intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL2, 7739 GEN6_RCZUNIT_CLOCK_GATE_DISABLE); 7740 7741 /* This is required by WaCatErrorRejectionIssue:ivb */ 7742 intel_uncore_write(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG, 7743 intel_uncore_read(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) | 7744 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB); 7745 7746 g4x_disable_trickle_feed(dev_priv); 7747 7748 snpcr = intel_uncore_read(&dev_priv->uncore, GEN6_MBCUNIT_SNPCR); 7749 snpcr &= ~GEN6_MBC_SNPCR_MASK; 7750 snpcr |= GEN6_MBC_SNPCR_MED; 7751 intel_uncore_write(&dev_priv->uncore, GEN6_MBCUNIT_SNPCR, snpcr); 7752 7753 if (!HAS_PCH_NOP(dev_priv)) 7754 cpt_init_clock_gating(dev_priv); 7755 7756 gen6_check_mch_setup(dev_priv); 7757} 7758 7759static void vlv_init_clock_gating(struct drm_i915_private *dev_priv) 7760{ 7761 /* WaDisableBackToBackFlipFix:vlv */ 7762 intel_uncore_write(&dev_priv->uncore, IVB_CHICKEN3, 7763 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE | 7764 CHICKEN3_DGMG_DONE_FIX_DISABLE); 7765 7766 /* WaDisableDopClockGating:vlv */ 7767 intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2, 7768 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE)); 7769 7770 /* This is required by WaCatErrorRejectionIssue:vlv */ 7771 intel_uncore_write(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG, 7772 intel_uncore_read(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) | 7773 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB); 7774 7775 /* 7776 * According to the spec, bit 13 (RCZUNIT) must be set on IVB. 7777 * This implements the WaDisableRCZUnitClockGating:vlv workaround. 7778 */ 7779 intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL2, 7780 GEN6_RCZUNIT_CLOCK_GATE_DISABLE); 7781 7782 /* WaDisableL3Bank2xClockGate:vlv 7783 * Disabling L3 clock gating- MMIO 940c[25] = 1 7784 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */ 7785 intel_uncore_write(&dev_priv->uncore, GEN7_UCGCTL4, 7786 intel_uncore_read(&dev_priv->uncore, GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE); 7787 7788 /* 7789 * WaDisableVLVClockGating_VBIIssue:vlv 7790 * Disable clock gating on th GCFG unit to prevent a delay 7791 * in the reporting of vblank events. 7792 */ 7793 intel_uncore_write(&dev_priv->uncore, VLV_GUNIT_CLOCK_GATE, GCFG_DIS); 7794} 7795 7796static void chv_init_clock_gating(struct drm_i915_private *dev_priv) 7797{ 7798 /* WaVSRefCountFullforceMissDisable:chv */ 7799 /* WaDSRefCountFullforceMissDisable:chv */ 7800 intel_uncore_write(&dev_priv->uncore, GEN7_FF_THREAD_MODE, 7801 intel_uncore_read(&dev_priv->uncore, GEN7_FF_THREAD_MODE) & 7802 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME)); 7803 7804 /* WaDisableSemaphoreAndSyncFlipWait:chv */ 7805 intel_uncore_write(&dev_priv->uncore, RING_PSMI_CTL(RENDER_RING_BASE), 7806 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE)); 7807 7808 /* WaDisableCSUnitClockGating:chv */ 7809 intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL1, intel_uncore_read(&dev_priv->uncore, GEN6_UCGCTL1) | 7810 GEN6_CSUNIT_CLOCK_GATE_DISABLE); 7811 7812 /* WaDisableSDEUnitClockGating:chv */ 7813 intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) | 7814 GEN8_SDEUNIT_CLOCK_GATE_DISABLE); 7815 7816 /* 7817 * WaProgramL3SqcReg1Default:chv 7818 * See gfxspecs/Related Documents/Performance Guide/ 7819 * LSQC Setting Recommendations. 7820 */ 7821 gen8_set_l3sqc_credits(dev_priv, 38, 2); 7822} 7823 7824static void g4x_init_clock_gating(struct drm_i915_private *dev_priv) 7825{ 7826 u32 dspclk_gate; 7827 7828 intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D1, 0); 7829 intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE | 7830 GS_UNIT_CLOCK_GATE_DISABLE | 7831 CL_UNIT_CLOCK_GATE_DISABLE); 7832 intel_uncore_write(&dev_priv->uncore, RAMCLK_GATE_D, 0); 7833 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE | 7834 OVRUNIT_CLOCK_GATE_DISABLE | 7835 OVCUNIT_CLOCK_GATE_DISABLE; 7836 if (IS_GM45(dev_priv)) 7837 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE; 7838 intel_uncore_write(&dev_priv->uncore, DSPCLK_GATE_D, dspclk_gate); 7839 7840 g4x_disable_trickle_feed(dev_priv); 7841} 7842 7843static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv) 7844{ 7845 struct intel_uncore *uncore = &dev_priv->uncore; 7846 7847 intel_uncore_write(uncore, RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE); 7848 intel_uncore_write(uncore, RENCLK_GATE_D2, 0); 7849 intel_uncore_write(uncore, DSPCLK_GATE_D, 0); 7850 intel_uncore_write(uncore, RAMCLK_GATE_D, 0); 7851 intel_uncore_write16(uncore, DEUC, 0); 7852 intel_uncore_write(uncore, 7853 MI_ARB_STATE, 7854 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE)); 7855} 7856 7857static void i965g_init_clock_gating(struct drm_i915_private *dev_priv) 7858{ 7859 intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE | 7860 I965_RCC_CLOCK_GATE_DISABLE | 7861 I965_RCPB_CLOCK_GATE_DISABLE | 7862 I965_ISC_CLOCK_GATE_DISABLE | 7863 I965_FBC_CLOCK_GATE_DISABLE); 7864 intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D2, 0); 7865 intel_uncore_write(&dev_priv->uncore, MI_ARB_STATE, 7866 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE)); 7867} 7868 7869static void gen3_init_clock_gating(struct drm_i915_private *dev_priv) 7870{ 7871 u32 dstate = intel_uncore_read(&dev_priv->uncore, D_STATE); 7872 7873 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING | 7874 DSTATE_DOT_CLOCK_GATING; 7875 intel_uncore_write(&dev_priv->uncore, D_STATE, dstate); 7876 7877 if (IS_PINEVIEW(dev_priv)) 7878 intel_uncore_write(&dev_priv->uncore, ECOSKPD(RENDER_RING_BASE), 7879 _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY)); 7880 7881 /* IIR "flip pending" means done if this bit is set */ 7882 intel_uncore_write(&dev_priv->uncore, ECOSKPD(RENDER_RING_BASE), 7883 _MASKED_BIT_DISABLE(ECO_FLIP_DONE)); 7884 7885 /* interrupts should cause a wake up from C3 */ 7886 intel_uncore_write(&dev_priv->uncore, INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN)); 7887 7888 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */ 7889 intel_uncore_write(&dev_priv->uncore, MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE)); 7890 7891 intel_uncore_write(&dev_priv->uncore, MI_ARB_STATE, 7892 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE)); 7893} 7894 7895static void i85x_init_clock_gating(struct drm_i915_private *dev_priv) 7896{ 7897 intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE); 7898 7899 /* interrupts should cause a wake up from C3 */ 7900 intel_uncore_write(&dev_priv->uncore, MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) | 7901 _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE)); 7902 7903 intel_uncore_write(&dev_priv->uncore, MEM_MODE, 7904 _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE)); 7905 7906 /* 7907 * Have FBC ignore 3D activity since we use software 7908 * render tracking, and otherwise a pure 3D workload 7909 * (even if it just renders a single frame and then does 7910 * abosultely nothing) would not allow FBC to recompress 7911 * until a 2D blit occurs. 7912 */ 7913 intel_uncore_write(&dev_priv->uncore, SCPD0, 7914 _MASKED_BIT_ENABLE(SCPD_FBC_IGNORE_3D)); 7915} 7916 7917static void i830_init_clock_gating(struct drm_i915_private *dev_priv) 7918{ 7919 intel_uncore_write(&dev_priv->uncore, MEM_MODE, 7920 _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) | 7921 _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE)); 7922} 7923 7924void intel_init_clock_gating(struct drm_i915_private *dev_priv) 7925{ 7926 dev_priv->clock_gating_funcs->init_clock_gating(dev_priv); 7927} 7928 7929void intel_suspend_hw(struct drm_i915_private *dev_priv) 7930{ 7931 if (HAS_PCH_LPT(dev_priv)) 7932 lpt_suspend_hw(dev_priv); 7933} 7934 7935static void nop_init_clock_gating(struct drm_i915_private *dev_priv) 7936{ 7937 drm_dbg_kms(&dev_priv->drm, 7938 "No clock gating settings or workarounds applied.\n"); 7939} 7940 7941#define CG_FUNCS(platform) \ 7942static const struct drm_i915_clock_gating_funcs platform##_clock_gating_funcs = { \ 7943 .init_clock_gating = platform##_init_clock_gating, \ 7944} 7945 7946CG_FUNCS(dg2); 7947CG_FUNCS(xehpsdv); 7948CG_FUNCS(adlp); 7949CG_FUNCS(dg1); 7950CG_FUNCS(gen12lp); 7951CG_FUNCS(icl); 7952CG_FUNCS(cfl); 7953CG_FUNCS(skl); 7954CG_FUNCS(kbl); 7955CG_FUNCS(bxt); 7956CG_FUNCS(glk); 7957CG_FUNCS(bdw); 7958CG_FUNCS(chv); 7959CG_FUNCS(hsw); 7960CG_FUNCS(ivb); 7961CG_FUNCS(vlv); 7962CG_FUNCS(gen6); 7963CG_FUNCS(ilk); 7964CG_FUNCS(g4x); 7965CG_FUNCS(i965gm); 7966CG_FUNCS(i965g); 7967CG_FUNCS(gen3); 7968CG_FUNCS(i85x); 7969CG_FUNCS(i830); 7970CG_FUNCS(nop); 7971#undef CG_FUNCS 7972 7973/** 7974 * intel_init_clock_gating_hooks - setup the clock gating hooks 7975 * @dev_priv: device private 7976 * 7977 * Setup the hooks that configure which clocks of a given platform can be 7978 * gated and also apply various GT and display specific workarounds for these 7979 * platforms. Note that some GT specific workarounds are applied separately 7980 * when GPU contexts or batchbuffers start their execution. 7981 */ 7982void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv) 7983{ 7984 if (IS_DG2(dev_priv)) 7985 dev_priv->clock_gating_funcs = &dg2_clock_gating_funcs; 7986 else if (IS_XEHPSDV(dev_priv)) 7987 dev_priv->clock_gating_funcs = &xehpsdv_clock_gating_funcs; 7988 else if (IS_ALDERLAKE_P(dev_priv)) 7989 dev_priv->clock_gating_funcs = &adlp_clock_gating_funcs; 7990 else if (IS_DG1(dev_priv)) 7991 dev_priv->clock_gating_funcs = &dg1_clock_gating_funcs; 7992 else if (GRAPHICS_VER(dev_priv) == 12) 7993 dev_priv->clock_gating_funcs = &gen12lp_clock_gating_funcs; 7994 else if (GRAPHICS_VER(dev_priv) == 11) 7995 dev_priv->clock_gating_funcs = &icl_clock_gating_funcs; 7996 else if (IS_COFFEELAKE(dev_priv) || IS_COMETLAKE(dev_priv)) 7997 dev_priv->clock_gating_funcs = &cfl_clock_gating_funcs; 7998 else if (IS_SKYLAKE(dev_priv)) 7999 dev_priv->clock_gating_funcs = &skl_clock_gating_funcs; 8000 else if (IS_KABYLAKE(dev_priv)) 8001 dev_priv->clock_gating_funcs = &kbl_clock_gating_funcs; 8002 else if (IS_BROXTON(dev_priv)) 8003 dev_priv->clock_gating_funcs = &bxt_clock_gating_funcs; 8004 else if (IS_GEMINILAKE(dev_priv)) 8005 dev_priv->clock_gating_funcs = &glk_clock_gating_funcs; 8006 else if (IS_BROADWELL(dev_priv)) 8007 dev_priv->clock_gating_funcs = &bdw_clock_gating_funcs; 8008 else if (IS_CHERRYVIEW(dev_priv)) 8009 dev_priv->clock_gating_funcs = &chv_clock_gating_funcs; 8010 else if (IS_HASWELL(dev_priv)) 8011 dev_priv->clock_gating_funcs = &hsw_clock_gating_funcs; 8012 else if (IS_IVYBRIDGE(dev_priv)) 8013 dev_priv->clock_gating_funcs = &ivb_clock_gating_funcs; 8014 else if (IS_VALLEYVIEW(dev_priv)) 8015 dev_priv->clock_gating_funcs = &vlv_clock_gating_funcs; 8016 else if (GRAPHICS_VER(dev_priv) == 6) 8017 dev_priv->clock_gating_funcs = &gen6_clock_gating_funcs; 8018 else if (GRAPHICS_VER(dev_priv) == 5) 8019 dev_priv->clock_gating_funcs = &ilk_clock_gating_funcs; 8020 else if (IS_G4X(dev_priv)) 8021 dev_priv->clock_gating_funcs = &g4x_clock_gating_funcs; 8022 else if (IS_I965GM(dev_priv)) 8023 dev_priv->clock_gating_funcs = &i965gm_clock_gating_funcs; 8024 else if (IS_I965G(dev_priv)) 8025 dev_priv->clock_gating_funcs = &i965g_clock_gating_funcs; 8026 else if (GRAPHICS_VER(dev_priv) == 3) 8027 dev_priv->clock_gating_funcs = &gen3_clock_gating_funcs; 8028 else if (IS_I85X(dev_priv) || IS_I865G(dev_priv)) 8029 dev_priv->clock_gating_funcs = &i85x_clock_gating_funcs; 8030 else if (GRAPHICS_VER(dev_priv) == 2) 8031 dev_priv->clock_gating_funcs = &i830_clock_gating_funcs; 8032 else { 8033 MISSING_CASE(INTEL_DEVID(dev_priv)); 8034 dev_priv->clock_gating_funcs = &nop_clock_gating_funcs; 8035 } 8036} 8037 8038static const struct drm_i915_wm_disp_funcs skl_wm_funcs = { 8039 .compute_global_watermarks = skl_compute_wm, 8040}; 8041 8042static const struct drm_i915_wm_disp_funcs ilk_wm_funcs = { 8043 .compute_pipe_wm = ilk_compute_pipe_wm, 8044 .compute_intermediate_wm = ilk_compute_intermediate_wm, 8045 .initial_watermarks = ilk_initial_watermarks, 8046 .optimize_watermarks = ilk_optimize_watermarks, 8047}; 8048 8049static const struct drm_i915_wm_disp_funcs vlv_wm_funcs = { 8050 .compute_pipe_wm = vlv_compute_pipe_wm, 8051 .compute_intermediate_wm = vlv_compute_intermediate_wm, 8052 .initial_watermarks = vlv_initial_watermarks, 8053 .optimize_watermarks = vlv_optimize_watermarks, 8054 .atomic_update_watermarks = vlv_atomic_update_fifo, 8055}; 8056 8057static const struct drm_i915_wm_disp_funcs g4x_wm_funcs = { 8058 .compute_pipe_wm = g4x_compute_pipe_wm, 8059 .compute_intermediate_wm = g4x_compute_intermediate_wm, 8060 .initial_watermarks = g4x_initial_watermarks, 8061 .optimize_watermarks = g4x_optimize_watermarks, 8062}; 8063 8064static const struct drm_i915_wm_disp_funcs pnv_wm_funcs = { 8065 .update_wm = pnv_update_wm, 8066}; 8067 8068static const struct drm_i915_wm_disp_funcs i965_wm_funcs = { 8069 .update_wm = i965_update_wm, 8070}; 8071 8072static const struct drm_i915_wm_disp_funcs i9xx_wm_funcs = { 8073 .update_wm = i9xx_update_wm, 8074}; 8075 8076static const struct drm_i915_wm_disp_funcs i845_wm_funcs = { 8077 .update_wm = i845_update_wm, 8078}; 8079 8080static const struct drm_i915_wm_disp_funcs nop_funcs = { 8081}; 8082 8083/* Set up chip specific power management-related functions */ 8084void intel_init_pm(struct drm_i915_private *dev_priv) 8085{ 8086 /* For cxsr */ 8087 if (IS_PINEVIEW(dev_priv)) 8088 pnv_get_mem_freq(dev_priv); 8089 else if (GRAPHICS_VER(dev_priv) == 5) 8090 ilk_get_mem_freq(dev_priv); 8091 8092 intel_sagv_init(dev_priv); 8093 8094 /* For FIFO watermark updates */ 8095 if (DISPLAY_VER(dev_priv) >= 9) { 8096 skl_setup_wm_latency(dev_priv); 8097 dev_priv->wm_disp = &skl_wm_funcs; 8098 } else if (HAS_PCH_SPLIT(dev_priv)) { 8099 ilk_setup_wm_latency(dev_priv); 8100 8101 if ((DISPLAY_VER(dev_priv) == 5 && dev_priv->wm.pri_latency[1] && 8102 dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) || 8103 (DISPLAY_VER(dev_priv) != 5 && dev_priv->wm.pri_latency[0] && 8104 dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) { 8105 dev_priv->wm_disp = &ilk_wm_funcs; 8106 } else { 8107 drm_dbg_kms(&dev_priv->drm, 8108 "Failed to read display plane latency. " 8109 "Disable CxSR\n"); 8110 dev_priv->wm_disp = &nop_funcs; 8111 } 8112 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 8113 vlv_setup_wm_latency(dev_priv); 8114 dev_priv->wm_disp = &vlv_wm_funcs; 8115 } else if (IS_G4X(dev_priv)) { 8116 g4x_setup_wm_latency(dev_priv); 8117 dev_priv->wm_disp = &g4x_wm_funcs; 8118 } else if (IS_PINEVIEW(dev_priv)) { 8119 if (!intel_get_cxsr_latency(!IS_MOBILE(dev_priv), 8120 dev_priv->is_ddr3, 8121 dev_priv->fsb_freq, 8122 dev_priv->mem_freq)) { 8123 drm_info(&dev_priv->drm, 8124 "failed to find known CxSR latency " 8125 "(found ddr%s fsb freq %d, mem freq %d), " 8126 "disabling CxSR\n", 8127 (dev_priv->is_ddr3 == 1) ? "3" : "2", 8128 dev_priv->fsb_freq, dev_priv->mem_freq); 8129 /* Disable CxSR and never update its watermark again */ 8130 intel_set_memory_cxsr(dev_priv, false); 8131 dev_priv->wm_disp = &nop_funcs; 8132 } else 8133 dev_priv->wm_disp = &pnv_wm_funcs; 8134 } else if (DISPLAY_VER(dev_priv) == 4) { 8135 dev_priv->wm_disp = &i965_wm_funcs; 8136 } else if (DISPLAY_VER(dev_priv) == 3) { 8137 dev_priv->wm_disp = &i9xx_wm_funcs; 8138 } else if (DISPLAY_VER(dev_priv) == 2) { 8139 if (INTEL_NUM_PIPES(dev_priv) == 1) 8140 dev_priv->wm_disp = &i845_wm_funcs; 8141 else 8142 dev_priv->wm_disp = &i9xx_wm_funcs; 8143 } else { 8144 drm_err(&dev_priv->drm, 8145 "unexpected fall-through in %s\n", __func__); 8146 dev_priv->wm_disp = &nop_funcs; 8147 } 8148} 8149 8150void intel_pm_setup(struct drm_i915_private *dev_priv) 8151{ 8152 dev_priv->runtime_pm.suspended = false; 8153 atomic_set(&dev_priv->runtime_pm.wakeref_count, 0); 8154} 8155 8156static struct intel_global_state *intel_dbuf_duplicate_state(struct intel_global_obj *obj) 8157{ 8158 struct intel_dbuf_state *dbuf_state; 8159 8160 dbuf_state = kmemdup(obj->state, sizeof(*dbuf_state), GFP_KERNEL); 8161 if (!dbuf_state) 8162 return NULL; 8163 8164 return &dbuf_state->base; 8165} 8166 8167static void intel_dbuf_destroy_state(struct intel_global_obj *obj, 8168 struct intel_global_state *state) 8169{ 8170 kfree(state); 8171} 8172 8173static const struct intel_global_state_funcs intel_dbuf_funcs = { 8174 .atomic_duplicate_state = intel_dbuf_duplicate_state, 8175 .atomic_destroy_state = intel_dbuf_destroy_state, 8176}; 8177 8178struct intel_dbuf_state * 8179intel_atomic_get_dbuf_state(struct intel_atomic_state *state) 8180{ 8181 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 8182 struct intel_global_state *dbuf_state; 8183 8184 dbuf_state = intel_atomic_get_global_obj_state(state, &dev_priv->dbuf.obj); 8185 if (IS_ERR(dbuf_state)) 8186 return ERR_CAST(dbuf_state); 8187 8188 return to_intel_dbuf_state(dbuf_state); 8189} 8190 8191int intel_dbuf_init(struct drm_i915_private *dev_priv) 8192{ 8193 struct intel_dbuf_state *dbuf_state; 8194 8195 dbuf_state = kzalloc(sizeof(*dbuf_state), GFP_KERNEL); 8196 if (!dbuf_state) 8197 return -ENOMEM; 8198 8199 intel_atomic_global_obj_init(dev_priv, &dev_priv->dbuf.obj, 8200 &dbuf_state->base, &intel_dbuf_funcs); 8201 8202 return 0; 8203} 8204 8205/* 8206 * Configure MBUS_CTL and all DBUF_CTL_S of each slice to join_mbus state before 8207 * update the request state of all DBUS slices. 8208 */ 8209static void update_mbus_pre_enable(struct intel_atomic_state *state) 8210{ 8211 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 8212 u32 mbus_ctl, dbuf_min_tracker_val; 8213 enum dbuf_slice slice; 8214 const struct intel_dbuf_state *dbuf_state = 8215 intel_atomic_get_new_dbuf_state(state); 8216 8217 if (!HAS_MBUS_JOINING(dev_priv)) 8218 return; 8219 8220 /* 8221 * TODO: Implement vblank synchronized MBUS joining changes. 8222 * Must be properly coordinated with dbuf reprogramming. 8223 */ 8224 if (dbuf_state->joined_mbus) { 8225 mbus_ctl = MBUS_HASHING_MODE_1x4 | MBUS_JOIN | 8226 MBUS_JOIN_PIPE_SELECT_NONE; 8227 dbuf_min_tracker_val = DBUF_MIN_TRACKER_STATE_SERVICE(3); 8228 } else { 8229 mbus_ctl = MBUS_HASHING_MODE_2x2 | 8230 MBUS_JOIN_PIPE_SELECT_NONE; 8231 dbuf_min_tracker_val = DBUF_MIN_TRACKER_STATE_SERVICE(1); 8232 } 8233 8234 intel_de_rmw(dev_priv, MBUS_CTL, 8235 MBUS_HASHING_MODE_MASK | MBUS_JOIN | 8236 MBUS_JOIN_PIPE_SELECT_MASK, mbus_ctl); 8237 8238 for_each_dbuf_slice(dev_priv, slice) 8239 intel_de_rmw(dev_priv, DBUF_CTL_S(slice), 8240 DBUF_MIN_TRACKER_STATE_SERVICE_MASK, 8241 dbuf_min_tracker_val); 8242} 8243 8244void intel_dbuf_pre_plane_update(struct intel_atomic_state *state) 8245{ 8246 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 8247 const struct intel_dbuf_state *new_dbuf_state = 8248 intel_atomic_get_new_dbuf_state(state); 8249 const struct intel_dbuf_state *old_dbuf_state = 8250 intel_atomic_get_old_dbuf_state(state); 8251 8252 if (!new_dbuf_state || 8253 ((new_dbuf_state->enabled_slices == old_dbuf_state->enabled_slices) 8254 && (new_dbuf_state->joined_mbus == old_dbuf_state->joined_mbus))) 8255 return; 8256 8257 WARN_ON(!new_dbuf_state->base.changed); 8258 8259 update_mbus_pre_enable(state); 8260 gen9_dbuf_slices_update(dev_priv, 8261 old_dbuf_state->enabled_slices | 8262 new_dbuf_state->enabled_slices); 8263} 8264 8265void intel_dbuf_post_plane_update(struct intel_atomic_state *state) 8266{ 8267 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 8268 const struct intel_dbuf_state *new_dbuf_state = 8269 intel_atomic_get_new_dbuf_state(state); 8270 const struct intel_dbuf_state *old_dbuf_state = 8271 intel_atomic_get_old_dbuf_state(state); 8272 8273 if (!new_dbuf_state || 8274 ((new_dbuf_state->enabled_slices == old_dbuf_state->enabled_slices) 8275 && (new_dbuf_state->joined_mbus == old_dbuf_state->joined_mbus))) 8276 return; 8277 8278 WARN_ON(!new_dbuf_state->base.changed); 8279 8280 gen9_dbuf_slices_update(dev_priv, 8281 new_dbuf_state->enabled_slices); 8282} 8283 8284void intel_mbus_dbox_update(struct intel_atomic_state *state) 8285{ 8286 struct drm_i915_private *i915 = to_i915(state->base.dev); 8287 const struct intel_dbuf_state *new_dbuf_state, *old_dbuf_state; 8288 const struct intel_crtc_state *new_crtc_state; 8289 const struct intel_crtc *crtc; 8290 u32 val = 0; 8291 int i; 8292 8293 if (DISPLAY_VER(i915) < 11) 8294 return; 8295 8296 new_dbuf_state = intel_atomic_get_new_dbuf_state(state); 8297 old_dbuf_state = intel_atomic_get_old_dbuf_state(state); 8298 if (!new_dbuf_state || 8299 (new_dbuf_state->joined_mbus == old_dbuf_state->joined_mbus && 8300 new_dbuf_state->active_pipes == old_dbuf_state->active_pipes)) 8301 return; 8302 8303 if (DISPLAY_VER(i915) >= 12) { 8304 val |= MBUS_DBOX_B2B_TRANSACTIONS_MAX(16); 8305 val |= MBUS_DBOX_B2B_TRANSACTIONS_DELAY(1); 8306 val |= MBUS_DBOX_REGULATE_B2B_TRANSACTIONS_EN; 8307 } 8308 8309 /* Wa_22010947358:adl-p */ 8310 if (IS_ALDERLAKE_P(i915)) 8311 val |= new_dbuf_state->joined_mbus ? MBUS_DBOX_A_CREDIT(6) : 8312 MBUS_DBOX_A_CREDIT(4); 8313 else 8314 val |= MBUS_DBOX_A_CREDIT(2); 8315 8316 if (IS_ALDERLAKE_P(i915)) { 8317 val |= MBUS_DBOX_BW_CREDIT(2); 8318 val |= MBUS_DBOX_B_CREDIT(8); 8319 } else if (DISPLAY_VER(i915) >= 12) { 8320 val |= MBUS_DBOX_BW_CREDIT(2); 8321 val |= MBUS_DBOX_B_CREDIT(12); 8322 } else { 8323 val |= MBUS_DBOX_BW_CREDIT(1); 8324 val |= MBUS_DBOX_B_CREDIT(8); 8325 } 8326 8327 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 8328 if (!new_crtc_state->hw.active || 8329 !intel_crtc_needs_modeset(new_crtc_state)) 8330 continue; 8331 8332 intel_de_write(i915, PIPE_MBUS_DBOX_CTL(crtc->pipe), val); 8333 } 8334}