cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

intel_pm.c (251890B)


      1/*
      2 * Copyright © 2012 Intel Corporation
      3 *
      4 * Permission is hereby granted, free of charge, to any person obtaining a
      5 * copy of this software and associated documentation files (the "Software"),
      6 * to deal in the Software without restriction, including without limitation
      7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8 * and/or sell copies of the Software, and to permit persons to whom the
      9 * Software is furnished to do so, subject to the following conditions:
     10 *
     11 * The above copyright notice and this permission notice (including the next
     12 * paragraph) shall be included in all copies or substantial portions of the
     13 * Software.
     14 *
     15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
     20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
     21 * IN THE SOFTWARE.
     22 *
     23 * Authors:
     24 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
     25 *
     26 */
     27
     28#include <linux/module.h>
     29#include <linux/string_helpers.h>
     30#include <linux/pm_runtime.h>
     31
     32#include <drm/drm_atomic_helper.h>
     33#include <drm/drm_fourcc.h>
     34#include <drm/drm_plane_helper.h>
     35
     36#include "display/intel_atomic.h"
     37#include "display/intel_atomic_plane.h"
     38#include "display/intel_bw.h"
     39#include "display/intel_de.h"
     40#include "display/intel_display_trace.h"
     41#include "display/intel_display_types.h"
     42#include "display/intel_fb.h"
     43#include "display/intel_fbc.h"
     44#include "display/intel_sprite.h"
     45#include "display/skl_universal_plane.h"
     46
     47#include "gt/intel_engine_regs.h"
     48#include "gt/intel_gt_regs.h"
     49#include "gt/intel_llc.h"
     50
     51#include "i915_drv.h"
     52#include "i915_fixed.h"
     53#include "i915_irq.h"
     54#include "intel_mchbar_regs.h"
     55#include "intel_pcode.h"
     56#include "intel_pm.h"
     57#include "vlv_sideband.h"
     58#include "../../../platform/x86/intel_ips.h"
     59
     60static void skl_sagv_disable(struct drm_i915_private *dev_priv);
     61
     62struct drm_i915_clock_gating_funcs {
     63	void (*init_clock_gating)(struct drm_i915_private *i915);
     64};
     65
     66/* Stores plane specific WM parameters */
     67struct skl_wm_params {
     68	bool x_tiled, y_tiled;
     69	bool rc_surface;
     70	bool is_planar;
     71	u32 width;
     72	u8 cpp;
     73	u32 plane_pixel_rate;
     74	u32 y_min_scanlines;
     75	u32 plane_bytes_per_line;
     76	uint_fixed_16_16_t plane_blocks_per_line;
     77	uint_fixed_16_16_t y_tile_minimum;
     78	u32 linetime_us;
     79	u32 dbuf_block_size;
     80};
     81
     82/* used in computing the new watermarks state */
     83struct intel_wm_config {
     84	unsigned int num_pipes_active;
     85	bool sprites_enabled;
     86	bool sprites_scaled;
     87};
     88
     89static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
     90{
     91	if (HAS_LLC(dev_priv)) {
     92		/*
     93		 * WaCompressedResourceDisplayNewHashMode:skl,kbl
     94		 * Display WA #0390: skl,kbl
     95		 *
     96		 * Must match Sampler, Pixel Back End, and Media. See
     97		 * WaCompressedResourceSamplerPbeMediaNewHashMode.
     98		 */
     99		intel_uncore_write(&dev_priv->uncore, CHICKEN_PAR1_1,
    100			   intel_uncore_read(&dev_priv->uncore, CHICKEN_PAR1_1) |
    101			   SKL_DE_COMPRESSED_HASH_MODE);
    102	}
    103
    104	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
    105	intel_uncore_write(&dev_priv->uncore, CHICKEN_PAR1_1,
    106		   intel_uncore_read(&dev_priv->uncore, CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
    107
    108	/* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
    109	intel_uncore_write(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1,
    110		   intel_uncore_read(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
    111
    112	/*
    113	 * WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl
    114	 * Display WA #0859: skl,bxt,kbl,glk,cfl
    115	 */
    116	intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
    117		   DISP_FBC_MEMORY_WAKE);
    118}
    119
    120static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
    121{
    122	gen9_init_clock_gating(dev_priv);
    123
    124	/* WaDisableSDEUnitClockGating:bxt */
    125	intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) |
    126		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
    127
    128	/*
    129	 * FIXME:
    130	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
    131	 */
    132	intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) |
    133		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
    134
    135	/*
    136	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
    137	 * to stay fully on.
    138	 */
    139	intel_uncore_write(&dev_priv->uncore, GEN9_CLKGATE_DIS_0, intel_uncore_read(&dev_priv->uncore, GEN9_CLKGATE_DIS_0) |
    140		   PWM1_GATING_DIS | PWM2_GATING_DIS);
    141
    142	/*
    143	 * Lower the display internal timeout.
    144	 * This is needed to avoid any hard hangs when DSI port PLL
    145	 * is off and a MMIO access is attempted by any privilege
    146	 * application, using batch buffers or any other means.
    147	 */
    148	intel_uncore_write(&dev_priv->uncore, RM_TIMEOUT, MMIO_TIMEOUT_US(950));
    149
    150	/*
    151	 * WaFbcTurnOffFbcWatermark:bxt
    152	 * Display WA #0562: bxt
    153	 */
    154	intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
    155		   DISP_FBC_WM_DIS);
    156
    157	/*
    158	 * WaFbcHighMemBwCorruptionAvoidance:bxt
    159	 * Display WA #0883: bxt
    160	 */
    161	intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN(INTEL_FBC_A),
    162			   intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN(INTEL_FBC_A)) |
    163			   DPFC_DISABLE_DUMMY0);
    164}
    165
    166static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
    167{
    168	gen9_init_clock_gating(dev_priv);
    169
    170	/*
    171	 * WaDisablePWMClockGating:glk
    172	 * Backlight PWM may stop in the asserted state, causing backlight
    173	 * to stay fully on.
    174	 */
    175	intel_uncore_write(&dev_priv->uncore, GEN9_CLKGATE_DIS_0, intel_uncore_read(&dev_priv->uncore, GEN9_CLKGATE_DIS_0) |
    176		   PWM1_GATING_DIS | PWM2_GATING_DIS);
    177}
    178
    179static void pnv_get_mem_freq(struct drm_i915_private *dev_priv)
    180{
    181	u32 tmp;
    182
    183	tmp = intel_uncore_read(&dev_priv->uncore, CLKCFG);
    184
    185	switch (tmp & CLKCFG_FSB_MASK) {
    186	case CLKCFG_FSB_533:
    187		dev_priv->fsb_freq = 533; /* 133*4 */
    188		break;
    189	case CLKCFG_FSB_800:
    190		dev_priv->fsb_freq = 800; /* 200*4 */
    191		break;
    192	case CLKCFG_FSB_667:
    193		dev_priv->fsb_freq =  667; /* 167*4 */
    194		break;
    195	case CLKCFG_FSB_400:
    196		dev_priv->fsb_freq = 400; /* 100*4 */
    197		break;
    198	}
    199
    200	switch (tmp & CLKCFG_MEM_MASK) {
    201	case CLKCFG_MEM_533:
    202		dev_priv->mem_freq = 533;
    203		break;
    204	case CLKCFG_MEM_667:
    205		dev_priv->mem_freq = 667;
    206		break;
    207	case CLKCFG_MEM_800:
    208		dev_priv->mem_freq = 800;
    209		break;
    210	}
    211
    212	/* detect pineview DDR3 setting */
    213	tmp = intel_uncore_read(&dev_priv->uncore, CSHRDDR3CTL);
    214	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
    215}
    216
    217static void ilk_get_mem_freq(struct drm_i915_private *dev_priv)
    218{
    219	u16 ddrpll, csipll;
    220
    221	ddrpll = intel_uncore_read16(&dev_priv->uncore, DDRMPLL1);
    222	csipll = intel_uncore_read16(&dev_priv->uncore, CSIPLL0);
    223
    224	switch (ddrpll & 0xff) {
    225	case 0xc:
    226		dev_priv->mem_freq = 800;
    227		break;
    228	case 0x10:
    229		dev_priv->mem_freq = 1066;
    230		break;
    231	case 0x14:
    232		dev_priv->mem_freq = 1333;
    233		break;
    234	case 0x18:
    235		dev_priv->mem_freq = 1600;
    236		break;
    237	default:
    238		drm_dbg(&dev_priv->drm, "unknown memory frequency 0x%02x\n",
    239			ddrpll & 0xff);
    240		dev_priv->mem_freq = 0;
    241		break;
    242	}
    243
    244	switch (csipll & 0x3ff) {
    245	case 0x00c:
    246		dev_priv->fsb_freq = 3200;
    247		break;
    248	case 0x00e:
    249		dev_priv->fsb_freq = 3733;
    250		break;
    251	case 0x010:
    252		dev_priv->fsb_freq = 4266;
    253		break;
    254	case 0x012:
    255		dev_priv->fsb_freq = 4800;
    256		break;
    257	case 0x014:
    258		dev_priv->fsb_freq = 5333;
    259		break;
    260	case 0x016:
    261		dev_priv->fsb_freq = 5866;
    262		break;
    263	case 0x018:
    264		dev_priv->fsb_freq = 6400;
    265		break;
    266	default:
    267		drm_dbg(&dev_priv->drm, "unknown fsb frequency 0x%04x\n",
    268			csipll & 0x3ff);
    269		dev_priv->fsb_freq = 0;
    270		break;
    271	}
    272}
    273
    274static const struct cxsr_latency cxsr_latency_table[] = {
    275	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
    276	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
    277	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
    278	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
    279	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
    280
    281	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
    282	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
    283	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
    284	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
    285	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
    286
    287	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
    288	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
    289	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
    290	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
    291	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
    292
    293	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
    294	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
    295	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
    296	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
    297	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
    298
    299	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
    300	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
    301	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
    302	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
    303	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
    304
    305	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
    306	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
    307	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
    308	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
    309	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
    310};
    311
    312static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
    313							 bool is_ddr3,
    314							 int fsb,
    315							 int mem)
    316{
    317	const struct cxsr_latency *latency;
    318	int i;
    319
    320	if (fsb == 0 || mem == 0)
    321		return NULL;
    322
    323	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
    324		latency = &cxsr_latency_table[i];
    325		if (is_desktop == latency->is_desktop &&
    326		    is_ddr3 == latency->is_ddr3 &&
    327		    fsb == latency->fsb_freq && mem == latency->mem_freq)
    328			return latency;
    329	}
    330
    331	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
    332
    333	return NULL;
    334}
    335
    336static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
    337{
    338	u32 val;
    339
    340	vlv_punit_get(dev_priv);
    341
    342	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
    343	if (enable)
    344		val &= ~FORCE_DDR_HIGH_FREQ;
    345	else
    346		val |= FORCE_DDR_HIGH_FREQ;
    347	val &= ~FORCE_DDR_LOW_FREQ;
    348	val |= FORCE_DDR_FREQ_REQ_ACK;
    349	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
    350
    351	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
    352		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
    353		drm_err(&dev_priv->drm,
    354			"timed out waiting for Punit DDR DVFS request\n");
    355
    356	vlv_punit_put(dev_priv);
    357}
    358
    359static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
    360{
    361	u32 val;
    362
    363	vlv_punit_get(dev_priv);
    364
    365	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
    366	if (enable)
    367		val |= DSP_MAXFIFO_PM5_ENABLE;
    368	else
    369		val &= ~DSP_MAXFIFO_PM5_ENABLE;
    370	vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
    371
    372	vlv_punit_put(dev_priv);
    373}
    374
    375#define FW_WM(value, plane) \
    376	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
    377
    378static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
    379{
    380	bool was_enabled;
    381	u32 val;
    382
    383	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
    384		was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
    385		intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
    386		intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF_VLV);
    387	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
    388		was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN;
    389		intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
    390		intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF);
    391	} else if (IS_PINEVIEW(dev_priv)) {
    392		val = intel_uncore_read(&dev_priv->uncore, DSPFW3);
    393		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
    394		if (enable)
    395			val |= PINEVIEW_SELF_REFRESH_EN;
    396		else
    397			val &= ~PINEVIEW_SELF_REFRESH_EN;
    398		intel_uncore_write(&dev_priv->uncore, DSPFW3, val);
    399		intel_uncore_posting_read(&dev_priv->uncore, DSPFW3);
    400	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
    401		was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN;
    402		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
    403			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
    404		intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, val);
    405		intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF);
    406	} else if (IS_I915GM(dev_priv)) {
    407		/*
    408		 * FIXME can't find a bit like this for 915G, and
    409		 * and yet it does have the related watermark in
    410		 * FW_BLC_SELF. What's going on?
    411		 */
    412		was_enabled = intel_uncore_read(&dev_priv->uncore, INSTPM) & INSTPM_SELF_EN;
    413		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
    414			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
    415		intel_uncore_write(&dev_priv->uncore, INSTPM, val);
    416		intel_uncore_posting_read(&dev_priv->uncore, INSTPM);
    417	} else {
    418		return false;
    419	}
    420
    421	trace_intel_memory_cxsr(dev_priv, was_enabled, enable);
    422
    423	drm_dbg_kms(&dev_priv->drm, "memory self-refresh is %s (was %s)\n",
    424		    str_enabled_disabled(enable),
    425		    str_enabled_disabled(was_enabled));
    426
    427	return was_enabled;
    428}
    429
    430/**
    431 * intel_set_memory_cxsr - Configure CxSR state
    432 * @dev_priv: i915 device
    433 * @enable: Allow vs. disallow CxSR
    434 *
    435 * Allow or disallow the system to enter a special CxSR
    436 * (C-state self refresh) state. What typically happens in CxSR mode
    437 * is that several display FIFOs may get combined into a single larger
    438 * FIFO for a particular plane (so called max FIFO mode) to allow the
    439 * system to defer memory fetches longer, and the memory will enter
    440 * self refresh.
    441 *
    442 * Note that enabling CxSR does not guarantee that the system enter
    443 * this special mode, nor does it guarantee that the system stays
    444 * in that mode once entered. So this just allows/disallows the system
    445 * to autonomously utilize the CxSR mode. Other factors such as core
    446 * C-states will affect when/if the system actually enters/exits the
    447 * CxSR mode.
    448 *
    449 * Note that on VLV/CHV this actually only controls the max FIFO mode,
    450 * and the system is free to enter/exit memory self refresh at any time
    451 * even when the use of CxSR has been disallowed.
    452 *
    453 * While the system is actually in the CxSR/max FIFO mode, some plane
    454 * control registers will not get latched on vblank. Thus in order to
    455 * guarantee the system will respond to changes in the plane registers
    456 * we must always disallow CxSR prior to making changes to those registers.
    457 * Unfortunately the system will re-evaluate the CxSR conditions at
    458 * frame start which happens after vblank start (which is when the plane
    459 * registers would get latched), so we can't proceed with the plane update
    460 * during the same frame where we disallowed CxSR.
    461 *
    462 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
    463 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
    464 * the hardware w.r.t. HPLL SR when writing to plane registers.
    465 * Disallowing just CxSR is sufficient.
    466 */
    467bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
    468{
    469	bool ret;
    470
    471	mutex_lock(&dev_priv->wm.wm_mutex);
    472	ret = _intel_set_memory_cxsr(dev_priv, enable);
    473	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
    474		dev_priv->wm.vlv.cxsr = enable;
    475	else if (IS_G4X(dev_priv))
    476		dev_priv->wm.g4x.cxsr = enable;
    477	mutex_unlock(&dev_priv->wm.wm_mutex);
    478
    479	return ret;
    480}
    481
    482/*
    483 * Latency for FIFO fetches is dependent on several factors:
    484 *   - memory configuration (speed, channels)
    485 *   - chipset
    486 *   - current MCH state
    487 * It can be fairly high in some situations, so here we assume a fairly
    488 * pessimal value.  It's a tradeoff between extra memory fetches (if we
    489 * set this value too high, the FIFO will fetch frequently to stay full)
    490 * and power consumption (set it too low to save power and we might see
    491 * FIFO underruns and display "flicker").
    492 *
    493 * A value of 5us seems to be a good balance; safe for very low end
    494 * platforms but not overly aggressive on lower latency configs.
    495 */
    496static const int pessimal_latency_ns = 5000;
    497
    498#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
    499	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
    500
    501static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
    502{
    503	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
    504	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
    505	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
    506	enum pipe pipe = crtc->pipe;
    507	int sprite0_start, sprite1_start;
    508	u32 dsparb, dsparb2, dsparb3;
    509
    510	switch (pipe) {
    511	case PIPE_A:
    512		dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
    513		dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2);
    514		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
    515		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
    516		break;
    517	case PIPE_B:
    518		dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
    519		dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2);
    520		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
    521		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
    522		break;
    523	case PIPE_C:
    524		dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2);
    525		dsparb3 = intel_uncore_read(&dev_priv->uncore, DSPARB3);
    526		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
    527		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
    528		break;
    529	default:
    530		MISSING_CASE(pipe);
    531		return;
    532	}
    533
    534	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
    535	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
    536	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
    537	fifo_state->plane[PLANE_CURSOR] = 63;
    538}
    539
    540static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
    541			      enum i9xx_plane_id i9xx_plane)
    542{
    543	u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
    544	int size;
    545
    546	size = dsparb & 0x7f;
    547	if (i9xx_plane == PLANE_B)
    548		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
    549
    550	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
    551		    dsparb, plane_name(i9xx_plane), size);
    552
    553	return size;
    554}
    555
    556static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
    557			      enum i9xx_plane_id i9xx_plane)
    558{
    559	u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
    560	int size;
    561
    562	size = dsparb & 0x1ff;
    563	if (i9xx_plane == PLANE_B)
    564		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
    565	size >>= 1; /* Convert to cachelines */
    566
    567	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
    568		    dsparb, plane_name(i9xx_plane), size);
    569
    570	return size;
    571}
    572
    573static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
    574			      enum i9xx_plane_id i9xx_plane)
    575{
    576	u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
    577	int size;
    578
    579	size = dsparb & 0x7f;
    580	size >>= 2; /* Convert to cachelines */
    581
    582	drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
    583		    dsparb, plane_name(i9xx_plane), size);
    584
    585	return size;
    586}
    587
    588/* Pineview has different values for various configs */
    589static const struct intel_watermark_params pnv_display_wm = {
    590	.fifo_size = PINEVIEW_DISPLAY_FIFO,
    591	.max_wm = PINEVIEW_MAX_WM,
    592	.default_wm = PINEVIEW_DFT_WM,
    593	.guard_size = PINEVIEW_GUARD_WM,
    594	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
    595};
    596
    597static const struct intel_watermark_params pnv_display_hplloff_wm = {
    598	.fifo_size = PINEVIEW_DISPLAY_FIFO,
    599	.max_wm = PINEVIEW_MAX_WM,
    600	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
    601	.guard_size = PINEVIEW_GUARD_WM,
    602	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
    603};
    604
    605static const struct intel_watermark_params pnv_cursor_wm = {
    606	.fifo_size = PINEVIEW_CURSOR_FIFO,
    607	.max_wm = PINEVIEW_CURSOR_MAX_WM,
    608	.default_wm = PINEVIEW_CURSOR_DFT_WM,
    609	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
    610	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
    611};
    612
    613static const struct intel_watermark_params pnv_cursor_hplloff_wm = {
    614	.fifo_size = PINEVIEW_CURSOR_FIFO,
    615	.max_wm = PINEVIEW_CURSOR_MAX_WM,
    616	.default_wm = PINEVIEW_CURSOR_DFT_WM,
    617	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
    618	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
    619};
    620
    621static const struct intel_watermark_params i965_cursor_wm_info = {
    622	.fifo_size = I965_CURSOR_FIFO,
    623	.max_wm = I965_CURSOR_MAX_WM,
    624	.default_wm = I965_CURSOR_DFT_WM,
    625	.guard_size = 2,
    626	.cacheline_size = I915_FIFO_LINE_SIZE,
    627};
    628
    629static const struct intel_watermark_params i945_wm_info = {
    630	.fifo_size = I945_FIFO_SIZE,
    631	.max_wm = I915_MAX_WM,
    632	.default_wm = 1,
    633	.guard_size = 2,
    634	.cacheline_size = I915_FIFO_LINE_SIZE,
    635};
    636
    637static const struct intel_watermark_params i915_wm_info = {
    638	.fifo_size = I915_FIFO_SIZE,
    639	.max_wm = I915_MAX_WM,
    640	.default_wm = 1,
    641	.guard_size = 2,
    642	.cacheline_size = I915_FIFO_LINE_SIZE,
    643};
    644
    645static const struct intel_watermark_params i830_a_wm_info = {
    646	.fifo_size = I855GM_FIFO_SIZE,
    647	.max_wm = I915_MAX_WM,
    648	.default_wm = 1,
    649	.guard_size = 2,
    650	.cacheline_size = I830_FIFO_LINE_SIZE,
    651};
    652
    653static const struct intel_watermark_params i830_bc_wm_info = {
    654	.fifo_size = I855GM_FIFO_SIZE,
    655	.max_wm = I915_MAX_WM/2,
    656	.default_wm = 1,
    657	.guard_size = 2,
    658	.cacheline_size = I830_FIFO_LINE_SIZE,
    659};
    660
    661static const struct intel_watermark_params i845_wm_info = {
    662	.fifo_size = I830_FIFO_SIZE,
    663	.max_wm = I915_MAX_WM,
    664	.default_wm = 1,
    665	.guard_size = 2,
    666	.cacheline_size = I830_FIFO_LINE_SIZE,
    667};
    668
    669/**
    670 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
    671 * @pixel_rate: Pipe pixel rate in kHz
    672 * @cpp: Plane bytes per pixel
    673 * @latency: Memory wakeup latency in 0.1us units
    674 *
    675 * Compute the watermark using the method 1 or "small buffer"
    676 * formula. The caller may additonally add extra cachelines
    677 * to account for TLB misses and clock crossings.
    678 *
    679 * This method is concerned with the short term drain rate
    680 * of the FIFO, ie. it does not account for blanking periods
    681 * which would effectively reduce the average drain rate across
    682 * a longer period. The name "small" refers to the fact the
    683 * FIFO is relatively small compared to the amount of data
    684 * fetched.
    685 *
    686 * The FIFO level vs. time graph might look something like:
    687 *
    688 *   |\   |\
    689 *   | \  | \
    690 * __---__---__ (- plane active, _ blanking)
    691 * -> time
    692 *
    693 * or perhaps like this:
    694 *
    695 *   |\|\  |\|\
    696 * __----__----__ (- plane active, _ blanking)
    697 * -> time
    698 *
    699 * Returns:
    700 * The watermark in bytes
    701 */
    702static unsigned int intel_wm_method1(unsigned int pixel_rate,
    703				     unsigned int cpp,
    704				     unsigned int latency)
    705{
    706	u64 ret;
    707
    708	ret = mul_u32_u32(pixel_rate, cpp * latency);
    709	ret = DIV_ROUND_UP_ULL(ret, 10000);
    710
    711	return ret;
    712}
    713
    714/**
    715 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
    716 * @pixel_rate: Pipe pixel rate in kHz
    717 * @htotal: Pipe horizontal total
    718 * @width: Plane width in pixels
    719 * @cpp: Plane bytes per pixel
    720 * @latency: Memory wakeup latency in 0.1us units
    721 *
    722 * Compute the watermark using the method 2 or "large buffer"
    723 * formula. The caller may additonally add extra cachelines
    724 * to account for TLB misses and clock crossings.
    725 *
    726 * This method is concerned with the long term drain rate
    727 * of the FIFO, ie. it does account for blanking periods
    728 * which effectively reduce the average drain rate across
    729 * a longer period. The name "large" refers to the fact the
    730 * FIFO is relatively large compared to the amount of data
    731 * fetched.
    732 *
    733 * The FIFO level vs. time graph might look something like:
    734 *
    735 *    |\___       |\___
    736 *    |    \___   |    \___
    737 *    |        \  |        \
    738 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
    739 * -> time
    740 *
    741 * Returns:
    742 * The watermark in bytes
    743 */
    744static unsigned int intel_wm_method2(unsigned int pixel_rate,
    745				     unsigned int htotal,
    746				     unsigned int width,
    747				     unsigned int cpp,
    748				     unsigned int latency)
    749{
    750	unsigned int ret;
    751
    752	/*
    753	 * FIXME remove once all users are computing
    754	 * watermarks in the correct place.
    755	 */
    756	if (WARN_ON_ONCE(htotal == 0))
    757		htotal = 1;
    758
    759	ret = (latency * pixel_rate) / (htotal * 10000);
    760	ret = (ret + 1) * width * cpp;
    761
    762	return ret;
    763}
    764
    765/**
    766 * intel_calculate_wm - calculate watermark level
    767 * @pixel_rate: pixel clock
    768 * @wm: chip FIFO params
    769 * @fifo_size: size of the FIFO buffer
    770 * @cpp: bytes per pixel
    771 * @latency_ns: memory latency for the platform
    772 *
    773 * Calculate the watermark level (the level at which the display plane will
    774 * start fetching from memory again).  Each chip has a different display
    775 * FIFO size and allocation, so the caller needs to figure that out and pass
    776 * in the correct intel_watermark_params structure.
    777 *
    778 * As the pixel clock runs, the FIFO will be drained at a rate that depends
    779 * on the pixel size.  When it reaches the watermark level, it'll start
    780 * fetching FIFO line sized based chunks from memory until the FIFO fills
    781 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
    782 * will occur, and a display engine hang could result.
    783 */
    784static unsigned int intel_calculate_wm(int pixel_rate,
    785				       const struct intel_watermark_params *wm,
    786				       int fifo_size, int cpp,
    787				       unsigned int latency_ns)
    788{
    789	int entries, wm_size;
    790
    791	/*
    792	 * Note: we need to make sure we don't overflow for various clock &
    793	 * latency values.
    794	 * clocks go from a few thousand to several hundred thousand.
    795	 * latency is usually a few thousand
    796	 */
    797	entries = intel_wm_method1(pixel_rate, cpp,
    798				   latency_ns / 100);
    799	entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
    800		wm->guard_size;
    801	DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
    802
    803	wm_size = fifo_size - entries;
    804	DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
    805
    806	/* Don't promote wm_size to unsigned... */
    807	if (wm_size > wm->max_wm)
    808		wm_size = wm->max_wm;
    809	if (wm_size <= 0)
    810		wm_size = wm->default_wm;
    811
    812	/*
    813	 * Bspec seems to indicate that the value shouldn't be lower than
    814	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
    815	 * Lets go for 8 which is the burst size since certain platforms
    816	 * already use a hardcoded 8 (which is what the spec says should be
    817	 * done).
    818	 */
    819	if (wm_size <= 8)
    820		wm_size = 8;
    821
    822	return wm_size;
    823}
    824
    825static bool is_disabling(int old, int new, int threshold)
    826{
    827	return old >= threshold && new < threshold;
    828}
    829
    830static bool is_enabling(int old, int new, int threshold)
    831{
    832	return old < threshold && new >= threshold;
    833}
    834
    835static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
    836{
    837	return dev_priv->wm.max_level + 1;
    838}
    839
    840static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
    841				   const struct intel_plane_state *plane_state)
    842{
    843	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
    844
    845	/* FIXME check the 'enable' instead */
    846	if (!crtc_state->hw.active)
    847		return false;
    848
    849	/*
    850	 * Treat cursor with fb as always visible since cursor updates
    851	 * can happen faster than the vrefresh rate, and the current
    852	 * watermark code doesn't handle that correctly. Cursor updates
    853	 * which set/clear the fb or change the cursor size are going
    854	 * to get throttled by intel_legacy_cursor_update() to work
    855	 * around this problem with the watermark code.
    856	 */
    857	if (plane->id == PLANE_CURSOR)
    858		return plane_state->hw.fb != NULL;
    859	else
    860		return plane_state->uapi.visible;
    861}
    862
    863static bool intel_crtc_active(struct intel_crtc *crtc)
    864{
    865	/* Be paranoid as we can arrive here with only partial
    866	 * state retrieved from the hardware during setup.
    867	 *
    868	 * We can ditch the adjusted_mode.crtc_clock check as soon
    869	 * as Haswell has gained clock readout/fastboot support.
    870	 *
    871	 * We can ditch the crtc->primary->state->fb check as soon as we can
    872	 * properly reconstruct framebuffers.
    873	 *
    874	 * FIXME: The intel_crtc->active here should be switched to
    875	 * crtc->state->active once we have proper CRTC states wired up
    876	 * for atomic.
    877	 */
    878	return crtc && crtc->active && crtc->base.primary->state->fb &&
    879		crtc->config->hw.adjusted_mode.crtc_clock;
    880}
    881
    882static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
    883{
    884	struct intel_crtc *crtc, *enabled = NULL;
    885
    886	for_each_intel_crtc(&dev_priv->drm, crtc) {
    887		if (intel_crtc_active(crtc)) {
    888			if (enabled)
    889				return NULL;
    890			enabled = crtc;
    891		}
    892	}
    893
    894	return enabled;
    895}
    896
    897static void pnv_update_wm(struct drm_i915_private *dev_priv)
    898{
    899	struct intel_crtc *crtc;
    900	const struct cxsr_latency *latency;
    901	u32 reg;
    902	unsigned int wm;
    903
    904	latency = intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
    905					 dev_priv->is_ddr3,
    906					 dev_priv->fsb_freq,
    907					 dev_priv->mem_freq);
    908	if (!latency) {
    909		drm_dbg_kms(&dev_priv->drm,
    910			    "Unknown FSB/MEM found, disable CxSR\n");
    911		intel_set_memory_cxsr(dev_priv, false);
    912		return;
    913	}
    914
    915	crtc = single_enabled_crtc(dev_priv);
    916	if (crtc) {
    917		const struct drm_framebuffer *fb =
    918			crtc->base.primary->state->fb;
    919		int pixel_rate = crtc->config->pixel_rate;
    920		int cpp = fb->format->cpp[0];
    921
    922		/* Display SR */
    923		wm = intel_calculate_wm(pixel_rate, &pnv_display_wm,
    924					pnv_display_wm.fifo_size,
    925					cpp, latency->display_sr);
    926		reg = intel_uncore_read(&dev_priv->uncore, DSPFW1);
    927		reg &= ~DSPFW_SR_MASK;
    928		reg |= FW_WM(wm, SR);
    929		intel_uncore_write(&dev_priv->uncore, DSPFW1, reg);
    930		drm_dbg_kms(&dev_priv->drm, "DSPFW1 register is %x\n", reg);
    931
    932		/* cursor SR */
    933		wm = intel_calculate_wm(pixel_rate, &pnv_cursor_wm,
    934					pnv_display_wm.fifo_size,
    935					4, latency->cursor_sr);
    936		reg = intel_uncore_read(&dev_priv->uncore, DSPFW3);
    937		reg &= ~DSPFW_CURSOR_SR_MASK;
    938		reg |= FW_WM(wm, CURSOR_SR);
    939		intel_uncore_write(&dev_priv->uncore, DSPFW3, reg);
    940
    941		/* Display HPLL off SR */
    942		wm = intel_calculate_wm(pixel_rate, &pnv_display_hplloff_wm,
    943					pnv_display_hplloff_wm.fifo_size,
    944					cpp, latency->display_hpll_disable);
    945		reg = intel_uncore_read(&dev_priv->uncore, DSPFW3);
    946		reg &= ~DSPFW_HPLL_SR_MASK;
    947		reg |= FW_WM(wm, HPLL_SR);
    948		intel_uncore_write(&dev_priv->uncore, DSPFW3, reg);
    949
    950		/* cursor HPLL off SR */
    951		wm = intel_calculate_wm(pixel_rate, &pnv_cursor_hplloff_wm,
    952					pnv_display_hplloff_wm.fifo_size,
    953					4, latency->cursor_hpll_disable);
    954		reg = intel_uncore_read(&dev_priv->uncore, DSPFW3);
    955		reg &= ~DSPFW_HPLL_CURSOR_MASK;
    956		reg |= FW_WM(wm, HPLL_CURSOR);
    957		intel_uncore_write(&dev_priv->uncore, DSPFW3, reg);
    958		drm_dbg_kms(&dev_priv->drm, "DSPFW3 register is %x\n", reg);
    959
    960		intel_set_memory_cxsr(dev_priv, true);
    961	} else {
    962		intel_set_memory_cxsr(dev_priv, false);
    963	}
    964}
    965
    966/*
    967 * Documentation says:
    968 * "If the line size is small, the TLB fetches can get in the way of the
    969 *  data fetches, causing some lag in the pixel data return which is not
    970 *  accounted for in the above formulas. The following adjustment only
    971 *  needs to be applied if eight whole lines fit in the buffer at once.
    972 *  The WM is adjusted upwards by the difference between the FIFO size
    973 *  and the size of 8 whole lines. This adjustment is always performed
    974 *  in the actual pixel depth regardless of whether FBC is enabled or not."
    975 */
    976static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
    977{
    978	int tlb_miss = fifo_size * 64 - width * cpp * 8;
    979
    980	return max(0, tlb_miss);
    981}
    982
    983static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
    984				const struct g4x_wm_values *wm)
    985{
    986	enum pipe pipe;
    987
    988	for_each_pipe(dev_priv, pipe)
    989		trace_g4x_wm(intel_crtc_for_pipe(dev_priv, pipe), wm);
    990
    991	intel_uncore_write(&dev_priv->uncore, DSPFW1,
    992		   FW_WM(wm->sr.plane, SR) |
    993		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
    994		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
    995		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
    996	intel_uncore_write(&dev_priv->uncore, DSPFW2,
    997		   (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
    998		   FW_WM(wm->sr.fbc, FBC_SR) |
    999		   FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
   1000		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
   1001		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
   1002		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
   1003	intel_uncore_write(&dev_priv->uncore, DSPFW3,
   1004		   (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
   1005		   FW_WM(wm->sr.cursor, CURSOR_SR) |
   1006		   FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
   1007		   FW_WM(wm->hpll.plane, HPLL_SR));
   1008
   1009	intel_uncore_posting_read(&dev_priv->uncore, DSPFW1);
   1010}
   1011
   1012#define FW_WM_VLV(value, plane) \
   1013	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
   1014
   1015static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
   1016				const struct vlv_wm_values *wm)
   1017{
   1018	enum pipe pipe;
   1019
   1020	for_each_pipe(dev_priv, pipe) {
   1021		trace_vlv_wm(intel_crtc_for_pipe(dev_priv, pipe), wm);
   1022
   1023		intel_uncore_write(&dev_priv->uncore, VLV_DDL(pipe),
   1024			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
   1025			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
   1026			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
   1027			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
   1028	}
   1029
   1030	/*
   1031	 * Zero the (unused) WM1 watermarks, and also clear all the
   1032	 * high order bits so that there are no out of bounds values
   1033	 * present in the registers during the reprogramming.
   1034	 */
   1035	intel_uncore_write(&dev_priv->uncore, DSPHOWM, 0);
   1036	intel_uncore_write(&dev_priv->uncore, DSPHOWM1, 0);
   1037	intel_uncore_write(&dev_priv->uncore, DSPFW4, 0);
   1038	intel_uncore_write(&dev_priv->uncore, DSPFW5, 0);
   1039	intel_uncore_write(&dev_priv->uncore, DSPFW6, 0);
   1040
   1041	intel_uncore_write(&dev_priv->uncore, DSPFW1,
   1042		   FW_WM(wm->sr.plane, SR) |
   1043		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
   1044		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
   1045		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
   1046	intel_uncore_write(&dev_priv->uncore, DSPFW2,
   1047		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
   1048		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
   1049		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
   1050	intel_uncore_write(&dev_priv->uncore, DSPFW3,
   1051		   FW_WM(wm->sr.cursor, CURSOR_SR));
   1052
   1053	if (IS_CHERRYVIEW(dev_priv)) {
   1054		intel_uncore_write(&dev_priv->uncore, DSPFW7_CHV,
   1055			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
   1056			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
   1057		intel_uncore_write(&dev_priv->uncore, DSPFW8_CHV,
   1058			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
   1059			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
   1060		intel_uncore_write(&dev_priv->uncore, DSPFW9_CHV,
   1061			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
   1062			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
   1063		intel_uncore_write(&dev_priv->uncore, DSPHOWM,
   1064			   FW_WM(wm->sr.plane >> 9, SR_HI) |
   1065			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
   1066			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
   1067			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
   1068			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
   1069			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
   1070			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
   1071			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
   1072			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
   1073			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
   1074	} else {
   1075		intel_uncore_write(&dev_priv->uncore, DSPFW7,
   1076			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
   1077			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
   1078		intel_uncore_write(&dev_priv->uncore, DSPHOWM,
   1079			   FW_WM(wm->sr.plane >> 9, SR_HI) |
   1080			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
   1081			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
   1082			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
   1083			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
   1084			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
   1085			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
   1086	}
   1087
   1088	intel_uncore_posting_read(&dev_priv->uncore, DSPFW1);
   1089}
   1090
   1091#undef FW_WM_VLV
   1092
   1093static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
   1094{
   1095	/* all latencies in usec */
   1096	dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
   1097	dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
   1098	dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
   1099
   1100	dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
   1101}
   1102
   1103static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
   1104{
   1105	/*
   1106	 * DSPCNTR[13] supposedly controls whether the
   1107	 * primary plane can use the FIFO space otherwise
   1108	 * reserved for the sprite plane. It's not 100% clear
   1109	 * what the actual FIFO size is, but it looks like we
   1110	 * can happily set both primary and sprite watermarks
   1111	 * up to 127 cachelines. So that would seem to mean
   1112	 * that either DSPCNTR[13] doesn't do anything, or that
   1113	 * the total FIFO is >= 256 cachelines in size. Either
   1114	 * way, we don't seem to have to worry about this
   1115	 * repartitioning as the maximum watermark value the
   1116	 * register can hold for each plane is lower than the
   1117	 * minimum FIFO size.
   1118	 */
   1119	switch (plane_id) {
   1120	case PLANE_CURSOR:
   1121		return 63;
   1122	case PLANE_PRIMARY:
   1123		return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
   1124	case PLANE_SPRITE0:
   1125		return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
   1126	default:
   1127		MISSING_CASE(plane_id);
   1128		return 0;
   1129	}
   1130}
   1131
   1132static int g4x_fbc_fifo_size(int level)
   1133{
   1134	switch (level) {
   1135	case G4X_WM_LEVEL_SR:
   1136		return 7;
   1137	case G4X_WM_LEVEL_HPLL:
   1138		return 15;
   1139	default:
   1140		MISSING_CASE(level);
   1141		return 0;
   1142	}
   1143}
   1144
   1145static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state,
   1146			  const struct intel_plane_state *plane_state,
   1147			  int level)
   1148{
   1149	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
   1150	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
   1151	const struct drm_display_mode *pipe_mode =
   1152		&crtc_state->hw.pipe_mode;
   1153	unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
   1154	unsigned int pixel_rate, htotal, cpp, width, wm;
   1155
   1156	if (latency == 0)
   1157		return USHRT_MAX;
   1158
   1159	if (!intel_wm_plane_visible(crtc_state, plane_state))
   1160		return 0;
   1161
   1162	cpp = plane_state->hw.fb->format->cpp[0];
   1163
   1164	/*
   1165	 * WaUse32BppForSRWM:ctg,elk
   1166	 *
   1167	 * The spec fails to list this restriction for the
   1168	 * HPLL watermark, which seems a little strange.
   1169	 * Let's use 32bpp for the HPLL watermark as well.
   1170	 */
   1171	if (plane->id == PLANE_PRIMARY &&
   1172	    level != G4X_WM_LEVEL_NORMAL)
   1173		cpp = max(cpp, 4u);
   1174
   1175	pixel_rate = crtc_state->pixel_rate;
   1176	htotal = pipe_mode->crtc_htotal;
   1177	width = drm_rect_width(&plane_state->uapi.src) >> 16;
   1178
   1179	if (plane->id == PLANE_CURSOR) {
   1180		wm = intel_wm_method2(pixel_rate, htotal, width, cpp, latency);
   1181	} else if (plane->id == PLANE_PRIMARY &&
   1182		   level == G4X_WM_LEVEL_NORMAL) {
   1183		wm = intel_wm_method1(pixel_rate, cpp, latency);
   1184	} else {
   1185		unsigned int small, large;
   1186
   1187		small = intel_wm_method1(pixel_rate, cpp, latency);
   1188		large = intel_wm_method2(pixel_rate, htotal, width, cpp, latency);
   1189
   1190		wm = min(small, large);
   1191	}
   1192
   1193	wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
   1194			      width, cpp);
   1195
   1196	wm = DIV_ROUND_UP(wm, 64) + 2;
   1197
   1198	return min_t(unsigned int, wm, USHRT_MAX);
   1199}
   1200
   1201static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
   1202				 int level, enum plane_id plane_id, u16 value)
   1203{
   1204	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
   1205	bool dirty = false;
   1206
   1207	for (; level < intel_wm_num_levels(dev_priv); level++) {
   1208		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
   1209
   1210		dirty |= raw->plane[plane_id] != value;
   1211		raw->plane[plane_id] = value;
   1212	}
   1213
   1214	return dirty;
   1215}
   1216
   1217static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
   1218			       int level, u16 value)
   1219{
   1220	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
   1221	bool dirty = false;
   1222
   1223	/* NORMAL level doesn't have an FBC watermark */
   1224	level = max(level, G4X_WM_LEVEL_SR);
   1225
   1226	for (; level < intel_wm_num_levels(dev_priv); level++) {
   1227		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
   1228
   1229		dirty |= raw->fbc != value;
   1230		raw->fbc = value;
   1231	}
   1232
   1233	return dirty;
   1234}
   1235
   1236static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
   1237			      const struct intel_plane_state *plane_state,
   1238			      u32 pri_val);
   1239
   1240static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
   1241				     const struct intel_plane_state *plane_state)
   1242{
   1243	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
   1244	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
   1245	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
   1246	enum plane_id plane_id = plane->id;
   1247	bool dirty = false;
   1248	int level;
   1249
   1250	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
   1251		dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
   1252		if (plane_id == PLANE_PRIMARY)
   1253			dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
   1254		goto out;
   1255	}
   1256
   1257	for (level = 0; level < num_levels; level++) {
   1258		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
   1259		int wm, max_wm;
   1260
   1261		wm = g4x_compute_wm(crtc_state, plane_state, level);
   1262		max_wm = g4x_plane_fifo_size(plane_id, level);
   1263
   1264		if (wm > max_wm)
   1265			break;
   1266
   1267		dirty |= raw->plane[plane_id] != wm;
   1268		raw->plane[plane_id] = wm;
   1269
   1270		if (plane_id != PLANE_PRIMARY ||
   1271		    level == G4X_WM_LEVEL_NORMAL)
   1272			continue;
   1273
   1274		wm = ilk_compute_fbc_wm(crtc_state, plane_state,
   1275					raw->plane[plane_id]);
   1276		max_wm = g4x_fbc_fifo_size(level);
   1277
   1278		/*
   1279		 * FBC wm is not mandatory as we
   1280		 * can always just disable its use.
   1281		 */
   1282		if (wm > max_wm)
   1283			wm = USHRT_MAX;
   1284
   1285		dirty |= raw->fbc != wm;
   1286		raw->fbc = wm;
   1287	}
   1288
   1289	/* mark watermarks as invalid */
   1290	dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
   1291
   1292	if (plane_id == PLANE_PRIMARY)
   1293		dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
   1294
   1295 out:
   1296	if (dirty) {
   1297		drm_dbg_kms(&dev_priv->drm,
   1298			    "%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
   1299			    plane->base.name,
   1300			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
   1301			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
   1302			    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
   1303
   1304		if (plane_id == PLANE_PRIMARY)
   1305			drm_dbg_kms(&dev_priv->drm,
   1306				    "FBC watermarks: SR=%d, HPLL=%d\n",
   1307				    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
   1308				    crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
   1309	}
   1310
   1311	return dirty;
   1312}
   1313
   1314static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
   1315				      enum plane_id plane_id, int level)
   1316{
   1317	const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
   1318
   1319	return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
   1320}
   1321
   1322static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
   1323				     int level)
   1324{
   1325	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
   1326
   1327	if (level > dev_priv->wm.max_level)
   1328		return false;
   1329
   1330	return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
   1331		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
   1332		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
   1333}
   1334
   1335/* mark all levels starting from 'level' as invalid */
   1336static void g4x_invalidate_wms(struct intel_crtc *crtc,
   1337			       struct g4x_wm_state *wm_state, int level)
   1338{
   1339	if (level <= G4X_WM_LEVEL_NORMAL) {
   1340		enum plane_id plane_id;
   1341
   1342		for_each_plane_id_on_crtc(crtc, plane_id)
   1343			wm_state->wm.plane[plane_id] = USHRT_MAX;
   1344	}
   1345
   1346	if (level <= G4X_WM_LEVEL_SR) {
   1347		wm_state->cxsr = false;
   1348		wm_state->sr.cursor = USHRT_MAX;
   1349		wm_state->sr.plane = USHRT_MAX;
   1350		wm_state->sr.fbc = USHRT_MAX;
   1351	}
   1352
   1353	if (level <= G4X_WM_LEVEL_HPLL) {
   1354		wm_state->hpll_en = false;
   1355		wm_state->hpll.cursor = USHRT_MAX;
   1356		wm_state->hpll.plane = USHRT_MAX;
   1357		wm_state->hpll.fbc = USHRT_MAX;
   1358	}
   1359}
   1360
   1361static bool g4x_compute_fbc_en(const struct g4x_wm_state *wm_state,
   1362			       int level)
   1363{
   1364	if (level < G4X_WM_LEVEL_SR)
   1365		return false;
   1366
   1367	if (level >= G4X_WM_LEVEL_SR &&
   1368	    wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
   1369		return false;
   1370
   1371	if (level >= G4X_WM_LEVEL_HPLL &&
   1372	    wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
   1373		return false;
   1374
   1375	return true;
   1376}
   1377
   1378static int g4x_compute_pipe_wm(struct intel_atomic_state *state,
   1379			       struct intel_crtc *crtc)
   1380{
   1381	struct intel_crtc_state *crtc_state =
   1382		intel_atomic_get_new_crtc_state(state, crtc);
   1383	struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
   1384	u8 active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
   1385	const struct g4x_pipe_wm *raw;
   1386	const struct intel_plane_state *old_plane_state;
   1387	const struct intel_plane_state *new_plane_state;
   1388	struct intel_plane *plane;
   1389	enum plane_id plane_id;
   1390	int i, level;
   1391	unsigned int dirty = 0;
   1392
   1393	for_each_oldnew_intel_plane_in_state(state, plane,
   1394					     old_plane_state,
   1395					     new_plane_state, i) {
   1396		if (new_plane_state->hw.crtc != &crtc->base &&
   1397		    old_plane_state->hw.crtc != &crtc->base)
   1398			continue;
   1399
   1400		if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
   1401			dirty |= BIT(plane->id);
   1402	}
   1403
   1404	if (!dirty)
   1405		return 0;
   1406
   1407	level = G4X_WM_LEVEL_NORMAL;
   1408	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
   1409		goto out;
   1410
   1411	raw = &crtc_state->wm.g4x.raw[level];
   1412	for_each_plane_id_on_crtc(crtc, plane_id)
   1413		wm_state->wm.plane[plane_id] = raw->plane[plane_id];
   1414
   1415	level = G4X_WM_LEVEL_SR;
   1416	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
   1417		goto out;
   1418
   1419	raw = &crtc_state->wm.g4x.raw[level];
   1420	wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
   1421	wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
   1422	wm_state->sr.fbc = raw->fbc;
   1423
   1424	wm_state->cxsr = active_planes == BIT(PLANE_PRIMARY);
   1425
   1426	level = G4X_WM_LEVEL_HPLL;
   1427	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
   1428		goto out;
   1429
   1430	raw = &crtc_state->wm.g4x.raw[level];
   1431	wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
   1432	wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
   1433	wm_state->hpll.fbc = raw->fbc;
   1434
   1435	wm_state->hpll_en = wm_state->cxsr;
   1436
   1437	level++;
   1438
   1439 out:
   1440	if (level == G4X_WM_LEVEL_NORMAL)
   1441		return -EINVAL;
   1442
   1443	/* invalidate the higher levels */
   1444	g4x_invalidate_wms(crtc, wm_state, level);
   1445
   1446	/*
   1447	 * Determine if the FBC watermark(s) can be used. IF
   1448	 * this isn't the case we prefer to disable the FBC
   1449	 * watermark(s) rather than disable the SR/HPLL
   1450	 * level(s) entirely. 'level-1' is the highest valid
   1451	 * level here.
   1452	 */
   1453	wm_state->fbc_en = g4x_compute_fbc_en(wm_state, level - 1);
   1454
   1455	return 0;
   1456}
   1457
   1458static int g4x_compute_intermediate_wm(struct intel_atomic_state *state,
   1459				       struct intel_crtc *crtc)
   1460{
   1461	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
   1462	struct intel_crtc_state *new_crtc_state =
   1463		intel_atomic_get_new_crtc_state(state, crtc);
   1464	const struct intel_crtc_state *old_crtc_state =
   1465		intel_atomic_get_old_crtc_state(state, crtc);
   1466	struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
   1467	const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
   1468	const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
   1469	enum plane_id plane_id;
   1470
   1471	if (!new_crtc_state->hw.active ||
   1472	    drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
   1473		*intermediate = *optimal;
   1474
   1475		intermediate->cxsr = false;
   1476		intermediate->hpll_en = false;
   1477		goto out;
   1478	}
   1479
   1480	intermediate->cxsr = optimal->cxsr && active->cxsr &&
   1481		!new_crtc_state->disable_cxsr;
   1482	intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
   1483		!new_crtc_state->disable_cxsr;
   1484	intermediate->fbc_en = optimal->fbc_en && active->fbc_en;
   1485
   1486	for_each_plane_id_on_crtc(crtc, plane_id) {
   1487		intermediate->wm.plane[plane_id] =
   1488			max(optimal->wm.plane[plane_id],
   1489			    active->wm.plane[plane_id]);
   1490
   1491		drm_WARN_ON(&dev_priv->drm, intermediate->wm.plane[plane_id] >
   1492			    g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
   1493	}
   1494
   1495	intermediate->sr.plane = max(optimal->sr.plane,
   1496				     active->sr.plane);
   1497	intermediate->sr.cursor = max(optimal->sr.cursor,
   1498				      active->sr.cursor);
   1499	intermediate->sr.fbc = max(optimal->sr.fbc,
   1500				   active->sr.fbc);
   1501
   1502	intermediate->hpll.plane = max(optimal->hpll.plane,
   1503				       active->hpll.plane);
   1504	intermediate->hpll.cursor = max(optimal->hpll.cursor,
   1505					active->hpll.cursor);
   1506	intermediate->hpll.fbc = max(optimal->hpll.fbc,
   1507				     active->hpll.fbc);
   1508
   1509	drm_WARN_ON(&dev_priv->drm,
   1510		    (intermediate->sr.plane >
   1511		     g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
   1512		     intermediate->sr.cursor >
   1513		     g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
   1514		    intermediate->cxsr);
   1515	drm_WARN_ON(&dev_priv->drm,
   1516		    (intermediate->sr.plane >
   1517		     g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
   1518		     intermediate->sr.cursor >
   1519		     g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
   1520		    intermediate->hpll_en);
   1521
   1522	drm_WARN_ON(&dev_priv->drm,
   1523		    intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
   1524		    intermediate->fbc_en && intermediate->cxsr);
   1525	drm_WARN_ON(&dev_priv->drm,
   1526		    intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
   1527		    intermediate->fbc_en && intermediate->hpll_en);
   1528
   1529out:
   1530	/*
   1531	 * If our intermediate WM are identical to the final WM, then we can
   1532	 * omit the post-vblank programming; only update if it's different.
   1533	 */
   1534	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
   1535		new_crtc_state->wm.need_postvbl_update = true;
   1536
   1537	return 0;
   1538}
   1539
   1540static void g4x_merge_wm(struct drm_i915_private *dev_priv,
   1541			 struct g4x_wm_values *wm)
   1542{
   1543	struct intel_crtc *crtc;
   1544	int num_active_pipes = 0;
   1545
   1546	wm->cxsr = true;
   1547	wm->hpll_en = true;
   1548	wm->fbc_en = true;
   1549
   1550	for_each_intel_crtc(&dev_priv->drm, crtc) {
   1551		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
   1552
   1553		if (!crtc->active)
   1554			continue;
   1555
   1556		if (!wm_state->cxsr)
   1557			wm->cxsr = false;
   1558		if (!wm_state->hpll_en)
   1559			wm->hpll_en = false;
   1560		if (!wm_state->fbc_en)
   1561			wm->fbc_en = false;
   1562
   1563		num_active_pipes++;
   1564	}
   1565
   1566	if (num_active_pipes != 1) {
   1567		wm->cxsr = false;
   1568		wm->hpll_en = false;
   1569		wm->fbc_en = false;
   1570	}
   1571
   1572	for_each_intel_crtc(&dev_priv->drm, crtc) {
   1573		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
   1574		enum pipe pipe = crtc->pipe;
   1575
   1576		wm->pipe[pipe] = wm_state->wm;
   1577		if (crtc->active && wm->cxsr)
   1578			wm->sr = wm_state->sr;
   1579		if (crtc->active && wm->hpll_en)
   1580			wm->hpll = wm_state->hpll;
   1581	}
   1582}
   1583
   1584static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
   1585{
   1586	struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
   1587	struct g4x_wm_values new_wm = {};
   1588
   1589	g4x_merge_wm(dev_priv, &new_wm);
   1590
   1591	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
   1592		return;
   1593
   1594	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
   1595		_intel_set_memory_cxsr(dev_priv, false);
   1596
   1597	g4x_write_wm_values(dev_priv, &new_wm);
   1598
   1599	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
   1600		_intel_set_memory_cxsr(dev_priv, true);
   1601
   1602	*old_wm = new_wm;
   1603}
   1604
   1605static void g4x_initial_watermarks(struct intel_atomic_state *state,
   1606				   struct intel_crtc *crtc)
   1607{
   1608	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
   1609	const struct intel_crtc_state *crtc_state =
   1610		intel_atomic_get_new_crtc_state(state, crtc);
   1611
   1612	mutex_lock(&dev_priv->wm.wm_mutex);
   1613	crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
   1614	g4x_program_watermarks(dev_priv);
   1615	mutex_unlock(&dev_priv->wm.wm_mutex);
   1616}
   1617
   1618static void g4x_optimize_watermarks(struct intel_atomic_state *state,
   1619				    struct intel_crtc *crtc)
   1620{
   1621	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
   1622	const struct intel_crtc_state *crtc_state =
   1623		intel_atomic_get_new_crtc_state(state, crtc);
   1624
   1625	if (!crtc_state->wm.need_postvbl_update)
   1626		return;
   1627
   1628	mutex_lock(&dev_priv->wm.wm_mutex);
   1629	crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
   1630	g4x_program_watermarks(dev_priv);
   1631	mutex_unlock(&dev_priv->wm.wm_mutex);
   1632}
   1633
   1634/* latency must be in 0.1us units. */
   1635static unsigned int vlv_wm_method2(unsigned int pixel_rate,
   1636				   unsigned int htotal,
   1637				   unsigned int width,
   1638				   unsigned int cpp,
   1639				   unsigned int latency)
   1640{
   1641	unsigned int ret;
   1642
   1643	ret = intel_wm_method2(pixel_rate, htotal,
   1644			       width, cpp, latency);
   1645	ret = DIV_ROUND_UP(ret, 64);
   1646
   1647	return ret;
   1648}
   1649
   1650static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
   1651{
   1652	/* all latencies in usec */
   1653	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
   1654
   1655	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
   1656
   1657	if (IS_CHERRYVIEW(dev_priv)) {
   1658		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
   1659		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
   1660
   1661		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
   1662	}
   1663}
   1664
   1665static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
   1666				const struct intel_plane_state *plane_state,
   1667				int level)
   1668{
   1669	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
   1670	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
   1671	const struct drm_display_mode *pipe_mode =
   1672		&crtc_state->hw.pipe_mode;
   1673	unsigned int pixel_rate, htotal, cpp, width, wm;
   1674
   1675	if (dev_priv->wm.pri_latency[level] == 0)
   1676		return USHRT_MAX;
   1677
   1678	if (!intel_wm_plane_visible(crtc_state, plane_state))
   1679		return 0;
   1680
   1681	cpp = plane_state->hw.fb->format->cpp[0];
   1682	pixel_rate = crtc_state->pixel_rate;
   1683	htotal = pipe_mode->crtc_htotal;
   1684	width = drm_rect_width(&plane_state->uapi.src) >> 16;
   1685
   1686	if (plane->id == PLANE_CURSOR) {
   1687		/*
   1688		 * FIXME the formula gives values that are
   1689		 * too big for the cursor FIFO, and hence we
   1690		 * would never be able to use cursors. For
   1691		 * now just hardcode the watermark.
   1692		 */
   1693		wm = 63;
   1694	} else {
   1695		wm = vlv_wm_method2(pixel_rate, htotal, width, cpp,
   1696				    dev_priv->wm.pri_latency[level] * 10);
   1697	}
   1698
   1699	return min_t(unsigned int, wm, USHRT_MAX);
   1700}
   1701
   1702static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
   1703{
   1704	return (active_planes & (BIT(PLANE_SPRITE0) |
   1705				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
   1706}
   1707
   1708static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
   1709{
   1710	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
   1711	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
   1712	const struct g4x_pipe_wm *raw =
   1713		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
   1714	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
   1715	u8 active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
   1716	int num_active_planes = hweight8(active_planes);
   1717	const int fifo_size = 511;
   1718	int fifo_extra, fifo_left = fifo_size;
   1719	int sprite0_fifo_extra = 0;
   1720	unsigned int total_rate;
   1721	enum plane_id plane_id;
   1722
   1723	/*
   1724	 * When enabling sprite0 after sprite1 has already been enabled
   1725	 * we tend to get an underrun unless sprite0 already has some
   1726	 * FIFO space allcoated. Hence we always allocate at least one
   1727	 * cacheline for sprite0 whenever sprite1 is enabled.
   1728	 *
   1729	 * All other plane enable sequences appear immune to this problem.
   1730	 */
   1731	if (vlv_need_sprite0_fifo_workaround(active_planes))
   1732		sprite0_fifo_extra = 1;
   1733
   1734	total_rate = raw->plane[PLANE_PRIMARY] +
   1735		raw->plane[PLANE_SPRITE0] +
   1736		raw->plane[PLANE_SPRITE1] +
   1737		sprite0_fifo_extra;
   1738
   1739	if (total_rate > fifo_size)
   1740		return -EINVAL;
   1741
   1742	if (total_rate == 0)
   1743		total_rate = 1;
   1744
   1745	for_each_plane_id_on_crtc(crtc, plane_id) {
   1746		unsigned int rate;
   1747
   1748		if ((active_planes & BIT(plane_id)) == 0) {
   1749			fifo_state->plane[plane_id] = 0;
   1750			continue;
   1751		}
   1752
   1753		rate = raw->plane[plane_id];
   1754		fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
   1755		fifo_left -= fifo_state->plane[plane_id];
   1756	}
   1757
   1758	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
   1759	fifo_left -= sprite0_fifo_extra;
   1760
   1761	fifo_state->plane[PLANE_CURSOR] = 63;
   1762
   1763	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
   1764
   1765	/* spread the remainder evenly */
   1766	for_each_plane_id_on_crtc(crtc, plane_id) {
   1767		int plane_extra;
   1768
   1769		if (fifo_left == 0)
   1770			break;
   1771
   1772		if ((active_planes & BIT(plane_id)) == 0)
   1773			continue;
   1774
   1775		plane_extra = min(fifo_extra, fifo_left);
   1776		fifo_state->plane[plane_id] += plane_extra;
   1777		fifo_left -= plane_extra;
   1778	}
   1779
   1780	drm_WARN_ON(&dev_priv->drm, active_planes != 0 && fifo_left != 0);
   1781
   1782	/* give it all to the first plane if none are active */
   1783	if (active_planes == 0) {
   1784		drm_WARN_ON(&dev_priv->drm, fifo_left != fifo_size);
   1785		fifo_state->plane[PLANE_PRIMARY] = fifo_left;
   1786	}
   1787
   1788	return 0;
   1789}
   1790
   1791/* mark all levels starting from 'level' as invalid */
   1792static void vlv_invalidate_wms(struct intel_crtc *crtc,
   1793			       struct vlv_wm_state *wm_state, int level)
   1794{
   1795	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
   1796
   1797	for (; level < intel_wm_num_levels(dev_priv); level++) {
   1798		enum plane_id plane_id;
   1799
   1800		for_each_plane_id_on_crtc(crtc, plane_id)
   1801			wm_state->wm[level].plane[plane_id] = USHRT_MAX;
   1802
   1803		wm_state->sr[level].cursor = USHRT_MAX;
   1804		wm_state->sr[level].plane = USHRT_MAX;
   1805	}
   1806}
   1807
   1808static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
   1809{
   1810	if (wm > fifo_size)
   1811		return USHRT_MAX;
   1812	else
   1813		return fifo_size - wm;
   1814}
   1815
   1816/*
   1817 * Starting from 'level' set all higher
   1818 * levels to 'value' in the "raw" watermarks.
   1819 */
   1820static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
   1821				 int level, enum plane_id plane_id, u16 value)
   1822{
   1823	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
   1824	int num_levels = intel_wm_num_levels(dev_priv);
   1825	bool dirty = false;
   1826
   1827	for (; level < num_levels; level++) {
   1828		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
   1829
   1830		dirty |= raw->plane[plane_id] != value;
   1831		raw->plane[plane_id] = value;
   1832	}
   1833
   1834	return dirty;
   1835}
   1836
   1837static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
   1838				     const struct intel_plane_state *plane_state)
   1839{
   1840	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
   1841	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
   1842	enum plane_id plane_id = plane->id;
   1843	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
   1844	int level;
   1845	bool dirty = false;
   1846
   1847	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
   1848		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
   1849		goto out;
   1850	}
   1851
   1852	for (level = 0; level < num_levels; level++) {
   1853		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
   1854		int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
   1855		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
   1856
   1857		if (wm > max_wm)
   1858			break;
   1859
   1860		dirty |= raw->plane[plane_id] != wm;
   1861		raw->plane[plane_id] = wm;
   1862	}
   1863
   1864	/* mark all higher levels as invalid */
   1865	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
   1866
   1867out:
   1868	if (dirty)
   1869		drm_dbg_kms(&dev_priv->drm,
   1870			    "%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
   1871			    plane->base.name,
   1872			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
   1873			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
   1874			    crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
   1875
   1876	return dirty;
   1877}
   1878
   1879static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
   1880				      enum plane_id plane_id, int level)
   1881{
   1882	const struct g4x_pipe_wm *raw =
   1883		&crtc_state->wm.vlv.raw[level];
   1884	const struct vlv_fifo_state *fifo_state =
   1885		&crtc_state->wm.vlv.fifo_state;
   1886
   1887	return raw->plane[plane_id] <= fifo_state->plane[plane_id];
   1888}
   1889
   1890static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
   1891{
   1892	return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
   1893		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
   1894		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
   1895		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
   1896}
   1897
   1898static int vlv_compute_pipe_wm(struct intel_atomic_state *state,
   1899			       struct intel_crtc *crtc)
   1900{
   1901	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
   1902	struct intel_crtc_state *crtc_state =
   1903		intel_atomic_get_new_crtc_state(state, crtc);
   1904	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
   1905	const struct vlv_fifo_state *fifo_state =
   1906		&crtc_state->wm.vlv.fifo_state;
   1907	u8 active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
   1908	int num_active_planes = hweight8(active_planes);
   1909	bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->uapi);
   1910	const struct intel_plane_state *old_plane_state;
   1911	const struct intel_plane_state *new_plane_state;
   1912	struct intel_plane *plane;
   1913	enum plane_id plane_id;
   1914	int level, ret, i;
   1915	unsigned int dirty = 0;
   1916
   1917	for_each_oldnew_intel_plane_in_state(state, plane,
   1918					     old_plane_state,
   1919					     new_plane_state, i) {
   1920		if (new_plane_state->hw.crtc != &crtc->base &&
   1921		    old_plane_state->hw.crtc != &crtc->base)
   1922			continue;
   1923
   1924		if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
   1925			dirty |= BIT(plane->id);
   1926	}
   1927
   1928	/*
   1929	 * DSPARB registers may have been reset due to the
   1930	 * power well being turned off. Make sure we restore
   1931	 * them to a consistent state even if no primary/sprite
   1932	 * planes are initially active.
   1933	 */
   1934	if (needs_modeset)
   1935		crtc_state->fifo_changed = true;
   1936
   1937	if (!dirty)
   1938		return 0;
   1939
   1940	/* cursor changes don't warrant a FIFO recompute */
   1941	if (dirty & ~BIT(PLANE_CURSOR)) {
   1942		const struct intel_crtc_state *old_crtc_state =
   1943			intel_atomic_get_old_crtc_state(state, crtc);
   1944		const struct vlv_fifo_state *old_fifo_state =
   1945			&old_crtc_state->wm.vlv.fifo_state;
   1946
   1947		ret = vlv_compute_fifo(crtc_state);
   1948		if (ret)
   1949			return ret;
   1950
   1951		if (needs_modeset ||
   1952		    memcmp(old_fifo_state, fifo_state,
   1953			   sizeof(*fifo_state)) != 0)
   1954			crtc_state->fifo_changed = true;
   1955	}
   1956
   1957	/* initially allow all levels */
   1958	wm_state->num_levels = intel_wm_num_levels(dev_priv);
   1959	/*
   1960	 * Note that enabling cxsr with no primary/sprite planes
   1961	 * enabled can wedge the pipe. Hence we only allow cxsr
   1962	 * with exactly one enabled primary/sprite plane.
   1963	 */
   1964	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
   1965
   1966	for (level = 0; level < wm_state->num_levels; level++) {
   1967		const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
   1968		const int sr_fifo_size = INTEL_NUM_PIPES(dev_priv) * 512 - 1;
   1969
   1970		if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
   1971			break;
   1972
   1973		for_each_plane_id_on_crtc(crtc, plane_id) {
   1974			wm_state->wm[level].plane[plane_id] =
   1975				vlv_invert_wm_value(raw->plane[plane_id],
   1976						    fifo_state->plane[plane_id]);
   1977		}
   1978
   1979		wm_state->sr[level].plane =
   1980			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
   1981						 raw->plane[PLANE_SPRITE0],
   1982						 raw->plane[PLANE_SPRITE1]),
   1983					    sr_fifo_size);
   1984
   1985		wm_state->sr[level].cursor =
   1986			vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
   1987					    63);
   1988	}
   1989
   1990	if (level == 0)
   1991		return -EINVAL;
   1992
   1993	/* limit to only levels we can actually handle */
   1994	wm_state->num_levels = level;
   1995
   1996	/* invalidate the higher levels */
   1997	vlv_invalidate_wms(crtc, wm_state, level);
   1998
   1999	return 0;
   2000}
   2001
   2002#define VLV_FIFO(plane, value) \
   2003	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
   2004
   2005static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
   2006				   struct intel_crtc *crtc)
   2007{
   2008	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
   2009	struct intel_uncore *uncore = &dev_priv->uncore;
   2010	const struct intel_crtc_state *crtc_state =
   2011		intel_atomic_get_new_crtc_state(state, crtc);
   2012	const struct vlv_fifo_state *fifo_state =
   2013		&crtc_state->wm.vlv.fifo_state;
   2014	int sprite0_start, sprite1_start, fifo_size;
   2015	u32 dsparb, dsparb2, dsparb3;
   2016
   2017	if (!crtc_state->fifo_changed)
   2018		return;
   2019
   2020	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
   2021	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
   2022	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
   2023
   2024	drm_WARN_ON(&dev_priv->drm, fifo_state->plane[PLANE_CURSOR] != 63);
   2025	drm_WARN_ON(&dev_priv->drm, fifo_size != 511);
   2026
   2027	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
   2028
   2029	/*
   2030	 * uncore.lock serves a double purpose here. It allows us to
   2031	 * use the less expensive I915_{READ,WRITE}_FW() functions, and
   2032	 * it protects the DSPARB registers from getting clobbered by
   2033	 * parallel updates from multiple pipes.
   2034	 *
   2035	 * intel_pipe_update_start() has already disabled interrupts
   2036	 * for us, so a plain spin_lock() is sufficient here.
   2037	 */
   2038	spin_lock(&uncore->lock);
   2039
   2040	switch (crtc->pipe) {
   2041	case PIPE_A:
   2042		dsparb = intel_uncore_read_fw(uncore, DSPARB);
   2043		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
   2044
   2045		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
   2046			    VLV_FIFO(SPRITEB, 0xff));
   2047		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
   2048			   VLV_FIFO(SPRITEB, sprite1_start));
   2049
   2050		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
   2051			     VLV_FIFO(SPRITEB_HI, 0x1));
   2052		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
   2053			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
   2054
   2055		intel_uncore_write_fw(uncore, DSPARB, dsparb);
   2056		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
   2057		break;
   2058	case PIPE_B:
   2059		dsparb = intel_uncore_read_fw(uncore, DSPARB);
   2060		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
   2061
   2062		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
   2063			    VLV_FIFO(SPRITED, 0xff));
   2064		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
   2065			   VLV_FIFO(SPRITED, sprite1_start));
   2066
   2067		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
   2068			     VLV_FIFO(SPRITED_HI, 0xff));
   2069		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
   2070			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
   2071
   2072		intel_uncore_write_fw(uncore, DSPARB, dsparb);
   2073		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
   2074		break;
   2075	case PIPE_C:
   2076		dsparb3 = intel_uncore_read_fw(uncore, DSPARB3);
   2077		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
   2078
   2079		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
   2080			     VLV_FIFO(SPRITEF, 0xff));
   2081		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
   2082			    VLV_FIFO(SPRITEF, sprite1_start));
   2083
   2084		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
   2085			     VLV_FIFO(SPRITEF_HI, 0xff));
   2086		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
   2087			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
   2088
   2089		intel_uncore_write_fw(uncore, DSPARB3, dsparb3);
   2090		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
   2091		break;
   2092	default:
   2093		break;
   2094	}
   2095
   2096	intel_uncore_posting_read_fw(uncore, DSPARB);
   2097
   2098	spin_unlock(&uncore->lock);
   2099}
   2100
   2101#undef VLV_FIFO
   2102
   2103static int vlv_compute_intermediate_wm(struct intel_atomic_state *state,
   2104				       struct intel_crtc *crtc)
   2105{
   2106	struct intel_crtc_state *new_crtc_state =
   2107		intel_atomic_get_new_crtc_state(state, crtc);
   2108	const struct intel_crtc_state *old_crtc_state =
   2109		intel_atomic_get_old_crtc_state(state, crtc);
   2110	struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
   2111	const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
   2112	const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
   2113	int level;
   2114
   2115	if (!new_crtc_state->hw.active ||
   2116	    drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
   2117		*intermediate = *optimal;
   2118
   2119		intermediate->cxsr = false;
   2120		goto out;
   2121	}
   2122
   2123	intermediate->num_levels = min(optimal->num_levels, active->num_levels);
   2124	intermediate->cxsr = optimal->cxsr && active->cxsr &&
   2125		!new_crtc_state->disable_cxsr;
   2126
   2127	for (level = 0; level < intermediate->num_levels; level++) {
   2128		enum plane_id plane_id;
   2129
   2130		for_each_plane_id_on_crtc(crtc, plane_id) {
   2131			intermediate->wm[level].plane[plane_id] =
   2132				min(optimal->wm[level].plane[plane_id],
   2133				    active->wm[level].plane[plane_id]);
   2134		}
   2135
   2136		intermediate->sr[level].plane = min(optimal->sr[level].plane,
   2137						    active->sr[level].plane);
   2138		intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
   2139						     active->sr[level].cursor);
   2140	}
   2141
   2142	vlv_invalidate_wms(crtc, intermediate, level);
   2143
   2144out:
   2145	/*
   2146	 * If our intermediate WM are identical to the final WM, then we can
   2147	 * omit the post-vblank programming; only update if it's different.
   2148	 */
   2149	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
   2150		new_crtc_state->wm.need_postvbl_update = true;
   2151
   2152	return 0;
   2153}
   2154
   2155static void vlv_merge_wm(struct drm_i915_private *dev_priv,
   2156			 struct vlv_wm_values *wm)
   2157{
   2158	struct intel_crtc *crtc;
   2159	int num_active_pipes = 0;
   2160
   2161	wm->level = dev_priv->wm.max_level;
   2162	wm->cxsr = true;
   2163
   2164	for_each_intel_crtc(&dev_priv->drm, crtc) {
   2165		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
   2166
   2167		if (!crtc->active)
   2168			continue;
   2169
   2170		if (!wm_state->cxsr)
   2171			wm->cxsr = false;
   2172
   2173		num_active_pipes++;
   2174		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
   2175	}
   2176
   2177	if (num_active_pipes != 1)
   2178		wm->cxsr = false;
   2179
   2180	if (num_active_pipes > 1)
   2181		wm->level = VLV_WM_LEVEL_PM2;
   2182
   2183	for_each_intel_crtc(&dev_priv->drm, crtc) {
   2184		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
   2185		enum pipe pipe = crtc->pipe;
   2186
   2187		wm->pipe[pipe] = wm_state->wm[wm->level];
   2188		if (crtc->active && wm->cxsr)
   2189			wm->sr = wm_state->sr[wm->level];
   2190
   2191		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
   2192		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
   2193		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
   2194		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
   2195	}
   2196}
   2197
   2198static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
   2199{
   2200	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
   2201	struct vlv_wm_values new_wm = {};
   2202
   2203	vlv_merge_wm(dev_priv, &new_wm);
   2204
   2205	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
   2206		return;
   2207
   2208	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
   2209		chv_set_memory_dvfs(dev_priv, false);
   2210
   2211	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
   2212		chv_set_memory_pm5(dev_priv, false);
   2213
   2214	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
   2215		_intel_set_memory_cxsr(dev_priv, false);
   2216
   2217	vlv_write_wm_values(dev_priv, &new_wm);
   2218
   2219	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
   2220		_intel_set_memory_cxsr(dev_priv, true);
   2221
   2222	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
   2223		chv_set_memory_pm5(dev_priv, true);
   2224
   2225	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
   2226		chv_set_memory_dvfs(dev_priv, true);
   2227
   2228	*old_wm = new_wm;
   2229}
   2230
   2231static void vlv_initial_watermarks(struct intel_atomic_state *state,
   2232				   struct intel_crtc *crtc)
   2233{
   2234	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
   2235	const struct intel_crtc_state *crtc_state =
   2236		intel_atomic_get_new_crtc_state(state, crtc);
   2237
   2238	mutex_lock(&dev_priv->wm.wm_mutex);
   2239	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
   2240	vlv_program_watermarks(dev_priv);
   2241	mutex_unlock(&dev_priv->wm.wm_mutex);
   2242}
   2243
   2244static void vlv_optimize_watermarks(struct intel_atomic_state *state,
   2245				    struct intel_crtc *crtc)
   2246{
   2247	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
   2248	const struct intel_crtc_state *crtc_state =
   2249		intel_atomic_get_new_crtc_state(state, crtc);
   2250
   2251	if (!crtc_state->wm.need_postvbl_update)
   2252		return;
   2253
   2254	mutex_lock(&dev_priv->wm.wm_mutex);
   2255	crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
   2256	vlv_program_watermarks(dev_priv);
   2257	mutex_unlock(&dev_priv->wm.wm_mutex);
   2258}
   2259
   2260static void i965_update_wm(struct drm_i915_private *dev_priv)
   2261{
   2262	struct intel_crtc *crtc;
   2263	int srwm = 1;
   2264	int cursor_sr = 16;
   2265	bool cxsr_enabled;
   2266
   2267	/* Calc sr entries for one plane configs */
   2268	crtc = single_enabled_crtc(dev_priv);
   2269	if (crtc) {
   2270		/* self-refresh has much higher latency */
   2271		static const int sr_latency_ns = 12000;
   2272		const struct drm_display_mode *pipe_mode =
   2273			&crtc->config->hw.pipe_mode;
   2274		const struct drm_framebuffer *fb =
   2275			crtc->base.primary->state->fb;
   2276		int pixel_rate = crtc->config->pixel_rate;
   2277		int htotal = pipe_mode->crtc_htotal;
   2278		int width = drm_rect_width(&crtc->base.primary->state->src) >> 16;
   2279		int cpp = fb->format->cpp[0];
   2280		int entries;
   2281
   2282		entries = intel_wm_method2(pixel_rate, htotal,
   2283					   width, cpp, sr_latency_ns / 100);
   2284		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
   2285		srwm = I965_FIFO_SIZE - entries;
   2286		if (srwm < 0)
   2287			srwm = 1;
   2288		srwm &= 0x1ff;
   2289		drm_dbg_kms(&dev_priv->drm,
   2290			    "self-refresh entries: %d, wm: %d\n",
   2291			    entries, srwm);
   2292
   2293		entries = intel_wm_method2(pixel_rate, htotal,
   2294					   crtc->base.cursor->state->crtc_w, 4,
   2295					   sr_latency_ns / 100);
   2296		entries = DIV_ROUND_UP(entries,
   2297				       i965_cursor_wm_info.cacheline_size) +
   2298			i965_cursor_wm_info.guard_size;
   2299
   2300		cursor_sr = i965_cursor_wm_info.fifo_size - entries;
   2301		if (cursor_sr > i965_cursor_wm_info.max_wm)
   2302			cursor_sr = i965_cursor_wm_info.max_wm;
   2303
   2304		drm_dbg_kms(&dev_priv->drm,
   2305			    "self-refresh watermark: display plane %d "
   2306			    "cursor %d\n", srwm, cursor_sr);
   2307
   2308		cxsr_enabled = true;
   2309	} else {
   2310		cxsr_enabled = false;
   2311		/* Turn off self refresh if both pipes are enabled */
   2312		intel_set_memory_cxsr(dev_priv, false);
   2313	}
   2314
   2315	drm_dbg_kms(&dev_priv->drm,
   2316		    "Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
   2317		    srwm);
   2318
   2319	/* 965 has limitations... */
   2320	intel_uncore_write(&dev_priv->uncore, DSPFW1, FW_WM(srwm, SR) |
   2321		   FW_WM(8, CURSORB) |
   2322		   FW_WM(8, PLANEB) |
   2323		   FW_WM(8, PLANEA));
   2324	intel_uncore_write(&dev_priv->uncore, DSPFW2, FW_WM(8, CURSORA) |
   2325		   FW_WM(8, PLANEC_OLD));
   2326	/* update cursor SR watermark */
   2327	intel_uncore_write(&dev_priv->uncore, DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
   2328
   2329	if (cxsr_enabled)
   2330		intel_set_memory_cxsr(dev_priv, true);
   2331}
   2332
   2333#undef FW_WM
   2334
   2335static struct intel_crtc *intel_crtc_for_plane(struct drm_i915_private *i915,
   2336					       enum i9xx_plane_id i9xx_plane)
   2337{
   2338	struct intel_plane *plane;
   2339
   2340	for_each_intel_plane(&i915->drm, plane) {
   2341		if (plane->id == PLANE_PRIMARY &&
   2342		    plane->i9xx_plane == i9xx_plane)
   2343			return intel_crtc_for_pipe(i915, plane->pipe);
   2344	}
   2345
   2346	return NULL;
   2347}
   2348
   2349static void i9xx_update_wm(struct drm_i915_private *dev_priv)
   2350{
   2351	const struct intel_watermark_params *wm_info;
   2352	u32 fwater_lo;
   2353	u32 fwater_hi;
   2354	int cwm, srwm = 1;
   2355	int fifo_size;
   2356	int planea_wm, planeb_wm;
   2357	struct intel_crtc *crtc;
   2358
   2359	if (IS_I945GM(dev_priv))
   2360		wm_info = &i945_wm_info;
   2361	else if (DISPLAY_VER(dev_priv) != 2)
   2362		wm_info = &i915_wm_info;
   2363	else
   2364		wm_info = &i830_a_wm_info;
   2365
   2366	if (DISPLAY_VER(dev_priv) == 2)
   2367		fifo_size = i830_get_fifo_size(dev_priv, PLANE_A);
   2368	else
   2369		fifo_size = i9xx_get_fifo_size(dev_priv, PLANE_A);
   2370	crtc = intel_crtc_for_plane(dev_priv, PLANE_A);
   2371	if (intel_crtc_active(crtc)) {
   2372		const struct drm_framebuffer *fb =
   2373			crtc->base.primary->state->fb;
   2374		int cpp;
   2375
   2376		if (DISPLAY_VER(dev_priv) == 2)
   2377			cpp = 4;
   2378		else
   2379			cpp = fb->format->cpp[0];
   2380
   2381		planea_wm = intel_calculate_wm(crtc->config->pixel_rate,
   2382					       wm_info, fifo_size, cpp,
   2383					       pessimal_latency_ns);
   2384	} else {
   2385		planea_wm = fifo_size - wm_info->guard_size;
   2386		if (planea_wm > (long)wm_info->max_wm)
   2387			planea_wm = wm_info->max_wm;
   2388	}
   2389
   2390	if (DISPLAY_VER(dev_priv) == 2)
   2391		wm_info = &i830_bc_wm_info;
   2392
   2393	if (DISPLAY_VER(dev_priv) == 2)
   2394		fifo_size = i830_get_fifo_size(dev_priv, PLANE_B);
   2395	else
   2396		fifo_size = i9xx_get_fifo_size(dev_priv, PLANE_B);
   2397	crtc = intel_crtc_for_plane(dev_priv, PLANE_B);
   2398	if (intel_crtc_active(crtc)) {
   2399		const struct drm_framebuffer *fb =
   2400			crtc->base.primary->state->fb;
   2401		int cpp;
   2402
   2403		if (DISPLAY_VER(dev_priv) == 2)
   2404			cpp = 4;
   2405		else
   2406			cpp = fb->format->cpp[0];
   2407
   2408		planeb_wm = intel_calculate_wm(crtc->config->pixel_rate,
   2409					       wm_info, fifo_size, cpp,
   2410					       pessimal_latency_ns);
   2411	} else {
   2412		planeb_wm = fifo_size - wm_info->guard_size;
   2413		if (planeb_wm > (long)wm_info->max_wm)
   2414			planeb_wm = wm_info->max_wm;
   2415	}
   2416
   2417	drm_dbg_kms(&dev_priv->drm,
   2418		    "FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
   2419
   2420	crtc = single_enabled_crtc(dev_priv);
   2421	if (IS_I915GM(dev_priv) && crtc) {
   2422		struct drm_i915_gem_object *obj;
   2423
   2424		obj = intel_fb_obj(crtc->base.primary->state->fb);
   2425
   2426		/* self-refresh seems busted with untiled */
   2427		if (!i915_gem_object_is_tiled(obj))
   2428			crtc = NULL;
   2429	}
   2430
   2431	/*
   2432	 * Overlay gets an aggressive default since video jitter is bad.
   2433	 */
   2434	cwm = 2;
   2435
   2436	/* Play safe and disable self-refresh before adjusting watermarks. */
   2437	intel_set_memory_cxsr(dev_priv, false);
   2438
   2439	/* Calc sr entries for one plane configs */
   2440	if (HAS_FW_BLC(dev_priv) && crtc) {
   2441		/* self-refresh has much higher latency */
   2442		static const int sr_latency_ns = 6000;
   2443		const struct drm_display_mode *pipe_mode =
   2444			&crtc->config->hw.pipe_mode;
   2445		const struct drm_framebuffer *fb =
   2446			crtc->base.primary->state->fb;
   2447		int pixel_rate = crtc->config->pixel_rate;
   2448		int htotal = pipe_mode->crtc_htotal;
   2449		int width = drm_rect_width(&crtc->base.primary->state->src) >> 16;
   2450		int cpp;
   2451		int entries;
   2452
   2453		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
   2454			cpp = 4;
   2455		else
   2456			cpp = fb->format->cpp[0];
   2457
   2458		entries = intel_wm_method2(pixel_rate, htotal, width, cpp,
   2459					   sr_latency_ns / 100);
   2460		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
   2461		drm_dbg_kms(&dev_priv->drm,
   2462			    "self-refresh entries: %d\n", entries);
   2463		srwm = wm_info->fifo_size - entries;
   2464		if (srwm < 0)
   2465			srwm = 1;
   2466
   2467		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
   2468			intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF,
   2469				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
   2470		else
   2471			intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, srwm & 0x3f);
   2472	}
   2473
   2474	drm_dbg_kms(&dev_priv->drm,
   2475		    "Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
   2476		     planea_wm, planeb_wm, cwm, srwm);
   2477
   2478	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
   2479	fwater_hi = (cwm & 0x1f);
   2480
   2481	/* Set request length to 8 cachelines per fetch */
   2482	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
   2483	fwater_hi = fwater_hi | (1 << 8);
   2484
   2485	intel_uncore_write(&dev_priv->uncore, FW_BLC, fwater_lo);
   2486	intel_uncore_write(&dev_priv->uncore, FW_BLC2, fwater_hi);
   2487
   2488	if (crtc)
   2489		intel_set_memory_cxsr(dev_priv, true);
   2490}
   2491
   2492static void i845_update_wm(struct drm_i915_private *dev_priv)
   2493{
   2494	struct intel_crtc *crtc;
   2495	u32 fwater_lo;
   2496	int planea_wm;
   2497
   2498	crtc = single_enabled_crtc(dev_priv);
   2499	if (crtc == NULL)
   2500		return;
   2501
   2502	planea_wm = intel_calculate_wm(crtc->config->pixel_rate,
   2503				       &i845_wm_info,
   2504				       i845_get_fifo_size(dev_priv, PLANE_A),
   2505				       4, pessimal_latency_ns);
   2506	fwater_lo = intel_uncore_read(&dev_priv->uncore, FW_BLC) & ~0xfff;
   2507	fwater_lo |= (3<<8) | planea_wm;
   2508
   2509	drm_dbg_kms(&dev_priv->drm,
   2510		    "Setting FIFO watermarks - A: %d\n", planea_wm);
   2511
   2512	intel_uncore_write(&dev_priv->uncore, FW_BLC, fwater_lo);
   2513}
   2514
   2515/* latency must be in 0.1us units. */
   2516static unsigned int ilk_wm_method1(unsigned int pixel_rate,
   2517				   unsigned int cpp,
   2518				   unsigned int latency)
   2519{
   2520	unsigned int ret;
   2521
   2522	ret = intel_wm_method1(pixel_rate, cpp, latency);
   2523	ret = DIV_ROUND_UP(ret, 64) + 2;
   2524
   2525	return ret;
   2526}
   2527
   2528/* latency must be in 0.1us units. */
   2529static unsigned int ilk_wm_method2(unsigned int pixel_rate,
   2530				   unsigned int htotal,
   2531				   unsigned int width,
   2532				   unsigned int cpp,
   2533				   unsigned int latency)
   2534{
   2535	unsigned int ret;
   2536
   2537	ret = intel_wm_method2(pixel_rate, htotal,
   2538			       width, cpp, latency);
   2539	ret = DIV_ROUND_UP(ret, 64) + 2;
   2540
   2541	return ret;
   2542}
   2543
   2544static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp)
   2545{
   2546	/*
   2547	 * Neither of these should be possible since this function shouldn't be
   2548	 * called if the CRTC is off or the plane is invisible.  But let's be
   2549	 * extra paranoid to avoid a potential divide-by-zero if we screw up
   2550	 * elsewhere in the driver.
   2551	 */
   2552	if (WARN_ON(!cpp))
   2553		return 0;
   2554	if (WARN_ON(!horiz_pixels))
   2555		return 0;
   2556
   2557	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
   2558}
   2559
   2560struct ilk_wm_maximums {
   2561	u16 pri;
   2562	u16 spr;
   2563	u16 cur;
   2564	u16 fbc;
   2565};
   2566
   2567/*
   2568 * For both WM_PIPE and WM_LP.
   2569 * mem_value must be in 0.1us units.
   2570 */
   2571static u32 ilk_compute_pri_wm(const struct intel_crtc_state *crtc_state,
   2572			      const struct intel_plane_state *plane_state,
   2573			      u32 mem_value, bool is_lp)
   2574{
   2575	u32 method1, method2;
   2576	int cpp;
   2577
   2578	if (mem_value == 0)
   2579		return U32_MAX;
   2580
   2581	if (!intel_wm_plane_visible(crtc_state, plane_state))
   2582		return 0;
   2583
   2584	cpp = plane_state->hw.fb->format->cpp[0];
   2585
   2586	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
   2587
   2588	if (!is_lp)
   2589		return method1;
   2590
   2591	method2 = ilk_wm_method2(crtc_state->pixel_rate,
   2592				 crtc_state->hw.pipe_mode.crtc_htotal,
   2593				 drm_rect_width(&plane_state->uapi.src) >> 16,
   2594				 cpp, mem_value);
   2595
   2596	return min(method1, method2);
   2597}
   2598
   2599/*
   2600 * For both WM_PIPE and WM_LP.
   2601 * mem_value must be in 0.1us units.
   2602 */
   2603static u32 ilk_compute_spr_wm(const struct intel_crtc_state *crtc_state,
   2604			      const struct intel_plane_state *plane_state,
   2605			      u32 mem_value)
   2606{
   2607	u32 method1, method2;
   2608	int cpp;
   2609
   2610	if (mem_value == 0)
   2611		return U32_MAX;
   2612
   2613	if (!intel_wm_plane_visible(crtc_state, plane_state))
   2614		return 0;
   2615
   2616	cpp = plane_state->hw.fb->format->cpp[0];
   2617
   2618	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
   2619	method2 = ilk_wm_method2(crtc_state->pixel_rate,
   2620				 crtc_state->hw.pipe_mode.crtc_htotal,
   2621				 drm_rect_width(&plane_state->uapi.src) >> 16,
   2622				 cpp, mem_value);
   2623	return min(method1, method2);
   2624}
   2625
   2626/*
   2627 * For both WM_PIPE and WM_LP.
   2628 * mem_value must be in 0.1us units.
   2629 */
   2630static u32 ilk_compute_cur_wm(const struct intel_crtc_state *crtc_state,
   2631			      const struct intel_plane_state *plane_state,
   2632			      u32 mem_value)
   2633{
   2634	int cpp;
   2635
   2636	if (mem_value == 0)
   2637		return U32_MAX;
   2638
   2639	if (!intel_wm_plane_visible(crtc_state, plane_state))
   2640		return 0;
   2641
   2642	cpp = plane_state->hw.fb->format->cpp[0];
   2643
   2644	return ilk_wm_method2(crtc_state->pixel_rate,
   2645			      crtc_state->hw.pipe_mode.crtc_htotal,
   2646			      drm_rect_width(&plane_state->uapi.src) >> 16,
   2647			      cpp, mem_value);
   2648}
   2649
   2650/* Only for WM_LP. */
   2651static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
   2652			      const struct intel_plane_state *plane_state,
   2653			      u32 pri_val)
   2654{
   2655	int cpp;
   2656
   2657	if (!intel_wm_plane_visible(crtc_state, plane_state))
   2658		return 0;
   2659
   2660	cpp = plane_state->hw.fb->format->cpp[0];
   2661
   2662	return ilk_wm_fbc(pri_val, drm_rect_width(&plane_state->uapi.src) >> 16,
   2663			  cpp);
   2664}
   2665
   2666static unsigned int
   2667ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
   2668{
   2669	if (DISPLAY_VER(dev_priv) >= 8)
   2670		return 3072;
   2671	else if (DISPLAY_VER(dev_priv) >= 7)
   2672		return 768;
   2673	else
   2674		return 512;
   2675}
   2676
   2677static unsigned int
   2678ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
   2679		     int level, bool is_sprite)
   2680{
   2681	if (DISPLAY_VER(dev_priv) >= 8)
   2682		/* BDW primary/sprite plane watermarks */
   2683		return level == 0 ? 255 : 2047;
   2684	else if (DISPLAY_VER(dev_priv) >= 7)
   2685		/* IVB/HSW primary/sprite plane watermarks */
   2686		return level == 0 ? 127 : 1023;
   2687	else if (!is_sprite)
   2688		/* ILK/SNB primary plane watermarks */
   2689		return level == 0 ? 127 : 511;
   2690	else
   2691		/* ILK/SNB sprite plane watermarks */
   2692		return level == 0 ? 63 : 255;
   2693}
   2694
   2695static unsigned int
   2696ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
   2697{
   2698	if (DISPLAY_VER(dev_priv) >= 7)
   2699		return level == 0 ? 63 : 255;
   2700	else
   2701		return level == 0 ? 31 : 63;
   2702}
   2703
   2704static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
   2705{
   2706	if (DISPLAY_VER(dev_priv) >= 8)
   2707		return 31;
   2708	else
   2709		return 15;
   2710}
   2711
   2712/* Calculate the maximum primary/sprite plane watermark */
   2713static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
   2714				     int level,
   2715				     const struct intel_wm_config *config,
   2716				     enum intel_ddb_partitioning ddb_partitioning,
   2717				     bool is_sprite)
   2718{
   2719	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
   2720
   2721	/* if sprites aren't enabled, sprites get nothing */
   2722	if (is_sprite && !config->sprites_enabled)
   2723		return 0;
   2724
   2725	/* HSW allows LP1+ watermarks even with multiple pipes */
   2726	if (level == 0 || config->num_pipes_active > 1) {
   2727		fifo_size /= INTEL_NUM_PIPES(dev_priv);
   2728
   2729		/*
   2730		 * For some reason the non self refresh
   2731		 * FIFO size is only half of the self
   2732		 * refresh FIFO size on ILK/SNB.
   2733		 */
   2734		if (DISPLAY_VER(dev_priv) <= 6)
   2735			fifo_size /= 2;
   2736	}
   2737
   2738	if (config->sprites_enabled) {
   2739		/* level 0 is always calculated with 1:1 split */
   2740		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
   2741			if (is_sprite)
   2742				fifo_size *= 5;
   2743			fifo_size /= 6;
   2744		} else {
   2745			fifo_size /= 2;
   2746		}
   2747	}
   2748
   2749	/* clamp to max that the registers can hold */
   2750	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
   2751}
   2752
   2753/* Calculate the maximum cursor plane watermark */
   2754static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
   2755				      int level,
   2756				      const struct intel_wm_config *config)
   2757{
   2758	/* HSW LP1+ watermarks w/ multiple pipes */
   2759	if (level > 0 && config->num_pipes_active > 1)
   2760		return 64;
   2761
   2762	/* otherwise just report max that registers can hold */
   2763	return ilk_cursor_wm_reg_max(dev_priv, level);
   2764}
   2765
   2766static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
   2767				    int level,
   2768				    const struct intel_wm_config *config,
   2769				    enum intel_ddb_partitioning ddb_partitioning,
   2770				    struct ilk_wm_maximums *max)
   2771{
   2772	max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
   2773	max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
   2774	max->cur = ilk_cursor_wm_max(dev_priv, level, config);
   2775	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
   2776}
   2777
   2778static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
   2779					int level,
   2780					struct ilk_wm_maximums *max)
   2781{
   2782	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
   2783	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
   2784	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
   2785	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
   2786}
   2787
   2788static bool ilk_validate_wm_level(int level,
   2789				  const struct ilk_wm_maximums *max,
   2790				  struct intel_wm_level *result)
   2791{
   2792	bool ret;
   2793
   2794	/* already determined to be invalid? */
   2795	if (!result->enable)
   2796		return false;
   2797
   2798	result->enable = result->pri_val <= max->pri &&
   2799			 result->spr_val <= max->spr &&
   2800			 result->cur_val <= max->cur;
   2801
   2802	ret = result->enable;
   2803
   2804	/*
   2805	 * HACK until we can pre-compute everything,
   2806	 * and thus fail gracefully if LP0 watermarks
   2807	 * are exceeded...
   2808	 */
   2809	if (level == 0 && !result->enable) {
   2810		if (result->pri_val > max->pri)
   2811			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
   2812				      level, result->pri_val, max->pri);
   2813		if (result->spr_val > max->spr)
   2814			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
   2815				      level, result->spr_val, max->spr);
   2816		if (result->cur_val > max->cur)
   2817			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
   2818				      level, result->cur_val, max->cur);
   2819
   2820		result->pri_val = min_t(u32, result->pri_val, max->pri);
   2821		result->spr_val = min_t(u32, result->spr_val, max->spr);
   2822		result->cur_val = min_t(u32, result->cur_val, max->cur);
   2823		result->enable = true;
   2824	}
   2825
   2826	return ret;
   2827}
   2828
   2829static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
   2830				 const struct intel_crtc *crtc,
   2831				 int level,
   2832				 struct intel_crtc_state *crtc_state,
   2833				 const struct intel_plane_state *pristate,
   2834				 const struct intel_plane_state *sprstate,
   2835				 const struct intel_plane_state *curstate,
   2836				 struct intel_wm_level *result)
   2837{
   2838	u16 pri_latency = dev_priv->wm.pri_latency[level];
   2839	u16 spr_latency = dev_priv->wm.spr_latency[level];
   2840	u16 cur_latency = dev_priv->wm.cur_latency[level];
   2841
   2842	/* WM1+ latency values stored in 0.5us units */
   2843	if (level > 0) {
   2844		pri_latency *= 5;
   2845		spr_latency *= 5;
   2846		cur_latency *= 5;
   2847	}
   2848
   2849	if (pristate) {
   2850		result->pri_val = ilk_compute_pri_wm(crtc_state, pristate,
   2851						     pri_latency, level);
   2852		result->fbc_val = ilk_compute_fbc_wm(crtc_state, pristate, result->pri_val);
   2853	}
   2854
   2855	if (sprstate)
   2856		result->spr_val = ilk_compute_spr_wm(crtc_state, sprstate, spr_latency);
   2857
   2858	if (curstate)
   2859		result->cur_val = ilk_compute_cur_wm(crtc_state, curstate, cur_latency);
   2860
   2861	result->enable = true;
   2862}
   2863
   2864static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
   2865				  u16 wm[])
   2866{
   2867	struct intel_uncore *uncore = &dev_priv->uncore;
   2868
   2869	if (DISPLAY_VER(dev_priv) >= 9) {
   2870		u32 val;
   2871		int ret, i;
   2872		int level, max_level = ilk_wm_max_level(dev_priv);
   2873		int mult = IS_DG2(dev_priv) ? 2 : 1;
   2874
   2875		/* read the first set of memory latencies[0:3] */
   2876		val = 0; /* data0 to be programmed to 0 for first set */
   2877		ret = snb_pcode_read(dev_priv, GEN9_PCODE_READ_MEM_LATENCY,
   2878				     &val, NULL);
   2879
   2880		if (ret) {
   2881			drm_err(&dev_priv->drm,
   2882				"SKL Mailbox read error = %d\n", ret);
   2883			return;
   2884		}
   2885
   2886		wm[0] = (val & GEN9_MEM_LATENCY_LEVEL_MASK) * mult;
   2887		wm[1] = ((val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
   2888				GEN9_MEM_LATENCY_LEVEL_MASK) * mult;
   2889		wm[2] = ((val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
   2890				GEN9_MEM_LATENCY_LEVEL_MASK) * mult;
   2891		wm[3] = ((val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
   2892				GEN9_MEM_LATENCY_LEVEL_MASK) * mult;
   2893
   2894		/* read the second set of memory latencies[4:7] */
   2895		val = 1; /* data0 to be programmed to 1 for second set */
   2896		ret = snb_pcode_read(dev_priv, GEN9_PCODE_READ_MEM_LATENCY,
   2897				     &val, NULL);
   2898		if (ret) {
   2899			drm_err(&dev_priv->drm,
   2900				"SKL Mailbox read error = %d\n", ret);
   2901			return;
   2902		}
   2903
   2904		wm[4] = (val & GEN9_MEM_LATENCY_LEVEL_MASK) * mult;
   2905		wm[5] = ((val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
   2906				GEN9_MEM_LATENCY_LEVEL_MASK) * mult;
   2907		wm[6] = ((val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
   2908				GEN9_MEM_LATENCY_LEVEL_MASK) * mult;
   2909		wm[7] = ((val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
   2910				GEN9_MEM_LATENCY_LEVEL_MASK) * mult;
   2911
   2912		/*
   2913		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
   2914		 * need to be disabled. We make sure to sanitize the values out
   2915		 * of the punit to satisfy this requirement.
   2916		 */
   2917		for (level = 1; level <= max_level; level++) {
   2918			if (wm[level] == 0) {
   2919				for (i = level + 1; i <= max_level; i++)
   2920					wm[i] = 0;
   2921
   2922				max_level = level - 1;
   2923
   2924				break;
   2925			}
   2926		}
   2927
   2928		/*
   2929		 * WaWmMemoryReadLatency
   2930		 *
   2931		 * punit doesn't take into account the read latency so we need
   2932		 * to add proper adjustement to each valid level we retrieve
   2933		 * from the punit when level 0 response data is 0us.
   2934		 */
   2935		if (wm[0] == 0) {
   2936			u8 adjust = DISPLAY_VER(dev_priv) >= 12 ? 3 : 2;
   2937
   2938			for (level = 0; level <= max_level; level++)
   2939				wm[level] += adjust;
   2940		}
   2941
   2942		/*
   2943		 * WA Level-0 adjustment for 16GB DIMMs: SKL+
   2944		 * If we could not get dimm info enable this WA to prevent from
   2945		 * any underrun. If not able to get Dimm info assume 16GB dimm
   2946		 * to avoid any underrun.
   2947		 */
   2948		if (dev_priv->dram_info.wm_lv_0_adjust_needed)
   2949			wm[0] += 1;
   2950	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
   2951		u64 sskpd = intel_uncore_read64(uncore, MCH_SSKPD);
   2952
   2953		wm[0] = REG_FIELD_GET64(SSKPD_NEW_WM0_MASK_HSW, sskpd);
   2954		if (wm[0] == 0)
   2955			wm[0] = REG_FIELD_GET64(SSKPD_OLD_WM0_MASK_HSW, sskpd);
   2956		wm[1] = REG_FIELD_GET64(SSKPD_WM1_MASK_HSW, sskpd);
   2957		wm[2] = REG_FIELD_GET64(SSKPD_WM2_MASK_HSW, sskpd);
   2958		wm[3] = REG_FIELD_GET64(SSKPD_WM3_MASK_HSW, sskpd);
   2959		wm[4] = REG_FIELD_GET64(SSKPD_WM4_MASK_HSW, sskpd);
   2960	} else if (DISPLAY_VER(dev_priv) >= 6) {
   2961		u32 sskpd = intel_uncore_read(uncore, MCH_SSKPD);
   2962
   2963		wm[0] = REG_FIELD_GET(SSKPD_WM0_MASK_SNB, sskpd);
   2964		wm[1] = REG_FIELD_GET(SSKPD_WM1_MASK_SNB, sskpd);
   2965		wm[2] = REG_FIELD_GET(SSKPD_WM2_MASK_SNB, sskpd);
   2966		wm[3] = REG_FIELD_GET(SSKPD_WM3_MASK_SNB, sskpd);
   2967	} else if (DISPLAY_VER(dev_priv) >= 5) {
   2968		u32 mltr = intel_uncore_read(uncore, MLTR_ILK);
   2969
   2970		/* ILK primary LP0 latency is 700 ns */
   2971		wm[0] = 7;
   2972		wm[1] = REG_FIELD_GET(MLTR_WM1_MASK, mltr);
   2973		wm[2] = REG_FIELD_GET(MLTR_WM2_MASK, mltr);
   2974	} else {
   2975		MISSING_CASE(INTEL_DEVID(dev_priv));
   2976	}
   2977}
   2978
   2979static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
   2980				       u16 wm[5])
   2981{
   2982	/* ILK sprite LP0 latency is 1300 ns */
   2983	if (DISPLAY_VER(dev_priv) == 5)
   2984		wm[0] = 13;
   2985}
   2986
   2987static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
   2988				       u16 wm[5])
   2989{
   2990	/* ILK cursor LP0 latency is 1300 ns */
   2991	if (DISPLAY_VER(dev_priv) == 5)
   2992		wm[0] = 13;
   2993}
   2994
   2995int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
   2996{
   2997	/* how many WM levels are we expecting */
   2998	if (HAS_HW_SAGV_WM(dev_priv))
   2999		return 5;
   3000	else if (DISPLAY_VER(dev_priv) >= 9)
   3001		return 7;
   3002	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
   3003		return 4;
   3004	else if (DISPLAY_VER(dev_priv) >= 6)
   3005		return 3;
   3006	else
   3007		return 2;
   3008}
   3009
   3010static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
   3011				   const char *name,
   3012				   const u16 wm[])
   3013{
   3014	int level, max_level = ilk_wm_max_level(dev_priv);
   3015
   3016	for (level = 0; level <= max_level; level++) {
   3017		unsigned int latency = wm[level];
   3018
   3019		if (latency == 0) {
   3020			drm_dbg_kms(&dev_priv->drm,
   3021				    "%s WM%d latency not provided\n",
   3022				    name, level);
   3023			continue;
   3024		}
   3025
   3026		/*
   3027		 * - latencies are in us on gen9.
   3028		 * - before then, WM1+ latency values are in 0.5us units
   3029		 */
   3030		if (DISPLAY_VER(dev_priv) >= 9)
   3031			latency *= 10;
   3032		else if (level > 0)
   3033			latency *= 5;
   3034
   3035		drm_dbg_kms(&dev_priv->drm,
   3036			    "%s WM%d latency %u (%u.%u usec)\n", name, level,
   3037			    wm[level], latency / 10, latency % 10);
   3038	}
   3039}
   3040
   3041static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
   3042				    u16 wm[5], u16 min)
   3043{
   3044	int level, max_level = ilk_wm_max_level(dev_priv);
   3045
   3046	if (wm[0] >= min)
   3047		return false;
   3048
   3049	wm[0] = max(wm[0], min);
   3050	for (level = 1; level <= max_level; level++)
   3051		wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5));
   3052
   3053	return true;
   3054}
   3055
   3056static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
   3057{
   3058	bool changed;
   3059
   3060	/*
   3061	 * The BIOS provided WM memory latency values are often
   3062	 * inadequate for high resolution displays. Adjust them.
   3063	 */
   3064	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12);
   3065	changed |= ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12);
   3066	changed |= ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
   3067
   3068	if (!changed)
   3069		return;
   3070
   3071	drm_dbg_kms(&dev_priv->drm,
   3072		    "WM latency values increased to avoid potential underruns\n");
   3073	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
   3074	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
   3075	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
   3076}
   3077
   3078static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
   3079{
   3080	/*
   3081	 * On some SNB machines (Thinkpad X220 Tablet at least)
   3082	 * LP3 usage can cause vblank interrupts to be lost.
   3083	 * The DEIIR bit will go high but it looks like the CPU
   3084	 * never gets interrupted.
   3085	 *
   3086	 * It's not clear whether other interrupt source could
   3087	 * be affected or if this is somehow limited to vblank
   3088	 * interrupts only. To play it safe we disable LP3
   3089	 * watermarks entirely.
   3090	 */
   3091	if (dev_priv->wm.pri_latency[3] == 0 &&
   3092	    dev_priv->wm.spr_latency[3] == 0 &&
   3093	    dev_priv->wm.cur_latency[3] == 0)
   3094		return;
   3095
   3096	dev_priv->wm.pri_latency[3] = 0;
   3097	dev_priv->wm.spr_latency[3] = 0;
   3098	dev_priv->wm.cur_latency[3] = 0;
   3099
   3100	drm_dbg_kms(&dev_priv->drm,
   3101		    "LP3 watermarks disabled due to potential for lost interrupts\n");
   3102	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
   3103	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
   3104	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
   3105}
   3106
   3107static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
   3108{
   3109	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
   3110
   3111	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
   3112	       sizeof(dev_priv->wm.pri_latency));
   3113	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
   3114	       sizeof(dev_priv->wm.pri_latency));
   3115
   3116	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
   3117	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
   3118
   3119	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
   3120	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
   3121	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
   3122
   3123	if (DISPLAY_VER(dev_priv) == 6) {
   3124		snb_wm_latency_quirk(dev_priv);
   3125		snb_wm_lp3_irq_quirk(dev_priv);
   3126	}
   3127}
   3128
   3129static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
   3130{
   3131	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
   3132	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
   3133}
   3134
   3135static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv,
   3136				 struct intel_pipe_wm *pipe_wm)
   3137{
   3138	/* LP0 watermark maximums depend on this pipe alone */
   3139	const struct intel_wm_config config = {
   3140		.num_pipes_active = 1,
   3141		.sprites_enabled = pipe_wm->sprites_enabled,
   3142		.sprites_scaled = pipe_wm->sprites_scaled,
   3143	};
   3144	struct ilk_wm_maximums max;
   3145
   3146	/* LP0 watermarks always use 1/2 DDB partitioning */
   3147	ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
   3148
   3149	/* At least LP0 must be valid */
   3150	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
   3151		drm_dbg_kms(&dev_priv->drm, "LP0 watermark invalid\n");
   3152		return false;
   3153	}
   3154
   3155	return true;
   3156}
   3157
   3158/* Compute new watermarks for the pipe */
   3159static int ilk_compute_pipe_wm(struct intel_atomic_state *state,
   3160			       struct intel_crtc *crtc)
   3161{
   3162	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
   3163	struct intel_crtc_state *crtc_state =
   3164		intel_atomic_get_new_crtc_state(state, crtc);
   3165	struct intel_pipe_wm *pipe_wm;
   3166	struct intel_plane *plane;
   3167	const struct intel_plane_state *plane_state;
   3168	const struct intel_plane_state *pristate = NULL;
   3169	const struct intel_plane_state *sprstate = NULL;
   3170	const struct intel_plane_state *curstate = NULL;
   3171	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
   3172	struct ilk_wm_maximums max;
   3173
   3174	pipe_wm = &crtc_state->wm.ilk.optimal;
   3175
   3176	intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
   3177		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
   3178			pristate = plane_state;
   3179		else if (plane->base.type == DRM_PLANE_TYPE_OVERLAY)
   3180			sprstate = plane_state;
   3181		else if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
   3182			curstate = plane_state;
   3183	}
   3184
   3185	pipe_wm->pipe_enabled = crtc_state->hw.active;
   3186	pipe_wm->sprites_enabled = crtc_state->active_planes & BIT(PLANE_SPRITE0);
   3187	pipe_wm->sprites_scaled = crtc_state->scaled_planes & BIT(PLANE_SPRITE0);
   3188
   3189	usable_level = max_level;
   3190
   3191	/* ILK/SNB: LP2+ watermarks only w/o sprites */
   3192	if (DISPLAY_VER(dev_priv) <= 6 && pipe_wm->sprites_enabled)
   3193		usable_level = 1;
   3194
   3195	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
   3196	if (pipe_wm->sprites_scaled)
   3197		usable_level = 0;
   3198
   3199	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
   3200	ilk_compute_wm_level(dev_priv, crtc, 0, crtc_state,
   3201			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
   3202
   3203	if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
   3204		return -EINVAL;
   3205
   3206	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
   3207
   3208	for (level = 1; level <= usable_level; level++) {
   3209		struct intel_wm_level *wm = &pipe_wm->wm[level];
   3210
   3211		ilk_compute_wm_level(dev_priv, crtc, level, crtc_state,
   3212				     pristate, sprstate, curstate, wm);
   3213
   3214		/*
   3215		 * Disable any watermark level that exceeds the
   3216		 * register maximums since such watermarks are
   3217		 * always invalid.
   3218		 */
   3219		if (!ilk_validate_wm_level(level, &max, wm)) {
   3220			memset(wm, 0, sizeof(*wm));
   3221			break;
   3222		}
   3223	}
   3224
   3225	return 0;
   3226}
   3227
   3228/*
   3229 * Build a set of 'intermediate' watermark values that satisfy both the old
   3230 * state and the new state.  These can be programmed to the hardware
   3231 * immediately.
   3232 */
   3233static int ilk_compute_intermediate_wm(struct intel_atomic_state *state,
   3234				       struct intel_crtc *crtc)
   3235{
   3236	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
   3237	struct intel_crtc_state *new_crtc_state =
   3238		intel_atomic_get_new_crtc_state(state, crtc);
   3239	const struct intel_crtc_state *old_crtc_state =
   3240		intel_atomic_get_old_crtc_state(state, crtc);
   3241	struct intel_pipe_wm *a = &new_crtc_state->wm.ilk.intermediate;
   3242	const struct intel_pipe_wm *b = &old_crtc_state->wm.ilk.optimal;
   3243	int level, max_level = ilk_wm_max_level(dev_priv);
   3244
   3245	/*
   3246	 * Start with the final, target watermarks, then combine with the
   3247	 * currently active watermarks to get values that are safe both before
   3248	 * and after the vblank.
   3249	 */
   3250	*a = new_crtc_state->wm.ilk.optimal;
   3251	if (!new_crtc_state->hw.active ||
   3252	    drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi) ||
   3253	    state->skip_intermediate_wm)
   3254		return 0;
   3255
   3256	a->pipe_enabled |= b->pipe_enabled;
   3257	a->sprites_enabled |= b->sprites_enabled;
   3258	a->sprites_scaled |= b->sprites_scaled;
   3259
   3260	for (level = 0; level <= max_level; level++) {
   3261		struct intel_wm_level *a_wm = &a->wm[level];
   3262		const struct intel_wm_level *b_wm = &b->wm[level];
   3263
   3264		a_wm->enable &= b_wm->enable;
   3265		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
   3266		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
   3267		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
   3268		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
   3269	}
   3270
   3271	/*
   3272	 * We need to make sure that these merged watermark values are
   3273	 * actually a valid configuration themselves.  If they're not,
   3274	 * there's no safe way to transition from the old state to
   3275	 * the new state, so we need to fail the atomic transaction.
   3276	 */
   3277	if (!ilk_validate_pipe_wm(dev_priv, a))
   3278		return -EINVAL;
   3279
   3280	/*
   3281	 * If our intermediate WM are identical to the final WM, then we can
   3282	 * omit the post-vblank programming; only update if it's different.
   3283	 */
   3284	if (memcmp(a, &new_crtc_state->wm.ilk.optimal, sizeof(*a)) != 0)
   3285		new_crtc_state->wm.need_postvbl_update = true;
   3286
   3287	return 0;
   3288}
   3289
   3290/*
   3291 * Merge the watermarks from all active pipes for a specific level.
   3292 */
   3293static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
   3294			       int level,
   3295			       struct intel_wm_level *ret_wm)
   3296{
   3297	const struct intel_crtc *crtc;
   3298
   3299	ret_wm->enable = true;
   3300
   3301	for_each_intel_crtc(&dev_priv->drm, crtc) {
   3302		const struct intel_pipe_wm *active = &crtc->wm.active.ilk;
   3303		const struct intel_wm_level *wm = &active->wm[level];
   3304
   3305		if (!active->pipe_enabled)
   3306			continue;
   3307
   3308		/*
   3309		 * The watermark values may have been used in the past,
   3310		 * so we must maintain them in the registers for some
   3311		 * time even if the level is now disabled.
   3312		 */
   3313		if (!wm->enable)
   3314			ret_wm->enable = false;
   3315
   3316		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
   3317		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
   3318		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
   3319		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
   3320	}
   3321}
   3322
   3323/*
   3324 * Merge all low power watermarks for all active pipes.
   3325 */
   3326static void ilk_wm_merge(struct drm_i915_private *dev_priv,
   3327			 const struct intel_wm_config *config,
   3328			 const struct ilk_wm_maximums *max,
   3329			 struct intel_pipe_wm *merged)
   3330{
   3331	int level, max_level = ilk_wm_max_level(dev_priv);
   3332	int last_enabled_level = max_level;
   3333
   3334	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
   3335	if ((DISPLAY_VER(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
   3336	    config->num_pipes_active > 1)
   3337		last_enabled_level = 0;
   3338
   3339	/* ILK: FBC WM must be disabled always */
   3340	merged->fbc_wm_enabled = DISPLAY_VER(dev_priv) >= 6;
   3341
   3342	/* merge each WM1+ level */
   3343	for (level = 1; level <= max_level; level++) {
   3344		struct intel_wm_level *wm = &merged->wm[level];
   3345
   3346		ilk_merge_wm_level(dev_priv, level, wm);
   3347
   3348		if (level > last_enabled_level)
   3349			wm->enable = false;
   3350		else if (!ilk_validate_wm_level(level, max, wm))
   3351			/* make sure all following levels get disabled */
   3352			last_enabled_level = level - 1;
   3353
   3354		/*
   3355		 * The spec says it is preferred to disable
   3356		 * FBC WMs instead of disabling a WM level.
   3357		 */
   3358		if (wm->fbc_val > max->fbc) {
   3359			if (wm->enable)
   3360				merged->fbc_wm_enabled = false;
   3361			wm->fbc_val = 0;
   3362		}
   3363	}
   3364
   3365	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
   3366	if (DISPLAY_VER(dev_priv) == 5 && HAS_FBC(dev_priv) &&
   3367	    dev_priv->params.enable_fbc && !merged->fbc_wm_enabled) {
   3368		for (level = 2; level <= max_level; level++) {
   3369			struct intel_wm_level *wm = &merged->wm[level];
   3370
   3371			wm->enable = false;
   3372		}
   3373	}
   3374}
   3375
   3376static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
   3377{
   3378	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
   3379	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
   3380}
   3381
   3382/* The value we need to program into the WM_LPx latency field */
   3383static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
   3384				      int level)
   3385{
   3386	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
   3387		return 2 * level;
   3388	else
   3389		return dev_priv->wm.pri_latency[level];
   3390}
   3391
   3392static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
   3393				   const struct intel_pipe_wm *merged,
   3394				   enum intel_ddb_partitioning partitioning,
   3395				   struct ilk_wm_values *results)
   3396{
   3397	struct intel_crtc *crtc;
   3398	int level, wm_lp;
   3399
   3400	results->enable_fbc_wm = merged->fbc_wm_enabled;
   3401	results->partitioning = partitioning;
   3402
   3403	/* LP1+ register values */
   3404	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
   3405		const struct intel_wm_level *r;
   3406
   3407		level = ilk_wm_lp_to_level(wm_lp, merged);
   3408
   3409		r = &merged->wm[level];
   3410
   3411		/*
   3412		 * Maintain the watermark values even if the level is
   3413		 * disabled. Doing otherwise could cause underruns.
   3414		 */
   3415		results->wm_lp[wm_lp - 1] =
   3416			WM_LP_LATENCY(ilk_wm_lp_latency(dev_priv, level)) |
   3417			WM_LP_PRIMARY(r->pri_val) |
   3418			WM_LP_CURSOR(r->cur_val);
   3419
   3420		if (r->enable)
   3421			results->wm_lp[wm_lp - 1] |= WM_LP_ENABLE;
   3422
   3423		if (DISPLAY_VER(dev_priv) >= 8)
   3424			results->wm_lp[wm_lp - 1] |= WM_LP_FBC_BDW(r->fbc_val);
   3425		else
   3426			results->wm_lp[wm_lp - 1] |= WM_LP_FBC_ILK(r->fbc_val);
   3427
   3428		results->wm_lp_spr[wm_lp - 1] = WM_LP_SPRITE(r->spr_val);
   3429
   3430		/*
   3431		 * Always set WM_LP_SPRITE_EN when spr_val != 0, even if the
   3432		 * level is disabled. Doing otherwise could cause underruns.
   3433		 */
   3434		if (DISPLAY_VER(dev_priv) <= 6 && r->spr_val) {
   3435			drm_WARN_ON(&dev_priv->drm, wm_lp != 1);
   3436			results->wm_lp_spr[wm_lp - 1] |= WM_LP_SPRITE_ENABLE;
   3437		}
   3438	}
   3439
   3440	/* LP0 register values */
   3441	for_each_intel_crtc(&dev_priv->drm, crtc) {
   3442		enum pipe pipe = crtc->pipe;
   3443		const struct intel_pipe_wm *pipe_wm = &crtc->wm.active.ilk;
   3444		const struct intel_wm_level *r = &pipe_wm->wm[0];
   3445
   3446		if (drm_WARN_ON(&dev_priv->drm, !r->enable))
   3447			continue;
   3448
   3449		results->wm_pipe[pipe] =
   3450			WM0_PIPE_PRIMARY(r->pri_val) |
   3451			WM0_PIPE_SPRITE(r->spr_val) |
   3452			WM0_PIPE_CURSOR(r->cur_val);
   3453	}
   3454}
   3455
   3456/* Find the result with the highest level enabled. Check for enable_fbc_wm in
   3457 * case both are at the same level. Prefer r1 in case they're the same. */
   3458static struct intel_pipe_wm *
   3459ilk_find_best_result(struct drm_i915_private *dev_priv,
   3460		     struct intel_pipe_wm *r1,
   3461		     struct intel_pipe_wm *r2)
   3462{
   3463	int level, max_level = ilk_wm_max_level(dev_priv);
   3464	int level1 = 0, level2 = 0;
   3465
   3466	for (level = 1; level <= max_level; level++) {
   3467		if (r1->wm[level].enable)
   3468			level1 = level;
   3469		if (r2->wm[level].enable)
   3470			level2 = level;
   3471	}
   3472
   3473	if (level1 == level2) {
   3474		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
   3475			return r2;
   3476		else
   3477			return r1;
   3478	} else if (level1 > level2) {
   3479		return r1;
   3480	} else {
   3481		return r2;
   3482	}
   3483}
   3484
   3485/* dirty bits used to track which watermarks need changes */
   3486#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
   3487#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
   3488#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
   3489#define WM_DIRTY_FBC (1 << 24)
   3490#define WM_DIRTY_DDB (1 << 25)
   3491
   3492static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
   3493					 const struct ilk_wm_values *old,
   3494					 const struct ilk_wm_values *new)
   3495{
   3496	unsigned int dirty = 0;
   3497	enum pipe pipe;
   3498	int wm_lp;
   3499
   3500	for_each_pipe(dev_priv, pipe) {
   3501		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
   3502			dirty |= WM_DIRTY_PIPE(pipe);
   3503			/* Must disable LP1+ watermarks too */
   3504			dirty |= WM_DIRTY_LP_ALL;
   3505		}
   3506	}
   3507
   3508	if (old->enable_fbc_wm != new->enable_fbc_wm) {
   3509		dirty |= WM_DIRTY_FBC;
   3510		/* Must disable LP1+ watermarks too */
   3511		dirty |= WM_DIRTY_LP_ALL;
   3512	}
   3513
   3514	if (old->partitioning != new->partitioning) {
   3515		dirty |= WM_DIRTY_DDB;
   3516		/* Must disable LP1+ watermarks too */
   3517		dirty |= WM_DIRTY_LP_ALL;
   3518	}
   3519
   3520	/* LP1+ watermarks already deemed dirty, no need to continue */
   3521	if (dirty & WM_DIRTY_LP_ALL)
   3522		return dirty;
   3523
   3524	/* Find the lowest numbered LP1+ watermark in need of an update... */
   3525	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
   3526		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
   3527		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
   3528			break;
   3529	}
   3530
   3531	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
   3532	for (; wm_lp <= 3; wm_lp++)
   3533		dirty |= WM_DIRTY_LP(wm_lp);
   3534
   3535	return dirty;
   3536}
   3537
   3538static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
   3539			       unsigned int dirty)
   3540{
   3541	struct ilk_wm_values *previous = &dev_priv->wm.hw;
   3542	bool changed = false;
   3543
   3544	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM_LP_ENABLE) {
   3545		previous->wm_lp[2] &= ~WM_LP_ENABLE;
   3546		intel_uncore_write(&dev_priv->uncore, WM3_LP_ILK, previous->wm_lp[2]);
   3547		changed = true;
   3548	}
   3549	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM_LP_ENABLE) {
   3550		previous->wm_lp[1] &= ~WM_LP_ENABLE;
   3551		intel_uncore_write(&dev_priv->uncore, WM2_LP_ILK, previous->wm_lp[1]);
   3552		changed = true;
   3553	}
   3554	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM_LP_ENABLE) {
   3555		previous->wm_lp[0] &= ~WM_LP_ENABLE;
   3556		intel_uncore_write(&dev_priv->uncore, WM1_LP_ILK, previous->wm_lp[0]);
   3557		changed = true;
   3558	}
   3559
   3560	/*
   3561	 * Don't touch WM_LP_SPRITE_ENABLE here.
   3562	 * Doing so could cause underruns.
   3563	 */
   3564
   3565	return changed;
   3566}
   3567
   3568/*
   3569 * The spec says we shouldn't write when we don't need, because every write
   3570 * causes WMs to be re-evaluated, expending some power.
   3571 */
   3572static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
   3573				struct ilk_wm_values *results)
   3574{
   3575	struct ilk_wm_values *previous = &dev_priv->wm.hw;
   3576	unsigned int dirty;
   3577	u32 val;
   3578
   3579	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
   3580	if (!dirty)
   3581		return;
   3582
   3583	_ilk_disable_lp_wm(dev_priv, dirty);
   3584
   3585	if (dirty & WM_DIRTY_PIPE(PIPE_A))
   3586		intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_A), results->wm_pipe[0]);
   3587	if (dirty & WM_DIRTY_PIPE(PIPE_B))
   3588		intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_B), results->wm_pipe[1]);
   3589	if (dirty & WM_DIRTY_PIPE(PIPE_C))
   3590		intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_C), results->wm_pipe[2]);
   3591
   3592	if (dirty & WM_DIRTY_DDB) {
   3593		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
   3594			val = intel_uncore_read(&dev_priv->uncore, WM_MISC);
   3595			if (results->partitioning == INTEL_DDB_PART_1_2)
   3596				val &= ~WM_MISC_DATA_PARTITION_5_6;
   3597			else
   3598				val |= WM_MISC_DATA_PARTITION_5_6;
   3599			intel_uncore_write(&dev_priv->uncore, WM_MISC, val);
   3600		} else {
   3601			val = intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL2);
   3602			if (results->partitioning == INTEL_DDB_PART_1_2)
   3603				val &= ~DISP_DATA_PARTITION_5_6;
   3604			else
   3605				val |= DISP_DATA_PARTITION_5_6;
   3606			intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL2, val);
   3607		}
   3608	}
   3609
   3610	if (dirty & WM_DIRTY_FBC) {
   3611		val = intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL);
   3612		if (results->enable_fbc_wm)
   3613			val &= ~DISP_FBC_WM_DIS;
   3614		else
   3615			val |= DISP_FBC_WM_DIS;
   3616		intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, val);
   3617	}
   3618
   3619	if (dirty & WM_DIRTY_LP(1) &&
   3620	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
   3621		intel_uncore_write(&dev_priv->uncore, WM1S_LP_ILK, results->wm_lp_spr[0]);
   3622
   3623	if (DISPLAY_VER(dev_priv) >= 7) {
   3624		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
   3625			intel_uncore_write(&dev_priv->uncore, WM2S_LP_IVB, results->wm_lp_spr[1]);
   3626		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
   3627			intel_uncore_write(&dev_priv->uncore, WM3S_LP_IVB, results->wm_lp_spr[2]);
   3628	}
   3629
   3630	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
   3631		intel_uncore_write(&dev_priv->uncore, WM1_LP_ILK, results->wm_lp[0]);
   3632	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
   3633		intel_uncore_write(&dev_priv->uncore, WM2_LP_ILK, results->wm_lp[1]);
   3634	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
   3635		intel_uncore_write(&dev_priv->uncore, WM3_LP_ILK, results->wm_lp[2]);
   3636
   3637	dev_priv->wm.hw = *results;
   3638}
   3639
   3640bool ilk_disable_lp_wm(struct drm_i915_private *dev_priv)
   3641{
   3642	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
   3643}
   3644
   3645u8 intel_enabled_dbuf_slices_mask(struct drm_i915_private *dev_priv)
   3646{
   3647	u8 enabled_slices = 0;
   3648	enum dbuf_slice slice;
   3649
   3650	for_each_dbuf_slice(dev_priv, slice) {
   3651		if (intel_uncore_read(&dev_priv->uncore,
   3652				      DBUF_CTL_S(slice)) & DBUF_POWER_STATE)
   3653			enabled_slices |= BIT(slice);
   3654	}
   3655
   3656	return enabled_slices;
   3657}
   3658
   3659/*
   3660 * FIXME: We still don't have the proper code detect if we need to apply the WA,
   3661 * so assume we'll always need it in order to avoid underruns.
   3662 */
   3663static bool skl_needs_memory_bw_wa(struct drm_i915_private *dev_priv)
   3664{
   3665	return DISPLAY_VER(dev_priv) == 9;
   3666}
   3667
   3668static bool
   3669intel_has_sagv(struct drm_i915_private *dev_priv)
   3670{
   3671	return DISPLAY_VER(dev_priv) >= 9 && !IS_LP(dev_priv) &&
   3672		dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED;
   3673}
   3674
   3675static u32
   3676intel_sagv_block_time(struct drm_i915_private *dev_priv)
   3677{
   3678	if (DISPLAY_VER(dev_priv) >= 12) {
   3679		u32 val = 0;
   3680		int ret;
   3681
   3682		ret = snb_pcode_read(dev_priv,
   3683				     GEN12_PCODE_READ_SAGV_BLOCK_TIME_US,
   3684				     &val, NULL);
   3685		if (ret) {
   3686			drm_dbg_kms(&dev_priv->drm, "Couldn't read SAGV block time!\n");
   3687			return 0;
   3688		}
   3689
   3690		return val;
   3691	} else if (DISPLAY_VER(dev_priv) == 11) {
   3692		return 10;
   3693	} else if (DISPLAY_VER(dev_priv) == 9 && !IS_LP(dev_priv)) {
   3694		return 30;
   3695	} else {
   3696		return 0;
   3697	}
   3698}
   3699
   3700static void intel_sagv_init(struct drm_i915_private *i915)
   3701{
   3702	if (!intel_has_sagv(i915))
   3703		i915->sagv_status = I915_SAGV_NOT_CONTROLLED;
   3704
   3705	/*
   3706	 * Probe to see if we have working SAGV control.
   3707	 * For icl+ this was already determined by intel_bw_init_hw().
   3708	 */
   3709	if (DISPLAY_VER(i915) < 11)
   3710		skl_sagv_disable(i915);
   3711
   3712	drm_WARN_ON(&i915->drm, i915->sagv_status == I915_SAGV_UNKNOWN);
   3713
   3714	i915->sagv_block_time_us = intel_sagv_block_time(i915);
   3715
   3716	drm_dbg_kms(&i915->drm, "SAGV supported: %s, original SAGV block time: %u us\n",
   3717		    str_yes_no(intel_has_sagv(i915)), i915->sagv_block_time_us);
   3718
   3719	/* avoid overflow when adding with wm0 latency/etc. */
   3720	if (drm_WARN(&i915->drm, i915->sagv_block_time_us > U16_MAX,
   3721		     "Excessive SAGV block time %u, ignoring\n",
   3722		     i915->sagv_block_time_us))
   3723		i915->sagv_block_time_us = 0;
   3724
   3725	if (!intel_has_sagv(i915))
   3726		i915->sagv_block_time_us = 0;
   3727}
   3728
   3729/*
   3730 * SAGV dynamically adjusts the system agent voltage and clock frequencies
   3731 * depending on power and performance requirements. The display engine access
   3732 * to system memory is blocked during the adjustment time. Because of the
   3733 * blocking time, having this enabled can cause full system hangs and/or pipe
   3734 * underruns if we don't meet all of the following requirements:
   3735 *
   3736 *  - <= 1 pipe enabled
   3737 *  - All planes can enable watermarks for latencies >= SAGV engine block time
   3738 *  - We're not using an interlaced display configuration
   3739 */
   3740static void skl_sagv_enable(struct drm_i915_private *dev_priv)
   3741{
   3742	int ret;
   3743
   3744	if (!intel_has_sagv(dev_priv))
   3745		return;
   3746
   3747	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
   3748		return;
   3749
   3750	drm_dbg_kms(&dev_priv->drm, "Enabling SAGV\n");
   3751	ret = snb_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
   3752			      GEN9_SAGV_ENABLE);
   3753
   3754	/* We don't need to wait for SAGV when enabling */
   3755
   3756	/*
   3757	 * Some skl systems, pre-release machines in particular,
   3758	 * don't actually have SAGV.
   3759	 */
   3760	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
   3761		drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n");
   3762		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
   3763		return;
   3764	} else if (ret < 0) {
   3765		drm_err(&dev_priv->drm, "Failed to enable SAGV\n");
   3766		return;
   3767	}
   3768
   3769	dev_priv->sagv_status = I915_SAGV_ENABLED;
   3770}
   3771
   3772static void skl_sagv_disable(struct drm_i915_private *dev_priv)
   3773{
   3774	int ret;
   3775
   3776	if (!intel_has_sagv(dev_priv))
   3777		return;
   3778
   3779	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
   3780		return;
   3781
   3782	drm_dbg_kms(&dev_priv->drm, "Disabling SAGV\n");
   3783	/* bspec says to keep retrying for at least 1 ms */
   3784	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
   3785				GEN9_SAGV_DISABLE,
   3786				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
   3787				1);
   3788	/*
   3789	 * Some skl systems, pre-release machines in particular,
   3790	 * don't actually have SAGV.
   3791	 */
   3792	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
   3793		drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n");
   3794		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
   3795		return;
   3796	} else if (ret < 0) {
   3797		drm_err(&dev_priv->drm, "Failed to disable SAGV (%d)\n", ret);
   3798		return;
   3799	}
   3800
   3801	dev_priv->sagv_status = I915_SAGV_DISABLED;
   3802}
   3803
   3804static void skl_sagv_pre_plane_update(struct intel_atomic_state *state)
   3805{
   3806	struct drm_i915_private *i915 = to_i915(state->base.dev);
   3807	const struct intel_bw_state *new_bw_state =
   3808		intel_atomic_get_new_bw_state(state);
   3809
   3810	if (!new_bw_state)
   3811		return;
   3812
   3813	if (!intel_can_enable_sagv(i915, new_bw_state))
   3814		skl_sagv_disable(i915);
   3815}
   3816
   3817static void skl_sagv_post_plane_update(struct intel_atomic_state *state)
   3818{
   3819	struct drm_i915_private *i915 = to_i915(state->base.dev);
   3820	const struct intel_bw_state *new_bw_state =
   3821		intel_atomic_get_new_bw_state(state);
   3822
   3823	if (!new_bw_state)
   3824		return;
   3825
   3826	if (intel_can_enable_sagv(i915, new_bw_state))
   3827		skl_sagv_enable(i915);
   3828}
   3829
   3830static void icl_sagv_pre_plane_update(struct intel_atomic_state *state)
   3831{
   3832	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
   3833	const struct intel_bw_state *old_bw_state =
   3834		intel_atomic_get_old_bw_state(state);
   3835	const struct intel_bw_state *new_bw_state =
   3836		intel_atomic_get_new_bw_state(state);
   3837	u16 old_mask, new_mask;
   3838
   3839	if (!new_bw_state)
   3840		return;
   3841
   3842	old_mask = old_bw_state->qgv_points_mask;
   3843	new_mask = old_bw_state->qgv_points_mask | new_bw_state->qgv_points_mask;
   3844
   3845	if (old_mask == new_mask)
   3846		return;
   3847
   3848	WARN_ON(!new_bw_state->base.changed);
   3849
   3850	drm_dbg_kms(&dev_priv->drm, "Restricting QGV points: 0x%x -> 0x%x\n",
   3851		    old_mask, new_mask);
   3852
   3853	/*
   3854	 * Restrict required qgv points before updating the configuration.
   3855	 * According to BSpec we can't mask and unmask qgv points at the same
   3856	 * time. Also masking should be done before updating the configuration
   3857	 * and unmasking afterwards.
   3858	 */
   3859	icl_pcode_restrict_qgv_points(dev_priv, new_mask);
   3860}
   3861
   3862static void icl_sagv_post_plane_update(struct intel_atomic_state *state)
   3863{
   3864	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
   3865	const struct intel_bw_state *old_bw_state =
   3866		intel_atomic_get_old_bw_state(state);
   3867	const struct intel_bw_state *new_bw_state =
   3868		intel_atomic_get_new_bw_state(state);
   3869	u16 old_mask, new_mask;
   3870
   3871	if (!new_bw_state)
   3872		return;
   3873
   3874	old_mask = old_bw_state->qgv_points_mask | new_bw_state->qgv_points_mask;
   3875	new_mask = new_bw_state->qgv_points_mask;
   3876
   3877	if (old_mask == new_mask)
   3878		return;
   3879
   3880	WARN_ON(!new_bw_state->base.changed);
   3881
   3882	drm_dbg_kms(&dev_priv->drm, "Relaxing QGV points: 0x%x -> 0x%x\n",
   3883		    old_mask, new_mask);
   3884
   3885	/*
   3886	 * Allow required qgv points after updating the configuration.
   3887	 * According to BSpec we can't mask and unmask qgv points at the same
   3888	 * time. Also masking should be done before updating the configuration
   3889	 * and unmasking afterwards.
   3890	 */
   3891	icl_pcode_restrict_qgv_points(dev_priv, new_mask);
   3892}
   3893
   3894void intel_sagv_pre_plane_update(struct intel_atomic_state *state)
   3895{
   3896	struct drm_i915_private *i915 = to_i915(state->base.dev);
   3897
   3898	/*
   3899	 * Just return if we can't control SAGV or don't have it.
   3900	 * This is different from situation when we have SAGV but just can't
   3901	 * afford it due to DBuf limitation - in case if SAGV is completely
   3902	 * disabled in a BIOS, we are not even allowed to send a PCode request,
   3903	 * as it will throw an error. So have to check it here.
   3904	 */
   3905	if (!intel_has_sagv(i915))
   3906		return;
   3907
   3908	if (DISPLAY_VER(i915) >= 11)
   3909		icl_sagv_pre_plane_update(state);
   3910	else
   3911		skl_sagv_pre_plane_update(state);
   3912}
   3913
   3914void intel_sagv_post_plane_update(struct intel_atomic_state *state)
   3915{
   3916	struct drm_i915_private *i915 = to_i915(state->base.dev);
   3917
   3918	/*
   3919	 * Just return if we can't control SAGV or don't have it.
   3920	 * This is different from situation when we have SAGV but just can't
   3921	 * afford it due to DBuf limitation - in case if SAGV is completely
   3922	 * disabled in a BIOS, we are not even allowed to send a PCode request,
   3923	 * as it will throw an error. So have to check it here.
   3924	 */
   3925	if (!intel_has_sagv(i915))
   3926		return;
   3927
   3928	if (DISPLAY_VER(i915) >= 11)
   3929		icl_sagv_post_plane_update(state);
   3930	else
   3931		skl_sagv_post_plane_update(state);
   3932}
   3933
   3934static bool skl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
   3935{
   3936	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
   3937	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
   3938	enum plane_id plane_id;
   3939	int max_level = INT_MAX;
   3940
   3941	if (!intel_has_sagv(dev_priv))
   3942		return false;
   3943
   3944	if (!crtc_state->hw.active)
   3945		return true;
   3946
   3947	if (crtc_state->hw.pipe_mode.flags & DRM_MODE_FLAG_INTERLACE)
   3948		return false;
   3949
   3950	for_each_plane_id_on_crtc(crtc, plane_id) {
   3951		const struct skl_plane_wm *wm =
   3952			&crtc_state->wm.skl.optimal.planes[plane_id];
   3953		int level;
   3954
   3955		/* Skip this plane if it's not enabled */
   3956		if (!wm->wm[0].enable)
   3957			continue;
   3958
   3959		/* Find the highest enabled wm level for this plane */
   3960		for (level = ilk_wm_max_level(dev_priv);
   3961		     !wm->wm[level].enable; --level)
   3962		     { }
   3963
   3964		/* Highest common enabled wm level for all planes */
   3965		max_level = min(level, max_level);
   3966	}
   3967
   3968	/* No enabled planes? */
   3969	if (max_level == INT_MAX)
   3970		return true;
   3971
   3972	for_each_plane_id_on_crtc(crtc, plane_id) {
   3973		const struct skl_plane_wm *wm =
   3974			&crtc_state->wm.skl.optimal.planes[plane_id];
   3975
   3976		/*
   3977		 * All enabled planes must have enabled a common wm level that
   3978		 * can tolerate memory latencies higher than sagv_block_time_us
   3979		 */
   3980		if (wm->wm[0].enable && !wm->wm[max_level].can_sagv)
   3981			return false;
   3982	}
   3983
   3984	return true;
   3985}
   3986
   3987static bool tgl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
   3988{
   3989	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
   3990	enum plane_id plane_id;
   3991
   3992	if (!crtc_state->hw.active)
   3993		return true;
   3994
   3995	for_each_plane_id_on_crtc(crtc, plane_id) {
   3996		const struct skl_plane_wm *wm =
   3997			&crtc_state->wm.skl.optimal.planes[plane_id];
   3998
   3999		if (wm->wm[0].enable && !wm->sagv.wm0.enable)
   4000			return false;
   4001	}
   4002
   4003	return true;
   4004}
   4005
   4006static bool intel_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
   4007{
   4008	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
   4009	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
   4010
   4011	if (DISPLAY_VER(dev_priv) >= 12)
   4012		return tgl_crtc_can_enable_sagv(crtc_state);
   4013	else
   4014		return skl_crtc_can_enable_sagv(crtc_state);
   4015}
   4016
   4017bool intel_can_enable_sagv(struct drm_i915_private *dev_priv,
   4018			   const struct intel_bw_state *bw_state)
   4019{
   4020	if (DISPLAY_VER(dev_priv) < 11 &&
   4021	    bw_state->active_pipes && !is_power_of_2(bw_state->active_pipes))
   4022		return false;
   4023
   4024	return bw_state->pipe_sagv_reject == 0;
   4025}
   4026
   4027static int intel_compute_sagv_mask(struct intel_atomic_state *state)
   4028{
   4029	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
   4030	int ret;
   4031	struct intel_crtc *crtc;
   4032	struct intel_crtc_state *new_crtc_state;
   4033	struct intel_bw_state *new_bw_state = NULL;
   4034	const struct intel_bw_state *old_bw_state = NULL;
   4035	int i;
   4036
   4037	for_each_new_intel_crtc_in_state(state, crtc,
   4038					 new_crtc_state, i) {
   4039		new_bw_state = intel_atomic_get_bw_state(state);
   4040		if (IS_ERR(new_bw_state))
   4041			return PTR_ERR(new_bw_state);
   4042
   4043		old_bw_state = intel_atomic_get_old_bw_state(state);
   4044
   4045		if (intel_crtc_can_enable_sagv(new_crtc_state))
   4046			new_bw_state->pipe_sagv_reject &= ~BIT(crtc->pipe);
   4047		else
   4048			new_bw_state->pipe_sagv_reject |= BIT(crtc->pipe);
   4049	}
   4050
   4051	if (!new_bw_state)
   4052		return 0;
   4053
   4054	new_bw_state->active_pipes =
   4055		intel_calc_active_pipes(state, old_bw_state->active_pipes);
   4056
   4057	if (new_bw_state->active_pipes != old_bw_state->active_pipes) {
   4058		ret = intel_atomic_lock_global_state(&new_bw_state->base);
   4059		if (ret)
   4060			return ret;
   4061	}
   4062
   4063	if (intel_can_enable_sagv(dev_priv, new_bw_state) !=
   4064	    intel_can_enable_sagv(dev_priv, old_bw_state)) {
   4065		ret = intel_atomic_serialize_global_state(&new_bw_state->base);
   4066		if (ret)
   4067			return ret;
   4068	} else if (new_bw_state->pipe_sagv_reject != old_bw_state->pipe_sagv_reject) {
   4069		ret = intel_atomic_lock_global_state(&new_bw_state->base);
   4070		if (ret)
   4071			return ret;
   4072	}
   4073
   4074	for_each_new_intel_crtc_in_state(state, crtc,
   4075					 new_crtc_state, i) {
   4076		struct skl_pipe_wm *pipe_wm = &new_crtc_state->wm.skl.optimal;
   4077
   4078		/*
   4079		 * We store use_sagv_wm in the crtc state rather than relying on
   4080		 * that bw state since we have no convenient way to get at the
   4081		 * latter from the plane commit hooks (especially in the legacy
   4082		 * cursor case)
   4083		 */
   4084		pipe_wm->use_sagv_wm = !HAS_HW_SAGV_WM(dev_priv) &&
   4085			DISPLAY_VER(dev_priv) >= 12 &&
   4086			intel_can_enable_sagv(dev_priv, new_bw_state);
   4087	}
   4088
   4089	return 0;
   4090}
   4091
   4092static u16 skl_ddb_entry_init(struct skl_ddb_entry *entry,
   4093			      u16 start, u16 end)
   4094{
   4095	entry->start = start;
   4096	entry->end = end;
   4097
   4098	return end;
   4099}
   4100
   4101static int intel_dbuf_slice_size(struct drm_i915_private *dev_priv)
   4102{
   4103	return INTEL_INFO(dev_priv)->dbuf.size /
   4104		hweight8(INTEL_INFO(dev_priv)->dbuf.slice_mask);
   4105}
   4106
   4107static void
   4108skl_ddb_entry_for_slices(struct drm_i915_private *dev_priv, u8 slice_mask,
   4109			 struct skl_ddb_entry *ddb)
   4110{
   4111	int slice_size = intel_dbuf_slice_size(dev_priv);
   4112
   4113	if (!slice_mask) {
   4114		ddb->start = 0;
   4115		ddb->end = 0;
   4116		return;
   4117	}
   4118
   4119	ddb->start = (ffs(slice_mask) - 1) * slice_size;
   4120	ddb->end = fls(slice_mask) * slice_size;
   4121
   4122	WARN_ON(ddb->start >= ddb->end);
   4123	WARN_ON(ddb->end > INTEL_INFO(dev_priv)->dbuf.size);
   4124}
   4125
   4126static unsigned int mbus_ddb_offset(struct drm_i915_private *i915, u8 slice_mask)
   4127{
   4128	struct skl_ddb_entry ddb;
   4129
   4130	if (slice_mask & (BIT(DBUF_S1) | BIT(DBUF_S2)))
   4131		slice_mask = BIT(DBUF_S1);
   4132	else if (slice_mask & (BIT(DBUF_S3) | BIT(DBUF_S4)))
   4133		slice_mask = BIT(DBUF_S3);
   4134
   4135	skl_ddb_entry_for_slices(i915, slice_mask, &ddb);
   4136
   4137	return ddb.start;
   4138}
   4139
   4140u32 skl_ddb_dbuf_slice_mask(struct drm_i915_private *dev_priv,
   4141			    const struct skl_ddb_entry *entry)
   4142{
   4143	int slice_size = intel_dbuf_slice_size(dev_priv);
   4144	enum dbuf_slice start_slice, end_slice;
   4145	u8 slice_mask = 0;
   4146
   4147	if (!skl_ddb_entry_size(entry))
   4148		return 0;
   4149
   4150	start_slice = entry->start / slice_size;
   4151	end_slice = (entry->end - 1) / slice_size;
   4152
   4153	/*
   4154	 * Per plane DDB entry can in a really worst case be on multiple slices
   4155	 * but single entry is anyway contigious.
   4156	 */
   4157	while (start_slice <= end_slice) {
   4158		slice_mask |= BIT(start_slice);
   4159		start_slice++;
   4160	}
   4161
   4162	return slice_mask;
   4163}
   4164
   4165static unsigned int intel_crtc_ddb_weight(const struct intel_crtc_state *crtc_state)
   4166{
   4167	const struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode;
   4168	int hdisplay, vdisplay;
   4169
   4170	if (!crtc_state->hw.active)
   4171		return 0;
   4172
   4173	/*
   4174	 * Watermark/ddb requirement highly depends upon width of the
   4175	 * framebuffer, So instead of allocating DDB equally among pipes
   4176	 * distribute DDB based on resolution/width of the display.
   4177	 */
   4178	drm_mode_get_hv_timing(pipe_mode, &hdisplay, &vdisplay);
   4179
   4180	return hdisplay;
   4181}
   4182
   4183static void intel_crtc_dbuf_weights(const struct intel_dbuf_state *dbuf_state,
   4184				    enum pipe for_pipe,
   4185				    unsigned int *weight_start,
   4186				    unsigned int *weight_end,
   4187				    unsigned int *weight_total)
   4188{
   4189	struct drm_i915_private *dev_priv =
   4190		to_i915(dbuf_state->base.state->base.dev);
   4191	enum pipe pipe;
   4192
   4193	*weight_start = 0;
   4194	*weight_end = 0;
   4195	*weight_total = 0;
   4196
   4197	for_each_pipe(dev_priv, pipe) {
   4198		int weight = dbuf_state->weight[pipe];
   4199
   4200		/*
   4201		 * Do not account pipes using other slice sets
   4202		 * luckily as of current BSpec slice sets do not partially
   4203		 * intersect(pipes share either same one slice or same slice set
   4204		 * i.e no partial intersection), so it is enough to check for
   4205		 * equality for now.
   4206		 */
   4207		if (dbuf_state->slices[pipe] != dbuf_state->slices[for_pipe])
   4208			continue;
   4209
   4210		*weight_total += weight;
   4211		if (pipe < for_pipe) {
   4212			*weight_start += weight;
   4213			*weight_end += weight;
   4214		} else if (pipe == for_pipe) {
   4215			*weight_end += weight;
   4216		}
   4217	}
   4218}
   4219
   4220static int
   4221skl_crtc_allocate_ddb(struct intel_atomic_state *state, struct intel_crtc *crtc)
   4222{
   4223	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
   4224	unsigned int weight_total, weight_start, weight_end;
   4225	const struct intel_dbuf_state *old_dbuf_state =
   4226		intel_atomic_get_old_dbuf_state(state);
   4227	struct intel_dbuf_state *new_dbuf_state =
   4228		intel_atomic_get_new_dbuf_state(state);
   4229	struct intel_crtc_state *crtc_state;
   4230	struct skl_ddb_entry ddb_slices;
   4231	enum pipe pipe = crtc->pipe;
   4232	unsigned int mbus_offset = 0;
   4233	u32 ddb_range_size;
   4234	u32 dbuf_slice_mask;
   4235	u32 start, end;
   4236	int ret;
   4237
   4238	if (new_dbuf_state->weight[pipe] == 0) {
   4239		skl_ddb_entry_init(&new_dbuf_state->ddb[pipe], 0, 0);
   4240		goto out;
   4241	}
   4242
   4243	dbuf_slice_mask = new_dbuf_state->slices[pipe];
   4244
   4245	skl_ddb_entry_for_slices(dev_priv, dbuf_slice_mask, &ddb_slices);
   4246	mbus_offset = mbus_ddb_offset(dev_priv, dbuf_slice_mask);
   4247	ddb_range_size = skl_ddb_entry_size(&ddb_slices);
   4248
   4249	intel_crtc_dbuf_weights(new_dbuf_state, pipe,
   4250				&weight_start, &weight_end, &weight_total);
   4251
   4252	start = ddb_range_size * weight_start / weight_total;
   4253	end = ddb_range_size * weight_end / weight_total;
   4254
   4255	skl_ddb_entry_init(&new_dbuf_state->ddb[pipe],
   4256			   ddb_slices.start - mbus_offset + start,
   4257			   ddb_slices.start - mbus_offset + end);
   4258
   4259out:
   4260	if (old_dbuf_state->slices[pipe] == new_dbuf_state->slices[pipe] &&
   4261	    skl_ddb_entry_equal(&old_dbuf_state->ddb[pipe],
   4262				&new_dbuf_state->ddb[pipe]))
   4263		return 0;
   4264
   4265	ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
   4266	if (ret)
   4267		return ret;
   4268
   4269	crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
   4270	if (IS_ERR(crtc_state))
   4271		return PTR_ERR(crtc_state);
   4272
   4273	/*
   4274	 * Used for checking overlaps, so we need absolute
   4275	 * offsets instead of MBUS relative offsets.
   4276	 */
   4277	crtc_state->wm.skl.ddb.start = mbus_offset + new_dbuf_state->ddb[pipe].start;
   4278	crtc_state->wm.skl.ddb.end = mbus_offset + new_dbuf_state->ddb[pipe].end;
   4279
   4280	drm_dbg_kms(&dev_priv->drm,
   4281		    "[CRTC:%d:%s] dbuf slices 0x%x -> 0x%x, ddb (%d - %d) -> (%d - %d), active pipes 0x%x -> 0x%x\n",
   4282		    crtc->base.base.id, crtc->base.name,
   4283		    old_dbuf_state->slices[pipe], new_dbuf_state->slices[pipe],
   4284		    old_dbuf_state->ddb[pipe].start, old_dbuf_state->ddb[pipe].end,
   4285		    new_dbuf_state->ddb[pipe].start, new_dbuf_state->ddb[pipe].end,
   4286		    old_dbuf_state->active_pipes, new_dbuf_state->active_pipes);
   4287
   4288	return 0;
   4289}
   4290
   4291static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
   4292				 int width, const struct drm_format_info *format,
   4293				 u64 modifier, unsigned int rotation,
   4294				 u32 plane_pixel_rate, struct skl_wm_params *wp,
   4295				 int color_plane);
   4296
   4297static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
   4298				 struct intel_plane *plane,
   4299				 int level,
   4300				 unsigned int latency,
   4301				 const struct skl_wm_params *wp,
   4302				 const struct skl_wm_level *result_prev,
   4303				 struct skl_wm_level *result /* out */);
   4304
   4305static unsigned int
   4306skl_cursor_allocation(const struct intel_crtc_state *crtc_state,
   4307		      int num_active)
   4308{
   4309	struct intel_plane *plane = to_intel_plane(crtc_state->uapi.crtc->cursor);
   4310	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
   4311	int level, max_level = ilk_wm_max_level(dev_priv);
   4312	struct skl_wm_level wm = {};
   4313	int ret, min_ddb_alloc = 0;
   4314	struct skl_wm_params wp;
   4315
   4316	ret = skl_compute_wm_params(crtc_state, 256,
   4317				    drm_format_info(DRM_FORMAT_ARGB8888),
   4318				    DRM_FORMAT_MOD_LINEAR,
   4319				    DRM_MODE_ROTATE_0,
   4320				    crtc_state->pixel_rate, &wp, 0);
   4321	drm_WARN_ON(&dev_priv->drm, ret);
   4322
   4323	for (level = 0; level <= max_level; level++) {
   4324		unsigned int latency = dev_priv->wm.skl_latency[level];
   4325
   4326		skl_compute_plane_wm(crtc_state, plane, level, latency, &wp, &wm, &wm);
   4327		if (wm.min_ddb_alloc == U16_MAX)
   4328			break;
   4329
   4330		min_ddb_alloc = wm.min_ddb_alloc;
   4331	}
   4332
   4333	return max(num_active == 1 ? 32 : 8, min_ddb_alloc);
   4334}
   4335
   4336static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
   4337{
   4338	skl_ddb_entry_init(entry,
   4339			   REG_FIELD_GET(PLANE_BUF_START_MASK, reg),
   4340			   REG_FIELD_GET(PLANE_BUF_END_MASK, reg));
   4341	if (entry->end)
   4342		entry->end++;
   4343}
   4344
   4345static void
   4346skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
   4347			   const enum pipe pipe,
   4348			   const enum plane_id plane_id,
   4349			   struct skl_ddb_entry *ddb,
   4350			   struct skl_ddb_entry *ddb_y)
   4351{
   4352	u32 val;
   4353
   4354	/* Cursor doesn't support NV12/planar, so no extra calculation needed */
   4355	if (plane_id == PLANE_CURSOR) {
   4356		val = intel_uncore_read(&dev_priv->uncore, CUR_BUF_CFG(pipe));
   4357		skl_ddb_entry_init_from_hw(ddb, val);
   4358		return;
   4359	}
   4360
   4361	val = intel_uncore_read(&dev_priv->uncore, PLANE_BUF_CFG(pipe, plane_id));
   4362	skl_ddb_entry_init_from_hw(ddb, val);
   4363
   4364	if (DISPLAY_VER(dev_priv) >= 11)
   4365		return;
   4366
   4367	val = intel_uncore_read(&dev_priv->uncore, PLANE_NV12_BUF_CFG(pipe, plane_id));
   4368	skl_ddb_entry_init_from_hw(ddb_y, val);
   4369}
   4370
   4371void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
   4372			       struct skl_ddb_entry *ddb,
   4373			       struct skl_ddb_entry *ddb_y)
   4374{
   4375	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
   4376	enum intel_display_power_domain power_domain;
   4377	enum pipe pipe = crtc->pipe;
   4378	intel_wakeref_t wakeref;
   4379	enum plane_id plane_id;
   4380
   4381	power_domain = POWER_DOMAIN_PIPE(pipe);
   4382	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
   4383	if (!wakeref)
   4384		return;
   4385
   4386	for_each_plane_id_on_crtc(crtc, plane_id)
   4387		skl_ddb_get_hw_plane_state(dev_priv, pipe,
   4388					   plane_id,
   4389					   &ddb[plane_id],
   4390					   &ddb_y[plane_id]);
   4391
   4392	intel_display_power_put(dev_priv, power_domain, wakeref);
   4393}
   4394
   4395struct dbuf_slice_conf_entry {
   4396	u8 active_pipes;
   4397	u8 dbuf_mask[I915_MAX_PIPES];
   4398	bool join_mbus;
   4399};
   4400
   4401/*
   4402 * Table taken from Bspec 12716
   4403 * Pipes do have some preferred DBuf slice affinity,
   4404 * plus there are some hardcoded requirements on how
   4405 * those should be distributed for multipipe scenarios.
   4406 * For more DBuf slices algorithm can get even more messy
   4407 * and less readable, so decided to use a table almost
   4408 * as is from BSpec itself - that way it is at least easier
   4409 * to compare, change and check.
   4410 */
   4411static const struct dbuf_slice_conf_entry icl_allowed_dbufs[] =
   4412/* Autogenerated with igt/tools/intel_dbuf_map tool: */
   4413{
   4414	{
   4415		.active_pipes = BIT(PIPE_A),
   4416		.dbuf_mask = {
   4417			[PIPE_A] = BIT(DBUF_S1),
   4418		},
   4419	},
   4420	{
   4421		.active_pipes = BIT(PIPE_B),
   4422		.dbuf_mask = {
   4423			[PIPE_B] = BIT(DBUF_S1),
   4424		},
   4425	},
   4426	{
   4427		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
   4428		.dbuf_mask = {
   4429			[PIPE_A] = BIT(DBUF_S1),
   4430			[PIPE_B] = BIT(DBUF_S2),
   4431		},
   4432	},
   4433	{
   4434		.active_pipes = BIT(PIPE_C),
   4435		.dbuf_mask = {
   4436			[PIPE_C] = BIT(DBUF_S2),
   4437		},
   4438	},
   4439	{
   4440		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
   4441		.dbuf_mask = {
   4442			[PIPE_A] = BIT(DBUF_S1),
   4443			[PIPE_C] = BIT(DBUF_S2),
   4444		},
   4445	},
   4446	{
   4447		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
   4448		.dbuf_mask = {
   4449			[PIPE_B] = BIT(DBUF_S1),
   4450			[PIPE_C] = BIT(DBUF_S2),
   4451		},
   4452	},
   4453	{
   4454		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
   4455		.dbuf_mask = {
   4456			[PIPE_A] = BIT(DBUF_S1),
   4457			[PIPE_B] = BIT(DBUF_S1),
   4458			[PIPE_C] = BIT(DBUF_S2),
   4459		},
   4460	},
   4461	{}
   4462};
   4463
   4464/*
   4465 * Table taken from Bspec 49255
   4466 * Pipes do have some preferred DBuf slice affinity,
   4467 * plus there are some hardcoded requirements on how
   4468 * those should be distributed for multipipe scenarios.
   4469 * For more DBuf slices algorithm can get even more messy
   4470 * and less readable, so decided to use a table almost
   4471 * as is from BSpec itself - that way it is at least easier
   4472 * to compare, change and check.
   4473 */
   4474static const struct dbuf_slice_conf_entry tgl_allowed_dbufs[] =
   4475/* Autogenerated with igt/tools/intel_dbuf_map tool: */
   4476{
   4477	{
   4478		.active_pipes = BIT(PIPE_A),
   4479		.dbuf_mask = {
   4480			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
   4481		},
   4482	},
   4483	{
   4484		.active_pipes = BIT(PIPE_B),
   4485		.dbuf_mask = {
   4486			[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
   4487		},
   4488	},
   4489	{
   4490		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
   4491		.dbuf_mask = {
   4492			[PIPE_A] = BIT(DBUF_S2),
   4493			[PIPE_B] = BIT(DBUF_S1),
   4494		},
   4495	},
   4496	{
   4497		.active_pipes = BIT(PIPE_C),
   4498		.dbuf_mask = {
   4499			[PIPE_C] = BIT(DBUF_S2) | BIT(DBUF_S1),
   4500		},
   4501	},
   4502	{
   4503		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
   4504		.dbuf_mask = {
   4505			[PIPE_A] = BIT(DBUF_S1),
   4506			[PIPE_C] = BIT(DBUF_S2),
   4507		},
   4508	},
   4509	{
   4510		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
   4511		.dbuf_mask = {
   4512			[PIPE_B] = BIT(DBUF_S1),
   4513			[PIPE_C] = BIT(DBUF_S2),
   4514		},
   4515	},
   4516	{
   4517		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
   4518		.dbuf_mask = {
   4519			[PIPE_A] = BIT(DBUF_S1),
   4520			[PIPE_B] = BIT(DBUF_S1),
   4521			[PIPE_C] = BIT(DBUF_S2),
   4522		},
   4523	},
   4524	{
   4525		.active_pipes = BIT(PIPE_D),
   4526		.dbuf_mask = {
   4527			[PIPE_D] = BIT(DBUF_S2) | BIT(DBUF_S1),
   4528		},
   4529	},
   4530	{
   4531		.active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
   4532		.dbuf_mask = {
   4533			[PIPE_A] = BIT(DBUF_S1),
   4534			[PIPE_D] = BIT(DBUF_S2),
   4535		},
   4536	},
   4537	{
   4538		.active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
   4539		.dbuf_mask = {
   4540			[PIPE_B] = BIT(DBUF_S1),
   4541			[PIPE_D] = BIT(DBUF_S2),
   4542		},
   4543	},
   4544	{
   4545		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
   4546		.dbuf_mask = {
   4547			[PIPE_A] = BIT(DBUF_S1),
   4548			[PIPE_B] = BIT(DBUF_S1),
   4549			[PIPE_D] = BIT(DBUF_S2),
   4550		},
   4551	},
   4552	{
   4553		.active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
   4554		.dbuf_mask = {
   4555			[PIPE_C] = BIT(DBUF_S1),
   4556			[PIPE_D] = BIT(DBUF_S2),
   4557		},
   4558	},
   4559	{
   4560		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
   4561		.dbuf_mask = {
   4562			[PIPE_A] = BIT(DBUF_S1),
   4563			[PIPE_C] = BIT(DBUF_S2),
   4564			[PIPE_D] = BIT(DBUF_S2),
   4565		},
   4566	},
   4567	{
   4568		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
   4569		.dbuf_mask = {
   4570			[PIPE_B] = BIT(DBUF_S1),
   4571			[PIPE_C] = BIT(DBUF_S2),
   4572			[PIPE_D] = BIT(DBUF_S2),
   4573		},
   4574	},
   4575	{
   4576		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
   4577		.dbuf_mask = {
   4578			[PIPE_A] = BIT(DBUF_S1),
   4579			[PIPE_B] = BIT(DBUF_S1),
   4580			[PIPE_C] = BIT(DBUF_S2),
   4581			[PIPE_D] = BIT(DBUF_S2),
   4582		},
   4583	},
   4584	{}
   4585};
   4586
   4587static const struct dbuf_slice_conf_entry dg2_allowed_dbufs[] = {
   4588	{
   4589		.active_pipes = BIT(PIPE_A),
   4590		.dbuf_mask = {
   4591			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
   4592		},
   4593	},
   4594	{
   4595		.active_pipes = BIT(PIPE_B),
   4596		.dbuf_mask = {
   4597			[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
   4598		},
   4599	},
   4600	{
   4601		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
   4602		.dbuf_mask = {
   4603			[PIPE_A] = BIT(DBUF_S1),
   4604			[PIPE_B] = BIT(DBUF_S2),
   4605		},
   4606	},
   4607	{
   4608		.active_pipes = BIT(PIPE_C),
   4609		.dbuf_mask = {
   4610			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
   4611		},
   4612	},
   4613	{
   4614		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
   4615		.dbuf_mask = {
   4616			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
   4617			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
   4618		},
   4619	},
   4620	{
   4621		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
   4622		.dbuf_mask = {
   4623			[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
   4624			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
   4625		},
   4626	},
   4627	{
   4628		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
   4629		.dbuf_mask = {
   4630			[PIPE_A] = BIT(DBUF_S1),
   4631			[PIPE_B] = BIT(DBUF_S2),
   4632			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
   4633		},
   4634	},
   4635	{
   4636		.active_pipes = BIT(PIPE_D),
   4637		.dbuf_mask = {
   4638			[PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
   4639		},
   4640	},
   4641	{
   4642		.active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
   4643		.dbuf_mask = {
   4644			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
   4645			[PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
   4646		},
   4647	},
   4648	{
   4649		.active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
   4650		.dbuf_mask = {
   4651			[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
   4652			[PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
   4653		},
   4654	},
   4655	{
   4656		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
   4657		.dbuf_mask = {
   4658			[PIPE_A] = BIT(DBUF_S1),
   4659			[PIPE_B] = BIT(DBUF_S2),
   4660			[PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
   4661		},
   4662	},
   4663	{
   4664		.active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
   4665		.dbuf_mask = {
   4666			[PIPE_C] = BIT(DBUF_S3),
   4667			[PIPE_D] = BIT(DBUF_S4),
   4668		},
   4669	},
   4670	{
   4671		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
   4672		.dbuf_mask = {
   4673			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
   4674			[PIPE_C] = BIT(DBUF_S3),
   4675			[PIPE_D] = BIT(DBUF_S4),
   4676		},
   4677	},
   4678	{
   4679		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
   4680		.dbuf_mask = {
   4681			[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
   4682			[PIPE_C] = BIT(DBUF_S3),
   4683			[PIPE_D] = BIT(DBUF_S4),
   4684		},
   4685	},
   4686	{
   4687		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
   4688		.dbuf_mask = {
   4689			[PIPE_A] = BIT(DBUF_S1),
   4690			[PIPE_B] = BIT(DBUF_S2),
   4691			[PIPE_C] = BIT(DBUF_S3),
   4692			[PIPE_D] = BIT(DBUF_S4),
   4693		},
   4694	},
   4695	{}
   4696};
   4697
   4698static const struct dbuf_slice_conf_entry adlp_allowed_dbufs[] = {
   4699	/*
   4700	 * Keep the join_mbus cases first so check_mbus_joined()
   4701	 * will prefer them over the !join_mbus cases.
   4702	 */
   4703	{
   4704		.active_pipes = BIT(PIPE_A),
   4705		.dbuf_mask = {
   4706			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2) | BIT(DBUF_S3) | BIT(DBUF_S4),
   4707		},
   4708		.join_mbus = true,
   4709	},
   4710	{
   4711		.active_pipes = BIT(PIPE_B),
   4712		.dbuf_mask = {
   4713			[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2) | BIT(DBUF_S3) | BIT(DBUF_S4),
   4714		},
   4715		.join_mbus = true,
   4716	},
   4717	{
   4718		.active_pipes = BIT(PIPE_A),
   4719		.dbuf_mask = {
   4720			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
   4721		},
   4722		.join_mbus = false,
   4723	},
   4724	{
   4725		.active_pipes = BIT(PIPE_B),
   4726		.dbuf_mask = {
   4727			[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
   4728		},
   4729		.join_mbus = false,
   4730	},
   4731	{
   4732		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
   4733		.dbuf_mask = {
   4734			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
   4735			[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
   4736		},
   4737	},
   4738	{
   4739		.active_pipes = BIT(PIPE_C),
   4740		.dbuf_mask = {
   4741			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
   4742		},
   4743	},
   4744	{
   4745		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
   4746		.dbuf_mask = {
   4747			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
   4748			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
   4749		},
   4750	},
   4751	{
   4752		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
   4753		.dbuf_mask = {
   4754			[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
   4755			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
   4756		},
   4757	},
   4758	{
   4759		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
   4760		.dbuf_mask = {
   4761			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
   4762			[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
   4763			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
   4764		},
   4765	},
   4766	{
   4767		.active_pipes = BIT(PIPE_D),
   4768		.dbuf_mask = {
   4769			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
   4770		},
   4771	},
   4772	{
   4773		.active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
   4774		.dbuf_mask = {
   4775			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
   4776			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
   4777		},
   4778	},
   4779	{
   4780		.active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
   4781		.dbuf_mask = {
   4782			[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
   4783			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
   4784		},
   4785	},
   4786	{
   4787		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
   4788		.dbuf_mask = {
   4789			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
   4790			[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
   4791			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
   4792		},
   4793	},
   4794	{
   4795		.active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
   4796		.dbuf_mask = {
   4797			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
   4798			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
   4799		},
   4800	},
   4801	{
   4802		.active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
   4803		.dbuf_mask = {
   4804			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
   4805			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
   4806			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
   4807		},
   4808	},
   4809	{
   4810		.active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
   4811		.dbuf_mask = {
   4812			[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
   4813			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
   4814			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
   4815		},
   4816	},
   4817	{
   4818		.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
   4819		.dbuf_mask = {
   4820			[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
   4821			[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
   4822			[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
   4823			[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
   4824		},
   4825	},
   4826	{}
   4827
   4828};
   4829
   4830static bool check_mbus_joined(u8 active_pipes,
   4831			      const struct dbuf_slice_conf_entry *dbuf_slices)
   4832{
   4833	int i;
   4834
   4835	for (i = 0; dbuf_slices[i].active_pipes != 0; i++) {
   4836		if (dbuf_slices[i].active_pipes == active_pipes)
   4837			return dbuf_slices[i].join_mbus;
   4838	}
   4839	return false;
   4840}
   4841
   4842static bool adlp_check_mbus_joined(u8 active_pipes)
   4843{
   4844	return check_mbus_joined(active_pipes, adlp_allowed_dbufs);
   4845}
   4846
   4847static u8 compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus,
   4848			      const struct dbuf_slice_conf_entry *dbuf_slices)
   4849{
   4850	int i;
   4851
   4852	for (i = 0; dbuf_slices[i].active_pipes != 0; i++) {
   4853		if (dbuf_slices[i].active_pipes == active_pipes &&
   4854		    dbuf_slices[i].join_mbus == join_mbus)
   4855			return dbuf_slices[i].dbuf_mask[pipe];
   4856	}
   4857	return 0;
   4858}
   4859
   4860/*
   4861 * This function finds an entry with same enabled pipe configuration and
   4862 * returns correspondent DBuf slice mask as stated in BSpec for particular
   4863 * platform.
   4864 */
   4865static u8 icl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus)
   4866{
   4867	/*
   4868	 * FIXME: For ICL this is still a bit unclear as prev BSpec revision
   4869	 * required calculating "pipe ratio" in order to determine
   4870	 * if one or two slices can be used for single pipe configurations
   4871	 * as additional constraint to the existing table.
   4872	 * However based on recent info, it should be not "pipe ratio"
   4873	 * but rather ratio between pixel_rate and cdclk with additional
   4874	 * constants, so for now we are using only table until this is
   4875	 * clarified. Also this is the reason why crtc_state param is
   4876	 * still here - we will need it once those additional constraints
   4877	 * pop up.
   4878	 */
   4879	return compute_dbuf_slices(pipe, active_pipes, join_mbus,
   4880				   icl_allowed_dbufs);
   4881}
   4882
   4883static u8 tgl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus)
   4884{
   4885	return compute_dbuf_slices(pipe, active_pipes, join_mbus,
   4886				   tgl_allowed_dbufs);
   4887}
   4888
   4889static u8 adlp_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus)
   4890{
   4891	return compute_dbuf_slices(pipe, active_pipes, join_mbus,
   4892				   adlp_allowed_dbufs);
   4893}
   4894
   4895static u8 dg2_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus)
   4896{
   4897	return compute_dbuf_slices(pipe, active_pipes, join_mbus,
   4898				   dg2_allowed_dbufs);
   4899}
   4900
   4901static u8 skl_compute_dbuf_slices(struct intel_crtc *crtc, u8 active_pipes, bool join_mbus)
   4902{
   4903	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
   4904	enum pipe pipe = crtc->pipe;
   4905
   4906	if (IS_DG2(dev_priv))
   4907		return dg2_compute_dbuf_slices(pipe, active_pipes, join_mbus);
   4908	else if (IS_ALDERLAKE_P(dev_priv))
   4909		return adlp_compute_dbuf_slices(pipe, active_pipes, join_mbus);
   4910	else if (DISPLAY_VER(dev_priv) == 12)
   4911		return tgl_compute_dbuf_slices(pipe, active_pipes, join_mbus);
   4912	else if (DISPLAY_VER(dev_priv) == 11)
   4913		return icl_compute_dbuf_slices(pipe, active_pipes, join_mbus);
   4914	/*
   4915	 * For anything else just return one slice yet.
   4916	 * Should be extended for other platforms.
   4917	 */
   4918	return active_pipes & BIT(pipe) ? BIT(DBUF_S1) : 0;
   4919}
   4920
   4921static bool
   4922use_minimal_wm0_only(const struct intel_crtc_state *crtc_state,
   4923		     struct intel_plane *plane)
   4924{
   4925	struct drm_i915_private *i915 = to_i915(plane->base.dev);
   4926
   4927	return DISPLAY_VER(i915) >= 13 &&
   4928	       crtc_state->uapi.async_flip &&
   4929	       plane->async_flip;
   4930}
   4931
   4932static u64
   4933skl_total_relative_data_rate(const struct intel_crtc_state *crtc_state)
   4934{
   4935	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
   4936	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
   4937	enum plane_id plane_id;
   4938	u64 data_rate = 0;
   4939
   4940	for_each_plane_id_on_crtc(crtc, plane_id) {
   4941		if (plane_id == PLANE_CURSOR)
   4942			continue;
   4943
   4944		data_rate += crtc_state->rel_data_rate[plane_id];
   4945
   4946		if (DISPLAY_VER(i915) < 11)
   4947			data_rate += crtc_state->rel_data_rate_y[plane_id];
   4948	}
   4949
   4950	return data_rate;
   4951}
   4952
   4953const struct skl_wm_level *
   4954skl_plane_wm_level(const struct skl_pipe_wm *pipe_wm,
   4955		   enum plane_id plane_id,
   4956		   int level)
   4957{
   4958	const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
   4959
   4960	if (level == 0 && pipe_wm->use_sagv_wm)
   4961		return &wm->sagv.wm0;
   4962
   4963	return &wm->wm[level];
   4964}
   4965
   4966const struct skl_wm_level *
   4967skl_plane_trans_wm(const struct skl_pipe_wm *pipe_wm,
   4968		   enum plane_id plane_id)
   4969{
   4970	const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
   4971
   4972	if (pipe_wm->use_sagv_wm)
   4973		return &wm->sagv.trans_wm;
   4974
   4975	return &wm->trans_wm;
   4976}
   4977
   4978/*
   4979 * We only disable the watermarks for each plane if
   4980 * they exceed the ddb allocation of said plane. This
   4981 * is done so that we don't end up touching cursor
   4982 * watermarks needlessly when some other plane reduces
   4983 * our max possible watermark level.
   4984 *
   4985 * Bspec has this to say about the PLANE_WM enable bit:
   4986 * "All the watermarks at this level for all enabled
   4987 *  planes must be enabled before the level will be used."
   4988 * So this is actually safe to do.
   4989 */
   4990static void
   4991skl_check_wm_level(struct skl_wm_level *wm, const struct skl_ddb_entry *ddb)
   4992{
   4993	if (wm->min_ddb_alloc > skl_ddb_entry_size(ddb))
   4994		memset(wm, 0, sizeof(*wm));
   4995}
   4996
   4997static void
   4998skl_check_nv12_wm_level(struct skl_wm_level *wm, struct skl_wm_level *uv_wm,
   4999			const struct skl_ddb_entry *ddb_y, const struct skl_ddb_entry *ddb)
   5000{
   5001	if (wm->min_ddb_alloc > skl_ddb_entry_size(ddb_y) ||
   5002	    uv_wm->min_ddb_alloc > skl_ddb_entry_size(ddb)) {
   5003		memset(wm, 0, sizeof(*wm));
   5004		memset(uv_wm, 0, sizeof(*uv_wm));
   5005	}
   5006}
   5007
   5008static bool icl_need_wm1_wa(struct drm_i915_private *i915,
   5009			    enum plane_id plane_id)
   5010{
   5011	/*
   5012	 * Wa_1408961008:icl, ehl
   5013	 * Wa_14012656716:tgl, adl
   5014	 * Underruns with WM1+ disabled
   5015	 */
   5016	return DISPLAY_VER(i915) == 11 ||
   5017	       (IS_DISPLAY_VER(i915, 12, 13) && plane_id == PLANE_CURSOR);
   5018}
   5019
   5020struct skl_plane_ddb_iter {
   5021	u64 data_rate;
   5022	u16 start, size;
   5023};
   5024
   5025static void
   5026skl_allocate_plane_ddb(struct skl_plane_ddb_iter *iter,
   5027		       struct skl_ddb_entry *ddb,
   5028		       const struct skl_wm_level *wm,
   5029		       u64 data_rate)
   5030{
   5031	u16 size, extra = 0;
   5032
   5033	if (data_rate) {
   5034		extra = min_t(u16, iter->size,
   5035			      DIV64_U64_ROUND_UP(iter->size * data_rate,
   5036						 iter->data_rate));
   5037		iter->size -= extra;
   5038		iter->data_rate -= data_rate;
   5039	}
   5040
   5041	/*
   5042	 * Keep ddb entry of all disabled planes explicitly zeroed
   5043	 * to avoid skl_ddb_add_affected_planes() adding them to
   5044	 * the state when other planes change their allocations.
   5045	 */
   5046	size = wm->min_ddb_alloc + extra;
   5047	if (size)
   5048		iter->start = skl_ddb_entry_init(ddb, iter->start,
   5049						 iter->start + size);
   5050}
   5051
   5052static int
   5053skl_crtc_allocate_plane_ddb(struct intel_atomic_state *state,
   5054			    struct intel_crtc *crtc)
   5055{
   5056	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
   5057	struct intel_crtc_state *crtc_state =
   5058		intel_atomic_get_new_crtc_state(state, crtc);
   5059	const struct intel_dbuf_state *dbuf_state =
   5060		intel_atomic_get_new_dbuf_state(state);
   5061	const struct skl_ddb_entry *alloc = &dbuf_state->ddb[crtc->pipe];
   5062	int num_active = hweight8(dbuf_state->active_pipes);
   5063	struct skl_plane_ddb_iter iter;
   5064	enum plane_id plane_id;
   5065	u16 cursor_size;
   5066	u32 blocks;
   5067	int level;
   5068
   5069	/* Clear the partitioning for disabled planes. */
   5070	memset(crtc_state->wm.skl.plane_ddb, 0, sizeof(crtc_state->wm.skl.plane_ddb));
   5071	memset(crtc_state->wm.skl.plane_ddb_y, 0, sizeof(crtc_state->wm.skl.plane_ddb_y));
   5072
   5073	if (!crtc_state->hw.active)
   5074		return 0;
   5075
   5076	iter.start = alloc->start;
   5077	iter.size = skl_ddb_entry_size(alloc);
   5078	if (iter.size == 0)
   5079		return 0;
   5080
   5081	/* Allocate fixed number of blocks for cursor. */
   5082	cursor_size = skl_cursor_allocation(crtc_state, num_active);
   5083	iter.size -= cursor_size;
   5084	skl_ddb_entry_init(&crtc_state->wm.skl.plane_ddb[PLANE_CURSOR],
   5085			   alloc->end - cursor_size, alloc->end);
   5086
   5087	iter.data_rate = skl_total_relative_data_rate(crtc_state);
   5088
   5089	/*
   5090	 * Find the highest watermark level for which we can satisfy the block
   5091	 * requirement of active planes.
   5092	 */
   5093	for (level = ilk_wm_max_level(dev_priv); level >= 0; level--) {
   5094		blocks = 0;
   5095		for_each_plane_id_on_crtc(crtc, plane_id) {
   5096			const struct skl_plane_wm *wm =
   5097				&crtc_state->wm.skl.optimal.planes[plane_id];
   5098
   5099			if (plane_id == PLANE_CURSOR) {
   5100				const struct skl_ddb_entry *ddb =
   5101					&crtc_state->wm.skl.plane_ddb[plane_id];
   5102
   5103				if (wm->wm[level].min_ddb_alloc > skl_ddb_entry_size(ddb)) {
   5104					drm_WARN_ON(&dev_priv->drm,
   5105						    wm->wm[level].min_ddb_alloc != U16_MAX);
   5106					blocks = U32_MAX;
   5107					break;
   5108				}
   5109				continue;
   5110			}
   5111
   5112			blocks += wm->wm[level].min_ddb_alloc;
   5113			blocks += wm->uv_wm[level].min_ddb_alloc;
   5114		}
   5115
   5116		if (blocks <= iter.size) {
   5117			iter.size -= blocks;
   5118			break;
   5119		}
   5120	}
   5121
   5122	if (level < 0) {
   5123		drm_dbg_kms(&dev_priv->drm,
   5124			    "Requested display configuration exceeds system DDB limitations");
   5125		drm_dbg_kms(&dev_priv->drm, "minimum required %d/%d\n",
   5126			    blocks, iter.size);
   5127		return -EINVAL;
   5128	}
   5129
   5130	/* avoid the WARN later when we don't allocate any extra DDB */
   5131	if (iter.data_rate == 0)
   5132		iter.size = 0;
   5133
   5134	/*
   5135	 * Grant each plane the blocks it requires at the highest achievable
   5136	 * watermark level, plus an extra share of the leftover blocks
   5137	 * proportional to its relative data rate.
   5138	 */
   5139	for_each_plane_id_on_crtc(crtc, plane_id) {
   5140		struct skl_ddb_entry *ddb =
   5141			&crtc_state->wm.skl.plane_ddb[plane_id];
   5142		struct skl_ddb_entry *ddb_y =
   5143			&crtc_state->wm.skl.plane_ddb_y[plane_id];
   5144		const struct skl_plane_wm *wm =
   5145			&crtc_state->wm.skl.optimal.planes[plane_id];
   5146
   5147		if (plane_id == PLANE_CURSOR)
   5148			continue;
   5149
   5150		if (DISPLAY_VER(dev_priv) < 11 &&
   5151		    crtc_state->nv12_planes & BIT(plane_id)) {
   5152			skl_allocate_plane_ddb(&iter, ddb_y, &wm->wm[level],
   5153					       crtc_state->rel_data_rate_y[plane_id]);
   5154			skl_allocate_plane_ddb(&iter, ddb, &wm->uv_wm[level],
   5155					       crtc_state->rel_data_rate[plane_id]);
   5156		} else {
   5157			skl_allocate_plane_ddb(&iter, ddb, &wm->wm[level],
   5158					       crtc_state->rel_data_rate[plane_id]);
   5159		}
   5160	}
   5161	drm_WARN_ON(&dev_priv->drm, iter.size != 0 || iter.data_rate != 0);
   5162
   5163	/*
   5164	 * When we calculated watermark values we didn't know how high
   5165	 * of a level we'd actually be able to hit, so we just marked
   5166	 * all levels as "enabled."  Go back now and disable the ones
   5167	 * that aren't actually possible.
   5168	 */
   5169	for (level++; level <= ilk_wm_max_level(dev_priv); level++) {
   5170		for_each_plane_id_on_crtc(crtc, plane_id) {
   5171			const struct skl_ddb_entry *ddb =
   5172				&crtc_state->wm.skl.plane_ddb[plane_id];
   5173			const struct skl_ddb_entry *ddb_y =
   5174				&crtc_state->wm.skl.plane_ddb_y[plane_id];
   5175			struct skl_plane_wm *wm =
   5176				&crtc_state->wm.skl.optimal.planes[plane_id];
   5177
   5178			if (DISPLAY_VER(dev_priv) < 11 &&
   5179			    crtc_state->nv12_planes & BIT(plane_id))
   5180				skl_check_nv12_wm_level(&wm->wm[level],
   5181							&wm->uv_wm[level],
   5182							ddb_y, ddb);
   5183			else
   5184				skl_check_wm_level(&wm->wm[level], ddb);
   5185
   5186			if (icl_need_wm1_wa(dev_priv, plane_id) &&
   5187			    level == 1 && wm->wm[0].enable) {
   5188				wm->wm[level].blocks = wm->wm[0].blocks;
   5189				wm->wm[level].lines = wm->wm[0].lines;
   5190				wm->wm[level].ignore_lines = wm->wm[0].ignore_lines;
   5191			}
   5192		}
   5193	}
   5194
   5195	/*
   5196	 * Go back and disable the transition and SAGV watermarks
   5197	 * if it turns out we don't have enough DDB blocks for them.
   5198	 */
   5199	for_each_plane_id_on_crtc(crtc, plane_id) {
   5200		const struct skl_ddb_entry *ddb =
   5201			&crtc_state->wm.skl.plane_ddb[plane_id];
   5202		const struct skl_ddb_entry *ddb_y =
   5203			&crtc_state->wm.skl.plane_ddb_y[plane_id];
   5204		struct skl_plane_wm *wm =
   5205			&crtc_state->wm.skl.optimal.planes[plane_id];
   5206
   5207		if (DISPLAY_VER(dev_priv) < 11 &&
   5208		    crtc_state->nv12_planes & BIT(plane_id)) {
   5209			skl_check_wm_level(&wm->trans_wm, ddb_y);
   5210		} else {
   5211			WARN_ON(skl_ddb_entry_size(ddb_y));
   5212
   5213			skl_check_wm_level(&wm->trans_wm, ddb);
   5214		}
   5215
   5216		skl_check_wm_level(&wm->sagv.wm0, ddb);
   5217		skl_check_wm_level(&wm->sagv.trans_wm, ddb);
   5218	}
   5219
   5220	return 0;
   5221}
   5222
   5223/*
   5224 * The max latency should be 257 (max the punit can code is 255 and we add 2us
   5225 * for the read latency) and cpp should always be <= 8, so that
   5226 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
   5227 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
   5228*/
   5229static uint_fixed_16_16_t
   5230skl_wm_method1(const struct drm_i915_private *dev_priv, u32 pixel_rate,
   5231	       u8 cpp, u32 latency, u32 dbuf_block_size)
   5232{
   5233	u32 wm_intermediate_val;
   5234	uint_fixed_16_16_t ret;
   5235
   5236	if (latency == 0)
   5237		return FP_16_16_MAX;
   5238
   5239	wm_intermediate_val = latency * pixel_rate * cpp;
   5240	ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
   5241
   5242	if (DISPLAY_VER(dev_priv) >= 10)
   5243		ret = add_fixed16_u32(ret, 1);
   5244
   5245	return ret;
   5246}
   5247
   5248static uint_fixed_16_16_t
   5249skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
   5250	       uint_fixed_16_16_t plane_blocks_per_line)
   5251{
   5252	u32 wm_intermediate_val;
   5253	uint_fixed_16_16_t ret;
   5254
   5255	if (latency == 0)
   5256		return FP_16_16_MAX;
   5257
   5258	wm_intermediate_val = latency * pixel_rate;
   5259	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
   5260					   pipe_htotal * 1000);
   5261	ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
   5262	return ret;
   5263}
   5264
   5265static uint_fixed_16_16_t
   5266intel_get_linetime_us(const struct intel_crtc_state *crtc_state)
   5267{
   5268	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
   5269	u32 pixel_rate;
   5270	u32 crtc_htotal;
   5271	uint_fixed_16_16_t linetime_us;
   5272
   5273	if (!crtc_state->hw.active)
   5274		return u32_to_fixed16(0);
   5275
   5276	pixel_rate = crtc_state->pixel_rate;
   5277
   5278	if (drm_WARN_ON(&dev_priv->drm, pixel_rate == 0))
   5279		return u32_to_fixed16(0);
   5280
   5281	crtc_htotal = crtc_state->hw.pipe_mode.crtc_htotal;
   5282	linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
   5283
   5284	return linetime_us;
   5285}
   5286
   5287static int
   5288skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
   5289		      int width, const struct drm_format_info *format,
   5290		      u64 modifier, unsigned int rotation,
   5291		      u32 plane_pixel_rate, struct skl_wm_params *wp,
   5292		      int color_plane)
   5293{
   5294	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
   5295	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
   5296	u32 interm_pbpl;
   5297
   5298	/* only planar format has two planes */
   5299	if (color_plane == 1 &&
   5300	    !intel_format_info_is_yuv_semiplanar(format, modifier)) {
   5301		drm_dbg_kms(&dev_priv->drm,
   5302			    "Non planar format have single plane\n");
   5303		return -EINVAL;
   5304	}
   5305
   5306	wp->y_tiled = modifier == I915_FORMAT_MOD_Y_TILED ||
   5307		      modifier == I915_FORMAT_MOD_4_TILED ||
   5308		      modifier == I915_FORMAT_MOD_Yf_TILED ||
   5309		      modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
   5310		      modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
   5311	wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED;
   5312	wp->rc_surface = modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
   5313			 modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
   5314	wp->is_planar = intel_format_info_is_yuv_semiplanar(format, modifier);
   5315
   5316	wp->width = width;
   5317	if (color_plane == 1 && wp->is_planar)
   5318		wp->width /= 2;
   5319
   5320	wp->cpp = format->cpp[color_plane];
   5321	wp->plane_pixel_rate = plane_pixel_rate;
   5322
   5323	if (DISPLAY_VER(dev_priv) >= 11 &&
   5324	    modifier == I915_FORMAT_MOD_Yf_TILED  && wp->cpp == 1)
   5325		wp->dbuf_block_size = 256;
   5326	else
   5327		wp->dbuf_block_size = 512;
   5328
   5329	if (drm_rotation_90_or_270(rotation)) {
   5330		switch (wp->cpp) {
   5331		case 1:
   5332			wp->y_min_scanlines = 16;
   5333			break;
   5334		case 2:
   5335			wp->y_min_scanlines = 8;
   5336			break;
   5337		case 4:
   5338			wp->y_min_scanlines = 4;
   5339			break;
   5340		default:
   5341			MISSING_CASE(wp->cpp);
   5342			return -EINVAL;
   5343		}
   5344	} else {
   5345		wp->y_min_scanlines = 4;
   5346	}
   5347
   5348	if (skl_needs_memory_bw_wa(dev_priv))
   5349		wp->y_min_scanlines *= 2;
   5350
   5351	wp->plane_bytes_per_line = wp->width * wp->cpp;
   5352	if (wp->y_tiled) {
   5353		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
   5354					   wp->y_min_scanlines,
   5355					   wp->dbuf_block_size);
   5356
   5357		if (DISPLAY_VER(dev_priv) >= 10)
   5358			interm_pbpl++;
   5359
   5360		wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
   5361							wp->y_min_scanlines);
   5362	} else {
   5363		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
   5364					   wp->dbuf_block_size);
   5365
   5366		if (!wp->x_tiled || DISPLAY_VER(dev_priv) >= 10)
   5367			interm_pbpl++;
   5368
   5369		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
   5370	}
   5371
   5372	wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
   5373					     wp->plane_blocks_per_line);
   5374
   5375	wp->linetime_us = fixed16_to_u32_round_up(
   5376					intel_get_linetime_us(crtc_state));
   5377
   5378	return 0;
   5379}
   5380
   5381static int
   5382skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state,
   5383			    const struct intel_plane_state *plane_state,
   5384			    struct skl_wm_params *wp, int color_plane)
   5385{
   5386	const struct drm_framebuffer *fb = plane_state->hw.fb;
   5387	int width;
   5388
   5389	/*
   5390	 * Src coordinates are already rotated by 270 degrees for
   5391	 * the 90/270 degree plane rotation cases (to match the
   5392	 * GTT mapping), hence no need to account for rotation here.
   5393	 */
   5394	width = drm_rect_width(&plane_state->uapi.src) >> 16;
   5395
   5396	return skl_compute_wm_params(crtc_state, width,
   5397				     fb->format, fb->modifier,
   5398				     plane_state->hw.rotation,
   5399				     intel_plane_pixel_rate(crtc_state, plane_state),
   5400				     wp, color_plane);
   5401}
   5402
   5403static bool skl_wm_has_lines(struct drm_i915_private *dev_priv, int level)
   5404{
   5405	if (DISPLAY_VER(dev_priv) >= 10)
   5406		return true;
   5407
   5408	/* The number of lines are ignored for the level 0 watermark. */
   5409	return level > 0;
   5410}
   5411
   5412static int skl_wm_max_lines(struct drm_i915_private *dev_priv)
   5413{
   5414	if (DISPLAY_VER(dev_priv) >= 13)
   5415		return 255;
   5416	else
   5417		return 31;
   5418}
   5419
   5420static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
   5421				 struct intel_plane *plane,
   5422				 int level,
   5423				 unsigned int latency,
   5424				 const struct skl_wm_params *wp,
   5425				 const struct skl_wm_level *result_prev,
   5426				 struct skl_wm_level *result /* out */)
   5427{
   5428	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
   5429	uint_fixed_16_16_t method1, method2;
   5430	uint_fixed_16_16_t selected_result;
   5431	u32 blocks, lines, min_ddb_alloc = 0;
   5432
   5433	if (latency == 0 ||
   5434	    (use_minimal_wm0_only(crtc_state, plane) && level > 0)) {
   5435		/* reject it */
   5436		result->min_ddb_alloc = U16_MAX;
   5437		return;
   5438	}
   5439
   5440	/*
   5441	 * WaIncreaseLatencyIPCEnabled: kbl,cfl
   5442	 * Display WA #1141: kbl,cfl
   5443	 */
   5444	if ((IS_KABYLAKE(dev_priv) ||
   5445	     IS_COFFEELAKE(dev_priv) ||
   5446	     IS_COMETLAKE(dev_priv)) &&
   5447	    dev_priv->ipc_enabled)
   5448		latency += 4;
   5449
   5450	if (skl_needs_memory_bw_wa(dev_priv) && wp->x_tiled)
   5451		latency += 15;
   5452
   5453	method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
   5454				 wp->cpp, latency, wp->dbuf_block_size);
   5455	method2 = skl_wm_method2(wp->plane_pixel_rate,
   5456				 crtc_state->hw.pipe_mode.crtc_htotal,
   5457				 latency,
   5458				 wp->plane_blocks_per_line);
   5459
   5460	if (wp->y_tiled) {
   5461		selected_result = max_fixed16(method2, wp->y_tile_minimum);
   5462	} else {
   5463		if ((wp->cpp * crtc_state->hw.pipe_mode.crtc_htotal /
   5464		     wp->dbuf_block_size < 1) &&
   5465		     (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
   5466			selected_result = method2;
   5467		} else if (latency >= wp->linetime_us) {
   5468			if (DISPLAY_VER(dev_priv) == 9)
   5469				selected_result = min_fixed16(method1, method2);
   5470			else
   5471				selected_result = method2;
   5472		} else {
   5473			selected_result = method1;
   5474		}
   5475	}
   5476
   5477	blocks = fixed16_to_u32_round_up(selected_result) + 1;
   5478	/*
   5479	 * Lets have blocks at minimum equivalent to plane_blocks_per_line
   5480	 * as there will be at minimum one line for lines configuration. This
   5481	 * is a work around for FIFO underruns observed with resolutions like
   5482	 * 4k 60 Hz in single channel DRAM configurations.
   5483	 *
   5484	 * As per the Bspec 49325, if the ddb allocation can hold at least
   5485	 * one plane_blocks_per_line, we should have selected method2 in
   5486	 * the above logic. Assuming that modern versions have enough dbuf
   5487	 * and method2 guarantees blocks equivalent to at least 1 line,
   5488	 * select the blocks as plane_blocks_per_line.
   5489	 *
   5490	 * TODO: Revisit the logic when we have better understanding on DRAM
   5491	 * channels' impact on the level 0 memory latency and the relevant
   5492	 * wm calculations.
   5493	 */
   5494	if (skl_wm_has_lines(dev_priv, level))
   5495		blocks = max(blocks,
   5496			     fixed16_to_u32_round_up(wp->plane_blocks_per_line));
   5497	lines = div_round_up_fixed16(selected_result,
   5498				     wp->plane_blocks_per_line);
   5499
   5500	if (DISPLAY_VER(dev_priv) == 9) {
   5501		/* Display WA #1125: skl,bxt,kbl */
   5502		if (level == 0 && wp->rc_surface)
   5503			blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
   5504
   5505		/* Display WA #1126: skl,bxt,kbl */
   5506		if (level >= 1 && level <= 7) {
   5507			if (wp->y_tiled) {
   5508				blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
   5509				lines += wp->y_min_scanlines;
   5510			} else {
   5511				blocks++;
   5512			}
   5513
   5514			/*
   5515			 * Make sure result blocks for higher latency levels are
   5516			 * atleast as high as level below the current level.
   5517			 * Assumption in DDB algorithm optimization for special
   5518			 * cases. Also covers Display WA #1125 for RC.
   5519			 */
   5520			if (result_prev->blocks > blocks)
   5521				blocks = result_prev->blocks;
   5522		}
   5523	}
   5524
   5525	if (DISPLAY_VER(dev_priv) >= 11) {
   5526		if (wp->y_tiled) {
   5527			int extra_lines;
   5528
   5529			if (lines % wp->y_min_scanlines == 0)
   5530				extra_lines = wp->y_min_scanlines;
   5531			else
   5532				extra_lines = wp->y_min_scanlines * 2 -
   5533					lines % wp->y_min_scanlines;
   5534
   5535			min_ddb_alloc = mul_round_up_u32_fixed16(lines + extra_lines,
   5536								 wp->plane_blocks_per_line);
   5537		} else {
   5538			min_ddb_alloc = blocks + DIV_ROUND_UP(blocks, 10);
   5539		}
   5540	}
   5541
   5542	if (!skl_wm_has_lines(dev_priv, level))
   5543		lines = 0;
   5544
   5545	if (lines > skl_wm_max_lines(dev_priv)) {
   5546		/* reject it */
   5547		result->min_ddb_alloc = U16_MAX;
   5548		return;
   5549	}
   5550
   5551	/*
   5552	 * If lines is valid, assume we can use this watermark level
   5553	 * for now.  We'll come back and disable it after we calculate the
   5554	 * DDB allocation if it turns out we don't actually have enough
   5555	 * blocks to satisfy it.
   5556	 */
   5557	result->blocks = blocks;
   5558	result->lines = lines;
   5559	/* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
   5560	result->min_ddb_alloc = max(min_ddb_alloc, blocks) + 1;
   5561	result->enable = true;
   5562
   5563	if (DISPLAY_VER(dev_priv) < 12 && dev_priv->sagv_block_time_us)
   5564		result->can_sagv = latency >= dev_priv->sagv_block_time_us;
   5565}
   5566
   5567static void
   5568skl_compute_wm_levels(const struct intel_crtc_state *crtc_state,
   5569		      struct intel_plane *plane,
   5570		      const struct skl_wm_params *wm_params,
   5571		      struct skl_wm_level *levels)
   5572{
   5573	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
   5574	int level, max_level = ilk_wm_max_level(dev_priv);
   5575	struct skl_wm_level *result_prev = &levels[0];
   5576
   5577	for (level = 0; level <= max_level; level++) {
   5578		struct skl_wm_level *result = &levels[level];
   5579		unsigned int latency = dev_priv->wm.skl_latency[level];
   5580
   5581		skl_compute_plane_wm(crtc_state, plane, level, latency,
   5582				     wm_params, result_prev, result);
   5583
   5584		result_prev = result;
   5585	}
   5586}
   5587
   5588static void tgl_compute_sagv_wm(const struct intel_crtc_state *crtc_state,
   5589				struct intel_plane *plane,
   5590				const struct skl_wm_params *wm_params,
   5591				struct skl_plane_wm *plane_wm)
   5592{
   5593	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
   5594	struct skl_wm_level *sagv_wm = &plane_wm->sagv.wm0;
   5595	struct skl_wm_level *levels = plane_wm->wm;
   5596	unsigned int latency = 0;
   5597
   5598	if (dev_priv->sagv_block_time_us)
   5599		latency = dev_priv->sagv_block_time_us + dev_priv->wm.skl_latency[0];
   5600
   5601	skl_compute_plane_wm(crtc_state, plane, 0, latency,
   5602			     wm_params, &levels[0],
   5603			     sagv_wm);
   5604}
   5605
   5606static void skl_compute_transition_wm(struct drm_i915_private *dev_priv,
   5607				      struct skl_wm_level *trans_wm,
   5608				      const struct skl_wm_level *wm0,
   5609				      const struct skl_wm_params *wp)
   5610{
   5611	u16 trans_min, trans_amount, trans_y_tile_min;
   5612	u16 wm0_blocks, trans_offset, blocks;
   5613
   5614	/* Transition WM don't make any sense if ipc is disabled */
   5615	if (!dev_priv->ipc_enabled)
   5616		return;
   5617
   5618	/*
   5619	 * WaDisableTWM:skl,kbl,cfl,bxt
   5620	 * Transition WM are not recommended by HW team for GEN9
   5621	 */
   5622	if (DISPLAY_VER(dev_priv) == 9)
   5623		return;
   5624
   5625	if (DISPLAY_VER(dev_priv) >= 11)
   5626		trans_min = 4;
   5627	else
   5628		trans_min = 14;
   5629
   5630	/* Display WA #1140: glk,cnl */
   5631	if (DISPLAY_VER(dev_priv) == 10)
   5632		trans_amount = 0;
   5633	else
   5634		trans_amount = 10; /* This is configurable amount */
   5635
   5636	trans_offset = trans_min + trans_amount;
   5637
   5638	/*
   5639	 * The spec asks for Selected Result Blocks for wm0 (the real value),
   5640	 * not Result Blocks (the integer value). Pay attention to the capital
   5641	 * letters. The value wm_l0->blocks is actually Result Blocks, but
   5642	 * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
   5643	 * and since we later will have to get the ceiling of the sum in the
   5644	 * transition watermarks calculation, we can just pretend Selected
   5645	 * Result Blocks is Result Blocks minus 1 and it should work for the
   5646	 * current platforms.
   5647	 */
   5648	wm0_blocks = wm0->blocks - 1;
   5649
   5650	if (wp->y_tiled) {
   5651		trans_y_tile_min =
   5652			(u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
   5653		blocks = max(wm0_blocks, trans_y_tile_min) + trans_offset;
   5654	} else {
   5655		blocks = wm0_blocks + trans_offset;
   5656	}
   5657	blocks++;
   5658
   5659	/*
   5660	 * Just assume we can enable the transition watermark.  After
   5661	 * computing the DDB we'll come back and disable it if that
   5662	 * assumption turns out to be false.
   5663	 */
   5664	trans_wm->blocks = blocks;
   5665	trans_wm->min_ddb_alloc = max_t(u16, wm0->min_ddb_alloc, blocks + 1);
   5666	trans_wm->enable = true;
   5667}
   5668
   5669static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
   5670				     const struct intel_plane_state *plane_state,
   5671				     struct intel_plane *plane, int color_plane)
   5672{
   5673	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
   5674	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
   5675	struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane->id];
   5676	struct skl_wm_params wm_params;
   5677	int ret;
   5678
   5679	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
   5680					  &wm_params, color_plane);
   5681	if (ret)
   5682		return ret;
   5683
   5684	skl_compute_wm_levels(crtc_state, plane, &wm_params, wm->wm);
   5685
   5686	skl_compute_transition_wm(dev_priv, &wm->trans_wm,
   5687				  &wm->wm[0], &wm_params);
   5688
   5689	if (DISPLAY_VER(dev_priv) >= 12) {
   5690		tgl_compute_sagv_wm(crtc_state, plane, &wm_params, wm);
   5691
   5692		skl_compute_transition_wm(dev_priv, &wm->sagv.trans_wm,
   5693					  &wm->sagv.wm0, &wm_params);
   5694	}
   5695
   5696	return 0;
   5697}
   5698
   5699static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
   5700				 const struct intel_plane_state *plane_state,
   5701				 struct intel_plane *plane)
   5702{
   5703	struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane->id];
   5704	struct skl_wm_params wm_params;
   5705	int ret;
   5706
   5707	wm->is_planar = true;
   5708
   5709	/* uv plane watermarks must also be validated for NV12/Planar */
   5710	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
   5711					  &wm_params, 1);
   5712	if (ret)
   5713		return ret;
   5714
   5715	skl_compute_wm_levels(crtc_state, plane, &wm_params, wm->uv_wm);
   5716
   5717	return 0;
   5718}
   5719
   5720static int skl_build_plane_wm(struct intel_crtc_state *crtc_state,
   5721			      const struct intel_plane_state *plane_state)
   5722{
   5723	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
   5724	enum plane_id plane_id = plane->id;
   5725	struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
   5726	const struct drm_framebuffer *fb = plane_state->hw.fb;
   5727	int ret;
   5728
   5729	memset(wm, 0, sizeof(*wm));
   5730
   5731	if (!intel_wm_plane_visible(crtc_state, plane_state))
   5732		return 0;
   5733
   5734	ret = skl_build_plane_wm_single(crtc_state, plane_state,
   5735					plane, 0);
   5736	if (ret)
   5737		return ret;
   5738
   5739	if (fb->format->is_yuv && fb->format->num_planes > 1) {
   5740		ret = skl_build_plane_wm_uv(crtc_state, plane_state,
   5741					    plane);
   5742		if (ret)
   5743			return ret;
   5744	}
   5745
   5746	return 0;
   5747}
   5748
   5749static int icl_build_plane_wm(struct intel_crtc_state *crtc_state,
   5750			      const struct intel_plane_state *plane_state)
   5751{
   5752	struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
   5753	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
   5754	enum plane_id plane_id = plane->id;
   5755	struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
   5756	int ret;
   5757
   5758	/* Watermarks calculated in master */
   5759	if (plane_state->planar_slave)
   5760		return 0;
   5761
   5762	memset(wm, 0, sizeof(*wm));
   5763
   5764	if (plane_state->planar_linked_plane) {
   5765		const struct drm_framebuffer *fb = plane_state->hw.fb;
   5766
   5767		drm_WARN_ON(&dev_priv->drm,
   5768			    !intel_wm_plane_visible(crtc_state, plane_state));
   5769		drm_WARN_ON(&dev_priv->drm, !fb->format->is_yuv ||
   5770			    fb->format->num_planes == 1);
   5771
   5772		ret = skl_build_plane_wm_single(crtc_state, plane_state,
   5773						plane_state->planar_linked_plane, 0);
   5774		if (ret)
   5775			return ret;
   5776
   5777		ret = skl_build_plane_wm_single(crtc_state, plane_state,
   5778						plane, 1);
   5779		if (ret)
   5780			return ret;
   5781	} else if (intel_wm_plane_visible(crtc_state, plane_state)) {
   5782		ret = skl_build_plane_wm_single(crtc_state, plane_state,
   5783						plane, 0);
   5784		if (ret)
   5785			return ret;
   5786	}
   5787
   5788	return 0;
   5789}
   5790
   5791static int skl_build_pipe_wm(struct intel_atomic_state *state,
   5792			     struct intel_crtc *crtc)
   5793{
   5794	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
   5795	struct intel_crtc_state *crtc_state =
   5796		intel_atomic_get_new_crtc_state(state, crtc);
   5797	const struct intel_plane_state *plane_state;
   5798	struct intel_plane *plane;
   5799	int ret, i;
   5800
   5801	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
   5802		/*
   5803		 * FIXME should perhaps check {old,new}_plane_crtc->hw.crtc
   5804		 * instead but we don't populate that correctly for NV12 Y
   5805		 * planes so for now hack this.
   5806		 */
   5807		if (plane->pipe != crtc->pipe)
   5808			continue;
   5809
   5810		if (DISPLAY_VER(dev_priv) >= 11)
   5811			ret = icl_build_plane_wm(crtc_state, plane_state);
   5812		else
   5813			ret = skl_build_plane_wm(crtc_state, plane_state);
   5814		if (ret)
   5815			return ret;
   5816	}
   5817
   5818	crtc_state->wm.skl.optimal = crtc_state->wm.skl.raw;
   5819
   5820	return 0;
   5821}
   5822
   5823static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
   5824				i915_reg_t reg,
   5825				const struct skl_ddb_entry *entry)
   5826{
   5827	if (entry->end)
   5828		intel_de_write_fw(dev_priv, reg,
   5829				  PLANE_BUF_END(entry->end - 1) |
   5830				  PLANE_BUF_START(entry->start));
   5831	else
   5832		intel_de_write_fw(dev_priv, reg, 0);
   5833}
   5834
   5835static void skl_write_wm_level(struct drm_i915_private *dev_priv,
   5836			       i915_reg_t reg,
   5837			       const struct skl_wm_level *level)
   5838{
   5839	u32 val = 0;
   5840
   5841	if (level->enable)
   5842		val |= PLANE_WM_EN;
   5843	if (level->ignore_lines)
   5844		val |= PLANE_WM_IGNORE_LINES;
   5845	val |= REG_FIELD_PREP(PLANE_WM_BLOCKS_MASK, level->blocks);
   5846	val |= REG_FIELD_PREP(PLANE_WM_LINES_MASK, level->lines);
   5847
   5848	intel_de_write_fw(dev_priv, reg, val);
   5849}
   5850
   5851void skl_write_plane_wm(struct intel_plane *plane,
   5852			const struct intel_crtc_state *crtc_state)
   5853{
   5854	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
   5855	int level, max_level = ilk_wm_max_level(dev_priv);
   5856	enum plane_id plane_id = plane->id;
   5857	enum pipe pipe = plane->pipe;
   5858	const struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
   5859	const struct skl_ddb_entry *ddb =
   5860		&crtc_state->wm.skl.plane_ddb[plane_id];
   5861	const struct skl_ddb_entry *ddb_y =
   5862		&crtc_state->wm.skl.plane_ddb_y[plane_id];
   5863
   5864	for (level = 0; level <= max_level; level++)
   5865		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
   5866				   skl_plane_wm_level(pipe_wm, plane_id, level));
   5867
   5868	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
   5869			   skl_plane_trans_wm(pipe_wm, plane_id));
   5870
   5871	if (HAS_HW_SAGV_WM(dev_priv)) {
   5872		const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
   5873
   5874		skl_write_wm_level(dev_priv, PLANE_WM_SAGV(pipe, plane_id),
   5875				   &wm->sagv.wm0);
   5876		skl_write_wm_level(dev_priv, PLANE_WM_SAGV_TRANS(pipe, plane_id),
   5877				   &wm->sagv.trans_wm);
   5878	}
   5879
   5880	skl_ddb_entry_write(dev_priv,
   5881			    PLANE_BUF_CFG(pipe, plane_id), ddb);
   5882
   5883	if (DISPLAY_VER(dev_priv) < 11)
   5884		skl_ddb_entry_write(dev_priv,
   5885				    PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_y);
   5886}
   5887
   5888void skl_write_cursor_wm(struct intel_plane *plane,
   5889			 const struct intel_crtc_state *crtc_state)
   5890{
   5891	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
   5892	int level, max_level = ilk_wm_max_level(dev_priv);
   5893	enum plane_id plane_id = plane->id;
   5894	enum pipe pipe = plane->pipe;
   5895	const struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
   5896	const struct skl_ddb_entry *ddb =
   5897		&crtc_state->wm.skl.plane_ddb[plane_id];
   5898
   5899	for (level = 0; level <= max_level; level++)
   5900		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
   5901				   skl_plane_wm_level(pipe_wm, plane_id, level));
   5902
   5903	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe),
   5904			   skl_plane_trans_wm(pipe_wm, plane_id));
   5905
   5906	if (HAS_HW_SAGV_WM(dev_priv)) {
   5907		const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
   5908
   5909		skl_write_wm_level(dev_priv, CUR_WM_SAGV(pipe),
   5910				   &wm->sagv.wm0);
   5911		skl_write_wm_level(dev_priv, CUR_WM_SAGV_TRANS(pipe),
   5912				   &wm->sagv.trans_wm);
   5913	}
   5914
   5915	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), ddb);
   5916}
   5917
   5918bool skl_wm_level_equals(const struct skl_wm_level *l1,
   5919			 const struct skl_wm_level *l2)
   5920{
   5921	return l1->enable == l2->enable &&
   5922		l1->ignore_lines == l2->ignore_lines &&
   5923		l1->lines == l2->lines &&
   5924		l1->blocks == l2->blocks;
   5925}
   5926
   5927static bool skl_plane_wm_equals(struct drm_i915_private *dev_priv,
   5928				const struct skl_plane_wm *wm1,
   5929				const struct skl_plane_wm *wm2)
   5930{
   5931	int level, max_level = ilk_wm_max_level(dev_priv);
   5932
   5933	for (level = 0; level <= max_level; level++) {
   5934		/*
   5935		 * We don't check uv_wm as the hardware doesn't actually
   5936		 * use it. It only gets used for calculating the required
   5937		 * ddb allocation.
   5938		 */
   5939		if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]))
   5940			return false;
   5941	}
   5942
   5943	return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm) &&
   5944		skl_wm_level_equals(&wm1->sagv.wm0, &wm2->sagv.wm0) &&
   5945		skl_wm_level_equals(&wm1->sagv.trans_wm, &wm2->sagv.trans_wm);
   5946}
   5947
   5948static bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
   5949				    const struct skl_ddb_entry *b)
   5950{
   5951	return a->start < b->end && b->start < a->end;
   5952}
   5953
   5954static void skl_ddb_entry_union(struct skl_ddb_entry *a,
   5955				const struct skl_ddb_entry *b)
   5956{
   5957	if (a->end && b->end) {
   5958		a->start = min(a->start, b->start);
   5959		a->end = max(a->end, b->end);
   5960	} else if (b->end) {
   5961		a->start = b->start;
   5962		a->end = b->end;
   5963	}
   5964}
   5965
   5966bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
   5967				 const struct skl_ddb_entry *entries,
   5968				 int num_entries, int ignore_idx)
   5969{
   5970	int i;
   5971
   5972	for (i = 0; i < num_entries; i++) {
   5973		if (i != ignore_idx &&
   5974		    skl_ddb_entries_overlap(ddb, &entries[i]))
   5975			return true;
   5976	}
   5977
   5978	return false;
   5979}
   5980
   5981static int
   5982skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
   5983			    struct intel_crtc_state *new_crtc_state)
   5984{
   5985	struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->uapi.state);
   5986	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
   5987	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
   5988	struct intel_plane *plane;
   5989
   5990	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
   5991		struct intel_plane_state *plane_state;
   5992		enum plane_id plane_id = plane->id;
   5993
   5994		if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb[plane_id],
   5995					&new_crtc_state->wm.skl.plane_ddb[plane_id]) &&
   5996		    skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
   5997					&new_crtc_state->wm.skl.plane_ddb_y[plane_id]))
   5998			continue;
   5999
   6000		plane_state = intel_atomic_get_plane_state(state, plane);
   6001		if (IS_ERR(plane_state))
   6002			return PTR_ERR(plane_state);
   6003
   6004		new_crtc_state->update_planes |= BIT(plane_id);
   6005	}
   6006
   6007	return 0;
   6008}
   6009
   6010static u8 intel_dbuf_enabled_slices(const struct intel_dbuf_state *dbuf_state)
   6011{
   6012	struct drm_i915_private *dev_priv = to_i915(dbuf_state->base.state->base.dev);
   6013	u8 enabled_slices;
   6014	enum pipe pipe;
   6015
   6016	/*
   6017	 * FIXME: For now we always enable slice S1 as per
   6018	 * the Bspec display initialization sequence.
   6019	 */
   6020	enabled_slices = BIT(DBUF_S1);
   6021
   6022	for_each_pipe(dev_priv, pipe)
   6023		enabled_slices |= dbuf_state->slices[pipe];
   6024
   6025	return enabled_slices;
   6026}
   6027
   6028static int
   6029skl_compute_ddb(struct intel_atomic_state *state)
   6030{
   6031	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
   6032	const struct intel_dbuf_state *old_dbuf_state;
   6033	struct intel_dbuf_state *new_dbuf_state = NULL;
   6034	const struct intel_crtc_state *old_crtc_state;
   6035	struct intel_crtc_state *new_crtc_state;
   6036	struct intel_crtc *crtc;
   6037	int ret, i;
   6038
   6039	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
   6040		new_dbuf_state = intel_atomic_get_dbuf_state(state);
   6041		if (IS_ERR(new_dbuf_state))
   6042			return PTR_ERR(new_dbuf_state);
   6043
   6044		old_dbuf_state = intel_atomic_get_old_dbuf_state(state);
   6045		break;
   6046	}
   6047
   6048	if (!new_dbuf_state)
   6049		return 0;
   6050
   6051	new_dbuf_state->active_pipes =
   6052		intel_calc_active_pipes(state, old_dbuf_state->active_pipes);
   6053
   6054	if (old_dbuf_state->active_pipes != new_dbuf_state->active_pipes) {
   6055		ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
   6056		if (ret)
   6057			return ret;
   6058	}
   6059
   6060	if (HAS_MBUS_JOINING(dev_priv))
   6061		new_dbuf_state->joined_mbus =
   6062			adlp_check_mbus_joined(new_dbuf_state->active_pipes);
   6063
   6064	for_each_intel_crtc(&dev_priv->drm, crtc) {
   6065		enum pipe pipe = crtc->pipe;
   6066
   6067		new_dbuf_state->slices[pipe] =
   6068			skl_compute_dbuf_slices(crtc, new_dbuf_state->active_pipes,
   6069						new_dbuf_state->joined_mbus);
   6070
   6071		if (old_dbuf_state->slices[pipe] == new_dbuf_state->slices[pipe])
   6072			continue;
   6073
   6074		ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
   6075		if (ret)
   6076			return ret;
   6077	}
   6078
   6079	new_dbuf_state->enabled_slices = intel_dbuf_enabled_slices(new_dbuf_state);
   6080
   6081	if (old_dbuf_state->enabled_slices != new_dbuf_state->enabled_slices ||
   6082	    old_dbuf_state->joined_mbus != new_dbuf_state->joined_mbus) {
   6083		ret = intel_atomic_serialize_global_state(&new_dbuf_state->base);
   6084		if (ret)
   6085			return ret;
   6086
   6087		if (old_dbuf_state->joined_mbus != new_dbuf_state->joined_mbus) {
   6088			/* TODO: Implement vblank synchronized MBUS joining changes */
   6089			ret = intel_modeset_all_pipes(state);
   6090			if (ret)
   6091				return ret;
   6092		}
   6093
   6094		drm_dbg_kms(&dev_priv->drm,
   6095			    "Enabled dbuf slices 0x%x -> 0x%x (total dbuf slices 0x%x), mbus joined? %s->%s\n",
   6096			    old_dbuf_state->enabled_slices,
   6097			    new_dbuf_state->enabled_slices,
   6098			    INTEL_INFO(dev_priv)->dbuf.slice_mask,
   6099			    str_yes_no(old_dbuf_state->joined_mbus),
   6100			    str_yes_no(new_dbuf_state->joined_mbus));
   6101	}
   6102
   6103	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
   6104		enum pipe pipe = crtc->pipe;
   6105
   6106		new_dbuf_state->weight[pipe] = intel_crtc_ddb_weight(new_crtc_state);
   6107
   6108		if (old_dbuf_state->weight[pipe] == new_dbuf_state->weight[pipe])
   6109			continue;
   6110
   6111		ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
   6112		if (ret)
   6113			return ret;
   6114	}
   6115
   6116	for_each_intel_crtc(&dev_priv->drm, crtc) {
   6117		ret = skl_crtc_allocate_ddb(state, crtc);
   6118		if (ret)
   6119			return ret;
   6120	}
   6121
   6122	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
   6123					    new_crtc_state, i) {
   6124		ret = skl_crtc_allocate_plane_ddb(state, crtc);
   6125		if (ret)
   6126			return ret;
   6127
   6128		ret = skl_ddb_add_affected_planes(old_crtc_state,
   6129						  new_crtc_state);
   6130		if (ret)
   6131			return ret;
   6132	}
   6133
   6134	return 0;
   6135}
   6136
   6137static char enast(bool enable)
   6138{
   6139	return enable ? '*' : ' ';
   6140}
   6141
   6142static void
   6143skl_print_wm_changes(struct intel_atomic_state *state)
   6144{
   6145	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
   6146	const struct intel_crtc_state *old_crtc_state;
   6147	const struct intel_crtc_state *new_crtc_state;
   6148	struct intel_plane *plane;
   6149	struct intel_crtc *crtc;
   6150	int i;
   6151
   6152	if (!drm_debug_enabled(DRM_UT_KMS))
   6153		return;
   6154
   6155	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
   6156					    new_crtc_state, i) {
   6157		const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm;
   6158
   6159		old_pipe_wm = &old_crtc_state->wm.skl.optimal;
   6160		new_pipe_wm = &new_crtc_state->wm.skl.optimal;
   6161
   6162		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
   6163			enum plane_id plane_id = plane->id;
   6164			const struct skl_ddb_entry *old, *new;
   6165
   6166			old = &old_crtc_state->wm.skl.plane_ddb[plane_id];
   6167			new = &new_crtc_state->wm.skl.plane_ddb[plane_id];
   6168
   6169			if (skl_ddb_entry_equal(old, new))
   6170				continue;
   6171
   6172			drm_dbg_kms(&dev_priv->drm,
   6173				    "[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
   6174				    plane->base.base.id, plane->base.name,
   6175				    old->start, old->end, new->start, new->end,
   6176				    skl_ddb_entry_size(old), skl_ddb_entry_size(new));
   6177		}
   6178
   6179		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
   6180			enum plane_id plane_id = plane->id;
   6181			const struct skl_plane_wm *old_wm, *new_wm;
   6182
   6183			old_wm = &old_pipe_wm->planes[plane_id];
   6184			new_wm = &new_pipe_wm->planes[plane_id];
   6185
   6186			if (skl_plane_wm_equals(dev_priv, old_wm, new_wm))
   6187				continue;
   6188
   6189			drm_dbg_kms(&dev_priv->drm,
   6190				    "[PLANE:%d:%s]   level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm,%cstwm"
   6191				    " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm,%cstwm\n",
   6192				    plane->base.base.id, plane->base.name,
   6193				    enast(old_wm->wm[0].enable), enast(old_wm->wm[1].enable),
   6194				    enast(old_wm->wm[2].enable), enast(old_wm->wm[3].enable),
   6195				    enast(old_wm->wm[4].enable), enast(old_wm->wm[5].enable),
   6196				    enast(old_wm->wm[6].enable), enast(old_wm->wm[7].enable),
   6197				    enast(old_wm->trans_wm.enable),
   6198				    enast(old_wm->sagv.wm0.enable),
   6199				    enast(old_wm->sagv.trans_wm.enable),
   6200				    enast(new_wm->wm[0].enable), enast(new_wm->wm[1].enable),
   6201				    enast(new_wm->wm[2].enable), enast(new_wm->wm[3].enable),
   6202				    enast(new_wm->wm[4].enable), enast(new_wm->wm[5].enable),
   6203				    enast(new_wm->wm[6].enable), enast(new_wm->wm[7].enable),
   6204				    enast(new_wm->trans_wm.enable),
   6205				    enast(new_wm->sagv.wm0.enable),
   6206				    enast(new_wm->sagv.trans_wm.enable));
   6207
   6208			drm_dbg_kms(&dev_priv->drm,
   6209				    "[PLANE:%d:%s]   lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%4d"
   6210				      " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%4d\n",
   6211				    plane->base.base.id, plane->base.name,
   6212				    enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].lines,
   6213				    enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].lines,
   6214				    enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].lines,
   6215				    enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].lines,
   6216				    enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].lines,
   6217				    enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].lines,
   6218				    enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].lines,
   6219				    enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].lines,
   6220				    enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.lines,
   6221				    enast(old_wm->sagv.wm0.ignore_lines), old_wm->sagv.wm0.lines,
   6222				    enast(old_wm->sagv.trans_wm.ignore_lines), old_wm->sagv.trans_wm.lines,
   6223				    enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].lines,
   6224				    enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].lines,
   6225				    enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].lines,
   6226				    enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].lines,
   6227				    enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].lines,
   6228				    enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].lines,
   6229				    enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].lines,
   6230				    enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].lines,
   6231				    enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.lines,
   6232				    enast(new_wm->sagv.wm0.ignore_lines), new_wm->sagv.wm0.lines,
   6233				    enast(new_wm->sagv.trans_wm.ignore_lines), new_wm->sagv.trans_wm.lines);
   6234
   6235			drm_dbg_kms(&dev_priv->drm,
   6236				    "[PLANE:%d:%s]  blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d"
   6237				    " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d\n",
   6238				    plane->base.base.id, plane->base.name,
   6239				    old_wm->wm[0].blocks, old_wm->wm[1].blocks,
   6240				    old_wm->wm[2].blocks, old_wm->wm[3].blocks,
   6241				    old_wm->wm[4].blocks, old_wm->wm[5].blocks,
   6242				    old_wm->wm[6].blocks, old_wm->wm[7].blocks,
   6243				    old_wm->trans_wm.blocks,
   6244				    old_wm->sagv.wm0.blocks,
   6245				    old_wm->sagv.trans_wm.blocks,
   6246				    new_wm->wm[0].blocks, new_wm->wm[1].blocks,
   6247				    new_wm->wm[2].blocks, new_wm->wm[3].blocks,
   6248				    new_wm->wm[4].blocks, new_wm->wm[5].blocks,
   6249				    new_wm->wm[6].blocks, new_wm->wm[7].blocks,
   6250				    new_wm->trans_wm.blocks,
   6251				    new_wm->sagv.wm0.blocks,
   6252				    new_wm->sagv.trans_wm.blocks);
   6253
   6254			drm_dbg_kms(&dev_priv->drm,
   6255				    "[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d"
   6256				    " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d\n",
   6257				    plane->base.base.id, plane->base.name,
   6258				    old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc,
   6259				    old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc,
   6260				    old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc,
   6261				    old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc,
   6262				    old_wm->trans_wm.min_ddb_alloc,
   6263				    old_wm->sagv.wm0.min_ddb_alloc,
   6264				    old_wm->sagv.trans_wm.min_ddb_alloc,
   6265				    new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc,
   6266				    new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc,
   6267				    new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc,
   6268				    new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc,
   6269				    new_wm->trans_wm.min_ddb_alloc,
   6270				    new_wm->sagv.wm0.min_ddb_alloc,
   6271				    new_wm->sagv.trans_wm.min_ddb_alloc);
   6272		}
   6273	}
   6274}
   6275
   6276static bool skl_plane_selected_wm_equals(struct intel_plane *plane,
   6277					 const struct skl_pipe_wm *old_pipe_wm,
   6278					 const struct skl_pipe_wm *new_pipe_wm)
   6279{
   6280	struct drm_i915_private *i915 = to_i915(plane->base.dev);
   6281	int level, max_level = ilk_wm_max_level(i915);
   6282
   6283	for (level = 0; level <= max_level; level++) {
   6284		/*
   6285		 * We don't check uv_wm as the hardware doesn't actually
   6286		 * use it. It only gets used for calculating the required
   6287		 * ddb allocation.
   6288		 */
   6289		if (!skl_wm_level_equals(skl_plane_wm_level(old_pipe_wm, plane->id, level),
   6290					 skl_plane_wm_level(new_pipe_wm, plane->id, level)))
   6291			return false;
   6292	}
   6293
   6294	if (HAS_HW_SAGV_WM(i915)) {
   6295		const struct skl_plane_wm *old_wm = &old_pipe_wm->planes[plane->id];
   6296		const struct skl_plane_wm *new_wm = &new_pipe_wm->planes[plane->id];
   6297
   6298		if (!skl_wm_level_equals(&old_wm->sagv.wm0, &new_wm->sagv.wm0) ||
   6299		    !skl_wm_level_equals(&old_wm->sagv.trans_wm, &new_wm->sagv.trans_wm))
   6300			return false;
   6301	}
   6302
   6303	return skl_wm_level_equals(skl_plane_trans_wm(old_pipe_wm, plane->id),
   6304				   skl_plane_trans_wm(new_pipe_wm, plane->id));
   6305}
   6306
   6307/*
   6308 * To make sure the cursor watermark registers are always consistent
   6309 * with our computed state the following scenario needs special
   6310 * treatment:
   6311 *
   6312 * 1. enable cursor
   6313 * 2. move cursor entirely offscreen
   6314 * 3. disable cursor
   6315 *
   6316 * Step 2. does call .disable_plane() but does not zero the watermarks
   6317 * (since we consider an offscreen cursor still active for the purposes
   6318 * of watermarks). Step 3. would not normally call .disable_plane()
   6319 * because the actual plane visibility isn't changing, and we don't
   6320 * deallocate the cursor ddb until the pipe gets disabled. So we must
   6321 * force step 3. to call .disable_plane() to update the watermark
   6322 * registers properly.
   6323 *
   6324 * Other planes do not suffer from this issues as their watermarks are
   6325 * calculated based on the actual plane visibility. The only time this
   6326 * can trigger for the other planes is during the initial readout as the
   6327 * default value of the watermarks registers is not zero.
   6328 */
   6329static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
   6330				      struct intel_crtc *crtc)
   6331{
   6332	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
   6333	const struct intel_crtc_state *old_crtc_state =
   6334		intel_atomic_get_old_crtc_state(state, crtc);
   6335	struct intel_crtc_state *new_crtc_state =
   6336		intel_atomic_get_new_crtc_state(state, crtc);
   6337	struct intel_plane *plane;
   6338
   6339	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
   6340		struct intel_plane_state *plane_state;
   6341		enum plane_id plane_id = plane->id;
   6342
   6343		/*
   6344		 * Force a full wm update for every plane on modeset.
   6345		 * Required because the reset value of the wm registers
   6346		 * is non-zero, whereas we want all disabled planes to
   6347		 * have zero watermarks. So if we turn off the relevant
   6348		 * power well the hardware state will go out of sync
   6349		 * with the software state.
   6350		 */
   6351		if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi) &&
   6352		    skl_plane_selected_wm_equals(plane,
   6353						 &old_crtc_state->wm.skl.optimal,
   6354						 &new_crtc_state->wm.skl.optimal))
   6355			continue;
   6356
   6357		plane_state = intel_atomic_get_plane_state(state, plane);
   6358		if (IS_ERR(plane_state))
   6359			return PTR_ERR(plane_state);
   6360
   6361		new_crtc_state->update_planes |= BIT(plane_id);
   6362	}
   6363
   6364	return 0;
   6365}
   6366
   6367static int
   6368skl_compute_wm(struct intel_atomic_state *state)
   6369{
   6370	struct intel_crtc *crtc;
   6371	struct intel_crtc_state *new_crtc_state;
   6372	int ret, i;
   6373
   6374	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
   6375		ret = skl_build_pipe_wm(state, crtc);
   6376		if (ret)
   6377			return ret;
   6378	}
   6379
   6380	ret = skl_compute_ddb(state);
   6381	if (ret)
   6382		return ret;
   6383
   6384	ret = intel_compute_sagv_mask(state);
   6385	if (ret)
   6386		return ret;
   6387
   6388	/*
   6389	 * skl_compute_ddb() will have adjusted the final watermarks
   6390	 * based on how much ddb is available. Now we can actually
   6391	 * check if the final watermarks changed.
   6392	 */
   6393	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
   6394		ret = skl_wm_add_affected_planes(state, crtc);
   6395		if (ret)
   6396			return ret;
   6397	}
   6398
   6399	skl_print_wm_changes(state);
   6400
   6401	return 0;
   6402}
   6403
   6404static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
   6405				  struct intel_wm_config *config)
   6406{
   6407	struct intel_crtc *crtc;
   6408
   6409	/* Compute the currently _active_ config */
   6410	for_each_intel_crtc(&dev_priv->drm, crtc) {
   6411		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
   6412
   6413		if (!wm->pipe_enabled)
   6414			continue;
   6415
   6416		config->sprites_enabled |= wm->sprites_enabled;
   6417		config->sprites_scaled |= wm->sprites_scaled;
   6418		config->num_pipes_active++;
   6419	}
   6420}
   6421
   6422static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
   6423{
   6424	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
   6425	struct ilk_wm_maximums max;
   6426	struct intel_wm_config config = {};
   6427	struct ilk_wm_values results = {};
   6428	enum intel_ddb_partitioning partitioning;
   6429
   6430	ilk_compute_wm_config(dev_priv, &config);
   6431
   6432	ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
   6433	ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
   6434
   6435	/* 5/6 split only in single pipe config on IVB+ */
   6436	if (DISPLAY_VER(dev_priv) >= 7 &&
   6437	    config.num_pipes_active == 1 && config.sprites_enabled) {
   6438		ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
   6439		ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
   6440
   6441		best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
   6442	} else {
   6443		best_lp_wm = &lp_wm_1_2;
   6444	}
   6445
   6446	partitioning = (best_lp_wm == &lp_wm_1_2) ?
   6447		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
   6448
   6449	ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
   6450
   6451	ilk_write_wm_values(dev_priv, &results);
   6452}
   6453
   6454static void ilk_initial_watermarks(struct intel_atomic_state *state,
   6455				   struct intel_crtc *crtc)
   6456{
   6457	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
   6458	const struct intel_crtc_state *crtc_state =
   6459		intel_atomic_get_new_crtc_state(state, crtc);
   6460
   6461	mutex_lock(&dev_priv->wm.wm_mutex);
   6462	crtc->wm.active.ilk = crtc_state->wm.ilk.intermediate;
   6463	ilk_program_watermarks(dev_priv);
   6464	mutex_unlock(&dev_priv->wm.wm_mutex);
   6465}
   6466
   6467static void ilk_optimize_watermarks(struct intel_atomic_state *state,
   6468				    struct intel_crtc *crtc)
   6469{
   6470	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
   6471	const struct intel_crtc_state *crtc_state =
   6472		intel_atomic_get_new_crtc_state(state, crtc);
   6473
   6474	if (!crtc_state->wm.need_postvbl_update)
   6475		return;
   6476
   6477	mutex_lock(&dev_priv->wm.wm_mutex);
   6478	crtc->wm.active.ilk = crtc_state->wm.ilk.optimal;
   6479	ilk_program_watermarks(dev_priv);
   6480	mutex_unlock(&dev_priv->wm.wm_mutex);
   6481}
   6482
   6483static void skl_wm_level_from_reg_val(u32 val, struct skl_wm_level *level)
   6484{
   6485	level->enable = val & PLANE_WM_EN;
   6486	level->ignore_lines = val & PLANE_WM_IGNORE_LINES;
   6487	level->blocks = REG_FIELD_GET(PLANE_WM_BLOCKS_MASK, val);
   6488	level->lines = REG_FIELD_GET(PLANE_WM_LINES_MASK, val);
   6489}
   6490
   6491void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
   6492			      struct skl_pipe_wm *out)
   6493{
   6494	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
   6495	enum pipe pipe = crtc->pipe;
   6496	int level, max_level;
   6497	enum plane_id plane_id;
   6498	u32 val;
   6499
   6500	max_level = ilk_wm_max_level(dev_priv);
   6501
   6502	for_each_plane_id_on_crtc(crtc, plane_id) {
   6503		struct skl_plane_wm *wm = &out->planes[plane_id];
   6504
   6505		for (level = 0; level <= max_level; level++) {
   6506			if (plane_id != PLANE_CURSOR)
   6507				val = intel_uncore_read(&dev_priv->uncore, PLANE_WM(pipe, plane_id, level));
   6508			else
   6509				val = intel_uncore_read(&dev_priv->uncore, CUR_WM(pipe, level));
   6510
   6511			skl_wm_level_from_reg_val(val, &wm->wm[level]);
   6512		}
   6513
   6514		if (plane_id != PLANE_CURSOR)
   6515			val = intel_uncore_read(&dev_priv->uncore, PLANE_WM_TRANS(pipe, plane_id));
   6516		else
   6517			val = intel_uncore_read(&dev_priv->uncore, CUR_WM_TRANS(pipe));
   6518
   6519		skl_wm_level_from_reg_val(val, &wm->trans_wm);
   6520
   6521		if (HAS_HW_SAGV_WM(dev_priv)) {
   6522			if (plane_id != PLANE_CURSOR)
   6523				val = intel_uncore_read(&dev_priv->uncore,
   6524							PLANE_WM_SAGV(pipe, plane_id));
   6525			else
   6526				val = intel_uncore_read(&dev_priv->uncore,
   6527							CUR_WM_SAGV(pipe));
   6528
   6529			skl_wm_level_from_reg_val(val, &wm->sagv.wm0);
   6530
   6531			if (plane_id != PLANE_CURSOR)
   6532				val = intel_uncore_read(&dev_priv->uncore,
   6533							PLANE_WM_SAGV_TRANS(pipe, plane_id));
   6534			else
   6535				val = intel_uncore_read(&dev_priv->uncore,
   6536							CUR_WM_SAGV_TRANS(pipe));
   6537
   6538			skl_wm_level_from_reg_val(val, &wm->sagv.trans_wm);
   6539		} else if (DISPLAY_VER(dev_priv) >= 12) {
   6540			wm->sagv.wm0 = wm->wm[0];
   6541			wm->sagv.trans_wm = wm->trans_wm;
   6542		}
   6543	}
   6544}
   6545
   6546void skl_wm_get_hw_state(struct drm_i915_private *dev_priv)
   6547{
   6548	struct intel_dbuf_state *dbuf_state =
   6549		to_intel_dbuf_state(dev_priv->dbuf.obj.state);
   6550	struct intel_crtc *crtc;
   6551
   6552	if (HAS_MBUS_JOINING(dev_priv))
   6553		dbuf_state->joined_mbus = intel_de_read(dev_priv, MBUS_CTL) & MBUS_JOIN;
   6554
   6555	for_each_intel_crtc(&dev_priv->drm, crtc) {
   6556		struct intel_crtc_state *crtc_state =
   6557			to_intel_crtc_state(crtc->base.state);
   6558		enum pipe pipe = crtc->pipe;
   6559		unsigned int mbus_offset;
   6560		enum plane_id plane_id;
   6561		u8 slices;
   6562
   6563		skl_pipe_wm_get_hw_state(crtc, &crtc_state->wm.skl.optimal);
   6564		crtc_state->wm.skl.raw = crtc_state->wm.skl.optimal;
   6565
   6566		memset(&dbuf_state->ddb[pipe], 0, sizeof(dbuf_state->ddb[pipe]));
   6567
   6568		for_each_plane_id_on_crtc(crtc, plane_id) {
   6569			struct skl_ddb_entry *ddb =
   6570				&crtc_state->wm.skl.plane_ddb[plane_id];
   6571			struct skl_ddb_entry *ddb_y =
   6572				&crtc_state->wm.skl.plane_ddb_y[plane_id];
   6573
   6574			skl_ddb_get_hw_plane_state(dev_priv, crtc->pipe,
   6575						   plane_id, ddb, ddb_y);
   6576
   6577			skl_ddb_entry_union(&dbuf_state->ddb[pipe], ddb);
   6578			skl_ddb_entry_union(&dbuf_state->ddb[pipe], ddb_y);
   6579		}
   6580
   6581		dbuf_state->weight[pipe] = intel_crtc_ddb_weight(crtc_state);
   6582
   6583		/*
   6584		 * Used for checking overlaps, so we need absolute
   6585		 * offsets instead of MBUS relative offsets.
   6586		 */
   6587		slices = skl_compute_dbuf_slices(crtc, dbuf_state->active_pipes,
   6588						 dbuf_state->joined_mbus);
   6589		mbus_offset = mbus_ddb_offset(dev_priv, slices);
   6590		crtc_state->wm.skl.ddb.start = mbus_offset + dbuf_state->ddb[pipe].start;
   6591		crtc_state->wm.skl.ddb.end = mbus_offset + dbuf_state->ddb[pipe].end;
   6592
   6593		/* The slices actually used by the planes on the pipe */
   6594		dbuf_state->slices[pipe] =
   6595			skl_ddb_dbuf_slice_mask(dev_priv, &crtc_state->wm.skl.ddb);
   6596
   6597		drm_dbg_kms(&dev_priv->drm,
   6598			    "[CRTC:%d:%s] dbuf slices 0x%x, ddb (%d - %d), active pipes 0x%x, mbus joined: %s\n",
   6599			    crtc->base.base.id, crtc->base.name,
   6600			    dbuf_state->slices[pipe], dbuf_state->ddb[pipe].start,
   6601			    dbuf_state->ddb[pipe].end, dbuf_state->active_pipes,
   6602			    str_yes_no(dbuf_state->joined_mbus));
   6603	}
   6604
   6605	dbuf_state->enabled_slices = dev_priv->dbuf.enabled_slices;
   6606}
   6607
   6608static bool skl_dbuf_is_misconfigured(struct drm_i915_private *i915)
   6609{
   6610	const struct intel_dbuf_state *dbuf_state =
   6611		to_intel_dbuf_state(i915->dbuf.obj.state);
   6612	struct skl_ddb_entry entries[I915_MAX_PIPES] = {};
   6613	struct intel_crtc *crtc;
   6614
   6615	for_each_intel_crtc(&i915->drm, crtc) {
   6616		const struct intel_crtc_state *crtc_state =
   6617			to_intel_crtc_state(crtc->base.state);
   6618
   6619		entries[crtc->pipe] = crtc_state->wm.skl.ddb;
   6620	}
   6621
   6622	for_each_intel_crtc(&i915->drm, crtc) {
   6623		const struct intel_crtc_state *crtc_state =
   6624			to_intel_crtc_state(crtc->base.state);
   6625		u8 slices;
   6626
   6627		slices = skl_compute_dbuf_slices(crtc, dbuf_state->active_pipes,
   6628						 dbuf_state->joined_mbus);
   6629		if (dbuf_state->slices[crtc->pipe] & ~slices)
   6630			return true;
   6631
   6632		if (skl_ddb_allocation_overlaps(&crtc_state->wm.skl.ddb, entries,
   6633						I915_MAX_PIPES, crtc->pipe))
   6634			return true;
   6635	}
   6636
   6637	return false;
   6638}
   6639
   6640void skl_wm_sanitize(struct drm_i915_private *i915)
   6641{
   6642	struct intel_crtc *crtc;
   6643
   6644	/*
   6645	 * On TGL/RKL (at least) the BIOS likes to assign the planes
   6646	 * to the wrong DBUF slices. This will cause an infinite loop
   6647	 * in skl_commit_modeset_enables() as it can't find a way to
   6648	 * transition between the old bogus DBUF layout to the new
   6649	 * proper DBUF layout without DBUF allocation overlaps between
   6650	 * the planes (which cannot be allowed or else the hardware
   6651	 * may hang). If we detect a bogus DBUF layout just turn off
   6652	 * all the planes so that skl_commit_modeset_enables() can
   6653	 * simply ignore them.
   6654	 */
   6655	if (!skl_dbuf_is_misconfigured(i915))
   6656		return;
   6657
   6658	drm_dbg_kms(&i915->drm, "BIOS has misprogrammed the DBUF, disabling all planes\n");
   6659
   6660	for_each_intel_crtc(&i915->drm, crtc) {
   6661		struct intel_plane *plane = to_intel_plane(crtc->base.primary);
   6662		const struct intel_plane_state *plane_state =
   6663			to_intel_plane_state(plane->base.state);
   6664		struct intel_crtc_state *crtc_state =
   6665			to_intel_crtc_state(crtc->base.state);
   6666
   6667		if (plane_state->uapi.visible)
   6668			intel_plane_disable_noatomic(crtc, plane);
   6669
   6670		drm_WARN_ON(&i915->drm, crtc_state->active_planes != 0);
   6671
   6672		memset(&crtc_state->wm.skl.ddb, 0, sizeof(crtc_state->wm.skl.ddb));
   6673	}
   6674}
   6675
   6676static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
   6677{
   6678	struct drm_device *dev = crtc->base.dev;
   6679	struct drm_i915_private *dev_priv = to_i915(dev);
   6680	struct ilk_wm_values *hw = &dev_priv->wm.hw;
   6681	struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
   6682	struct intel_pipe_wm *active = &crtc_state->wm.ilk.optimal;
   6683	enum pipe pipe = crtc->pipe;
   6684
   6685	hw->wm_pipe[pipe] = intel_uncore_read(&dev_priv->uncore, WM0_PIPE_ILK(pipe));
   6686
   6687	memset(active, 0, sizeof(*active));
   6688
   6689	active->pipe_enabled = crtc->active;
   6690
   6691	if (active->pipe_enabled) {
   6692		u32 tmp = hw->wm_pipe[pipe];
   6693
   6694		/*
   6695		 * For active pipes LP0 watermark is marked as
   6696		 * enabled, and LP1+ watermaks as disabled since
   6697		 * we can't really reverse compute them in case
   6698		 * multiple pipes are active.
   6699		 */
   6700		active->wm[0].enable = true;
   6701		active->wm[0].pri_val = REG_FIELD_GET(WM0_PIPE_PRIMARY_MASK, tmp);
   6702		active->wm[0].spr_val = REG_FIELD_GET(WM0_PIPE_SPRITE_MASK, tmp);
   6703		active->wm[0].cur_val = REG_FIELD_GET(WM0_PIPE_CURSOR_MASK, tmp);
   6704	} else {
   6705		int level, max_level = ilk_wm_max_level(dev_priv);
   6706
   6707		/*
   6708		 * For inactive pipes, all watermark levels
   6709		 * should be marked as enabled but zeroed,
   6710		 * which is what we'd compute them to.
   6711		 */
   6712		for (level = 0; level <= max_level; level++)
   6713			active->wm[level].enable = true;
   6714	}
   6715
   6716	crtc->wm.active.ilk = *active;
   6717}
   6718
   6719#define _FW_WM(value, plane) \
   6720	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
   6721#define _FW_WM_VLV(value, plane) \
   6722	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
   6723
   6724static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
   6725			       struct g4x_wm_values *wm)
   6726{
   6727	u32 tmp;
   6728
   6729	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW1);
   6730	wm->sr.plane = _FW_WM(tmp, SR);
   6731	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
   6732	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
   6733	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);
   6734
   6735	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW2);
   6736	wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
   6737	wm->sr.fbc = _FW_WM(tmp, FBC_SR);
   6738	wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
   6739	wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
   6740	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
   6741	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);
   6742
   6743	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW3);
   6744	wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
   6745	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
   6746	wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
   6747	wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
   6748}
   6749
   6750static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
   6751			       struct vlv_wm_values *wm)
   6752{
   6753	enum pipe pipe;
   6754	u32 tmp;
   6755
   6756	for_each_pipe(dev_priv, pipe) {
   6757		tmp = intel_uncore_read(&dev_priv->uncore, VLV_DDL(pipe));
   6758
   6759		wm->ddl[pipe].plane[PLANE_PRIMARY] =
   6760			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
   6761		wm->ddl[pipe].plane[PLANE_CURSOR] =
   6762			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
   6763		wm->ddl[pipe].plane[PLANE_SPRITE0] =
   6764			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
   6765		wm->ddl[pipe].plane[PLANE_SPRITE1] =
   6766			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
   6767	}
   6768
   6769	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW1);
   6770	wm->sr.plane = _FW_WM(tmp, SR);
   6771	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
   6772	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
   6773	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
   6774
   6775	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW2);
   6776	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
   6777	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
   6778	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
   6779
   6780	tmp = intel_uncore_read(&dev_priv->uncore, DSPFW3);
   6781	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
   6782
   6783	if (IS_CHERRYVIEW(dev_priv)) {
   6784		tmp = intel_uncore_read(&dev_priv->uncore, DSPFW7_CHV);
   6785		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
   6786		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
   6787
   6788		tmp = intel_uncore_read(&dev_priv->uncore, DSPFW8_CHV);
   6789		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
   6790		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
   6791
   6792		tmp = intel_uncore_read(&dev_priv->uncore, DSPFW9_CHV);
   6793		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
   6794		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
   6795
   6796		tmp = intel_uncore_read(&dev_priv->uncore, DSPHOWM);
   6797		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
   6798		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
   6799		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
   6800		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
   6801		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
   6802		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
   6803		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
   6804		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
   6805		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
   6806		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
   6807	} else {
   6808		tmp = intel_uncore_read(&dev_priv->uncore, DSPFW7);
   6809		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
   6810		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
   6811
   6812		tmp = intel_uncore_read(&dev_priv->uncore, DSPHOWM);
   6813		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
   6814		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
   6815		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
   6816		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
   6817		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
   6818		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
   6819		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
   6820	}
   6821}
   6822
   6823#undef _FW_WM
   6824#undef _FW_WM_VLV
   6825
   6826void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
   6827{
   6828	struct g4x_wm_values *wm = &dev_priv->wm.g4x;
   6829	struct intel_crtc *crtc;
   6830
   6831	g4x_read_wm_values(dev_priv, wm);
   6832
   6833	wm->cxsr = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN;
   6834
   6835	for_each_intel_crtc(&dev_priv->drm, crtc) {
   6836		struct intel_crtc_state *crtc_state =
   6837			to_intel_crtc_state(crtc->base.state);
   6838		struct g4x_wm_state *active = &crtc->wm.active.g4x;
   6839		struct g4x_pipe_wm *raw;
   6840		enum pipe pipe = crtc->pipe;
   6841		enum plane_id plane_id;
   6842		int level, max_level;
   6843
   6844		active->cxsr = wm->cxsr;
   6845		active->hpll_en = wm->hpll_en;
   6846		active->fbc_en = wm->fbc_en;
   6847
   6848		active->sr = wm->sr;
   6849		active->hpll = wm->hpll;
   6850
   6851		for_each_plane_id_on_crtc(crtc, plane_id) {
   6852			active->wm.plane[plane_id] =
   6853				wm->pipe[pipe].plane[plane_id];
   6854		}
   6855
   6856		if (wm->cxsr && wm->hpll_en)
   6857			max_level = G4X_WM_LEVEL_HPLL;
   6858		else if (wm->cxsr)
   6859			max_level = G4X_WM_LEVEL_SR;
   6860		else
   6861			max_level = G4X_WM_LEVEL_NORMAL;
   6862
   6863		level = G4X_WM_LEVEL_NORMAL;
   6864		raw = &crtc_state->wm.g4x.raw[level];
   6865		for_each_plane_id_on_crtc(crtc, plane_id)
   6866			raw->plane[plane_id] = active->wm.plane[plane_id];
   6867
   6868		level = G4X_WM_LEVEL_SR;
   6869		if (level > max_level)
   6870			goto out;
   6871
   6872		raw = &crtc_state->wm.g4x.raw[level];
   6873		raw->plane[PLANE_PRIMARY] = active->sr.plane;
   6874		raw->plane[PLANE_CURSOR] = active->sr.cursor;
   6875		raw->plane[PLANE_SPRITE0] = 0;
   6876		raw->fbc = active->sr.fbc;
   6877
   6878		level = G4X_WM_LEVEL_HPLL;
   6879		if (level > max_level)
   6880			goto out;
   6881
   6882		raw = &crtc_state->wm.g4x.raw[level];
   6883		raw->plane[PLANE_PRIMARY] = active->hpll.plane;
   6884		raw->plane[PLANE_CURSOR] = active->hpll.cursor;
   6885		raw->plane[PLANE_SPRITE0] = 0;
   6886		raw->fbc = active->hpll.fbc;
   6887
   6888		level++;
   6889	out:
   6890		for_each_plane_id_on_crtc(crtc, plane_id)
   6891			g4x_raw_plane_wm_set(crtc_state, level,
   6892					     plane_id, USHRT_MAX);
   6893		g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
   6894
   6895		crtc_state->wm.g4x.optimal = *active;
   6896		crtc_state->wm.g4x.intermediate = *active;
   6897
   6898		drm_dbg_kms(&dev_priv->drm,
   6899			    "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
   6900			    pipe_name(pipe),
   6901			    wm->pipe[pipe].plane[PLANE_PRIMARY],
   6902			    wm->pipe[pipe].plane[PLANE_CURSOR],
   6903			    wm->pipe[pipe].plane[PLANE_SPRITE0]);
   6904	}
   6905
   6906	drm_dbg_kms(&dev_priv->drm,
   6907		    "Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
   6908		    wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
   6909	drm_dbg_kms(&dev_priv->drm,
   6910		    "Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
   6911		    wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
   6912	drm_dbg_kms(&dev_priv->drm, "Initial SR=%s HPLL=%s FBC=%s\n",
   6913		    str_yes_no(wm->cxsr), str_yes_no(wm->hpll_en),
   6914		    str_yes_no(wm->fbc_en));
   6915}
   6916
   6917void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
   6918{
   6919	struct intel_plane *plane;
   6920	struct intel_crtc *crtc;
   6921
   6922	mutex_lock(&dev_priv->wm.wm_mutex);
   6923
   6924	for_each_intel_plane(&dev_priv->drm, plane) {
   6925		struct intel_crtc *crtc =
   6926			intel_crtc_for_pipe(dev_priv, plane->pipe);
   6927		struct intel_crtc_state *crtc_state =
   6928			to_intel_crtc_state(crtc->base.state);
   6929		struct intel_plane_state *plane_state =
   6930			to_intel_plane_state(plane->base.state);
   6931		struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
   6932		enum plane_id plane_id = plane->id;
   6933		int level;
   6934
   6935		if (plane_state->uapi.visible)
   6936			continue;
   6937
   6938		for (level = 0; level < 3; level++) {
   6939			struct g4x_pipe_wm *raw =
   6940				&crtc_state->wm.g4x.raw[level];
   6941
   6942			raw->plane[plane_id] = 0;
   6943			wm_state->wm.plane[plane_id] = 0;
   6944		}
   6945
   6946		if (plane_id == PLANE_PRIMARY) {
   6947			for (level = 0; level < 3; level++) {
   6948				struct g4x_pipe_wm *raw =
   6949					&crtc_state->wm.g4x.raw[level];
   6950				raw->fbc = 0;
   6951			}
   6952
   6953			wm_state->sr.fbc = 0;
   6954			wm_state->hpll.fbc = 0;
   6955			wm_state->fbc_en = false;
   6956		}
   6957	}
   6958
   6959	for_each_intel_crtc(&dev_priv->drm, crtc) {
   6960		struct intel_crtc_state *crtc_state =
   6961			to_intel_crtc_state(crtc->base.state);
   6962
   6963		crtc_state->wm.g4x.intermediate =
   6964			crtc_state->wm.g4x.optimal;
   6965		crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
   6966	}
   6967
   6968	g4x_program_watermarks(dev_priv);
   6969
   6970	mutex_unlock(&dev_priv->wm.wm_mutex);
   6971}
   6972
   6973void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
   6974{
   6975	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
   6976	struct intel_crtc *crtc;
   6977	u32 val;
   6978
   6979	vlv_read_wm_values(dev_priv, wm);
   6980
   6981	wm->cxsr = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
   6982	wm->level = VLV_WM_LEVEL_PM2;
   6983
   6984	if (IS_CHERRYVIEW(dev_priv)) {
   6985		vlv_punit_get(dev_priv);
   6986
   6987		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
   6988		if (val & DSP_MAXFIFO_PM5_ENABLE)
   6989			wm->level = VLV_WM_LEVEL_PM5;
   6990
   6991		/*
   6992		 * If DDR DVFS is disabled in the BIOS, Punit
   6993		 * will never ack the request. So if that happens
   6994		 * assume we don't have to enable/disable DDR DVFS
   6995		 * dynamically. To test that just set the REQ_ACK
   6996		 * bit to poke the Punit, but don't change the
   6997		 * HIGH/LOW bits so that we don't actually change
   6998		 * the current state.
   6999		 */
   7000		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
   7001		val |= FORCE_DDR_FREQ_REQ_ACK;
   7002		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
   7003
   7004		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
   7005			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
   7006			drm_dbg_kms(&dev_priv->drm,
   7007				    "Punit not acking DDR DVFS request, "
   7008				    "assuming DDR DVFS is disabled\n");
   7009			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
   7010		} else {
   7011			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
   7012			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
   7013				wm->level = VLV_WM_LEVEL_DDR_DVFS;
   7014		}
   7015
   7016		vlv_punit_put(dev_priv);
   7017	}
   7018
   7019	for_each_intel_crtc(&dev_priv->drm, crtc) {
   7020		struct intel_crtc_state *crtc_state =
   7021			to_intel_crtc_state(crtc->base.state);
   7022		struct vlv_wm_state *active = &crtc->wm.active.vlv;
   7023		const struct vlv_fifo_state *fifo_state =
   7024			&crtc_state->wm.vlv.fifo_state;
   7025		enum pipe pipe = crtc->pipe;
   7026		enum plane_id plane_id;
   7027		int level;
   7028
   7029		vlv_get_fifo_size(crtc_state);
   7030
   7031		active->num_levels = wm->level + 1;
   7032		active->cxsr = wm->cxsr;
   7033
   7034		for (level = 0; level < active->num_levels; level++) {
   7035			struct g4x_pipe_wm *raw =
   7036				&crtc_state->wm.vlv.raw[level];
   7037
   7038			active->sr[level].plane = wm->sr.plane;
   7039			active->sr[level].cursor = wm->sr.cursor;
   7040
   7041			for_each_plane_id_on_crtc(crtc, plane_id) {
   7042				active->wm[level].plane[plane_id] =
   7043					wm->pipe[pipe].plane[plane_id];
   7044
   7045				raw->plane[plane_id] =
   7046					vlv_invert_wm_value(active->wm[level].plane[plane_id],
   7047							    fifo_state->plane[plane_id]);
   7048			}
   7049		}
   7050
   7051		for_each_plane_id_on_crtc(crtc, plane_id)
   7052			vlv_raw_plane_wm_set(crtc_state, level,
   7053					     plane_id, USHRT_MAX);
   7054		vlv_invalidate_wms(crtc, active, level);
   7055
   7056		crtc_state->wm.vlv.optimal = *active;
   7057		crtc_state->wm.vlv.intermediate = *active;
   7058
   7059		drm_dbg_kms(&dev_priv->drm,
   7060			    "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
   7061			    pipe_name(pipe),
   7062			    wm->pipe[pipe].plane[PLANE_PRIMARY],
   7063			    wm->pipe[pipe].plane[PLANE_CURSOR],
   7064			    wm->pipe[pipe].plane[PLANE_SPRITE0],
   7065			    wm->pipe[pipe].plane[PLANE_SPRITE1]);
   7066	}
   7067
   7068	drm_dbg_kms(&dev_priv->drm,
   7069		    "Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
   7070		    wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
   7071}
   7072
   7073void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
   7074{
   7075	struct intel_plane *plane;
   7076	struct intel_crtc *crtc;
   7077
   7078	mutex_lock(&dev_priv->wm.wm_mutex);
   7079
   7080	for_each_intel_plane(&dev_priv->drm, plane) {
   7081		struct intel_crtc *crtc =
   7082			intel_crtc_for_pipe(dev_priv, plane->pipe);
   7083		struct intel_crtc_state *crtc_state =
   7084			to_intel_crtc_state(crtc->base.state);
   7085		struct intel_plane_state *plane_state =
   7086			to_intel_plane_state(plane->base.state);
   7087		struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
   7088		const struct vlv_fifo_state *fifo_state =
   7089			&crtc_state->wm.vlv.fifo_state;
   7090		enum plane_id plane_id = plane->id;
   7091		int level;
   7092
   7093		if (plane_state->uapi.visible)
   7094			continue;
   7095
   7096		for (level = 0; level < wm_state->num_levels; level++) {
   7097			struct g4x_pipe_wm *raw =
   7098				&crtc_state->wm.vlv.raw[level];
   7099
   7100			raw->plane[plane_id] = 0;
   7101
   7102			wm_state->wm[level].plane[plane_id] =
   7103				vlv_invert_wm_value(raw->plane[plane_id],
   7104						    fifo_state->plane[plane_id]);
   7105		}
   7106	}
   7107
   7108	for_each_intel_crtc(&dev_priv->drm, crtc) {
   7109		struct intel_crtc_state *crtc_state =
   7110			to_intel_crtc_state(crtc->base.state);
   7111
   7112		crtc_state->wm.vlv.intermediate =
   7113			crtc_state->wm.vlv.optimal;
   7114		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
   7115	}
   7116
   7117	vlv_program_watermarks(dev_priv);
   7118
   7119	mutex_unlock(&dev_priv->wm.wm_mutex);
   7120}
   7121
   7122/*
   7123 * FIXME should probably kill this and improve
   7124 * the real watermark readout/sanitation instead
   7125 */
   7126static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
   7127{
   7128	intel_uncore_write(&dev_priv->uncore, WM3_LP_ILK, intel_uncore_read(&dev_priv->uncore, WM3_LP_ILK) & ~WM_LP_ENABLE);
   7129	intel_uncore_write(&dev_priv->uncore, WM2_LP_ILK, intel_uncore_read(&dev_priv->uncore, WM2_LP_ILK) & ~WM_LP_ENABLE);
   7130	intel_uncore_write(&dev_priv->uncore, WM1_LP_ILK, intel_uncore_read(&dev_priv->uncore, WM1_LP_ILK) & ~WM_LP_ENABLE);
   7131
   7132	/*
   7133	 * Don't touch WM_LP_SPRITE_ENABLE here.
   7134	 * Doing so could cause underruns.
   7135	 */
   7136}
   7137
   7138void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
   7139{
   7140	struct ilk_wm_values *hw = &dev_priv->wm.hw;
   7141	struct intel_crtc *crtc;
   7142
   7143	ilk_init_lp_watermarks(dev_priv);
   7144
   7145	for_each_intel_crtc(&dev_priv->drm, crtc)
   7146		ilk_pipe_wm_get_hw_state(crtc);
   7147
   7148	hw->wm_lp[0] = intel_uncore_read(&dev_priv->uncore, WM1_LP_ILK);
   7149	hw->wm_lp[1] = intel_uncore_read(&dev_priv->uncore, WM2_LP_ILK);
   7150	hw->wm_lp[2] = intel_uncore_read(&dev_priv->uncore, WM3_LP_ILK);
   7151
   7152	hw->wm_lp_spr[0] = intel_uncore_read(&dev_priv->uncore, WM1S_LP_ILK);
   7153	if (DISPLAY_VER(dev_priv) >= 7) {
   7154		hw->wm_lp_spr[1] = intel_uncore_read(&dev_priv->uncore, WM2S_LP_IVB);
   7155		hw->wm_lp_spr[2] = intel_uncore_read(&dev_priv->uncore, WM3S_LP_IVB);
   7156	}
   7157
   7158	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
   7159		hw->partitioning = (intel_uncore_read(&dev_priv->uncore, WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
   7160			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
   7161	else if (IS_IVYBRIDGE(dev_priv))
   7162		hw->partitioning = (intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
   7163			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
   7164
   7165	hw->enable_fbc_wm =
   7166		!(intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) & DISP_FBC_WM_DIS);
   7167}
   7168
   7169void intel_enable_ipc(struct drm_i915_private *dev_priv)
   7170{
   7171	u32 val;
   7172
   7173	if (!HAS_IPC(dev_priv))
   7174		return;
   7175
   7176	val = intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL2);
   7177
   7178	if (dev_priv->ipc_enabled)
   7179		val |= DISP_IPC_ENABLE;
   7180	else
   7181		val &= ~DISP_IPC_ENABLE;
   7182
   7183	intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL2, val);
   7184}
   7185
   7186static bool intel_can_enable_ipc(struct drm_i915_private *dev_priv)
   7187{
   7188	/* Display WA #0477 WaDisableIPC: skl */
   7189	if (IS_SKYLAKE(dev_priv))
   7190		return false;
   7191
   7192	/* Display WA #1141: SKL:all KBL:all CFL */
   7193	if (IS_KABYLAKE(dev_priv) ||
   7194	    IS_COFFEELAKE(dev_priv) ||
   7195	    IS_COMETLAKE(dev_priv))
   7196		return dev_priv->dram_info.symmetric_memory;
   7197
   7198	return true;
   7199}
   7200
   7201void intel_init_ipc(struct drm_i915_private *dev_priv)
   7202{
   7203	if (!HAS_IPC(dev_priv))
   7204		return;
   7205
   7206	dev_priv->ipc_enabled = intel_can_enable_ipc(dev_priv);
   7207
   7208	intel_enable_ipc(dev_priv);
   7209}
   7210
   7211static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
   7212{
   7213	/*
   7214	 * On Ibex Peak and Cougar Point, we need to disable clock
   7215	 * gating for the panel power sequencer or it will fail to
   7216	 * start up when no ports are active.
   7217	 */
   7218	intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
   7219}
   7220
   7221static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
   7222{
   7223	enum pipe pipe;
   7224
   7225	for_each_pipe(dev_priv, pipe) {
   7226		intel_uncore_write(&dev_priv->uncore, DSPCNTR(pipe),
   7227			   intel_uncore_read(&dev_priv->uncore, DSPCNTR(pipe)) |
   7228			   DISP_TRICKLE_FEED_DISABLE);
   7229
   7230		intel_uncore_write(&dev_priv->uncore, DSPSURF(pipe), intel_uncore_read(&dev_priv->uncore, DSPSURF(pipe)));
   7231		intel_uncore_posting_read(&dev_priv->uncore, DSPSURF(pipe));
   7232	}
   7233}
   7234
   7235static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
   7236{
   7237	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
   7238
   7239	/*
   7240	 * Required for FBC
   7241	 * WaFbcDisableDpfcClockGating:ilk
   7242	 */
   7243	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
   7244		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
   7245		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
   7246
   7247	intel_uncore_write(&dev_priv->uncore, PCH_3DCGDIS0,
   7248		   MARIUNIT_CLOCK_GATE_DISABLE |
   7249		   SVSMUNIT_CLOCK_GATE_DISABLE);
   7250	intel_uncore_write(&dev_priv->uncore, PCH_3DCGDIS1,
   7251		   VFMUNIT_CLOCK_GATE_DISABLE);
   7252
   7253	/*
   7254	 * According to the spec the following bits should be set in
   7255	 * order to enable memory self-refresh
   7256	 * The bit 22/21 of 0x42004
   7257	 * The bit 5 of 0x42020
   7258	 * The bit 15 of 0x45000
   7259	 */
   7260	intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
   7261		   (intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
   7262		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
   7263	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
   7264	intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL,
   7265		   (intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
   7266		    DISP_FBC_WM_DIS));
   7267
   7268	/*
   7269	 * Based on the document from hardware guys the following bits
   7270	 * should be set unconditionally in order to enable FBC.
   7271	 * The bit 22 of 0x42000
   7272	 * The bit 22 of 0x42004
   7273	 * The bit 7,8,9 of 0x42020.
   7274	 */
   7275	if (IS_IRONLAKE_M(dev_priv)) {
   7276		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
   7277		intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1,
   7278			   intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1) |
   7279			   ILK_FBCQ_DIS);
   7280		intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
   7281			   intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
   7282			   ILK_DPARB_GATE);
   7283	}
   7284
   7285	intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D, dspclk_gate);
   7286
   7287	intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
   7288		   intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
   7289		   ILK_ELPIN_409_SELECT);
   7290
   7291	g4x_disable_trickle_feed(dev_priv);
   7292
   7293	ibx_init_clock_gating(dev_priv);
   7294}
   7295
   7296static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
   7297{
   7298	enum pipe pipe;
   7299	u32 val;
   7300
   7301	/*
   7302	 * On Ibex Peak and Cougar Point, we need to disable clock
   7303	 * gating for the panel power sequencer or it will fail to
   7304	 * start up when no ports are active.
   7305	 */
   7306	intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
   7307		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
   7308		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
   7309	intel_uncore_write(&dev_priv->uncore, SOUTH_CHICKEN2, intel_uncore_read(&dev_priv->uncore, SOUTH_CHICKEN2) |
   7310		   DPLS_EDP_PPS_FIX_DIS);
   7311	/* The below fixes the weird display corruption, a few pixels shifted
   7312	 * downward, on (only) LVDS of some HP laptops with IVY.
   7313	 */
   7314	for_each_pipe(dev_priv, pipe) {
   7315		val = intel_uncore_read(&dev_priv->uncore, TRANS_CHICKEN2(pipe));
   7316		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
   7317		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
   7318		if (dev_priv->vbt.fdi_rx_polarity_inverted)
   7319			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
   7320		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
   7321		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
   7322		intel_uncore_write(&dev_priv->uncore, TRANS_CHICKEN2(pipe), val);
   7323	}
   7324	/* WADP0ClockGatingDisable */
   7325	for_each_pipe(dev_priv, pipe) {
   7326		intel_uncore_write(&dev_priv->uncore, TRANS_CHICKEN1(pipe),
   7327			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
   7328	}
   7329}
   7330
   7331static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
   7332{
   7333	u32 tmp;
   7334
   7335	tmp = intel_uncore_read(&dev_priv->uncore, MCH_SSKPD);
   7336	if (REG_FIELD_GET(SSKPD_WM0_MASK_SNB, tmp) != 12)
   7337		drm_dbg_kms(&dev_priv->drm,
   7338			    "Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
   7339			    tmp);
   7340}
   7341
   7342static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
   7343{
   7344	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
   7345
   7346	intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D, dspclk_gate);
   7347
   7348	intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
   7349		   intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
   7350		   ILK_ELPIN_409_SELECT);
   7351
   7352	intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL1,
   7353		   intel_uncore_read(&dev_priv->uncore, GEN6_UCGCTL1) |
   7354		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
   7355		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
   7356
   7357	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
   7358	 * gating disable must be set.  Failure to set it results in
   7359	 * flickering pixels due to Z write ordering failures after
   7360	 * some amount of runtime in the Mesa "fire" demo, and Unigine
   7361	 * Sanctuary and Tropics, and apparently anything else with
   7362	 * alpha test or pixel discard.
   7363	 *
   7364	 * According to the spec, bit 11 (RCCUNIT) must also be set,
   7365	 * but we didn't debug actual testcases to find it out.
   7366	 *
   7367	 * WaDisableRCCUnitClockGating:snb
   7368	 * WaDisableRCPBUnitClockGating:snb
   7369	 */
   7370	intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL2,
   7371		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
   7372		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
   7373
   7374	/*
   7375	 * According to the spec the following bits should be
   7376	 * set in order to enable memory self-refresh and fbc:
   7377	 * The bit21 and bit22 of 0x42000
   7378	 * The bit21 and bit22 of 0x42004
   7379	 * The bit5 and bit7 of 0x42020
   7380	 * The bit14 of 0x70180
   7381	 * The bit14 of 0x71180
   7382	 *
   7383	 * WaFbcAsynchFlipDisableFbcQueue:snb
   7384	 */
   7385	intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1,
   7386		   intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1) |
   7387		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
   7388	intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
   7389		   intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
   7390		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
   7391	intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D,
   7392		   intel_uncore_read(&dev_priv->uncore, ILK_DSPCLK_GATE_D) |
   7393		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
   7394		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
   7395
   7396	g4x_disable_trickle_feed(dev_priv);
   7397
   7398	cpt_init_clock_gating(dev_priv);
   7399
   7400	gen6_check_mch_setup(dev_priv);
   7401}
   7402
   7403static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
   7404{
   7405	/*
   7406	 * TODO: this bit should only be enabled when really needed, then
   7407	 * disabled when not needed anymore in order to save power.
   7408	 */
   7409	if (HAS_PCH_LPT_LP(dev_priv))
   7410		intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D,
   7411			   intel_uncore_read(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D) |
   7412			   PCH_LP_PARTITION_LEVEL_DISABLE);
   7413
   7414	/* WADPOClockGatingDisable:hsw */
   7415	intel_uncore_write(&dev_priv->uncore, TRANS_CHICKEN1(PIPE_A),
   7416		   intel_uncore_read(&dev_priv->uncore, TRANS_CHICKEN1(PIPE_A)) |
   7417		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
   7418}
   7419
   7420static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
   7421{
   7422	if (HAS_PCH_LPT_LP(dev_priv)) {
   7423		u32 val = intel_uncore_read(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D);
   7424
   7425		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
   7426		intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, val);
   7427	}
   7428}
   7429
   7430static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
   7431				   int general_prio_credits,
   7432				   int high_prio_credits)
   7433{
   7434	u32 misccpctl;
   7435	u32 val;
   7436
   7437	/* WaTempDisableDOPClkGating:bdw */
   7438	misccpctl = intel_uncore_read(&dev_priv->uncore, GEN7_MISCCPCTL);
   7439	intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
   7440
   7441	val = intel_uncore_read(&dev_priv->uncore, GEN8_L3SQCREG1);
   7442	val &= ~L3_PRIO_CREDITS_MASK;
   7443	val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
   7444	val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
   7445	intel_uncore_write(&dev_priv->uncore, GEN8_L3SQCREG1, val);
   7446
   7447	/*
   7448	 * Wait at least 100 clocks before re-enabling clock gating.
   7449	 * See the definition of L3SQCREG1 in BSpec.
   7450	 */
   7451	intel_uncore_posting_read(&dev_priv->uncore, GEN8_L3SQCREG1);
   7452	udelay(1);
   7453	intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, misccpctl);
   7454}
   7455
   7456static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
   7457{
   7458	/* Wa_1409120013:icl,ehl */
   7459	intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN(INTEL_FBC_A),
   7460			   DPFC_CHICKEN_COMP_DUMMY_PIXEL);
   7461
   7462	/*Wa_14010594013:icl, ehl */
   7463	intel_uncore_rmw(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1,
   7464			 0, ICL_DELAY_PMRSP);
   7465}
   7466
   7467static void gen12lp_init_clock_gating(struct drm_i915_private *dev_priv)
   7468{
   7469	/* Wa_1409120013:tgl,rkl,adl-s,dg1,dg2 */
   7470	if (IS_TIGERLAKE(dev_priv) || IS_ROCKETLAKE(dev_priv) ||
   7471	    IS_ALDERLAKE_S(dev_priv) || IS_DG1(dev_priv) || IS_DG2(dev_priv))
   7472		intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN(INTEL_FBC_A),
   7473				   DPFC_CHICKEN_COMP_DUMMY_PIXEL);
   7474
   7475	/* Wa_1409825376:tgl (pre-prod)*/
   7476	if (IS_TGL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_C0))
   7477		intel_uncore_write(&dev_priv->uncore, GEN9_CLKGATE_DIS_3, intel_uncore_read(&dev_priv->uncore, GEN9_CLKGATE_DIS_3) |
   7478			   TGL_VRH_GATING_DIS);
   7479
   7480	/* Wa_14013723622:tgl,rkl,dg1,adl-s */
   7481	if (DISPLAY_VER(dev_priv) == 12)
   7482		intel_uncore_rmw(&dev_priv->uncore, CLKREQ_POLICY,
   7483				 CLKREQ_POLICY_MEM_UP_OVRD, 0);
   7484}
   7485
   7486static void adlp_init_clock_gating(struct drm_i915_private *dev_priv)
   7487{
   7488	gen12lp_init_clock_gating(dev_priv);
   7489
   7490	/* Wa_22011091694:adlp */
   7491	intel_de_rmw(dev_priv, GEN9_CLKGATE_DIS_5, 0, DPCE_GATING_DIS);
   7492
   7493	/* Bspec/49189 Initialize Sequence */
   7494	intel_de_rmw(dev_priv, GEN8_CHICKEN_DCPR_1, DDI_CLOCK_REG_ACCESS, 0);
   7495}
   7496
   7497static void dg1_init_clock_gating(struct drm_i915_private *dev_priv)
   7498{
   7499	gen12lp_init_clock_gating(dev_priv);
   7500
   7501	/* Wa_1409836686:dg1[a0] */
   7502	if (IS_DG1_GRAPHICS_STEP(dev_priv, STEP_A0, STEP_B0))
   7503		intel_uncore_write(&dev_priv->uncore, GEN9_CLKGATE_DIS_3, intel_uncore_read(&dev_priv->uncore, GEN9_CLKGATE_DIS_3) |
   7504			   DPT_GATING_DIS);
   7505}
   7506
   7507static void xehpsdv_init_clock_gating(struct drm_i915_private *dev_priv)
   7508{
   7509	/* Wa_22010146351:xehpsdv */
   7510	if (IS_XEHPSDV_GRAPHICS_STEP(dev_priv, STEP_A0, STEP_B0))
   7511		intel_uncore_rmw(&dev_priv->uncore, XEHP_CLOCK_GATE_DIS, 0, SGR_DIS);
   7512}
   7513
   7514static void dg2_init_clock_gating(struct drm_i915_private *i915)
   7515{
   7516	/* Wa_22010954014:dg2_g10 */
   7517	if (IS_DG2_G10(i915))
   7518		intel_uncore_rmw(&i915->uncore, XEHP_CLOCK_GATE_DIS, 0,
   7519				 SGSI_SIDECLK_DIS);
   7520
   7521	/*
   7522	 * Wa_14010733611:dg2_g10
   7523	 * Wa_22010146351:dg2_g10
   7524	 */
   7525	if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_A0, STEP_B0))
   7526		intel_uncore_rmw(&i915->uncore, XEHP_CLOCK_GATE_DIS, 0,
   7527				 SGR_DIS | SGGI_DIS);
   7528}
   7529
   7530static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
   7531{
   7532	if (!HAS_PCH_CNP(dev_priv))
   7533		return;
   7534
   7535	/* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
   7536	intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, intel_uncore_read(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D) |
   7537		   CNP_PWM_CGE_GATING_DISABLE);
   7538}
   7539
   7540static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
   7541{
   7542	cnp_init_clock_gating(dev_priv);
   7543	gen9_init_clock_gating(dev_priv);
   7544
   7545	/* WAC6entrylatency:cfl */
   7546	intel_uncore_write(&dev_priv->uncore, FBC_LLC_READ_CTRL, intel_uncore_read(&dev_priv->uncore, FBC_LLC_READ_CTRL) |
   7547		   FBC_LLC_FULLY_OPEN);
   7548
   7549	/*
   7550	 * WaFbcTurnOffFbcWatermark:cfl
   7551	 * Display WA #0562: cfl
   7552	 */
   7553	intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
   7554		   DISP_FBC_WM_DIS);
   7555
   7556	/*
   7557	 * WaFbcNukeOnHostModify:cfl
   7558	 * Display WA #0873: cfl
   7559	 */
   7560	intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN(INTEL_FBC_A),
   7561			   intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN(INTEL_FBC_A)) |
   7562			   DPFC_NUKE_ON_ANY_MODIFICATION);
   7563}
   7564
   7565static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
   7566{
   7567	gen9_init_clock_gating(dev_priv);
   7568
   7569	/* WAC6entrylatency:kbl */
   7570	intel_uncore_write(&dev_priv->uncore, FBC_LLC_READ_CTRL, intel_uncore_read(&dev_priv->uncore, FBC_LLC_READ_CTRL) |
   7571		   FBC_LLC_FULLY_OPEN);
   7572
   7573	/* WaDisableSDEUnitClockGating:kbl */
   7574	if (IS_KBL_GRAPHICS_STEP(dev_priv, 0, STEP_C0))
   7575		intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) |
   7576			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
   7577
   7578	/* WaDisableGamClockGating:kbl */
   7579	if (IS_KBL_GRAPHICS_STEP(dev_priv, 0, STEP_C0))
   7580		intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL1, intel_uncore_read(&dev_priv->uncore, GEN6_UCGCTL1) |
   7581			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
   7582
   7583	/*
   7584	 * WaFbcTurnOffFbcWatermark:kbl
   7585	 * Display WA #0562: kbl
   7586	 */
   7587	intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
   7588		   DISP_FBC_WM_DIS);
   7589
   7590	/*
   7591	 * WaFbcNukeOnHostModify:kbl
   7592	 * Display WA #0873: kbl
   7593	 */
   7594	intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN(INTEL_FBC_A),
   7595			   intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN(INTEL_FBC_A)) |
   7596			   DPFC_NUKE_ON_ANY_MODIFICATION);
   7597}
   7598
   7599static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
   7600{
   7601	gen9_init_clock_gating(dev_priv);
   7602
   7603	/* WaDisableDopClockGating:skl */
   7604	intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, intel_uncore_read(&dev_priv->uncore, GEN7_MISCCPCTL) &
   7605		   ~GEN7_DOP_CLOCK_GATE_ENABLE);
   7606
   7607	/* WAC6entrylatency:skl */
   7608	intel_uncore_write(&dev_priv->uncore, FBC_LLC_READ_CTRL, intel_uncore_read(&dev_priv->uncore, FBC_LLC_READ_CTRL) |
   7609		   FBC_LLC_FULLY_OPEN);
   7610
   7611	/*
   7612	 * WaFbcTurnOffFbcWatermark:skl
   7613	 * Display WA #0562: skl
   7614	 */
   7615	intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
   7616		   DISP_FBC_WM_DIS);
   7617
   7618	/*
   7619	 * WaFbcNukeOnHostModify:skl
   7620	 * Display WA #0873: skl
   7621	 */
   7622	intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN(INTEL_FBC_A),
   7623			   intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN(INTEL_FBC_A)) |
   7624			   DPFC_NUKE_ON_ANY_MODIFICATION);
   7625
   7626	/*
   7627	 * WaFbcHighMemBwCorruptionAvoidance:skl
   7628	 * Display WA #0883: skl
   7629	 */
   7630	intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN(INTEL_FBC_A),
   7631			   intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN(INTEL_FBC_A)) |
   7632			   DPFC_DISABLE_DUMMY0);
   7633}
   7634
   7635static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
   7636{
   7637	enum pipe pipe;
   7638
   7639	/* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
   7640	intel_uncore_write(&dev_priv->uncore, CHICKEN_PIPESL_1(PIPE_A),
   7641		   intel_uncore_read(&dev_priv->uncore, CHICKEN_PIPESL_1(PIPE_A)) |
   7642		   HSW_FBCQ_DIS);
   7643
   7644	/* WaSwitchSolVfFArbitrationPriority:bdw */
   7645	intel_uncore_write(&dev_priv->uncore, GAM_ECOCHK, intel_uncore_read(&dev_priv->uncore, GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
   7646
   7647	/* WaPsrDPAMaskVBlankInSRD:bdw */
   7648	intel_uncore_write(&dev_priv->uncore, CHICKEN_PAR1_1,
   7649		   intel_uncore_read(&dev_priv->uncore, CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
   7650
   7651	for_each_pipe(dev_priv, pipe) {
   7652		/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
   7653		intel_uncore_write(&dev_priv->uncore, CHICKEN_PIPESL_1(pipe),
   7654			   intel_uncore_read(&dev_priv->uncore, CHICKEN_PIPESL_1(pipe)) |
   7655			   BDW_DPRS_MASK_VBLANK_SRD);
   7656	}
   7657
   7658	/* WaVSRefCountFullforceMissDisable:bdw */
   7659	/* WaDSRefCountFullforceMissDisable:bdw */
   7660	intel_uncore_write(&dev_priv->uncore, GEN7_FF_THREAD_MODE,
   7661		   intel_uncore_read(&dev_priv->uncore, GEN7_FF_THREAD_MODE) &
   7662		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
   7663
   7664	intel_uncore_write(&dev_priv->uncore, RING_PSMI_CTL(RENDER_RING_BASE),
   7665		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
   7666
   7667	/* WaDisableSDEUnitClockGating:bdw */
   7668	intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) |
   7669		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
   7670
   7671	/* WaProgramL3SqcReg1Default:bdw */
   7672	gen8_set_l3sqc_credits(dev_priv, 30, 2);
   7673
   7674	/* WaKVMNotificationOnConfigChange:bdw */
   7675	intel_uncore_write(&dev_priv->uncore, CHICKEN_PAR2_1, intel_uncore_read(&dev_priv->uncore, CHICKEN_PAR2_1)
   7676		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
   7677
   7678	lpt_init_clock_gating(dev_priv);
   7679
   7680	/* WaDisableDopClockGating:bdw
   7681	 *
   7682	 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
   7683	 * clock gating.
   7684	 */
   7685	intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL1,
   7686		   intel_uncore_read(&dev_priv->uncore, GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
   7687}
   7688
   7689static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
   7690{
   7691	/* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
   7692	intel_uncore_write(&dev_priv->uncore, CHICKEN_PIPESL_1(PIPE_A),
   7693		   intel_uncore_read(&dev_priv->uncore, CHICKEN_PIPESL_1(PIPE_A)) |
   7694		   HSW_FBCQ_DIS);
   7695
   7696	/* This is required by WaCatErrorRejectionIssue:hsw */
   7697	intel_uncore_write(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
   7698		   intel_uncore_read(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
   7699		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
   7700
   7701	/* WaSwitchSolVfFArbitrationPriority:hsw */
   7702	intel_uncore_write(&dev_priv->uncore, GAM_ECOCHK, intel_uncore_read(&dev_priv->uncore, GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
   7703
   7704	lpt_init_clock_gating(dev_priv);
   7705}
   7706
   7707static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
   7708{
   7709	u32 snpcr;
   7710
   7711	intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
   7712
   7713	/* WaFbcAsynchFlipDisableFbcQueue:ivb */
   7714	intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1,
   7715		   intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1) |
   7716		   ILK_FBCQ_DIS);
   7717
   7718	/* WaDisableBackToBackFlipFix:ivb */
   7719	intel_uncore_write(&dev_priv->uncore, IVB_CHICKEN3,
   7720		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
   7721		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
   7722
   7723	if (IS_IVB_GT1(dev_priv))
   7724		intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2,
   7725			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
   7726	else {
   7727		/* must write both registers */
   7728		intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2,
   7729			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
   7730		intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2_GT2,
   7731			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
   7732	}
   7733
   7734	/*
   7735	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
   7736	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
   7737	 */
   7738	intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL2,
   7739		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
   7740
   7741	/* This is required by WaCatErrorRejectionIssue:ivb */
   7742	intel_uncore_write(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
   7743			intel_uncore_read(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
   7744			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
   7745
   7746	g4x_disable_trickle_feed(dev_priv);
   7747
   7748	snpcr = intel_uncore_read(&dev_priv->uncore, GEN6_MBCUNIT_SNPCR);
   7749	snpcr &= ~GEN6_MBC_SNPCR_MASK;
   7750	snpcr |= GEN6_MBC_SNPCR_MED;
   7751	intel_uncore_write(&dev_priv->uncore, GEN6_MBCUNIT_SNPCR, snpcr);
   7752
   7753	if (!HAS_PCH_NOP(dev_priv))
   7754		cpt_init_clock_gating(dev_priv);
   7755
   7756	gen6_check_mch_setup(dev_priv);
   7757}
   7758
   7759static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
   7760{
   7761	/* WaDisableBackToBackFlipFix:vlv */
   7762	intel_uncore_write(&dev_priv->uncore, IVB_CHICKEN3,
   7763		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
   7764		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
   7765
   7766	/* WaDisableDopClockGating:vlv */
   7767	intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2,
   7768		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
   7769
   7770	/* This is required by WaCatErrorRejectionIssue:vlv */
   7771	intel_uncore_write(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
   7772		   intel_uncore_read(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
   7773		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
   7774
   7775	/*
   7776	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
   7777	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
   7778	 */
   7779	intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL2,
   7780		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
   7781
   7782	/* WaDisableL3Bank2xClockGate:vlv
   7783	 * Disabling L3 clock gating- MMIO 940c[25] = 1
   7784	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
   7785	intel_uncore_write(&dev_priv->uncore, GEN7_UCGCTL4,
   7786		   intel_uncore_read(&dev_priv->uncore, GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
   7787
   7788	/*
   7789	 * WaDisableVLVClockGating_VBIIssue:vlv
   7790	 * Disable clock gating on th GCFG unit to prevent a delay
   7791	 * in the reporting of vblank events.
   7792	 */
   7793	intel_uncore_write(&dev_priv->uncore, VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
   7794}
   7795
   7796static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
   7797{
   7798	/* WaVSRefCountFullforceMissDisable:chv */
   7799	/* WaDSRefCountFullforceMissDisable:chv */
   7800	intel_uncore_write(&dev_priv->uncore, GEN7_FF_THREAD_MODE,
   7801		   intel_uncore_read(&dev_priv->uncore, GEN7_FF_THREAD_MODE) &
   7802		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
   7803
   7804	/* WaDisableSemaphoreAndSyncFlipWait:chv */
   7805	intel_uncore_write(&dev_priv->uncore, RING_PSMI_CTL(RENDER_RING_BASE),
   7806		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
   7807
   7808	/* WaDisableCSUnitClockGating:chv */
   7809	intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL1, intel_uncore_read(&dev_priv->uncore, GEN6_UCGCTL1) |
   7810		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
   7811
   7812	/* WaDisableSDEUnitClockGating:chv */
   7813	intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) |
   7814		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
   7815
   7816	/*
   7817	 * WaProgramL3SqcReg1Default:chv
   7818	 * See gfxspecs/Related Documents/Performance Guide/
   7819	 * LSQC Setting Recommendations.
   7820	 */
   7821	gen8_set_l3sqc_credits(dev_priv, 38, 2);
   7822}
   7823
   7824static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
   7825{
   7826	u32 dspclk_gate;
   7827
   7828	intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D1, 0);
   7829	intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
   7830		   GS_UNIT_CLOCK_GATE_DISABLE |
   7831		   CL_UNIT_CLOCK_GATE_DISABLE);
   7832	intel_uncore_write(&dev_priv->uncore, RAMCLK_GATE_D, 0);
   7833	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
   7834		OVRUNIT_CLOCK_GATE_DISABLE |
   7835		OVCUNIT_CLOCK_GATE_DISABLE;
   7836	if (IS_GM45(dev_priv))
   7837		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
   7838	intel_uncore_write(&dev_priv->uncore, DSPCLK_GATE_D, dspclk_gate);
   7839
   7840	g4x_disable_trickle_feed(dev_priv);
   7841}
   7842
   7843static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
   7844{
   7845	struct intel_uncore *uncore = &dev_priv->uncore;
   7846
   7847	intel_uncore_write(uncore, RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
   7848	intel_uncore_write(uncore, RENCLK_GATE_D2, 0);
   7849	intel_uncore_write(uncore, DSPCLK_GATE_D, 0);
   7850	intel_uncore_write(uncore, RAMCLK_GATE_D, 0);
   7851	intel_uncore_write16(uncore, DEUC, 0);
   7852	intel_uncore_write(uncore,
   7853			   MI_ARB_STATE,
   7854			   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
   7855}
   7856
   7857static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
   7858{
   7859	intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
   7860		   I965_RCC_CLOCK_GATE_DISABLE |
   7861		   I965_RCPB_CLOCK_GATE_DISABLE |
   7862		   I965_ISC_CLOCK_GATE_DISABLE |
   7863		   I965_FBC_CLOCK_GATE_DISABLE);
   7864	intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D2, 0);
   7865	intel_uncore_write(&dev_priv->uncore, MI_ARB_STATE,
   7866		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
   7867}
   7868
   7869static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
   7870{
   7871	u32 dstate = intel_uncore_read(&dev_priv->uncore, D_STATE);
   7872
   7873	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
   7874		DSTATE_DOT_CLOCK_GATING;
   7875	intel_uncore_write(&dev_priv->uncore, D_STATE, dstate);
   7876
   7877	if (IS_PINEVIEW(dev_priv))
   7878		intel_uncore_write(&dev_priv->uncore, ECOSKPD(RENDER_RING_BASE),
   7879				   _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
   7880
   7881	/* IIR "flip pending" means done if this bit is set */
   7882	intel_uncore_write(&dev_priv->uncore, ECOSKPD(RENDER_RING_BASE),
   7883			   _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
   7884
   7885	/* interrupts should cause a wake up from C3 */
   7886	intel_uncore_write(&dev_priv->uncore, INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
   7887
   7888	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
   7889	intel_uncore_write(&dev_priv->uncore, MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
   7890
   7891	intel_uncore_write(&dev_priv->uncore, MI_ARB_STATE,
   7892		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
   7893}
   7894
   7895static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
   7896{
   7897	intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
   7898
   7899	/* interrupts should cause a wake up from C3 */
   7900	intel_uncore_write(&dev_priv->uncore, MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
   7901		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
   7902
   7903	intel_uncore_write(&dev_priv->uncore, MEM_MODE,
   7904		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
   7905
   7906	/*
   7907	 * Have FBC ignore 3D activity since we use software
   7908	 * render tracking, and otherwise a pure 3D workload
   7909	 * (even if it just renders a single frame and then does
   7910	 * abosultely nothing) would not allow FBC to recompress
   7911	 * until a 2D blit occurs.
   7912	 */
   7913	intel_uncore_write(&dev_priv->uncore, SCPD0,
   7914		   _MASKED_BIT_ENABLE(SCPD_FBC_IGNORE_3D));
   7915}
   7916
   7917static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
   7918{
   7919	intel_uncore_write(&dev_priv->uncore, MEM_MODE,
   7920		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
   7921		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
   7922}
   7923
   7924void intel_init_clock_gating(struct drm_i915_private *dev_priv)
   7925{
   7926	dev_priv->clock_gating_funcs->init_clock_gating(dev_priv);
   7927}
   7928
   7929void intel_suspend_hw(struct drm_i915_private *dev_priv)
   7930{
   7931	if (HAS_PCH_LPT(dev_priv))
   7932		lpt_suspend_hw(dev_priv);
   7933}
   7934
   7935static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
   7936{
   7937	drm_dbg_kms(&dev_priv->drm,
   7938		    "No clock gating settings or workarounds applied.\n");
   7939}
   7940
   7941#define CG_FUNCS(platform)						\
   7942static const struct drm_i915_clock_gating_funcs platform##_clock_gating_funcs = { \
   7943	.init_clock_gating = platform##_init_clock_gating,		\
   7944}
   7945
   7946CG_FUNCS(dg2);
   7947CG_FUNCS(xehpsdv);
   7948CG_FUNCS(adlp);
   7949CG_FUNCS(dg1);
   7950CG_FUNCS(gen12lp);
   7951CG_FUNCS(icl);
   7952CG_FUNCS(cfl);
   7953CG_FUNCS(skl);
   7954CG_FUNCS(kbl);
   7955CG_FUNCS(bxt);
   7956CG_FUNCS(glk);
   7957CG_FUNCS(bdw);
   7958CG_FUNCS(chv);
   7959CG_FUNCS(hsw);
   7960CG_FUNCS(ivb);
   7961CG_FUNCS(vlv);
   7962CG_FUNCS(gen6);
   7963CG_FUNCS(ilk);
   7964CG_FUNCS(g4x);
   7965CG_FUNCS(i965gm);
   7966CG_FUNCS(i965g);
   7967CG_FUNCS(gen3);
   7968CG_FUNCS(i85x);
   7969CG_FUNCS(i830);
   7970CG_FUNCS(nop);
   7971#undef CG_FUNCS
   7972
   7973/**
   7974 * intel_init_clock_gating_hooks - setup the clock gating hooks
   7975 * @dev_priv: device private
   7976 *
   7977 * Setup the hooks that configure which clocks of a given platform can be
   7978 * gated and also apply various GT and display specific workarounds for these
   7979 * platforms. Note that some GT specific workarounds are applied separately
   7980 * when GPU contexts or batchbuffers start their execution.
   7981 */
   7982void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
   7983{
   7984	if (IS_DG2(dev_priv))
   7985		dev_priv->clock_gating_funcs = &dg2_clock_gating_funcs;
   7986	else if (IS_XEHPSDV(dev_priv))
   7987		dev_priv->clock_gating_funcs = &xehpsdv_clock_gating_funcs;
   7988	else if (IS_ALDERLAKE_P(dev_priv))
   7989		dev_priv->clock_gating_funcs = &adlp_clock_gating_funcs;
   7990	else if (IS_DG1(dev_priv))
   7991		dev_priv->clock_gating_funcs = &dg1_clock_gating_funcs;
   7992	else if (GRAPHICS_VER(dev_priv) == 12)
   7993		dev_priv->clock_gating_funcs = &gen12lp_clock_gating_funcs;
   7994	else if (GRAPHICS_VER(dev_priv) == 11)
   7995		dev_priv->clock_gating_funcs = &icl_clock_gating_funcs;
   7996	else if (IS_COFFEELAKE(dev_priv) || IS_COMETLAKE(dev_priv))
   7997		dev_priv->clock_gating_funcs = &cfl_clock_gating_funcs;
   7998	else if (IS_SKYLAKE(dev_priv))
   7999		dev_priv->clock_gating_funcs = &skl_clock_gating_funcs;
   8000	else if (IS_KABYLAKE(dev_priv))
   8001		dev_priv->clock_gating_funcs = &kbl_clock_gating_funcs;
   8002	else if (IS_BROXTON(dev_priv))
   8003		dev_priv->clock_gating_funcs = &bxt_clock_gating_funcs;
   8004	else if (IS_GEMINILAKE(dev_priv))
   8005		dev_priv->clock_gating_funcs = &glk_clock_gating_funcs;
   8006	else if (IS_BROADWELL(dev_priv))
   8007		dev_priv->clock_gating_funcs = &bdw_clock_gating_funcs;
   8008	else if (IS_CHERRYVIEW(dev_priv))
   8009		dev_priv->clock_gating_funcs = &chv_clock_gating_funcs;
   8010	else if (IS_HASWELL(dev_priv))
   8011		dev_priv->clock_gating_funcs = &hsw_clock_gating_funcs;
   8012	else if (IS_IVYBRIDGE(dev_priv))
   8013		dev_priv->clock_gating_funcs = &ivb_clock_gating_funcs;
   8014	else if (IS_VALLEYVIEW(dev_priv))
   8015		dev_priv->clock_gating_funcs = &vlv_clock_gating_funcs;
   8016	else if (GRAPHICS_VER(dev_priv) == 6)
   8017		dev_priv->clock_gating_funcs = &gen6_clock_gating_funcs;
   8018	else if (GRAPHICS_VER(dev_priv) == 5)
   8019		dev_priv->clock_gating_funcs = &ilk_clock_gating_funcs;
   8020	else if (IS_G4X(dev_priv))
   8021		dev_priv->clock_gating_funcs = &g4x_clock_gating_funcs;
   8022	else if (IS_I965GM(dev_priv))
   8023		dev_priv->clock_gating_funcs = &i965gm_clock_gating_funcs;
   8024	else if (IS_I965G(dev_priv))
   8025		dev_priv->clock_gating_funcs = &i965g_clock_gating_funcs;
   8026	else if (GRAPHICS_VER(dev_priv) == 3)
   8027		dev_priv->clock_gating_funcs = &gen3_clock_gating_funcs;
   8028	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
   8029		dev_priv->clock_gating_funcs = &i85x_clock_gating_funcs;
   8030	else if (GRAPHICS_VER(dev_priv) == 2)
   8031		dev_priv->clock_gating_funcs = &i830_clock_gating_funcs;
   8032	else {
   8033		MISSING_CASE(INTEL_DEVID(dev_priv));
   8034		dev_priv->clock_gating_funcs = &nop_clock_gating_funcs;
   8035	}
   8036}
   8037
   8038static const struct drm_i915_wm_disp_funcs skl_wm_funcs = {
   8039	.compute_global_watermarks = skl_compute_wm,
   8040};
   8041
   8042static const struct drm_i915_wm_disp_funcs ilk_wm_funcs = {
   8043	.compute_pipe_wm = ilk_compute_pipe_wm,
   8044	.compute_intermediate_wm = ilk_compute_intermediate_wm,
   8045	.initial_watermarks = ilk_initial_watermarks,
   8046	.optimize_watermarks = ilk_optimize_watermarks,
   8047};
   8048
   8049static const struct drm_i915_wm_disp_funcs vlv_wm_funcs = {
   8050	.compute_pipe_wm = vlv_compute_pipe_wm,
   8051	.compute_intermediate_wm = vlv_compute_intermediate_wm,
   8052	.initial_watermarks = vlv_initial_watermarks,
   8053	.optimize_watermarks = vlv_optimize_watermarks,
   8054	.atomic_update_watermarks = vlv_atomic_update_fifo,
   8055};
   8056
   8057static const struct drm_i915_wm_disp_funcs g4x_wm_funcs = {
   8058	.compute_pipe_wm = g4x_compute_pipe_wm,
   8059	.compute_intermediate_wm = g4x_compute_intermediate_wm,
   8060	.initial_watermarks = g4x_initial_watermarks,
   8061	.optimize_watermarks = g4x_optimize_watermarks,
   8062};
   8063
   8064static const struct drm_i915_wm_disp_funcs pnv_wm_funcs = {
   8065	.update_wm = pnv_update_wm,
   8066};
   8067
   8068static const struct drm_i915_wm_disp_funcs i965_wm_funcs = {
   8069	.update_wm = i965_update_wm,
   8070};
   8071
   8072static const struct drm_i915_wm_disp_funcs i9xx_wm_funcs = {
   8073	.update_wm = i9xx_update_wm,
   8074};
   8075
   8076static const struct drm_i915_wm_disp_funcs i845_wm_funcs = {
   8077	.update_wm = i845_update_wm,
   8078};
   8079
   8080static const struct drm_i915_wm_disp_funcs nop_funcs = {
   8081};
   8082
   8083/* Set up chip specific power management-related functions */
   8084void intel_init_pm(struct drm_i915_private *dev_priv)
   8085{
   8086	/* For cxsr */
   8087	if (IS_PINEVIEW(dev_priv))
   8088		pnv_get_mem_freq(dev_priv);
   8089	else if (GRAPHICS_VER(dev_priv) == 5)
   8090		ilk_get_mem_freq(dev_priv);
   8091
   8092	intel_sagv_init(dev_priv);
   8093
   8094	/* For FIFO watermark updates */
   8095	if (DISPLAY_VER(dev_priv) >= 9) {
   8096		skl_setup_wm_latency(dev_priv);
   8097		dev_priv->wm_disp = &skl_wm_funcs;
   8098	} else if (HAS_PCH_SPLIT(dev_priv)) {
   8099		ilk_setup_wm_latency(dev_priv);
   8100
   8101		if ((DISPLAY_VER(dev_priv) == 5 && dev_priv->wm.pri_latency[1] &&
   8102		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
   8103		    (DISPLAY_VER(dev_priv) != 5 && dev_priv->wm.pri_latency[0] &&
   8104		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
   8105			dev_priv->wm_disp = &ilk_wm_funcs;
   8106		} else {
   8107			drm_dbg_kms(&dev_priv->drm,
   8108				    "Failed to read display plane latency. "
   8109				    "Disable CxSR\n");
   8110			dev_priv->wm_disp = &nop_funcs;
   8111		}
   8112	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
   8113		vlv_setup_wm_latency(dev_priv);
   8114		dev_priv->wm_disp = &vlv_wm_funcs;
   8115	} else if (IS_G4X(dev_priv)) {
   8116		g4x_setup_wm_latency(dev_priv);
   8117		dev_priv->wm_disp = &g4x_wm_funcs;
   8118	} else if (IS_PINEVIEW(dev_priv)) {
   8119		if (!intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
   8120					    dev_priv->is_ddr3,
   8121					    dev_priv->fsb_freq,
   8122					    dev_priv->mem_freq)) {
   8123			drm_info(&dev_priv->drm,
   8124				 "failed to find known CxSR latency "
   8125				 "(found ddr%s fsb freq %d, mem freq %d), "
   8126				 "disabling CxSR\n",
   8127				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
   8128				 dev_priv->fsb_freq, dev_priv->mem_freq);
   8129			/* Disable CxSR and never update its watermark again */
   8130			intel_set_memory_cxsr(dev_priv, false);
   8131			dev_priv->wm_disp = &nop_funcs;
   8132		} else
   8133			dev_priv->wm_disp = &pnv_wm_funcs;
   8134	} else if (DISPLAY_VER(dev_priv) == 4) {
   8135		dev_priv->wm_disp = &i965_wm_funcs;
   8136	} else if (DISPLAY_VER(dev_priv) == 3) {
   8137		dev_priv->wm_disp = &i9xx_wm_funcs;
   8138	} else if (DISPLAY_VER(dev_priv) == 2) {
   8139		if (INTEL_NUM_PIPES(dev_priv) == 1)
   8140			dev_priv->wm_disp = &i845_wm_funcs;
   8141		else
   8142			dev_priv->wm_disp = &i9xx_wm_funcs;
   8143	} else {
   8144		drm_err(&dev_priv->drm,
   8145			"unexpected fall-through in %s\n", __func__);
   8146		dev_priv->wm_disp = &nop_funcs;
   8147	}
   8148}
   8149
   8150void intel_pm_setup(struct drm_i915_private *dev_priv)
   8151{
   8152	dev_priv->runtime_pm.suspended = false;
   8153	atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
   8154}
   8155
   8156static struct intel_global_state *intel_dbuf_duplicate_state(struct intel_global_obj *obj)
   8157{
   8158	struct intel_dbuf_state *dbuf_state;
   8159
   8160	dbuf_state = kmemdup(obj->state, sizeof(*dbuf_state), GFP_KERNEL);
   8161	if (!dbuf_state)
   8162		return NULL;
   8163
   8164	return &dbuf_state->base;
   8165}
   8166
   8167static void intel_dbuf_destroy_state(struct intel_global_obj *obj,
   8168				     struct intel_global_state *state)
   8169{
   8170	kfree(state);
   8171}
   8172
   8173static const struct intel_global_state_funcs intel_dbuf_funcs = {
   8174	.atomic_duplicate_state = intel_dbuf_duplicate_state,
   8175	.atomic_destroy_state = intel_dbuf_destroy_state,
   8176};
   8177
   8178struct intel_dbuf_state *
   8179intel_atomic_get_dbuf_state(struct intel_atomic_state *state)
   8180{
   8181	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
   8182	struct intel_global_state *dbuf_state;
   8183
   8184	dbuf_state = intel_atomic_get_global_obj_state(state, &dev_priv->dbuf.obj);
   8185	if (IS_ERR(dbuf_state))
   8186		return ERR_CAST(dbuf_state);
   8187
   8188	return to_intel_dbuf_state(dbuf_state);
   8189}
   8190
   8191int intel_dbuf_init(struct drm_i915_private *dev_priv)
   8192{
   8193	struct intel_dbuf_state *dbuf_state;
   8194
   8195	dbuf_state = kzalloc(sizeof(*dbuf_state), GFP_KERNEL);
   8196	if (!dbuf_state)
   8197		return -ENOMEM;
   8198
   8199	intel_atomic_global_obj_init(dev_priv, &dev_priv->dbuf.obj,
   8200				     &dbuf_state->base, &intel_dbuf_funcs);
   8201
   8202	return 0;
   8203}
   8204
   8205/*
   8206 * Configure MBUS_CTL and all DBUF_CTL_S of each slice to join_mbus state before
   8207 * update the request state of all DBUS slices.
   8208 */
   8209static void update_mbus_pre_enable(struct intel_atomic_state *state)
   8210{
   8211	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
   8212	u32 mbus_ctl, dbuf_min_tracker_val;
   8213	enum dbuf_slice slice;
   8214	const struct intel_dbuf_state *dbuf_state =
   8215		intel_atomic_get_new_dbuf_state(state);
   8216
   8217	if (!HAS_MBUS_JOINING(dev_priv))
   8218		return;
   8219
   8220	/*
   8221	 * TODO: Implement vblank synchronized MBUS joining changes.
   8222	 * Must be properly coordinated with dbuf reprogramming.
   8223	 */
   8224	if (dbuf_state->joined_mbus) {
   8225		mbus_ctl = MBUS_HASHING_MODE_1x4 | MBUS_JOIN |
   8226			MBUS_JOIN_PIPE_SELECT_NONE;
   8227		dbuf_min_tracker_val = DBUF_MIN_TRACKER_STATE_SERVICE(3);
   8228	} else {
   8229		mbus_ctl = MBUS_HASHING_MODE_2x2 |
   8230			MBUS_JOIN_PIPE_SELECT_NONE;
   8231		dbuf_min_tracker_val = DBUF_MIN_TRACKER_STATE_SERVICE(1);
   8232	}
   8233
   8234	intel_de_rmw(dev_priv, MBUS_CTL,
   8235		     MBUS_HASHING_MODE_MASK | MBUS_JOIN |
   8236		     MBUS_JOIN_PIPE_SELECT_MASK, mbus_ctl);
   8237
   8238	for_each_dbuf_slice(dev_priv, slice)
   8239		intel_de_rmw(dev_priv, DBUF_CTL_S(slice),
   8240			     DBUF_MIN_TRACKER_STATE_SERVICE_MASK,
   8241			     dbuf_min_tracker_val);
   8242}
   8243
   8244void intel_dbuf_pre_plane_update(struct intel_atomic_state *state)
   8245{
   8246	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
   8247	const struct intel_dbuf_state *new_dbuf_state =
   8248		intel_atomic_get_new_dbuf_state(state);
   8249	const struct intel_dbuf_state *old_dbuf_state =
   8250		intel_atomic_get_old_dbuf_state(state);
   8251
   8252	if (!new_dbuf_state ||
   8253	    ((new_dbuf_state->enabled_slices == old_dbuf_state->enabled_slices)
   8254	    && (new_dbuf_state->joined_mbus == old_dbuf_state->joined_mbus)))
   8255		return;
   8256
   8257	WARN_ON(!new_dbuf_state->base.changed);
   8258
   8259	update_mbus_pre_enable(state);
   8260	gen9_dbuf_slices_update(dev_priv,
   8261				old_dbuf_state->enabled_slices |
   8262				new_dbuf_state->enabled_slices);
   8263}
   8264
   8265void intel_dbuf_post_plane_update(struct intel_atomic_state *state)
   8266{
   8267	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
   8268	const struct intel_dbuf_state *new_dbuf_state =
   8269		intel_atomic_get_new_dbuf_state(state);
   8270	const struct intel_dbuf_state *old_dbuf_state =
   8271		intel_atomic_get_old_dbuf_state(state);
   8272
   8273	if (!new_dbuf_state ||
   8274	    ((new_dbuf_state->enabled_slices == old_dbuf_state->enabled_slices)
   8275	    && (new_dbuf_state->joined_mbus == old_dbuf_state->joined_mbus)))
   8276		return;
   8277
   8278	WARN_ON(!new_dbuf_state->base.changed);
   8279
   8280	gen9_dbuf_slices_update(dev_priv,
   8281				new_dbuf_state->enabled_slices);
   8282}
   8283
   8284void intel_mbus_dbox_update(struct intel_atomic_state *state)
   8285{
   8286	struct drm_i915_private *i915 = to_i915(state->base.dev);
   8287	const struct intel_dbuf_state *new_dbuf_state, *old_dbuf_state;
   8288	const struct intel_crtc_state *new_crtc_state;
   8289	const struct intel_crtc *crtc;
   8290	u32 val = 0;
   8291	int i;
   8292
   8293	if (DISPLAY_VER(i915) < 11)
   8294		return;
   8295
   8296	new_dbuf_state = intel_atomic_get_new_dbuf_state(state);
   8297	old_dbuf_state = intel_atomic_get_old_dbuf_state(state);
   8298	if (!new_dbuf_state ||
   8299	    (new_dbuf_state->joined_mbus == old_dbuf_state->joined_mbus &&
   8300	     new_dbuf_state->active_pipes == old_dbuf_state->active_pipes))
   8301		return;
   8302
   8303	if (DISPLAY_VER(i915) >= 12) {
   8304		val |= MBUS_DBOX_B2B_TRANSACTIONS_MAX(16);
   8305		val |= MBUS_DBOX_B2B_TRANSACTIONS_DELAY(1);
   8306		val |= MBUS_DBOX_REGULATE_B2B_TRANSACTIONS_EN;
   8307	}
   8308
   8309	/* Wa_22010947358:adl-p */
   8310	if (IS_ALDERLAKE_P(i915))
   8311		val |= new_dbuf_state->joined_mbus ? MBUS_DBOX_A_CREDIT(6) :
   8312						     MBUS_DBOX_A_CREDIT(4);
   8313	else
   8314		val |= MBUS_DBOX_A_CREDIT(2);
   8315
   8316	if (IS_ALDERLAKE_P(i915)) {
   8317		val |= MBUS_DBOX_BW_CREDIT(2);
   8318		val |= MBUS_DBOX_B_CREDIT(8);
   8319	} else if (DISPLAY_VER(i915) >= 12) {
   8320		val |= MBUS_DBOX_BW_CREDIT(2);
   8321		val |= MBUS_DBOX_B_CREDIT(12);
   8322	} else {
   8323		val |= MBUS_DBOX_BW_CREDIT(1);
   8324		val |= MBUS_DBOX_B_CREDIT(8);
   8325	}
   8326
   8327	for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
   8328		if (!new_crtc_state->hw.active ||
   8329		    !intel_crtc_needs_modeset(new_crtc_state))
   8330			continue;
   8331
   8332		intel_de_write(i915, PIPE_MBUS_DBOX_CTL(crtc->pipe), val);
   8333	}
   8334}