cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

mdp5_ctl.c (20603B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Copyright (c) 2014-2015 The Linux Foundation. All rights reserved.
      4 */
      5
      6#include "mdp5_kms.h"
      7#include "mdp5_ctl.h"
      8
      9/*
     10 * CTL - MDP Control Pool Manager
     11 *
     12 * Controls are shared between all display interfaces.
     13 *
     14 * They are intended to be used for data path configuration.
     15 * The top level register programming describes the complete data path for
     16 * a specific data path ID - REG_MDP5_CTL_*(<id>, ...)
     17 *
     18 * Hardware capabilities determine the number of concurrent data paths
     19 *
     20 * In certain use cases (high-resolution dual pipe), one single CTL can be
     21 * shared across multiple CRTCs.
     22 */
     23
     24#define CTL_STAT_BUSY		0x1
     25#define CTL_STAT_BOOKED	0x2
     26
     27struct mdp5_ctl {
     28	struct mdp5_ctl_manager *ctlm;
     29
     30	u32 id;
     31
     32	/* CTL status bitmask */
     33	u32 status;
     34
     35	bool encoder_enabled;
     36
     37	/* pending flush_mask bits */
     38	u32 flush_mask;
     39
     40	/* REG_MDP5_CTL_*(<id>) registers access info + lock: */
     41	spinlock_t hw_lock;
     42	u32 reg_offset;
     43
     44	/* when do CTL registers need to be flushed? (mask of trigger bits) */
     45	u32 pending_ctl_trigger;
     46
     47	bool cursor_on;
     48
     49	/* True if the current CTL has FLUSH bits pending for single FLUSH. */
     50	bool flush_pending;
     51
     52	struct mdp5_ctl *pair; /* Paired CTL to be flushed together */
     53};
     54
     55struct mdp5_ctl_manager {
     56	struct drm_device *dev;
     57
     58	/* number of CTL / Layer Mixers in this hw config: */
     59	u32 nlm;
     60	u32 nctl;
     61
     62	/* to filter out non-present bits in the current hardware config */
     63	u32 flush_hw_mask;
     64
     65	/* status for single FLUSH */
     66	bool single_flush_supported;
     67	u32 single_flush_pending_mask;
     68
     69	/* pool of CTLs + lock to protect resource allocation (ctls[i].busy) */
     70	spinlock_t pool_lock;
     71	struct mdp5_ctl ctls[MAX_CTL];
     72};
     73
     74static inline
     75struct mdp5_kms *get_kms(struct mdp5_ctl_manager *ctl_mgr)
     76{
     77	struct msm_drm_private *priv = ctl_mgr->dev->dev_private;
     78
     79	return to_mdp5_kms(to_mdp_kms(priv->kms));
     80}
     81
     82static inline
     83void ctl_write(struct mdp5_ctl *ctl, u32 reg, u32 data)
     84{
     85	struct mdp5_kms *mdp5_kms = get_kms(ctl->ctlm);
     86
     87	(void)ctl->reg_offset; /* TODO use this instead of mdp5_write */
     88	mdp5_write(mdp5_kms, reg, data);
     89}
     90
     91static inline
     92u32 ctl_read(struct mdp5_ctl *ctl, u32 reg)
     93{
     94	struct mdp5_kms *mdp5_kms = get_kms(ctl->ctlm);
     95
     96	(void)ctl->reg_offset; /* TODO use this instead of mdp5_write */
     97	return mdp5_read(mdp5_kms, reg);
     98}
     99
    100static void set_display_intf(struct mdp5_kms *mdp5_kms,
    101		struct mdp5_interface *intf)
    102{
    103	unsigned long flags;
    104	u32 intf_sel;
    105
    106	spin_lock_irqsave(&mdp5_kms->resource_lock, flags);
    107	intf_sel = mdp5_read(mdp5_kms, REG_MDP5_DISP_INTF_SEL);
    108
    109	switch (intf->num) {
    110	case 0:
    111		intf_sel &= ~MDP5_DISP_INTF_SEL_INTF0__MASK;
    112		intf_sel |= MDP5_DISP_INTF_SEL_INTF0(intf->type);
    113		break;
    114	case 1:
    115		intf_sel &= ~MDP5_DISP_INTF_SEL_INTF1__MASK;
    116		intf_sel |= MDP5_DISP_INTF_SEL_INTF1(intf->type);
    117		break;
    118	case 2:
    119		intf_sel &= ~MDP5_DISP_INTF_SEL_INTF2__MASK;
    120		intf_sel |= MDP5_DISP_INTF_SEL_INTF2(intf->type);
    121		break;
    122	case 3:
    123		intf_sel &= ~MDP5_DISP_INTF_SEL_INTF3__MASK;
    124		intf_sel |= MDP5_DISP_INTF_SEL_INTF3(intf->type);
    125		break;
    126	default:
    127		BUG();
    128		break;
    129	}
    130
    131	mdp5_write(mdp5_kms, REG_MDP5_DISP_INTF_SEL, intf_sel);
    132	spin_unlock_irqrestore(&mdp5_kms->resource_lock, flags);
    133}
    134
    135static void set_ctl_op(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline)
    136{
    137	unsigned long flags;
    138	struct mdp5_interface *intf = pipeline->intf;
    139	u32 ctl_op = 0;
    140
    141	if (!mdp5_cfg_intf_is_virtual(intf->type))
    142		ctl_op |= MDP5_CTL_OP_INTF_NUM(INTF0 + intf->num);
    143
    144	switch (intf->type) {
    145	case INTF_DSI:
    146		if (intf->mode == MDP5_INTF_DSI_MODE_COMMAND)
    147			ctl_op |= MDP5_CTL_OP_CMD_MODE;
    148		break;
    149
    150	case INTF_WB:
    151		if (intf->mode == MDP5_INTF_WB_MODE_LINE)
    152			ctl_op |= MDP5_CTL_OP_MODE(MODE_WB_2_LINE);
    153		break;
    154
    155	default:
    156		break;
    157	}
    158
    159	if (pipeline->r_mixer)
    160		ctl_op |= MDP5_CTL_OP_PACK_3D_ENABLE |
    161			  MDP5_CTL_OP_PACK_3D(1);
    162
    163	spin_lock_irqsave(&ctl->hw_lock, flags);
    164	ctl_write(ctl, REG_MDP5_CTL_OP(ctl->id), ctl_op);
    165	spin_unlock_irqrestore(&ctl->hw_lock, flags);
    166}
    167
    168int mdp5_ctl_set_pipeline(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline)
    169{
    170	struct mdp5_kms *mdp5_kms = get_kms(ctl->ctlm);
    171	struct mdp5_interface *intf = pipeline->intf;
    172
    173	/* Virtual interfaces need not set a display intf (e.g.: Writeback) */
    174	if (!mdp5_cfg_intf_is_virtual(intf->type))
    175		set_display_intf(mdp5_kms, intf);
    176
    177	set_ctl_op(ctl, pipeline);
    178
    179	return 0;
    180}
    181
    182static bool start_signal_needed(struct mdp5_ctl *ctl,
    183				struct mdp5_pipeline *pipeline)
    184{
    185	struct mdp5_interface *intf = pipeline->intf;
    186
    187	if (!ctl->encoder_enabled)
    188		return false;
    189
    190	switch (intf->type) {
    191	case INTF_WB:
    192		return true;
    193	case INTF_DSI:
    194		return intf->mode == MDP5_INTF_DSI_MODE_COMMAND;
    195	default:
    196		return false;
    197	}
    198}
    199
    200/*
    201 * send_start_signal() - Overlay Processor Start Signal
    202 *
    203 * For a given control operation (display pipeline), a START signal needs to be
    204 * executed in order to kick off operation and activate all layers.
    205 * e.g.: DSI command mode, Writeback
    206 */
    207static void send_start_signal(struct mdp5_ctl *ctl)
    208{
    209	unsigned long flags;
    210
    211	spin_lock_irqsave(&ctl->hw_lock, flags);
    212	ctl_write(ctl, REG_MDP5_CTL_START(ctl->id), 1);
    213	spin_unlock_irqrestore(&ctl->hw_lock, flags);
    214}
    215
    216/**
    217 * mdp5_ctl_set_encoder_state() - set the encoder state
    218 *
    219 * @ctl:      the CTL instance
    220 * @pipeline: the encoder's INTF + MIXER configuration
    221 * @enabled:  true, when encoder is ready for data streaming; false, otherwise.
    222 *
    223 * Note:
    224 * This encoder state is needed to trigger START signal (data path kickoff).
    225 */
    226int mdp5_ctl_set_encoder_state(struct mdp5_ctl *ctl,
    227			       struct mdp5_pipeline *pipeline,
    228			       bool enabled)
    229{
    230	struct mdp5_interface *intf = pipeline->intf;
    231
    232	if (WARN_ON(!ctl))
    233		return -EINVAL;
    234
    235	ctl->encoder_enabled = enabled;
    236	DBG("intf_%d: %s", intf->num, enabled ? "on" : "off");
    237
    238	if (start_signal_needed(ctl, pipeline)) {
    239		send_start_signal(ctl);
    240	}
    241
    242	return 0;
    243}
    244
    245/*
    246 * Note:
    247 * CTL registers need to be flushed after calling this function
    248 * (call mdp5_ctl_commit() with mdp_ctl_flush_mask_ctl() mask)
    249 */
    250int mdp5_ctl_set_cursor(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline,
    251			int cursor_id, bool enable)
    252{
    253	struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
    254	unsigned long flags;
    255	u32 blend_cfg;
    256	struct mdp5_hw_mixer *mixer = pipeline->mixer;
    257
    258	if (WARN_ON(!mixer)) {
    259		DRM_DEV_ERROR(ctl_mgr->dev->dev, "CTL %d cannot find LM",
    260			ctl->id);
    261		return -EINVAL;
    262	}
    263
    264	if (pipeline->r_mixer) {
    265		DRM_DEV_ERROR(ctl_mgr->dev->dev, "unsupported configuration");
    266		return -EINVAL;
    267	}
    268
    269	spin_lock_irqsave(&ctl->hw_lock, flags);
    270
    271	blend_cfg = ctl_read(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, mixer->lm));
    272
    273	if (enable)
    274		blend_cfg |=  MDP5_CTL_LAYER_REG_CURSOR_OUT;
    275	else
    276		blend_cfg &= ~MDP5_CTL_LAYER_REG_CURSOR_OUT;
    277
    278	ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, mixer->lm), blend_cfg);
    279	ctl->cursor_on = enable;
    280
    281	spin_unlock_irqrestore(&ctl->hw_lock, flags);
    282
    283	ctl->pending_ctl_trigger = mdp_ctl_flush_mask_cursor(cursor_id);
    284
    285	return 0;
    286}
    287
    288static u32 mdp_ctl_blend_mask(enum mdp5_pipe pipe,
    289		enum mdp_mixer_stage_id stage)
    290{
    291	switch (pipe) {
    292	case SSPP_VIG0: return MDP5_CTL_LAYER_REG_VIG0(stage);
    293	case SSPP_VIG1: return MDP5_CTL_LAYER_REG_VIG1(stage);
    294	case SSPP_VIG2: return MDP5_CTL_LAYER_REG_VIG2(stage);
    295	case SSPP_RGB0: return MDP5_CTL_LAYER_REG_RGB0(stage);
    296	case SSPP_RGB1: return MDP5_CTL_LAYER_REG_RGB1(stage);
    297	case SSPP_RGB2: return MDP5_CTL_LAYER_REG_RGB2(stage);
    298	case SSPP_DMA0: return MDP5_CTL_LAYER_REG_DMA0(stage);
    299	case SSPP_DMA1: return MDP5_CTL_LAYER_REG_DMA1(stage);
    300	case SSPP_VIG3: return MDP5_CTL_LAYER_REG_VIG3(stage);
    301	case SSPP_RGB3: return MDP5_CTL_LAYER_REG_RGB3(stage);
    302	case SSPP_CURSOR0:
    303	case SSPP_CURSOR1:
    304	default:	return 0;
    305	}
    306}
    307
    308static u32 mdp_ctl_blend_ext_mask(enum mdp5_pipe pipe,
    309		enum mdp_mixer_stage_id stage)
    310{
    311	if (stage < STAGE6 && (pipe != SSPP_CURSOR0 && pipe != SSPP_CURSOR1))
    312		return 0;
    313
    314	switch (pipe) {
    315	case SSPP_VIG0: return MDP5_CTL_LAYER_EXT_REG_VIG0_BIT3;
    316	case SSPP_VIG1: return MDP5_CTL_LAYER_EXT_REG_VIG1_BIT3;
    317	case SSPP_VIG2: return MDP5_CTL_LAYER_EXT_REG_VIG2_BIT3;
    318	case SSPP_RGB0: return MDP5_CTL_LAYER_EXT_REG_RGB0_BIT3;
    319	case SSPP_RGB1: return MDP5_CTL_LAYER_EXT_REG_RGB1_BIT3;
    320	case SSPP_RGB2: return MDP5_CTL_LAYER_EXT_REG_RGB2_BIT3;
    321	case SSPP_DMA0: return MDP5_CTL_LAYER_EXT_REG_DMA0_BIT3;
    322	case SSPP_DMA1: return MDP5_CTL_LAYER_EXT_REG_DMA1_BIT3;
    323	case SSPP_VIG3: return MDP5_CTL_LAYER_EXT_REG_VIG3_BIT3;
    324	case SSPP_RGB3: return MDP5_CTL_LAYER_EXT_REG_RGB3_BIT3;
    325	case SSPP_CURSOR0: return MDP5_CTL_LAYER_EXT_REG_CURSOR0(stage);
    326	case SSPP_CURSOR1: return MDP5_CTL_LAYER_EXT_REG_CURSOR1(stage);
    327	default:	return 0;
    328	}
    329}
    330
    331static void mdp5_ctl_reset_blend_regs(struct mdp5_ctl *ctl)
    332{
    333	unsigned long flags;
    334	struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
    335	int i;
    336
    337	spin_lock_irqsave(&ctl->hw_lock, flags);
    338
    339	for (i = 0; i < ctl_mgr->nlm; i++) {
    340		ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, i), 0x0);
    341		ctl_write(ctl, REG_MDP5_CTL_LAYER_EXT_REG(ctl->id, i), 0x0);
    342	}
    343
    344	spin_unlock_irqrestore(&ctl->hw_lock, flags);
    345}
    346
    347#define PIPE_LEFT	0
    348#define PIPE_RIGHT	1
    349int mdp5_ctl_blend(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline,
    350		   enum mdp5_pipe stage[][MAX_PIPE_STAGE],
    351		   enum mdp5_pipe r_stage[][MAX_PIPE_STAGE],
    352		   u32 stage_cnt, u32 ctl_blend_op_flags)
    353{
    354	struct mdp5_hw_mixer *mixer = pipeline->mixer;
    355	struct mdp5_hw_mixer *r_mixer = pipeline->r_mixer;
    356	unsigned long flags;
    357	u32 blend_cfg = 0, blend_ext_cfg = 0;
    358	u32 r_blend_cfg = 0, r_blend_ext_cfg = 0;
    359	int i, start_stage;
    360
    361	mdp5_ctl_reset_blend_regs(ctl);
    362
    363	if (ctl_blend_op_flags & MDP5_CTL_BLEND_OP_FLAG_BORDER_OUT) {
    364		start_stage = STAGE0;
    365		blend_cfg |= MDP5_CTL_LAYER_REG_BORDER_COLOR;
    366		if (r_mixer)
    367			r_blend_cfg |= MDP5_CTL_LAYER_REG_BORDER_COLOR;
    368	} else {
    369		start_stage = STAGE_BASE;
    370	}
    371
    372	for (i = start_stage; stage_cnt && i <= STAGE_MAX; i++) {
    373		blend_cfg |=
    374			mdp_ctl_blend_mask(stage[i][PIPE_LEFT], i) |
    375			mdp_ctl_blend_mask(stage[i][PIPE_RIGHT], i);
    376		blend_ext_cfg |=
    377			mdp_ctl_blend_ext_mask(stage[i][PIPE_LEFT], i) |
    378			mdp_ctl_blend_ext_mask(stage[i][PIPE_RIGHT], i);
    379		if (r_mixer) {
    380			r_blend_cfg |=
    381				mdp_ctl_blend_mask(r_stage[i][PIPE_LEFT], i) |
    382				mdp_ctl_blend_mask(r_stage[i][PIPE_RIGHT], i);
    383			r_blend_ext_cfg |=
    384			     mdp_ctl_blend_ext_mask(r_stage[i][PIPE_LEFT], i) |
    385			     mdp_ctl_blend_ext_mask(r_stage[i][PIPE_RIGHT], i);
    386		}
    387	}
    388
    389	spin_lock_irqsave(&ctl->hw_lock, flags);
    390	if (ctl->cursor_on)
    391		blend_cfg |=  MDP5_CTL_LAYER_REG_CURSOR_OUT;
    392
    393	ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, mixer->lm), blend_cfg);
    394	ctl_write(ctl, REG_MDP5_CTL_LAYER_EXT_REG(ctl->id, mixer->lm),
    395		  blend_ext_cfg);
    396	if (r_mixer) {
    397		ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, r_mixer->lm),
    398			  r_blend_cfg);
    399		ctl_write(ctl, REG_MDP5_CTL_LAYER_EXT_REG(ctl->id, r_mixer->lm),
    400			  r_blend_ext_cfg);
    401	}
    402	spin_unlock_irqrestore(&ctl->hw_lock, flags);
    403
    404	ctl->pending_ctl_trigger = mdp_ctl_flush_mask_lm(mixer->lm);
    405	if (r_mixer)
    406		ctl->pending_ctl_trigger |= mdp_ctl_flush_mask_lm(r_mixer->lm);
    407
    408	DBG("lm%d: blend config = 0x%08x. ext_cfg = 0x%08x", mixer->lm,
    409		blend_cfg, blend_ext_cfg);
    410	if (r_mixer)
    411		DBG("lm%d: blend config = 0x%08x. ext_cfg = 0x%08x",
    412		    r_mixer->lm, r_blend_cfg, r_blend_ext_cfg);
    413
    414	return 0;
    415}
    416
    417u32 mdp_ctl_flush_mask_encoder(struct mdp5_interface *intf)
    418{
    419	if (intf->type == INTF_WB)
    420		return MDP5_CTL_FLUSH_WB;
    421
    422	switch (intf->num) {
    423	case 0: return MDP5_CTL_FLUSH_TIMING_0;
    424	case 1: return MDP5_CTL_FLUSH_TIMING_1;
    425	case 2: return MDP5_CTL_FLUSH_TIMING_2;
    426	case 3: return MDP5_CTL_FLUSH_TIMING_3;
    427	default: return 0;
    428	}
    429}
    430
    431u32 mdp_ctl_flush_mask_cursor(int cursor_id)
    432{
    433	switch (cursor_id) {
    434	case 0: return MDP5_CTL_FLUSH_CURSOR_0;
    435	case 1: return MDP5_CTL_FLUSH_CURSOR_1;
    436	default: return 0;
    437	}
    438}
    439
    440u32 mdp_ctl_flush_mask_pipe(enum mdp5_pipe pipe)
    441{
    442	switch (pipe) {
    443	case SSPP_VIG0: return MDP5_CTL_FLUSH_VIG0;
    444	case SSPP_VIG1: return MDP5_CTL_FLUSH_VIG1;
    445	case SSPP_VIG2: return MDP5_CTL_FLUSH_VIG2;
    446	case SSPP_RGB0: return MDP5_CTL_FLUSH_RGB0;
    447	case SSPP_RGB1: return MDP5_CTL_FLUSH_RGB1;
    448	case SSPP_RGB2: return MDP5_CTL_FLUSH_RGB2;
    449	case SSPP_DMA0: return MDP5_CTL_FLUSH_DMA0;
    450	case SSPP_DMA1: return MDP5_CTL_FLUSH_DMA1;
    451	case SSPP_VIG3: return MDP5_CTL_FLUSH_VIG3;
    452	case SSPP_RGB3: return MDP5_CTL_FLUSH_RGB3;
    453	case SSPP_CURSOR0: return MDP5_CTL_FLUSH_CURSOR_0;
    454	case SSPP_CURSOR1: return MDP5_CTL_FLUSH_CURSOR_1;
    455	default:        return 0;
    456	}
    457}
    458
    459u32 mdp_ctl_flush_mask_lm(int lm)
    460{
    461	switch (lm) {
    462	case 0:  return MDP5_CTL_FLUSH_LM0;
    463	case 1:  return MDP5_CTL_FLUSH_LM1;
    464	case 2:  return MDP5_CTL_FLUSH_LM2;
    465	case 3:  return MDP5_CTL_FLUSH_LM3;
    466	case 4:  return MDP5_CTL_FLUSH_LM4;
    467	case 5:  return MDP5_CTL_FLUSH_LM5;
    468	default: return 0;
    469	}
    470}
    471
    472static u32 fix_sw_flush(struct mdp5_ctl *ctl, struct mdp5_pipeline *pipeline,
    473			u32 flush_mask)
    474{
    475	struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
    476	u32 sw_mask = 0;
    477#define BIT_NEEDS_SW_FIX(bit) \
    478	(!(ctl_mgr->flush_hw_mask & bit) && (flush_mask & bit))
    479
    480	/* for some targets, cursor bit is the same as LM bit */
    481	if (BIT_NEEDS_SW_FIX(MDP5_CTL_FLUSH_CURSOR_0))
    482		sw_mask |= mdp_ctl_flush_mask_lm(pipeline->mixer->lm);
    483
    484	return sw_mask;
    485}
    486
    487static void fix_for_single_flush(struct mdp5_ctl *ctl, u32 *flush_mask,
    488		u32 *flush_id)
    489{
    490	struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
    491
    492	if (ctl->pair) {
    493		DBG("CTL %d FLUSH pending mask %x", ctl->id, *flush_mask);
    494		ctl->flush_pending = true;
    495		ctl_mgr->single_flush_pending_mask |= (*flush_mask);
    496		*flush_mask = 0;
    497
    498		if (ctl->pair->flush_pending) {
    499			*flush_id = min_t(u32, ctl->id, ctl->pair->id);
    500			*flush_mask = ctl_mgr->single_flush_pending_mask;
    501
    502			ctl->flush_pending = false;
    503			ctl->pair->flush_pending = false;
    504			ctl_mgr->single_flush_pending_mask = 0;
    505
    506			DBG("Single FLUSH mask %x,ID %d", *flush_mask,
    507				*flush_id);
    508		}
    509	}
    510}
    511
    512/**
    513 * mdp5_ctl_commit() - Register Flush
    514 *
    515 * @ctl:        the CTL instance
    516 * @pipeline:   the encoder's INTF + MIXER configuration
    517 * @flush_mask: bitmask of display controller hw blocks to flush
    518 * @start:      if true, immediately update flush registers and set START
    519 *              bit, otherwise accumulate flush_mask bits until we are
    520 *              ready to START
    521 *
    522 * The flush register is used to indicate several registers are all
    523 * programmed, and are safe to update to the back copy of the double
    524 * buffered registers.
    525 *
    526 * Some registers FLUSH bits are shared when the hardware does not have
    527 * dedicated bits for them; handling these is the job of fix_sw_flush().
    528 *
    529 * CTL registers need to be flushed in some circumstances; if that is the
    530 * case, some trigger bits will be present in both flush mask and
    531 * ctl->pending_ctl_trigger.
    532 *
    533 * Return H/W flushed bit mask.
    534 */
    535u32 mdp5_ctl_commit(struct mdp5_ctl *ctl,
    536		    struct mdp5_pipeline *pipeline,
    537		    u32 flush_mask, bool start)
    538{
    539	struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
    540	unsigned long flags;
    541	u32 flush_id = ctl->id;
    542	u32 curr_ctl_flush_mask;
    543
    544	VERB("flush_mask=%x, trigger=%x", flush_mask, ctl->pending_ctl_trigger);
    545
    546	if (ctl->pending_ctl_trigger & flush_mask) {
    547		flush_mask |= MDP5_CTL_FLUSH_CTL;
    548		ctl->pending_ctl_trigger = 0;
    549	}
    550
    551	flush_mask |= fix_sw_flush(ctl, pipeline, flush_mask);
    552
    553	flush_mask &= ctl_mgr->flush_hw_mask;
    554
    555	curr_ctl_flush_mask = flush_mask;
    556
    557	fix_for_single_flush(ctl, &flush_mask, &flush_id);
    558
    559	if (!start) {
    560		ctl->flush_mask |= flush_mask;
    561		return curr_ctl_flush_mask;
    562	} else {
    563		flush_mask |= ctl->flush_mask;
    564		ctl->flush_mask = 0;
    565	}
    566
    567	if (flush_mask) {
    568		spin_lock_irqsave(&ctl->hw_lock, flags);
    569		ctl_write(ctl, REG_MDP5_CTL_FLUSH(flush_id), flush_mask);
    570		spin_unlock_irqrestore(&ctl->hw_lock, flags);
    571	}
    572
    573	if (start_signal_needed(ctl, pipeline)) {
    574		send_start_signal(ctl);
    575	}
    576
    577	return curr_ctl_flush_mask;
    578}
    579
    580u32 mdp5_ctl_get_commit_status(struct mdp5_ctl *ctl)
    581{
    582	return ctl_read(ctl, REG_MDP5_CTL_FLUSH(ctl->id));
    583}
    584
    585int mdp5_ctl_get_ctl_id(struct mdp5_ctl *ctl)
    586{
    587	return WARN_ON(!ctl) ? -EINVAL : ctl->id;
    588}
    589
    590/*
    591 * mdp5_ctl_pair() - Associate 2 booked CTLs for single FLUSH
    592 */
    593int mdp5_ctl_pair(struct mdp5_ctl *ctlx, struct mdp5_ctl *ctly, bool enable)
    594{
    595	struct mdp5_ctl_manager *ctl_mgr = ctlx->ctlm;
    596	struct mdp5_kms *mdp5_kms = get_kms(ctl_mgr);
    597
    598	/* do nothing silently if hw doesn't support */
    599	if (!ctl_mgr->single_flush_supported)
    600		return 0;
    601
    602	if (!enable) {
    603		ctlx->pair = NULL;
    604		ctly->pair = NULL;
    605		mdp5_write(mdp5_kms, REG_MDP5_SPARE_0, 0);
    606		return 0;
    607	} else if ((ctlx->pair != NULL) || (ctly->pair != NULL)) {
    608		DRM_DEV_ERROR(ctl_mgr->dev->dev, "CTLs already paired\n");
    609		return -EINVAL;
    610	} else if (!(ctlx->status & ctly->status & CTL_STAT_BOOKED)) {
    611		DRM_DEV_ERROR(ctl_mgr->dev->dev, "Only pair booked CTLs\n");
    612		return -EINVAL;
    613	}
    614
    615	ctlx->pair = ctly;
    616	ctly->pair = ctlx;
    617
    618	mdp5_write(mdp5_kms, REG_MDP5_SPARE_0,
    619		   MDP5_SPARE_0_SPLIT_DPL_SINGLE_FLUSH_EN);
    620
    621	return 0;
    622}
    623
    624/*
    625 * mdp5_ctl_request() - CTL allocation
    626 *
    627 * Try to return booked CTL for @intf_num is 1 or 2, unbooked for other INTFs.
    628 * If no CTL is available in preferred category, allocate from the other one.
    629 *
    630 * @return fail if no CTL is available.
    631 */
    632struct mdp5_ctl *mdp5_ctlm_request(struct mdp5_ctl_manager *ctl_mgr,
    633		int intf_num)
    634{
    635	struct mdp5_ctl *ctl = NULL;
    636	const u32 checkm = CTL_STAT_BUSY | CTL_STAT_BOOKED;
    637	u32 match = ((intf_num == 1) || (intf_num == 2)) ? CTL_STAT_BOOKED : 0;
    638	unsigned long flags;
    639	int c;
    640
    641	spin_lock_irqsave(&ctl_mgr->pool_lock, flags);
    642
    643	/* search the preferred */
    644	for (c = 0; c < ctl_mgr->nctl; c++)
    645		if ((ctl_mgr->ctls[c].status & checkm) == match)
    646			goto found;
    647
    648	dev_warn(ctl_mgr->dev->dev,
    649		"fall back to the other CTL category for INTF %d!\n", intf_num);
    650
    651	match ^= CTL_STAT_BOOKED;
    652	for (c = 0; c < ctl_mgr->nctl; c++)
    653		if ((ctl_mgr->ctls[c].status & checkm) == match)
    654			goto found;
    655
    656	DRM_DEV_ERROR(ctl_mgr->dev->dev, "No more CTL available!");
    657	goto unlock;
    658
    659found:
    660	ctl = &ctl_mgr->ctls[c];
    661	ctl->status |= CTL_STAT_BUSY;
    662	ctl->pending_ctl_trigger = 0;
    663	DBG("CTL %d allocated", ctl->id);
    664
    665unlock:
    666	spin_unlock_irqrestore(&ctl_mgr->pool_lock, flags);
    667	return ctl;
    668}
    669
    670void mdp5_ctlm_hw_reset(struct mdp5_ctl_manager *ctl_mgr)
    671{
    672	unsigned long flags;
    673	int c;
    674
    675	for (c = 0; c < ctl_mgr->nctl; c++) {
    676		struct mdp5_ctl *ctl = &ctl_mgr->ctls[c];
    677
    678		spin_lock_irqsave(&ctl->hw_lock, flags);
    679		ctl_write(ctl, REG_MDP5_CTL_OP(ctl->id), 0);
    680		spin_unlock_irqrestore(&ctl->hw_lock, flags);
    681	}
    682}
    683
    684void mdp5_ctlm_destroy(struct mdp5_ctl_manager *ctl_mgr)
    685{
    686	kfree(ctl_mgr);
    687}
    688
    689struct mdp5_ctl_manager *mdp5_ctlm_init(struct drm_device *dev,
    690		void __iomem *mmio_base, struct mdp5_cfg_handler *cfg_hnd)
    691{
    692	struct mdp5_ctl_manager *ctl_mgr;
    693	const struct mdp5_cfg_hw *hw_cfg = mdp5_cfg_get_hw_config(cfg_hnd);
    694	int rev = mdp5_cfg_get_hw_rev(cfg_hnd);
    695	unsigned dsi_cnt = 0;
    696	const struct mdp5_ctl_block *ctl_cfg = &hw_cfg->ctl;
    697	unsigned long flags;
    698	int c, ret;
    699
    700	ctl_mgr = kzalloc(sizeof(*ctl_mgr), GFP_KERNEL);
    701	if (!ctl_mgr) {
    702		DRM_DEV_ERROR(dev->dev, "failed to allocate CTL manager\n");
    703		ret = -ENOMEM;
    704		goto fail;
    705	}
    706
    707	if (WARN_ON(ctl_cfg->count > MAX_CTL)) {
    708		DRM_DEV_ERROR(dev->dev, "Increase static pool size to at least %d\n",
    709				ctl_cfg->count);
    710		ret = -ENOSPC;
    711		goto fail;
    712	}
    713
    714	/* initialize the CTL manager: */
    715	ctl_mgr->dev = dev;
    716	ctl_mgr->nlm = hw_cfg->lm.count;
    717	ctl_mgr->nctl = ctl_cfg->count;
    718	ctl_mgr->flush_hw_mask = ctl_cfg->flush_hw_mask;
    719	spin_lock_init(&ctl_mgr->pool_lock);
    720
    721	/* initialize each CTL of the pool: */
    722	spin_lock_irqsave(&ctl_mgr->pool_lock, flags);
    723	for (c = 0; c < ctl_mgr->nctl; c++) {
    724		struct mdp5_ctl *ctl = &ctl_mgr->ctls[c];
    725
    726		if (WARN_ON(!ctl_cfg->base[c])) {
    727			DRM_DEV_ERROR(dev->dev, "CTL_%d: base is null!\n", c);
    728			ret = -EINVAL;
    729			spin_unlock_irqrestore(&ctl_mgr->pool_lock, flags);
    730			goto fail;
    731		}
    732		ctl->ctlm = ctl_mgr;
    733		ctl->id = c;
    734		ctl->reg_offset = ctl_cfg->base[c];
    735		ctl->status = 0;
    736		spin_lock_init(&ctl->hw_lock);
    737	}
    738
    739	/*
    740	 * In bonded DSI case, CTL0 and CTL1 are always assigned to two DSI
    741	 * interfaces to support single FLUSH feature (Flush CTL0 and CTL1 when
    742	 * only write into CTL0's FLUSH register) to keep two DSI pipes in sync.
    743	 * Single FLUSH is supported from hw rev v3.0.
    744	 */
    745	for (c = 0; c < ARRAY_SIZE(hw_cfg->intf.connect); c++)
    746		if (hw_cfg->intf.connect[c] == INTF_DSI)
    747			dsi_cnt++;
    748	if ((rev >= 3) && (dsi_cnt > 1)) {
    749		ctl_mgr->single_flush_supported = true;
    750		/* Reserve CTL0/1 for INTF1/2 */
    751		ctl_mgr->ctls[0].status |= CTL_STAT_BOOKED;
    752		ctl_mgr->ctls[1].status |= CTL_STAT_BOOKED;
    753	}
    754	spin_unlock_irqrestore(&ctl_mgr->pool_lock, flags);
    755	DBG("Pool of %d CTLs created.", ctl_mgr->nctl);
    756
    757	return ctl_mgr;
    758
    759fail:
    760	if (ctl_mgr)
    761		mdp5_ctlm_destroy(ctl_mgr);
    762
    763	return ERR_PTR(ret);
    764}