cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

dsi_phy_14nm.c (30583B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Copyright (c) 2016, The Linux Foundation. All rights reserved.
      4 */
      5
      6#include <linux/clk.h>
      7#include <linux/clk-provider.h>
      8#include <linux/delay.h>
      9
     10#include "dsi_phy.h"
     11#include "dsi.xml.h"
     12#include "dsi_phy_14nm.xml.h"
     13
     14#define PHY_14NM_CKLN_IDX	4
     15
     16/*
     17 * DSI PLL 14nm - clock diagram (eg: DSI0):
     18 *
     19 *         dsi0n1_postdiv_clk
     20 *                         |
     21 *                         |
     22 *                 +----+  |  +----+
     23 *  dsi0vco_clk ---| n1 |--o--| /8 |-- dsi0pllbyte
     24 *                 +----+  |  +----+
     25 *                         |           dsi0n1_postdivby2_clk
     26 *                         |   +----+  |
     27 *                         o---| /2 |--o--|\
     28 *                         |   +----+     | \   +----+
     29 *                         |              |  |--| n2 |-- dsi0pll
     30 *                         o--------------| /   +----+
     31 *                                        |/
     32 */
     33
     34#define POLL_MAX_READS			15
     35#define POLL_TIMEOUT_US			1000
     36
     37#define VCO_REF_CLK_RATE		19200000
     38#define VCO_MIN_RATE			1300000000UL
     39#define VCO_MAX_RATE			2600000000UL
     40
     41struct dsi_pll_config {
     42	u64 vco_current_rate;
     43
     44	u32 ssc_en;	/* SSC enable/disable */
     45
     46	/* fixed params */
     47	u32 plllock_cnt;
     48	u32 ssc_center;
     49	u32 ssc_adj_period;
     50	u32 ssc_spread;
     51	u32 ssc_freq;
     52
     53	/* calculated */
     54	u32 dec_start;
     55	u32 div_frac_start;
     56	u32 ssc_period;
     57	u32 ssc_step_size;
     58	u32 plllock_cmp;
     59	u32 pll_vco_div_ref;
     60	u32 pll_vco_count;
     61	u32 pll_kvco_div_ref;
     62	u32 pll_kvco_count;
     63};
     64
     65struct pll_14nm_cached_state {
     66	unsigned long vco_rate;
     67	u8 n2postdiv;
     68	u8 n1postdiv;
     69};
     70
     71struct dsi_pll_14nm {
     72	struct clk_hw clk_hw;
     73
     74	struct msm_dsi_phy *phy;
     75
     76	/* protects REG_DSI_14nm_PHY_CMN_CLK_CFG0 register */
     77	spinlock_t postdiv_lock;
     78
     79	struct pll_14nm_cached_state cached_state;
     80
     81	struct dsi_pll_14nm *slave;
     82};
     83
     84#define to_pll_14nm(x)	container_of(x, struct dsi_pll_14nm, clk_hw)
     85
     86/*
     87 * Private struct for N1/N2 post-divider clocks. These clocks are similar to
     88 * the generic clk_divider class of clocks. The only difference is that it
     89 * also sets the slave DSI PLL's post-dividers if in bonded DSI mode
     90 */
     91struct dsi_pll_14nm_postdiv {
     92	struct clk_hw hw;
     93
     94	/* divider params */
     95	u8 shift;
     96	u8 width;
     97	u8 flags; /* same flags as used by clk_divider struct */
     98
     99	struct dsi_pll_14nm *pll;
    100};
    101
    102#define to_pll_14nm_postdiv(_hw) container_of(_hw, struct dsi_pll_14nm_postdiv, hw)
    103
    104/*
    105 * Global list of private DSI PLL struct pointers. We need this for bonded DSI
    106 * mode, where the master PLL's clk_ops needs access the slave's private data
    107 */
    108static struct dsi_pll_14nm *pll_14nm_list[DSI_MAX];
    109
    110static bool pll_14nm_poll_for_ready(struct dsi_pll_14nm *pll_14nm,
    111				    u32 nb_tries, u32 timeout_us)
    112{
    113	bool pll_locked = false, pll_ready = false;
    114	void __iomem *base = pll_14nm->phy->pll_base;
    115	u32 tries, val;
    116
    117	tries = nb_tries;
    118	while (tries--) {
    119		val = dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_RESET_SM_READY_STATUS);
    120		pll_locked = !!(val & BIT(5));
    121
    122		if (pll_locked)
    123			break;
    124
    125		udelay(timeout_us);
    126	}
    127
    128	if (!pll_locked)
    129		goto out;
    130
    131	tries = nb_tries;
    132	while (tries--) {
    133		val = dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_RESET_SM_READY_STATUS);
    134		pll_ready = !!(val & BIT(0));
    135
    136		if (pll_ready)
    137			break;
    138
    139		udelay(timeout_us);
    140	}
    141
    142out:
    143	DBG("DSI PLL is %slocked, %sready", pll_locked ? "" : "*not* ", pll_ready ? "" : "*not* ");
    144
    145	return pll_locked && pll_ready;
    146}
    147
    148static void dsi_pll_14nm_config_init(struct dsi_pll_config *pconf)
    149{
    150	/* fixed input */
    151	pconf->plllock_cnt = 1;
    152
    153	/*
    154	 * SSC is enabled by default. We might need DT props for configuring
    155	 * some SSC params like PPM and center/down spread etc.
    156	 */
    157	pconf->ssc_en = 1;
    158	pconf->ssc_center = 0;		/* down spread by default */
    159	pconf->ssc_spread = 5;		/* PPM / 1000 */
    160	pconf->ssc_freq = 31500;	/* default recommended */
    161	pconf->ssc_adj_period = 37;
    162}
    163
    164#define CEIL(x, y)		(((x) + ((y) - 1)) / (y))
    165
    166static void pll_14nm_ssc_calc(struct dsi_pll_14nm *pll, struct dsi_pll_config *pconf)
    167{
    168	u32 period, ssc_period;
    169	u32 ref, rem;
    170	u64 step_size;
    171
    172	DBG("vco=%lld ref=%d", pconf->vco_current_rate, VCO_REF_CLK_RATE);
    173
    174	ssc_period = pconf->ssc_freq / 500;
    175	period = (u32)VCO_REF_CLK_RATE / 1000;
    176	ssc_period  = CEIL(period, ssc_period);
    177	ssc_period -= 1;
    178	pconf->ssc_period = ssc_period;
    179
    180	DBG("ssc freq=%d spread=%d period=%d", pconf->ssc_freq,
    181	    pconf->ssc_spread, pconf->ssc_period);
    182
    183	step_size = (u32)pconf->vco_current_rate;
    184	ref = VCO_REF_CLK_RATE;
    185	ref /= 1000;
    186	step_size = div_u64(step_size, ref);
    187	step_size <<= 20;
    188	step_size = div_u64(step_size, 1000);
    189	step_size *= pconf->ssc_spread;
    190	step_size = div_u64(step_size, 1000);
    191	step_size *= (pconf->ssc_adj_period + 1);
    192
    193	rem = 0;
    194	step_size = div_u64_rem(step_size, ssc_period + 1, &rem);
    195	if (rem)
    196		step_size++;
    197
    198	DBG("step_size=%lld", step_size);
    199
    200	step_size &= 0x0ffff;	/* take lower 16 bits */
    201
    202	pconf->ssc_step_size = step_size;
    203}
    204
    205static void pll_14nm_dec_frac_calc(struct dsi_pll_14nm *pll, struct dsi_pll_config *pconf)
    206{
    207	u64 multiplier = BIT(20);
    208	u64 dec_start_multiple, dec_start, pll_comp_val;
    209	u32 duration, div_frac_start;
    210	u64 vco_clk_rate = pconf->vco_current_rate;
    211	u64 fref = VCO_REF_CLK_RATE;
    212
    213	DBG("vco_clk_rate=%lld ref_clk_rate=%lld", vco_clk_rate, fref);
    214
    215	dec_start_multiple = div_u64(vco_clk_rate * multiplier, fref);
    216	dec_start = div_u64_rem(dec_start_multiple, multiplier, &div_frac_start);
    217
    218	pconf->dec_start = (u32)dec_start;
    219	pconf->div_frac_start = div_frac_start;
    220
    221	if (pconf->plllock_cnt == 0)
    222		duration = 1024;
    223	else if (pconf->plllock_cnt == 1)
    224		duration = 256;
    225	else if (pconf->plllock_cnt == 2)
    226		duration = 128;
    227	else
    228		duration = 32;
    229
    230	pll_comp_val = duration * dec_start_multiple;
    231	pll_comp_val = div_u64(pll_comp_val, multiplier);
    232	do_div(pll_comp_val, 10);
    233
    234	pconf->plllock_cmp = (u32)pll_comp_val;
    235}
    236
    237static u32 pll_14nm_kvco_slop(u32 vrate)
    238{
    239	u32 slop = 0;
    240
    241	if (vrate > VCO_MIN_RATE && vrate <= 1800000000UL)
    242		slop =  600;
    243	else if (vrate > 1800000000UL && vrate < 2300000000UL)
    244		slop = 400;
    245	else if (vrate > 2300000000UL && vrate < VCO_MAX_RATE)
    246		slop = 280;
    247
    248	return slop;
    249}
    250
    251static void pll_14nm_calc_vco_count(struct dsi_pll_14nm *pll, struct dsi_pll_config *pconf)
    252{
    253	u64 vco_clk_rate = pconf->vco_current_rate;
    254	u64 fref = VCO_REF_CLK_RATE;
    255	u32 vco_measure_time = 5;
    256	u32 kvco_measure_time = 5;
    257	u64 data;
    258	u32 cnt;
    259
    260	data = fref * vco_measure_time;
    261	do_div(data, 1000000);
    262	data &= 0x03ff;	/* 10 bits */
    263	data -= 2;
    264	pconf->pll_vco_div_ref = data;
    265
    266	data = div_u64(vco_clk_rate, 1000000);	/* unit is Mhz */
    267	data *= vco_measure_time;
    268	do_div(data, 10);
    269	pconf->pll_vco_count = data;
    270
    271	data = fref * kvco_measure_time;
    272	do_div(data, 1000000);
    273	data &= 0x03ff;	/* 10 bits */
    274	data -= 1;
    275	pconf->pll_kvco_div_ref = data;
    276
    277	cnt = pll_14nm_kvco_slop(vco_clk_rate);
    278	cnt *= 2;
    279	cnt /= 100;
    280	cnt *= kvco_measure_time;
    281	pconf->pll_kvco_count = cnt;
    282}
    283
    284static void pll_db_commit_ssc(struct dsi_pll_14nm *pll, struct dsi_pll_config *pconf)
    285{
    286	void __iomem *base = pll->phy->pll_base;
    287	u8 data;
    288
    289	data = pconf->ssc_adj_period;
    290	data &= 0x0ff;
    291	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_ADJ_PER1, data);
    292	data = (pconf->ssc_adj_period >> 8);
    293	data &= 0x03;
    294	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_ADJ_PER2, data);
    295
    296	data = pconf->ssc_period;
    297	data &= 0x0ff;
    298	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_PER1, data);
    299	data = (pconf->ssc_period >> 8);
    300	data &= 0x0ff;
    301	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_PER2, data);
    302
    303	data = pconf->ssc_step_size;
    304	data &= 0x0ff;
    305	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_STEP_SIZE1, data);
    306	data = (pconf->ssc_step_size >> 8);
    307	data &= 0x0ff;
    308	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_STEP_SIZE2, data);
    309
    310	data = (pconf->ssc_center & 0x01);
    311	data <<= 1;
    312	data |= 0x01; /* enable */
    313	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SSC_EN_CENTER, data);
    314
    315	wmb();	/* make sure register committed */
    316}
    317
    318static void pll_db_commit_common(struct dsi_pll_14nm *pll,
    319				 struct dsi_pll_config *pconf)
    320{
    321	void __iomem *base = pll->phy->pll_base;
    322	u8 data;
    323
    324	/* confgiure the non frequency dependent pll registers */
    325	data = 0;
    326	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_SYSCLK_EN_RESET, data);
    327
    328	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_TXCLK_EN, 1);
    329
    330	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_RESETSM_CNTRL, 48);
    331	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_RESETSM_CNTRL2, 4 << 3); /* bandgap_timer */
    332	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_RESETSM_CNTRL5, 5); /* pll_wakeup_timer */
    333
    334	data = pconf->pll_vco_div_ref & 0xff;
    335	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_VCO_DIV_REF1, data);
    336	data = (pconf->pll_vco_div_ref >> 8) & 0x3;
    337	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_VCO_DIV_REF2, data);
    338
    339	data = pconf->pll_kvco_div_ref & 0xff;
    340	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_KVCO_DIV_REF1, data);
    341	data = (pconf->pll_kvco_div_ref >> 8) & 0x3;
    342	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_KVCO_DIV_REF2, data);
    343
    344	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_MISC1, 16);
    345
    346	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_IE_TRIM, 4);
    347
    348	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_IP_TRIM, 4);
    349
    350	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_CP_SET_CUR, 1 << 3 | 1);
    351
    352	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_ICPCSET, 0 << 3 | 0);
    353
    354	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_ICPMSET, 0 << 3 | 0);
    355
    356	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_ICP_SET, 4 << 3 | 4);
    357
    358	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_LPF1, 1 << 4 | 11);
    359
    360	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_IPTAT_TRIM, 7);
    361
    362	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_CRCTRL, 1 << 4 | 2);
    363}
    364
    365static void pll_14nm_software_reset(struct dsi_pll_14nm *pll_14nm)
    366{
    367	void __iomem *cmn_base = pll_14nm->phy->base;
    368
    369	/* de assert pll start and apply pll sw reset */
    370
    371	/* stop pll */
    372	dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 0);
    373
    374	/* pll sw reset */
    375	dsi_phy_write_udelay(cmn_base + REG_DSI_14nm_PHY_CMN_CTRL_1, 0x20, 10);
    376	wmb();	/* make sure register committed */
    377
    378	dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_CTRL_1, 0);
    379	wmb();	/* make sure register committed */
    380}
    381
    382static void pll_db_commit_14nm(struct dsi_pll_14nm *pll,
    383			       struct dsi_pll_config *pconf)
    384{
    385	void __iomem *base = pll->phy->pll_base;
    386	void __iomem *cmn_base = pll->phy->base;
    387	u8 data;
    388
    389	DBG("DSI%d PLL", pll->phy->id);
    390
    391	dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_LDO_CNTRL, 0x3c);
    392
    393	pll_db_commit_common(pll, pconf);
    394
    395	pll_14nm_software_reset(pll);
    396
    397	/* Use the /2 path in Mux */
    398	dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_CLK_CFG1, 1);
    399
    400	data = 0xff; /* data, clk, pll normal operation */
    401	dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_CTRL_0, data);
    402
    403	/* configure the frequency dependent pll registers */
    404	data = pconf->dec_start;
    405	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_DEC_START, data);
    406
    407	data = pconf->div_frac_start & 0xff;
    408	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START1, data);
    409	data = (pconf->div_frac_start >> 8) & 0xff;
    410	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START2, data);
    411	data = (pconf->div_frac_start >> 16) & 0xf;
    412	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START3, data);
    413
    414	data = pconf->plllock_cmp & 0xff;
    415	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP1, data);
    416
    417	data = (pconf->plllock_cmp >> 8) & 0xff;
    418	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP2, data);
    419
    420	data = (pconf->plllock_cmp >> 16) & 0x3;
    421	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP3, data);
    422
    423	data = pconf->plllock_cnt << 1 | 0 << 3; /* plllock_rng */
    424	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP_EN, data);
    425
    426	data = pconf->pll_vco_count & 0xff;
    427	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_VCO_COUNT1, data);
    428	data = (pconf->pll_vco_count >> 8) & 0xff;
    429	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_VCO_COUNT2, data);
    430
    431	data = pconf->pll_kvco_count & 0xff;
    432	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_KVCO_COUNT1, data);
    433	data = (pconf->pll_kvco_count >> 8) & 0x3;
    434	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_KVCO_COUNT2, data);
    435
    436	/*
    437	 * High nibble configures the post divider internal to the VCO. It's
    438	 * fixed to divide by 1 for now.
    439	 *
    440	 * 0: divided by 1
    441	 * 1: divided by 2
    442	 * 2: divided by 4
    443	 * 3: divided by 8
    444	 */
    445	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_LPF2_POSTDIV, 0 << 4 | 3);
    446
    447	if (pconf->ssc_en)
    448		pll_db_commit_ssc(pll, pconf);
    449
    450	wmb();	/* make sure register committed */
    451}
    452
    453/*
    454 * VCO clock Callbacks
    455 */
    456static int dsi_pll_14nm_vco_set_rate(struct clk_hw *hw, unsigned long rate,
    457				     unsigned long parent_rate)
    458{
    459	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw);
    460	struct dsi_pll_config conf;
    461
    462	DBG("DSI PLL%d rate=%lu, parent's=%lu", pll_14nm->phy->id, rate,
    463	    parent_rate);
    464
    465	dsi_pll_14nm_config_init(&conf);
    466	conf.vco_current_rate = rate;
    467
    468	pll_14nm_dec_frac_calc(pll_14nm, &conf);
    469
    470	if (conf.ssc_en)
    471		pll_14nm_ssc_calc(pll_14nm, &conf);
    472
    473	pll_14nm_calc_vco_count(pll_14nm, &conf);
    474
    475	/* commit the slave DSI PLL registers if we're master. Note that we
    476	 * don't lock the slave PLL. We just ensure that the PLL/PHY registers
    477	 * of the master and slave are identical
    478	 */
    479	if (pll_14nm->phy->usecase == MSM_DSI_PHY_MASTER) {
    480		struct dsi_pll_14nm *pll_14nm_slave = pll_14nm->slave;
    481
    482		pll_db_commit_14nm(pll_14nm_slave, &conf);
    483	}
    484
    485	pll_db_commit_14nm(pll_14nm, &conf);
    486
    487	return 0;
    488}
    489
    490static unsigned long dsi_pll_14nm_vco_recalc_rate(struct clk_hw *hw,
    491						  unsigned long parent_rate)
    492{
    493	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw);
    494	void __iomem *base = pll_14nm->phy->pll_base;
    495	u64 vco_rate, multiplier = BIT(20);
    496	u32 div_frac_start;
    497	u32 dec_start;
    498	u64 ref_clk = parent_rate;
    499
    500	dec_start = dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_DEC_START);
    501	dec_start &= 0x0ff;
    502
    503	DBG("dec_start = %x", dec_start);
    504
    505	div_frac_start = (dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START3)
    506				& 0xf) << 16;
    507	div_frac_start |= (dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START2)
    508				& 0xff) << 8;
    509	div_frac_start |= dsi_phy_read(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START1)
    510				& 0xff;
    511
    512	DBG("div_frac_start = %x", div_frac_start);
    513
    514	vco_rate = ref_clk * dec_start;
    515
    516	vco_rate += ((ref_clk * div_frac_start) / multiplier);
    517
    518	/*
    519	 * Recalculating the rate from dec_start and frac_start doesn't end up
    520	 * the rate we originally set. Convert the freq to KHz, round it up and
    521	 * convert it back to MHz.
    522	 */
    523	vco_rate = DIV_ROUND_UP_ULL(vco_rate, 1000) * 1000;
    524
    525	DBG("returning vco rate = %lu", (unsigned long)vco_rate);
    526
    527	return (unsigned long)vco_rate;
    528}
    529
    530static int dsi_pll_14nm_vco_prepare(struct clk_hw *hw)
    531{
    532	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw);
    533	void __iomem *base = pll_14nm->phy->pll_base;
    534	void __iomem *cmn_base = pll_14nm->phy->base;
    535	bool locked;
    536
    537	DBG("");
    538
    539	if (unlikely(pll_14nm->phy->pll_on))
    540		return 0;
    541
    542	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_VREF_CFG1, 0x10);
    543	dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 1);
    544
    545	locked = pll_14nm_poll_for_ready(pll_14nm, POLL_MAX_READS,
    546					 POLL_TIMEOUT_US);
    547
    548	if (unlikely(!locked)) {
    549		DRM_DEV_ERROR(&pll_14nm->phy->pdev->dev, "DSI PLL lock failed\n");
    550		return -EINVAL;
    551	}
    552
    553	DBG("DSI PLL lock success");
    554	pll_14nm->phy->pll_on = true;
    555
    556	return 0;
    557}
    558
    559static void dsi_pll_14nm_vco_unprepare(struct clk_hw *hw)
    560{
    561	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw);
    562	void __iomem *cmn_base = pll_14nm->phy->base;
    563
    564	DBG("");
    565
    566	if (unlikely(!pll_14nm->phy->pll_on))
    567		return;
    568
    569	dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 0);
    570
    571	pll_14nm->phy->pll_on = false;
    572}
    573
    574static long dsi_pll_14nm_clk_round_rate(struct clk_hw *hw,
    575		unsigned long rate, unsigned long *parent_rate)
    576{
    577	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(hw);
    578
    579	if      (rate < pll_14nm->phy->cfg->min_pll_rate)
    580		return  pll_14nm->phy->cfg->min_pll_rate;
    581	else if (rate > pll_14nm->phy->cfg->max_pll_rate)
    582		return  pll_14nm->phy->cfg->max_pll_rate;
    583	else
    584		return rate;
    585}
    586
    587static const struct clk_ops clk_ops_dsi_pll_14nm_vco = {
    588	.round_rate = dsi_pll_14nm_clk_round_rate,
    589	.set_rate = dsi_pll_14nm_vco_set_rate,
    590	.recalc_rate = dsi_pll_14nm_vco_recalc_rate,
    591	.prepare = dsi_pll_14nm_vco_prepare,
    592	.unprepare = dsi_pll_14nm_vco_unprepare,
    593};
    594
    595/*
    596 * N1 and N2 post-divider clock callbacks
    597 */
    598#define div_mask(width)	((1 << (width)) - 1)
    599static unsigned long dsi_pll_14nm_postdiv_recalc_rate(struct clk_hw *hw,
    600						      unsigned long parent_rate)
    601{
    602	struct dsi_pll_14nm_postdiv *postdiv = to_pll_14nm_postdiv(hw);
    603	struct dsi_pll_14nm *pll_14nm = postdiv->pll;
    604	void __iomem *base = pll_14nm->phy->base;
    605	u8 shift = postdiv->shift;
    606	u8 width = postdiv->width;
    607	u32 val;
    608
    609	DBG("DSI%d PLL parent rate=%lu", pll_14nm->phy->id, parent_rate);
    610
    611	val = dsi_phy_read(base + REG_DSI_14nm_PHY_CMN_CLK_CFG0) >> shift;
    612	val &= div_mask(width);
    613
    614	return divider_recalc_rate(hw, parent_rate, val, NULL,
    615				   postdiv->flags, width);
    616}
    617
    618static long dsi_pll_14nm_postdiv_round_rate(struct clk_hw *hw,
    619					    unsigned long rate,
    620					    unsigned long *prate)
    621{
    622	struct dsi_pll_14nm_postdiv *postdiv = to_pll_14nm_postdiv(hw);
    623	struct dsi_pll_14nm *pll_14nm = postdiv->pll;
    624
    625	DBG("DSI%d PLL parent rate=%lu", pll_14nm->phy->id, rate);
    626
    627	return divider_round_rate(hw, rate, prate, NULL,
    628				  postdiv->width,
    629				  postdiv->flags);
    630}
    631
    632static int dsi_pll_14nm_postdiv_set_rate(struct clk_hw *hw, unsigned long rate,
    633					 unsigned long parent_rate)
    634{
    635	struct dsi_pll_14nm_postdiv *postdiv = to_pll_14nm_postdiv(hw);
    636	struct dsi_pll_14nm *pll_14nm = postdiv->pll;
    637	void __iomem *base = pll_14nm->phy->base;
    638	spinlock_t *lock = &pll_14nm->postdiv_lock;
    639	u8 shift = postdiv->shift;
    640	u8 width = postdiv->width;
    641	unsigned int value;
    642	unsigned long flags = 0;
    643	u32 val;
    644
    645	DBG("DSI%d PLL parent rate=%lu parent rate %lu", pll_14nm->phy->id, rate,
    646	    parent_rate);
    647
    648	value = divider_get_val(rate, parent_rate, NULL, postdiv->width,
    649				postdiv->flags);
    650
    651	spin_lock_irqsave(lock, flags);
    652
    653	val = dsi_phy_read(base + REG_DSI_14nm_PHY_CMN_CLK_CFG0);
    654	val &= ~(div_mask(width) << shift);
    655
    656	val |= value << shift;
    657	dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, val);
    658
    659	/* If we're master in bonded DSI mode, then the slave PLL's post-dividers
    660	 * follow the master's post dividers
    661	 */
    662	if (pll_14nm->phy->usecase == MSM_DSI_PHY_MASTER) {
    663		struct dsi_pll_14nm *pll_14nm_slave = pll_14nm->slave;
    664		void __iomem *slave_base = pll_14nm_slave->phy->base;
    665
    666		dsi_phy_write(slave_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, val);
    667	}
    668
    669	spin_unlock_irqrestore(lock, flags);
    670
    671	return 0;
    672}
    673
    674static const struct clk_ops clk_ops_dsi_pll_14nm_postdiv = {
    675	.recalc_rate = dsi_pll_14nm_postdiv_recalc_rate,
    676	.round_rate = dsi_pll_14nm_postdiv_round_rate,
    677	.set_rate = dsi_pll_14nm_postdiv_set_rate,
    678};
    679
    680/*
    681 * PLL Callbacks
    682 */
    683
    684static void dsi_14nm_pll_save_state(struct msm_dsi_phy *phy)
    685{
    686	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(phy->vco_hw);
    687	struct pll_14nm_cached_state *cached_state = &pll_14nm->cached_state;
    688	void __iomem *cmn_base = pll_14nm->phy->base;
    689	u32 data;
    690
    691	data = dsi_phy_read(cmn_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0);
    692
    693	cached_state->n1postdiv = data & 0xf;
    694	cached_state->n2postdiv = (data >> 4) & 0xf;
    695
    696	DBG("DSI%d PLL save state %x %x", pll_14nm->phy->id,
    697	    cached_state->n1postdiv, cached_state->n2postdiv);
    698
    699	cached_state->vco_rate = clk_hw_get_rate(phy->vco_hw);
    700}
    701
    702static int dsi_14nm_pll_restore_state(struct msm_dsi_phy *phy)
    703{
    704	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(phy->vco_hw);
    705	struct pll_14nm_cached_state *cached_state = &pll_14nm->cached_state;
    706	void __iomem *cmn_base = pll_14nm->phy->base;
    707	u32 data;
    708	int ret;
    709
    710	ret = dsi_pll_14nm_vco_set_rate(phy->vco_hw,
    711					cached_state->vco_rate, 0);
    712	if (ret) {
    713		DRM_DEV_ERROR(&pll_14nm->phy->pdev->dev,
    714			"restore vco rate failed. ret=%d\n", ret);
    715		return ret;
    716	}
    717
    718	data = cached_state->n1postdiv | (cached_state->n2postdiv << 4);
    719
    720	DBG("DSI%d PLL restore state %x %x", pll_14nm->phy->id,
    721	    cached_state->n1postdiv, cached_state->n2postdiv);
    722
    723	dsi_phy_write(cmn_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, data);
    724
    725	/* also restore post-dividers for slave DSI PLL */
    726	if (phy->usecase == MSM_DSI_PHY_MASTER) {
    727		struct dsi_pll_14nm *pll_14nm_slave = pll_14nm->slave;
    728		void __iomem *slave_base = pll_14nm_slave->phy->base;
    729
    730		dsi_phy_write(slave_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, data);
    731	}
    732
    733	return 0;
    734}
    735
    736static int dsi_14nm_set_usecase(struct msm_dsi_phy *phy)
    737{
    738	struct dsi_pll_14nm *pll_14nm = to_pll_14nm(phy->vco_hw);
    739	void __iomem *base = phy->pll_base;
    740	u32 clkbuflr_en, bandgap = 0;
    741
    742	switch (phy->usecase) {
    743	case MSM_DSI_PHY_STANDALONE:
    744		clkbuflr_en = 0x1;
    745		break;
    746	case MSM_DSI_PHY_MASTER:
    747		clkbuflr_en = 0x3;
    748		pll_14nm->slave = pll_14nm_list[(pll_14nm->phy->id + 1) % DSI_MAX];
    749		break;
    750	case MSM_DSI_PHY_SLAVE:
    751		clkbuflr_en = 0x0;
    752		bandgap = 0x3;
    753		break;
    754	default:
    755		return -EINVAL;
    756	}
    757
    758	dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_CLKBUFLR_EN, clkbuflr_en);
    759	if (bandgap)
    760		dsi_phy_write(base + REG_DSI_14nm_PHY_PLL_PLL_BANDGAP, bandgap);
    761
    762	return 0;
    763}
    764
    765static struct clk_hw *pll_14nm_postdiv_register(struct dsi_pll_14nm *pll_14nm,
    766						const char *name,
    767						const char *parent_name,
    768						unsigned long flags,
    769						u8 shift)
    770{
    771	struct dsi_pll_14nm_postdiv *pll_postdiv;
    772	struct device *dev = &pll_14nm->phy->pdev->dev;
    773	struct clk_init_data postdiv_init = {
    774		.parent_names = (const char *[]) { parent_name },
    775		.num_parents = 1,
    776		.name = name,
    777		.flags = flags,
    778		.ops = &clk_ops_dsi_pll_14nm_postdiv,
    779	};
    780	int ret;
    781
    782	pll_postdiv = devm_kzalloc(dev, sizeof(*pll_postdiv), GFP_KERNEL);
    783	if (!pll_postdiv)
    784		return ERR_PTR(-ENOMEM);
    785
    786	pll_postdiv->pll = pll_14nm;
    787	pll_postdiv->shift = shift;
    788	/* both N1 and N2 postdividers are 4 bits wide */
    789	pll_postdiv->width = 4;
    790	/* range of each divider is from 1 to 15 */
    791	pll_postdiv->flags = CLK_DIVIDER_ONE_BASED;
    792	pll_postdiv->hw.init = &postdiv_init;
    793
    794	ret = devm_clk_hw_register(dev, &pll_postdiv->hw);
    795	if (ret)
    796		return ERR_PTR(ret);
    797
    798	return &pll_postdiv->hw;
    799}
    800
    801static int pll_14nm_register(struct dsi_pll_14nm *pll_14nm, struct clk_hw **provided_clocks)
    802{
    803	char clk_name[32], parent[32], vco_name[32];
    804	struct clk_init_data vco_init = {
    805		.parent_data = &(const struct clk_parent_data) {
    806			.fw_name = "ref",
    807		},
    808		.num_parents = 1,
    809		.name = vco_name,
    810		.flags = CLK_IGNORE_UNUSED,
    811		.ops = &clk_ops_dsi_pll_14nm_vco,
    812	};
    813	struct device *dev = &pll_14nm->phy->pdev->dev;
    814	struct clk_hw *hw;
    815	int ret;
    816
    817	DBG("DSI%d", pll_14nm->phy->id);
    818
    819	snprintf(vco_name, 32, "dsi%dvco_clk", pll_14nm->phy->id);
    820	pll_14nm->clk_hw.init = &vco_init;
    821
    822	ret = devm_clk_hw_register(dev, &pll_14nm->clk_hw);
    823	if (ret)
    824		return ret;
    825
    826	snprintf(clk_name, 32, "dsi%dn1_postdiv_clk", pll_14nm->phy->id);
    827	snprintf(parent, 32, "dsi%dvco_clk", pll_14nm->phy->id);
    828
    829	/* N1 postdiv, bits 0-3 in REG_DSI_14nm_PHY_CMN_CLK_CFG0 */
    830	hw = pll_14nm_postdiv_register(pll_14nm, clk_name, parent,
    831				       CLK_SET_RATE_PARENT, 0);
    832	if (IS_ERR(hw))
    833		return PTR_ERR(hw);
    834
    835	snprintf(clk_name, 32, "dsi%dpllbyte", pll_14nm->phy->id);
    836	snprintf(parent, 32, "dsi%dn1_postdiv_clk", pll_14nm->phy->id);
    837
    838	/* DSI Byte clock = VCO_CLK / N1 / 8 */
    839	hw = devm_clk_hw_register_fixed_factor(dev, clk_name, parent,
    840					  CLK_SET_RATE_PARENT, 1, 8);
    841	if (IS_ERR(hw))
    842		return PTR_ERR(hw);
    843
    844	provided_clocks[DSI_BYTE_PLL_CLK] = hw;
    845
    846	snprintf(clk_name, 32, "dsi%dn1_postdivby2_clk", pll_14nm->phy->id);
    847	snprintf(parent, 32, "dsi%dn1_postdiv_clk", pll_14nm->phy->id);
    848
    849	/*
    850	 * Skip the mux for now, force DSICLK_SEL to 1, Add a /2 divider
    851	 * on the way. Don't let it set parent.
    852	 */
    853	hw = devm_clk_hw_register_fixed_factor(dev, clk_name, parent, 0, 1, 2);
    854	if (IS_ERR(hw))
    855		return PTR_ERR(hw);
    856
    857	snprintf(clk_name, 32, "dsi%dpll", pll_14nm->phy->id);
    858	snprintf(parent, 32, "dsi%dn1_postdivby2_clk", pll_14nm->phy->id);
    859
    860	/* DSI pixel clock = VCO_CLK / N1 / 2 / N2
    861	 * This is the output of N2 post-divider, bits 4-7 in
    862	 * REG_DSI_14nm_PHY_CMN_CLK_CFG0. Don't let it set parent.
    863	 */
    864	hw = pll_14nm_postdiv_register(pll_14nm, clk_name, parent, 0, 4);
    865	if (IS_ERR(hw))
    866		return PTR_ERR(hw);
    867
    868	provided_clocks[DSI_PIXEL_PLL_CLK]	= hw;
    869
    870	return 0;
    871}
    872
    873static int dsi_pll_14nm_init(struct msm_dsi_phy *phy)
    874{
    875	struct platform_device *pdev = phy->pdev;
    876	struct dsi_pll_14nm *pll_14nm;
    877	int ret;
    878
    879	if (!pdev)
    880		return -ENODEV;
    881
    882	pll_14nm = devm_kzalloc(&pdev->dev, sizeof(*pll_14nm), GFP_KERNEL);
    883	if (!pll_14nm)
    884		return -ENOMEM;
    885
    886	DBG("PLL%d", phy->id);
    887
    888	pll_14nm_list[phy->id] = pll_14nm;
    889
    890	spin_lock_init(&pll_14nm->postdiv_lock);
    891
    892	pll_14nm->phy = phy;
    893
    894	ret = pll_14nm_register(pll_14nm, phy->provided_clocks->hws);
    895	if (ret) {
    896		DRM_DEV_ERROR(&pdev->dev, "failed to register PLL: %d\n", ret);
    897		return ret;
    898	}
    899
    900	phy->vco_hw = &pll_14nm->clk_hw;
    901
    902	return 0;
    903}
    904
    905static void dsi_14nm_dphy_set_timing(struct msm_dsi_phy *phy,
    906				     struct msm_dsi_dphy_timing *timing,
    907				     int lane_idx)
    908{
    909	void __iomem *base = phy->lane_base;
    910	bool clk_ln = (lane_idx == PHY_14NM_CKLN_IDX);
    911	u32 zero = clk_ln ? timing->clk_zero : timing->hs_zero;
    912	u32 prepare = clk_ln ? timing->clk_prepare : timing->hs_prepare;
    913	u32 trail = clk_ln ? timing->clk_trail : timing->hs_trail;
    914	u32 rqst = clk_ln ? timing->hs_rqst_ckln : timing->hs_rqst;
    915	u32 prep_dly = clk_ln ? timing->hs_prep_dly_ckln : timing->hs_prep_dly;
    916	u32 halfbyte_en = clk_ln ? timing->hs_halfbyte_en_ckln :
    917				   timing->hs_halfbyte_en;
    918
    919	dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_4(lane_idx),
    920		      DSI_14nm_PHY_LN_TIMING_CTRL_4_HS_EXIT(timing->hs_exit));
    921	dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_5(lane_idx),
    922		      DSI_14nm_PHY_LN_TIMING_CTRL_5_HS_ZERO(zero));
    923	dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_6(lane_idx),
    924		      DSI_14nm_PHY_LN_TIMING_CTRL_6_HS_PREPARE(prepare));
    925	dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_7(lane_idx),
    926		      DSI_14nm_PHY_LN_TIMING_CTRL_7_HS_TRAIL(trail));
    927	dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_8(lane_idx),
    928		      DSI_14nm_PHY_LN_TIMING_CTRL_8_HS_RQST(rqst));
    929	dsi_phy_write(base + REG_DSI_14nm_PHY_LN_CFG0(lane_idx),
    930		      DSI_14nm_PHY_LN_CFG0_PREPARE_DLY(prep_dly));
    931	dsi_phy_write(base + REG_DSI_14nm_PHY_LN_CFG1(lane_idx),
    932		      halfbyte_en ? DSI_14nm_PHY_LN_CFG1_HALFBYTECLK_EN : 0);
    933	dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_9(lane_idx),
    934		      DSI_14nm_PHY_LN_TIMING_CTRL_9_TA_GO(timing->ta_go) |
    935		      DSI_14nm_PHY_LN_TIMING_CTRL_9_TA_SURE(timing->ta_sure));
    936	dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_10(lane_idx),
    937		      DSI_14nm_PHY_LN_TIMING_CTRL_10_TA_GET(timing->ta_get));
    938	dsi_phy_write(base + REG_DSI_14nm_PHY_LN_TIMING_CTRL_11(lane_idx),
    939		      DSI_14nm_PHY_LN_TIMING_CTRL_11_TRIG3_CMD(0xa0));
    940}
    941
    942static int dsi_14nm_phy_enable(struct msm_dsi_phy *phy,
    943			       struct msm_dsi_phy_clk_request *clk_req)
    944{
    945	struct msm_dsi_dphy_timing *timing = &phy->timing;
    946	u32 data;
    947	int i;
    948	int ret;
    949	void __iomem *base = phy->base;
    950	void __iomem *lane_base = phy->lane_base;
    951	u32 glbl_test_ctrl;
    952
    953	if (msm_dsi_dphy_timing_calc_v2(timing, clk_req)) {
    954		DRM_DEV_ERROR(&phy->pdev->dev,
    955			"%s: D-PHY timing calculation failed\n", __func__);
    956		return -EINVAL;
    957	}
    958
    959	data = 0x1c;
    960	if (phy->usecase != MSM_DSI_PHY_STANDALONE)
    961		data |= DSI_14nm_PHY_CMN_LDO_CNTRL_VREG_CTRL(32);
    962	dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_LDO_CNTRL, data);
    963
    964	dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_GLBL_TEST_CTRL, 0x1);
    965
    966	/* 4 data lanes + 1 clk lane configuration */
    967	for (i = 0; i < 5; i++) {
    968		dsi_phy_write(lane_base + REG_DSI_14nm_PHY_LN_VREG_CNTRL(i),
    969			      0x1d);
    970
    971		dsi_phy_write(lane_base +
    972			      REG_DSI_14nm_PHY_LN_STRENGTH_CTRL_0(i), 0xff);
    973		dsi_phy_write(lane_base +
    974			      REG_DSI_14nm_PHY_LN_STRENGTH_CTRL_1(i),
    975			      (i == PHY_14NM_CKLN_IDX) ? 0x00 : 0x06);
    976
    977		dsi_phy_write(lane_base + REG_DSI_14nm_PHY_LN_CFG3(i),
    978			      (i == PHY_14NM_CKLN_IDX) ? 0x8f : 0x0f);
    979		dsi_phy_write(lane_base + REG_DSI_14nm_PHY_LN_CFG2(i), 0x10);
    980		dsi_phy_write(lane_base + REG_DSI_14nm_PHY_LN_TEST_DATAPATH(i),
    981			      0);
    982		dsi_phy_write(lane_base + REG_DSI_14nm_PHY_LN_TEST_STR(i),
    983			      0x88);
    984
    985		dsi_14nm_dphy_set_timing(phy, timing, i);
    986	}
    987
    988	/* Make sure PLL is not start */
    989	dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 0x00);
    990
    991	wmb(); /* make sure everything is written before reset and enable */
    992
    993	/* reset digital block */
    994	dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_CTRL_1, 0x80);
    995	wmb(); /* ensure reset is asserted */
    996	udelay(100);
    997	dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_CTRL_1, 0x00);
    998
    999	glbl_test_ctrl = dsi_phy_read(base + REG_DSI_14nm_PHY_CMN_GLBL_TEST_CTRL);
   1000	if (phy->id == DSI_1 && phy->usecase == MSM_DSI_PHY_SLAVE)
   1001		glbl_test_ctrl |= DSI_14nm_PHY_CMN_GLBL_TEST_CTRL_BITCLK_HS_SEL;
   1002	else
   1003		glbl_test_ctrl &= ~DSI_14nm_PHY_CMN_GLBL_TEST_CTRL_BITCLK_HS_SEL;
   1004	dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_GLBL_TEST_CTRL, glbl_test_ctrl);
   1005	ret = dsi_14nm_set_usecase(phy);
   1006	if (ret) {
   1007		DRM_DEV_ERROR(&phy->pdev->dev, "%s: set pll usecase failed, %d\n",
   1008			__func__, ret);
   1009		return ret;
   1010	}
   1011
   1012	/* Remove power down from PLL and all lanes */
   1013	dsi_phy_write(base + REG_DSI_14nm_PHY_CMN_CTRL_0, 0xff);
   1014
   1015	return 0;
   1016}
   1017
   1018static void dsi_14nm_phy_disable(struct msm_dsi_phy *phy)
   1019{
   1020	dsi_phy_write(phy->base + REG_DSI_14nm_PHY_CMN_GLBL_TEST_CTRL, 0);
   1021	dsi_phy_write(phy->base + REG_DSI_14nm_PHY_CMN_CTRL_0, 0);
   1022
   1023	/* ensure that the phy is completely disabled */
   1024	wmb();
   1025}
   1026
   1027const struct msm_dsi_phy_cfg dsi_phy_14nm_cfgs = {
   1028	.has_phy_lane = true,
   1029	.reg_cfg = {
   1030		.num = 1,
   1031		.regs = {
   1032			{"vcca", 17000, 32},
   1033		},
   1034	},
   1035	.ops = {
   1036		.enable = dsi_14nm_phy_enable,
   1037		.disable = dsi_14nm_phy_disable,
   1038		.pll_init = dsi_pll_14nm_init,
   1039		.save_pll_state = dsi_14nm_pll_save_state,
   1040		.restore_pll_state = dsi_14nm_pll_restore_state,
   1041	},
   1042	.min_pll_rate = VCO_MIN_RATE,
   1043	.max_pll_rate = VCO_MAX_RATE,
   1044	.io_start = { 0x994400, 0x996400 },
   1045	.num_dsi_phy = 2,
   1046};
   1047
   1048const struct msm_dsi_phy_cfg dsi_phy_14nm_660_cfgs = {
   1049	.has_phy_lane = true,
   1050	.reg_cfg = {
   1051		.num = 1,
   1052		.regs = {
   1053			{"vcca", 73400, 32},
   1054		},
   1055	},
   1056	.ops = {
   1057		.enable = dsi_14nm_phy_enable,
   1058		.disable = dsi_14nm_phy_disable,
   1059		.pll_init = dsi_pll_14nm_init,
   1060		.save_pll_state = dsi_14nm_pll_save_state,
   1061		.restore_pll_state = dsi_14nm_pll_restore_state,
   1062	},
   1063	.min_pll_rate = VCO_MIN_RATE,
   1064	.max_pll_rate = VCO_MAX_RATE,
   1065	.io_start = { 0xc994400, 0xc996400 },
   1066	.num_dsi_phy = 2,
   1067};
   1068
   1069const struct msm_dsi_phy_cfg dsi_phy_14nm_8953_cfgs = {
   1070	.has_phy_lane = true,
   1071	.reg_cfg = {
   1072		.num = 1,
   1073		.regs = {
   1074			{"vcca", 17000, 32},
   1075		},
   1076	},
   1077	.ops = {
   1078		.enable = dsi_14nm_phy_enable,
   1079		.disable = dsi_14nm_phy_disable,
   1080		.pll_init = dsi_pll_14nm_init,
   1081		.save_pll_state = dsi_14nm_pll_save_state,
   1082		.restore_pll_state = dsi_14nm_pll_restore_state,
   1083	},
   1084	.min_pll_rate = VCO_MIN_RATE,
   1085	.max_pll_rate = VCO_MAX_RATE,
   1086	.io_start = { 0x1a94400, 0x1a96400 },
   1087	.num_dsi_phy = 2,
   1088};