cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

dsi_phy_28nm_8960.c (19346B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Copyright (c) 2012-2015, The Linux Foundation. All rights reserved.
      4 */
      5
      6#include <linux/clk-provider.h>
      7#include <linux/delay.h>
      8
      9#include "dsi_phy.h"
     10#include "dsi.xml.h"
     11#include "dsi_phy_28nm_8960.xml.h"
     12
     13/*
     14 * DSI PLL 28nm (8960/A family) - clock diagram (eg: DSI1):
     15 *
     16 *
     17 *                        +------+
     18 *  dsi1vco_clk ----o-----| DIV1 |---dsi1pllbit (not exposed as clock)
     19 *  F * byte_clk    |     +------+
     20 *                  | bit clock divider (F / 8)
     21 *                  |
     22 *                  |     +------+
     23 *                  o-----| DIV2 |---dsi0pllbyte---o---> To byte RCG
     24 *                  |     +------+                 | (sets parent rate)
     25 *                  | byte clock divider (F)       |
     26 *                  |                              |
     27 *                  |                              o---> To esc RCG
     28 *                  |                                (doesn't set parent rate)
     29 *                  |
     30 *                  |     +------+
     31 *                  o-----| DIV3 |----dsi0pll------o---> To dsi RCG
     32 *                        +------+                 | (sets parent rate)
     33 *                  dsi clock divider (F * magic)  |
     34 *                                                 |
     35 *                                                 o---> To pixel rcg
     36 *                                                  (doesn't set parent rate)
     37 */
     38
     39#define POLL_MAX_READS		8000
     40#define POLL_TIMEOUT_US		1
     41
     42#define VCO_REF_CLK_RATE	27000000
     43#define VCO_MIN_RATE		600000000
     44#define VCO_MAX_RATE		1200000000
     45
     46#define VCO_PREF_DIV_RATIO	27
     47
     48struct pll_28nm_cached_state {
     49	unsigned long vco_rate;
     50	u8 postdiv3;
     51	u8 postdiv2;
     52	u8 postdiv1;
     53};
     54
     55struct clk_bytediv {
     56	struct clk_hw hw;
     57	void __iomem *reg;
     58};
     59
     60struct dsi_pll_28nm {
     61	struct clk_hw clk_hw;
     62
     63	struct msm_dsi_phy *phy;
     64
     65	struct pll_28nm_cached_state cached_state;
     66};
     67
     68#define to_pll_28nm(x)	container_of(x, struct dsi_pll_28nm, clk_hw)
     69
     70static bool pll_28nm_poll_for_ready(struct dsi_pll_28nm *pll_28nm,
     71				    int nb_tries, int timeout_us)
     72{
     73	bool pll_locked = false;
     74	u32 val;
     75
     76	while (nb_tries--) {
     77		val = dsi_phy_read(pll_28nm->phy->pll_base + REG_DSI_28nm_8960_PHY_PLL_RDY);
     78		pll_locked = !!(val & DSI_28nm_8960_PHY_PLL_RDY_PLL_RDY);
     79
     80		if (pll_locked)
     81			break;
     82
     83		udelay(timeout_us);
     84	}
     85	DBG("DSI PLL is %slocked", pll_locked ? "" : "*not* ");
     86
     87	return pll_locked;
     88}
     89
     90/*
     91 * Clock Callbacks
     92 */
     93static int dsi_pll_28nm_clk_set_rate(struct clk_hw *hw, unsigned long rate,
     94				     unsigned long parent_rate)
     95{
     96	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(hw);
     97	void __iomem *base = pll_28nm->phy->pll_base;
     98	u32 val, temp, fb_divider;
     99
    100	DBG("rate=%lu, parent's=%lu", rate, parent_rate);
    101
    102	temp = rate / 10;
    103	val = VCO_REF_CLK_RATE / 10;
    104	fb_divider = (temp * VCO_PREF_DIV_RATIO) / val;
    105	fb_divider = fb_divider / 2 - 1;
    106	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_1,
    107			fb_divider & 0xff);
    108
    109	val = dsi_phy_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_2);
    110
    111	val |= (fb_divider >> 8) & 0x07;
    112
    113	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_2,
    114			val);
    115
    116	val = dsi_phy_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_3);
    117
    118	val |= (VCO_PREF_DIV_RATIO - 1) & 0x3f;
    119
    120	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_3,
    121			val);
    122
    123	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_6,
    124			0xf);
    125
    126	val = dsi_phy_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_8);
    127	val |= 0x7 << 4;
    128	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_8,
    129			val);
    130
    131	return 0;
    132}
    133
    134static int dsi_pll_28nm_clk_is_enabled(struct clk_hw *hw)
    135{
    136	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(hw);
    137
    138	return pll_28nm_poll_for_ready(pll_28nm, POLL_MAX_READS,
    139					POLL_TIMEOUT_US);
    140}
    141
    142static unsigned long dsi_pll_28nm_clk_recalc_rate(struct clk_hw *hw,
    143						  unsigned long parent_rate)
    144{
    145	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(hw);
    146	void __iomem *base = pll_28nm->phy->pll_base;
    147	unsigned long vco_rate;
    148	u32 status, fb_divider, temp, ref_divider;
    149
    150	VERB("parent_rate=%lu", parent_rate);
    151
    152	status = dsi_phy_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_0);
    153
    154	if (status & DSI_28nm_8960_PHY_PLL_CTRL_0_ENABLE) {
    155		fb_divider = dsi_phy_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_1);
    156		fb_divider &= 0xff;
    157		temp = dsi_phy_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_2) & 0x07;
    158		fb_divider = (temp << 8) | fb_divider;
    159		fb_divider += 1;
    160
    161		ref_divider = dsi_phy_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_3);
    162		ref_divider &= 0x3f;
    163		ref_divider += 1;
    164
    165		/* multiply by 2 */
    166		vco_rate = (parent_rate / ref_divider) * fb_divider * 2;
    167	} else {
    168		vco_rate = 0;
    169	}
    170
    171	DBG("returning vco rate = %lu", vco_rate);
    172
    173	return vco_rate;
    174}
    175
    176static int dsi_pll_28nm_vco_prepare(struct clk_hw *hw)
    177{
    178	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(hw);
    179	struct device *dev = &pll_28nm->phy->pdev->dev;
    180	void __iomem *base = pll_28nm->phy->pll_base;
    181	bool locked;
    182	unsigned int bit_div, byte_div;
    183	int max_reads = 1000, timeout_us = 100;
    184	u32 val;
    185
    186	DBG("id=%d", pll_28nm->phy->id);
    187
    188	if (unlikely(pll_28nm->phy->pll_on))
    189		return 0;
    190
    191	/*
    192	 * before enabling the PLL, configure the bit clock divider since we
    193	 * don't expose it as a clock to the outside world
    194	 * 1: read back the byte clock divider that should already be set
    195	 * 2: divide by 8 to get bit clock divider
    196	 * 3: write it to POSTDIV1
    197	 */
    198	val = dsi_phy_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_9);
    199	byte_div = val + 1;
    200	bit_div = byte_div / 8;
    201
    202	val = dsi_phy_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_8);
    203	val &= ~0xf;
    204	val |= (bit_div - 1);
    205	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_8, val);
    206
    207	/* enable the PLL */
    208	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_0,
    209			DSI_28nm_8960_PHY_PLL_CTRL_0_ENABLE);
    210
    211	locked = pll_28nm_poll_for_ready(pll_28nm, max_reads, timeout_us);
    212
    213	if (unlikely(!locked)) {
    214		DRM_DEV_ERROR(dev, "DSI PLL lock failed\n");
    215		return -EINVAL;
    216	}
    217
    218	DBG("DSI PLL lock success");
    219	pll_28nm->phy->pll_on = true;
    220
    221	return 0;
    222}
    223
    224static void dsi_pll_28nm_vco_unprepare(struct clk_hw *hw)
    225{
    226	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(hw);
    227
    228	DBG("id=%d", pll_28nm->phy->id);
    229
    230	if (unlikely(!pll_28nm->phy->pll_on))
    231		return;
    232
    233	dsi_phy_write(pll_28nm->phy->pll_base + REG_DSI_28nm_8960_PHY_PLL_CTRL_0, 0x00);
    234
    235	pll_28nm->phy->pll_on = false;
    236}
    237
    238static long dsi_pll_28nm_clk_round_rate(struct clk_hw *hw,
    239		unsigned long rate, unsigned long *parent_rate)
    240{
    241	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(hw);
    242
    243	if      (rate < pll_28nm->phy->cfg->min_pll_rate)
    244		return  pll_28nm->phy->cfg->min_pll_rate;
    245	else if (rate > pll_28nm->phy->cfg->max_pll_rate)
    246		return  pll_28nm->phy->cfg->max_pll_rate;
    247	else
    248		return rate;
    249}
    250
    251static const struct clk_ops clk_ops_dsi_pll_28nm_vco = {
    252	.round_rate = dsi_pll_28nm_clk_round_rate,
    253	.set_rate = dsi_pll_28nm_clk_set_rate,
    254	.recalc_rate = dsi_pll_28nm_clk_recalc_rate,
    255	.prepare = dsi_pll_28nm_vco_prepare,
    256	.unprepare = dsi_pll_28nm_vco_unprepare,
    257	.is_enabled = dsi_pll_28nm_clk_is_enabled,
    258};
    259
    260/*
    261 * Custom byte clock divier clk_ops
    262 *
    263 * This clock is the entry point to configuring the PLL. The user (dsi host)
    264 * will set this clock's rate to the desired byte clock rate. The VCO lock
    265 * frequency is a multiple of the byte clock rate. The multiplication factor
    266 * (shown as F in the diagram above) is a function of the byte clock rate.
    267 *
    268 * This custom divider clock ensures that its parent (VCO) is set to the
    269 * desired rate, and that the byte clock postdivider (POSTDIV2) is configured
    270 * accordingly
    271 */
    272#define to_clk_bytediv(_hw) container_of(_hw, struct clk_bytediv, hw)
    273
    274static unsigned long clk_bytediv_recalc_rate(struct clk_hw *hw,
    275		unsigned long parent_rate)
    276{
    277	struct clk_bytediv *bytediv = to_clk_bytediv(hw);
    278	unsigned int div;
    279
    280	div = dsi_phy_read(bytediv->reg) & 0xff;
    281
    282	return parent_rate / (div + 1);
    283}
    284
    285/* find multiplication factor(wrt byte clock) at which the VCO should be set */
    286static unsigned int get_vco_mul_factor(unsigned long byte_clk_rate)
    287{
    288	unsigned long bit_mhz;
    289
    290	/* convert to bit clock in Mhz */
    291	bit_mhz = (byte_clk_rate * 8) / 1000000;
    292
    293	if (bit_mhz < 125)
    294		return 64;
    295	else if (bit_mhz < 250)
    296		return 32;
    297	else if (bit_mhz < 600)
    298		return 16;
    299	else
    300		return 8;
    301}
    302
    303static long clk_bytediv_round_rate(struct clk_hw *hw, unsigned long rate,
    304				   unsigned long *prate)
    305{
    306	unsigned long best_parent;
    307	unsigned int factor;
    308
    309	factor = get_vco_mul_factor(rate);
    310
    311	best_parent = rate * factor;
    312	*prate = clk_hw_round_rate(clk_hw_get_parent(hw), best_parent);
    313
    314	return *prate / factor;
    315}
    316
    317static int clk_bytediv_set_rate(struct clk_hw *hw, unsigned long rate,
    318				unsigned long parent_rate)
    319{
    320	struct clk_bytediv *bytediv = to_clk_bytediv(hw);
    321	u32 val;
    322	unsigned int factor;
    323
    324	factor = get_vco_mul_factor(rate);
    325
    326	val = dsi_phy_read(bytediv->reg);
    327	val |= (factor - 1) & 0xff;
    328	dsi_phy_write(bytediv->reg, val);
    329
    330	return 0;
    331}
    332
    333/* Our special byte clock divider ops */
    334static const struct clk_ops clk_bytediv_ops = {
    335	.round_rate = clk_bytediv_round_rate,
    336	.set_rate = clk_bytediv_set_rate,
    337	.recalc_rate = clk_bytediv_recalc_rate,
    338};
    339
    340/*
    341 * PLL Callbacks
    342 */
    343static void dsi_28nm_pll_save_state(struct msm_dsi_phy *phy)
    344{
    345	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(phy->vco_hw);
    346	struct pll_28nm_cached_state *cached_state = &pll_28nm->cached_state;
    347	void __iomem *base = pll_28nm->phy->pll_base;
    348
    349	cached_state->postdiv3 =
    350			dsi_phy_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_10);
    351	cached_state->postdiv2 =
    352			dsi_phy_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_9);
    353	cached_state->postdiv1 =
    354			dsi_phy_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_8);
    355
    356	cached_state->vco_rate = clk_hw_get_rate(phy->vco_hw);
    357}
    358
    359static int dsi_28nm_pll_restore_state(struct msm_dsi_phy *phy)
    360{
    361	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(phy->vco_hw);
    362	struct pll_28nm_cached_state *cached_state = &pll_28nm->cached_state;
    363	void __iomem *base = pll_28nm->phy->pll_base;
    364	int ret;
    365
    366	ret = dsi_pll_28nm_clk_set_rate(phy->vco_hw,
    367					cached_state->vco_rate, 0);
    368	if (ret) {
    369		DRM_DEV_ERROR(&pll_28nm->phy->pdev->dev,
    370			"restore vco rate failed. ret=%d\n", ret);
    371		return ret;
    372	}
    373
    374	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_10,
    375			cached_state->postdiv3);
    376	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_9,
    377			cached_state->postdiv2);
    378	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_8,
    379			cached_state->postdiv1);
    380
    381	return 0;
    382}
    383
    384static int pll_28nm_register(struct dsi_pll_28nm *pll_28nm, struct clk_hw **provided_clocks)
    385{
    386	char *clk_name, *parent_name, *vco_name;
    387	struct clk_init_data vco_init = {
    388		.parent_data = &(const struct clk_parent_data) {
    389			.fw_name = "ref",
    390		},
    391		.num_parents = 1,
    392		.flags = CLK_IGNORE_UNUSED,
    393		.ops = &clk_ops_dsi_pll_28nm_vco,
    394	};
    395	struct device *dev = &pll_28nm->phy->pdev->dev;
    396	struct clk_hw *hw;
    397	struct clk_bytediv *bytediv;
    398	struct clk_init_data bytediv_init = { };
    399	int ret;
    400
    401	DBG("%d", pll_28nm->phy->id);
    402
    403	bytediv = devm_kzalloc(dev, sizeof(*bytediv), GFP_KERNEL);
    404	if (!bytediv)
    405		return -ENOMEM;
    406
    407	vco_name = devm_kzalloc(dev, 32, GFP_KERNEL);
    408	if (!vco_name)
    409		return -ENOMEM;
    410
    411	parent_name = devm_kzalloc(dev, 32, GFP_KERNEL);
    412	if (!parent_name)
    413		return -ENOMEM;
    414
    415	clk_name = devm_kzalloc(dev, 32, GFP_KERNEL);
    416	if (!clk_name)
    417		return -ENOMEM;
    418
    419	snprintf(vco_name, 32, "dsi%dvco_clk", pll_28nm->phy->id);
    420	vco_init.name = vco_name;
    421
    422	pll_28nm->clk_hw.init = &vco_init;
    423
    424	ret = devm_clk_hw_register(dev, &pll_28nm->clk_hw);
    425	if (ret)
    426		return ret;
    427
    428	/* prepare and register bytediv */
    429	bytediv->hw.init = &bytediv_init;
    430	bytediv->reg = pll_28nm->phy->pll_base + REG_DSI_28nm_8960_PHY_PLL_CTRL_9;
    431
    432	snprintf(parent_name, 32, "dsi%dvco_clk", pll_28nm->phy->id);
    433	snprintf(clk_name, 32, "dsi%dpllbyte", pll_28nm->phy->id + 1);
    434
    435	bytediv_init.name = clk_name;
    436	bytediv_init.ops = &clk_bytediv_ops;
    437	bytediv_init.flags = CLK_SET_RATE_PARENT;
    438	bytediv_init.parent_names = (const char * const *) &parent_name;
    439	bytediv_init.num_parents = 1;
    440
    441	/* DIV2 */
    442	ret = devm_clk_hw_register(dev, &bytediv->hw);
    443	if (ret)
    444		return ret;
    445	provided_clocks[DSI_BYTE_PLL_CLK] = &bytediv->hw;
    446
    447	snprintf(clk_name, 32, "dsi%dpll", pll_28nm->phy->id + 1);
    448	/* DIV3 */
    449	hw = devm_clk_hw_register_divider(dev, clk_name,
    450				parent_name, 0, pll_28nm->phy->pll_base +
    451				REG_DSI_28nm_8960_PHY_PLL_CTRL_10,
    452				0, 8, 0, NULL);
    453	if (IS_ERR(hw))
    454		return PTR_ERR(hw);
    455	provided_clocks[DSI_PIXEL_PLL_CLK] = hw;
    456
    457	return 0;
    458}
    459
    460static int dsi_pll_28nm_8960_init(struct msm_dsi_phy *phy)
    461{
    462	struct platform_device *pdev = phy->pdev;
    463	struct dsi_pll_28nm *pll_28nm;
    464	int ret;
    465
    466	if (!pdev)
    467		return -ENODEV;
    468
    469	pll_28nm = devm_kzalloc(&pdev->dev, sizeof(*pll_28nm), GFP_KERNEL);
    470	if (!pll_28nm)
    471		return -ENOMEM;
    472
    473	pll_28nm->phy = phy;
    474
    475	ret = pll_28nm_register(pll_28nm, phy->provided_clocks->hws);
    476	if (ret) {
    477		DRM_DEV_ERROR(&pdev->dev, "failed to register PLL: %d\n", ret);
    478		return ret;
    479	}
    480
    481	phy->vco_hw = &pll_28nm->clk_hw;
    482
    483	return 0;
    484}
    485
    486static void dsi_28nm_dphy_set_timing(struct msm_dsi_phy *phy,
    487		struct msm_dsi_dphy_timing *timing)
    488{
    489	void __iomem *base = phy->base;
    490
    491	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_TIMING_CTRL_0,
    492		DSI_28nm_8960_PHY_TIMING_CTRL_0_CLK_ZERO(timing->clk_zero));
    493	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_TIMING_CTRL_1,
    494		DSI_28nm_8960_PHY_TIMING_CTRL_1_CLK_TRAIL(timing->clk_trail));
    495	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_TIMING_CTRL_2,
    496		DSI_28nm_8960_PHY_TIMING_CTRL_2_CLK_PREPARE(timing->clk_prepare));
    497	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_TIMING_CTRL_3, 0x0);
    498	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_TIMING_CTRL_4,
    499		DSI_28nm_8960_PHY_TIMING_CTRL_4_HS_EXIT(timing->hs_exit));
    500	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_TIMING_CTRL_5,
    501		DSI_28nm_8960_PHY_TIMING_CTRL_5_HS_ZERO(timing->hs_zero));
    502	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_TIMING_CTRL_6,
    503		DSI_28nm_8960_PHY_TIMING_CTRL_6_HS_PREPARE(timing->hs_prepare));
    504	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_TIMING_CTRL_7,
    505		DSI_28nm_8960_PHY_TIMING_CTRL_7_HS_TRAIL(timing->hs_trail));
    506	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_TIMING_CTRL_8,
    507		DSI_28nm_8960_PHY_TIMING_CTRL_8_HS_RQST(timing->hs_rqst));
    508	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_TIMING_CTRL_9,
    509		DSI_28nm_8960_PHY_TIMING_CTRL_9_TA_GO(timing->ta_go) |
    510		DSI_28nm_8960_PHY_TIMING_CTRL_9_TA_SURE(timing->ta_sure));
    511	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_TIMING_CTRL_10,
    512		DSI_28nm_8960_PHY_TIMING_CTRL_10_TA_GET(timing->ta_get));
    513	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_TIMING_CTRL_11,
    514		DSI_28nm_8960_PHY_TIMING_CTRL_11_TRIG3_CMD(0));
    515}
    516
    517static void dsi_28nm_phy_regulator_init(struct msm_dsi_phy *phy)
    518{
    519	void __iomem *base = phy->reg_base;
    520
    521	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_MISC_REGULATOR_CTRL_0, 0x3);
    522	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_MISC_REGULATOR_CTRL_1, 1);
    523	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_MISC_REGULATOR_CTRL_2, 1);
    524	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_MISC_REGULATOR_CTRL_3, 0);
    525	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_MISC_REGULATOR_CTRL_4,
    526		0x100);
    527}
    528
    529static void dsi_28nm_phy_regulator_ctrl(struct msm_dsi_phy *phy)
    530{
    531	void __iomem *base = phy->reg_base;
    532
    533	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_MISC_REGULATOR_CTRL_0, 0x3);
    534	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_MISC_REGULATOR_CTRL_1, 0xa);
    535	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_MISC_REGULATOR_CTRL_2, 0x4);
    536	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_MISC_REGULATOR_CTRL_3, 0x0);
    537	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_MISC_REGULATOR_CTRL_4, 0x20);
    538}
    539
    540static void dsi_28nm_phy_calibration(struct msm_dsi_phy *phy)
    541{
    542	void __iomem *base = phy->reg_base;
    543	u32 status;
    544	int i = 5000;
    545
    546	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_MISC_REGULATOR_CAL_PWR_CFG,
    547			0x3);
    548
    549	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_MISC_CAL_SW_CFG_2, 0x0);
    550	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_MISC_CAL_HW_CFG_1, 0x5a);
    551	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_MISC_CAL_HW_CFG_3, 0x10);
    552	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_MISC_CAL_HW_CFG_4, 0x1);
    553	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_MISC_CAL_HW_CFG_0, 0x1);
    554
    555	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_MISC_CAL_HW_TRIGGER, 0x1);
    556	usleep_range(5000, 6000);
    557	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_MISC_CAL_HW_TRIGGER, 0x0);
    558
    559	do {
    560		status = dsi_phy_read(base +
    561				REG_DSI_28nm_8960_PHY_MISC_CAL_STATUS);
    562
    563		if (!(status & DSI_28nm_8960_PHY_MISC_CAL_STATUS_CAL_BUSY))
    564			break;
    565
    566		udelay(1);
    567	} while (--i > 0);
    568}
    569
    570static void dsi_28nm_phy_lane_config(struct msm_dsi_phy *phy)
    571{
    572	void __iomem *base = phy->base;
    573	int i;
    574
    575	for (i = 0; i < 4; i++) {
    576		dsi_phy_write(base + REG_DSI_28nm_8960_PHY_LN_CFG_0(i), 0x80);
    577		dsi_phy_write(base + REG_DSI_28nm_8960_PHY_LN_CFG_1(i), 0x45);
    578		dsi_phy_write(base + REG_DSI_28nm_8960_PHY_LN_CFG_2(i), 0x00);
    579		dsi_phy_write(base + REG_DSI_28nm_8960_PHY_LN_TEST_DATAPATH(i),
    580			0x00);
    581		dsi_phy_write(base + REG_DSI_28nm_8960_PHY_LN_TEST_STR_0(i),
    582			0x01);
    583		dsi_phy_write(base + REG_DSI_28nm_8960_PHY_LN_TEST_STR_1(i),
    584			0x66);
    585	}
    586
    587	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_LNCK_CFG_0, 0x40);
    588	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_LNCK_CFG_1, 0x67);
    589	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_LNCK_CFG_2, 0x0);
    590	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_LNCK_TEST_DATAPATH, 0x0);
    591	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_LNCK_TEST_STR0, 0x1);
    592	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_LNCK_TEST_STR1, 0x88);
    593}
    594
    595static int dsi_28nm_phy_enable(struct msm_dsi_phy *phy,
    596				struct msm_dsi_phy_clk_request *clk_req)
    597{
    598	struct msm_dsi_dphy_timing *timing = &phy->timing;
    599	void __iomem *base = phy->base;
    600
    601	DBG("");
    602
    603	if (msm_dsi_dphy_timing_calc(timing, clk_req)) {
    604		DRM_DEV_ERROR(&phy->pdev->dev,
    605			"%s: D-PHY timing calculation failed\n", __func__);
    606		return -EINVAL;
    607	}
    608
    609	dsi_28nm_phy_regulator_init(phy);
    610
    611	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_LDO_CTRL, 0x04);
    612
    613	/* strength control */
    614	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_STRENGTH_0, 0xff);
    615	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_STRENGTH_1, 0x00);
    616	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_STRENGTH_2, 0x06);
    617
    618	/* phy ctrl */
    619	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_CTRL_0, 0x5f);
    620	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_CTRL_1, 0x00);
    621	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_CTRL_2, 0x00);
    622	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_CTRL_3, 0x10);
    623
    624	dsi_28nm_phy_regulator_ctrl(phy);
    625
    626	dsi_28nm_phy_calibration(phy);
    627
    628	dsi_28nm_phy_lane_config(phy);
    629
    630	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_BIST_CTRL_4, 0x0f);
    631	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_BIST_CTRL_1, 0x03);
    632	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_BIST_CTRL_0, 0x03);
    633	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_BIST_CTRL_4, 0x0);
    634
    635	dsi_28nm_dphy_set_timing(phy, timing);
    636
    637	return 0;
    638}
    639
    640static void dsi_28nm_phy_disable(struct msm_dsi_phy *phy)
    641{
    642	dsi_phy_write(phy->base + REG_DSI_28nm_8960_PHY_CTRL_0, 0x0);
    643
    644	/*
    645	 * Wait for the registers writes to complete in order to
    646	 * ensure that the phy is completely disabled
    647	 */
    648	wmb();
    649}
    650
    651const struct msm_dsi_phy_cfg dsi_phy_28nm_8960_cfgs = {
    652	.has_phy_regulator = true,
    653	.reg_cfg = {
    654		.num = 1,
    655		.regs = {
    656			{"vddio", 100000, 100},	/* 1.8 V */
    657		},
    658	},
    659	.ops = {
    660		.enable = dsi_28nm_phy_enable,
    661		.disable = dsi_28nm_phy_disable,
    662		.pll_init = dsi_pll_28nm_8960_init,
    663		.save_pll_state = dsi_28nm_pll_save_state,
    664		.restore_pll_state = dsi_28nm_pll_restore_state,
    665	},
    666	.min_pll_rate = VCO_MIN_RATE,
    667	.max_pll_rate = VCO_MAX_RATE,
    668	.io_start = { 0x4700300, 0x5800300 },
    669	.num_dsi_phy = 2,
    670};