cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

msm_gpu.h (18258B)


      1/* SPDX-License-Identifier: GPL-2.0-only */
      2/*
      3 * Copyright (C) 2013 Red Hat
      4 * Author: Rob Clark <robdclark@gmail.com>
      5 */
      6
      7#ifndef __MSM_GPU_H__
      8#define __MSM_GPU_H__
      9
     10#include <linux/adreno-smmu-priv.h>
     11#include <linux/clk.h>
     12#include <linux/devfreq.h>
     13#include <linux/interconnect.h>
     14#include <linux/pm_opp.h>
     15#include <linux/regulator/consumer.h>
     16
     17#include "msm_drv.h"
     18#include "msm_fence.h"
     19#include "msm_ringbuffer.h"
     20#include "msm_gem.h"
     21
     22struct msm_gem_submit;
     23struct msm_gpu_perfcntr;
     24struct msm_gpu_state;
     25struct msm_file_private;
     26
     27struct msm_gpu_config {
     28	const char *ioname;
     29	unsigned int nr_rings;
     30};
     31
     32/* So far, with hardware that I've seen to date, we can have:
     33 *  + zero, one, or two z180 2d cores
     34 *  + a3xx or a2xx 3d core, which share a common CP (the firmware
     35 *    for the CP seems to implement some different PM4 packet types
     36 *    but the basics of cmdstream submission are the same)
     37 *
     38 * Which means that the eventual complete "class" hierarchy, once
     39 * support for all past and present hw is in place, becomes:
     40 *  + msm_gpu
     41 *    + adreno_gpu
     42 *      + a3xx_gpu
     43 *      + a2xx_gpu
     44 *    + z180_gpu
     45 */
     46struct msm_gpu_funcs {
     47	int (*get_param)(struct msm_gpu *gpu, struct msm_file_private *ctx,
     48			 uint32_t param, uint64_t *value, uint32_t *len);
     49	int (*set_param)(struct msm_gpu *gpu, struct msm_file_private *ctx,
     50			 uint32_t param, uint64_t value, uint32_t len);
     51	int (*hw_init)(struct msm_gpu *gpu);
     52	int (*pm_suspend)(struct msm_gpu *gpu);
     53	int (*pm_resume)(struct msm_gpu *gpu);
     54	void (*submit)(struct msm_gpu *gpu, struct msm_gem_submit *submit);
     55	void (*flush)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
     56	irqreturn_t (*irq)(struct msm_gpu *irq);
     57	struct msm_ringbuffer *(*active_ring)(struct msm_gpu *gpu);
     58	void (*recover)(struct msm_gpu *gpu);
     59	void (*destroy)(struct msm_gpu *gpu);
     60#if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP)
     61	/* show GPU status in debugfs: */
     62	void (*show)(struct msm_gpu *gpu, struct msm_gpu_state *state,
     63			struct drm_printer *p);
     64	/* for generation specific debugfs: */
     65	void (*debugfs_init)(struct msm_gpu *gpu, struct drm_minor *minor);
     66#endif
     67	u64 (*gpu_busy)(struct msm_gpu *gpu, unsigned long *out_sample_rate);
     68	struct msm_gpu_state *(*gpu_state_get)(struct msm_gpu *gpu);
     69	int (*gpu_state_put)(struct msm_gpu_state *state);
     70	unsigned long (*gpu_get_freq)(struct msm_gpu *gpu);
     71	void (*gpu_set_freq)(struct msm_gpu *gpu, struct dev_pm_opp *opp);
     72	struct msm_gem_address_space *(*create_address_space)
     73		(struct msm_gpu *gpu, struct platform_device *pdev);
     74	struct msm_gem_address_space *(*create_private_address_space)
     75		(struct msm_gpu *gpu);
     76	uint32_t (*get_rptr)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
     77};
     78
     79/* Additional state for iommu faults: */
     80struct msm_gpu_fault_info {
     81	u64 ttbr0;
     82	unsigned long iova;
     83	int flags;
     84	const char *type;
     85	const char *block;
     86};
     87
     88/**
     89 * struct msm_gpu_devfreq - devfreq related state
     90 */
     91struct msm_gpu_devfreq {
     92	/** devfreq: devfreq instance */
     93	struct devfreq *devfreq;
     94
     95	/**
     96	 * idle_constraint:
     97	 *
     98	 * A PM QoS constraint to limit max freq while the GPU is idle.
     99	 */
    100	struct dev_pm_qos_request idle_freq;
    101
    102	/**
    103	 * boost_constraint:
    104	 *
    105	 * A PM QoS constraint to boost min freq for a period of time
    106	 * until the boost expires.
    107	 */
    108	struct dev_pm_qos_request boost_freq;
    109
    110	/**
    111	 * busy_cycles: Last busy counter value, for calculating elapsed busy
    112	 * cycles since last sampling period.
    113	 */
    114	u64 busy_cycles;
    115
    116	/** time: Time of last sampling period. */
    117	ktime_t time;
    118
    119	/** idle_time: Time of last transition to idle: */
    120	ktime_t idle_time;
    121
    122	struct devfreq_dev_status average_status;
    123
    124	/**
    125	 * idle_work:
    126	 *
    127	 * Used to delay clamping to idle freq on active->idle transition.
    128	 */
    129	struct msm_hrtimer_work idle_work;
    130
    131	/**
    132	 * boost_work:
    133	 *
    134	 * Used to reset the boost_constraint after the boost period has
    135	 * elapsed
    136	 */
    137	struct msm_hrtimer_work boost_work;
    138};
    139
    140struct msm_gpu {
    141	const char *name;
    142	struct drm_device *dev;
    143	struct platform_device *pdev;
    144	const struct msm_gpu_funcs *funcs;
    145
    146	struct adreno_smmu_priv adreno_smmu;
    147
    148	/* performance counters (hw & sw): */
    149	spinlock_t perf_lock;
    150	bool perfcntr_active;
    151	struct {
    152		bool active;
    153		ktime_t time;
    154	} last_sample;
    155	uint32_t totaltime, activetime;    /* sw counters */
    156	uint32_t last_cntrs[5];            /* hw counters */
    157	const struct msm_gpu_perfcntr *perfcntrs;
    158	uint32_t num_perfcntrs;
    159
    160	struct msm_ringbuffer *rb[MSM_GPU_MAX_RINGS];
    161	int nr_rings;
    162
    163	/**
    164	 * sysprof_active:
    165	 *
    166	 * The count of contexts that have enabled system profiling.
    167	 */
    168	refcount_t sysprof_active;
    169
    170	/**
    171	 * cur_ctx_seqno:
    172	 *
    173	 * The ctx->seqno value of the last context to submit rendering,
    174	 * and the one with current pgtables installed (for generations
    175	 * that support per-context pgtables).  Tracked by seqno rather
    176	 * than pointer value to avoid dangling pointers, and cases where
    177	 * a ctx can be freed and a new one created with the same address.
    178	 */
    179	int cur_ctx_seqno;
    180
    181	/*
    182	 * List of GEM active objects on this gpu.  Protected by
    183	 * msm_drm_private::mm_lock
    184	 */
    185	struct list_head active_list;
    186
    187	/**
    188	 * lock:
    189	 *
    190	 * General lock for serializing all the gpu things.
    191	 *
    192	 * TODO move to per-ring locking where feasible (ie. submit/retire
    193	 * path, etc)
    194	 */
    195	struct mutex lock;
    196
    197	/**
    198	 * active_submits:
    199	 *
    200	 * The number of submitted but not yet retired submits, used to
    201	 * determine transitions between active and idle.
    202	 *
    203	 * Protected by active_lock
    204	 */
    205	int active_submits;
    206
    207	/** lock: protects active_submits and idle/active transitions */
    208	struct mutex active_lock;
    209
    210	/* does gpu need hw_init? */
    211	bool needs_hw_init;
    212
    213	/**
    214	 * global_faults: number of GPU hangs not attributed to a particular
    215	 * address space
    216	 */
    217	int global_faults;
    218
    219	void __iomem *mmio;
    220	int irq;
    221
    222	struct msm_gem_address_space *aspace;
    223
    224	/* Power Control: */
    225	struct regulator *gpu_reg, *gpu_cx;
    226	struct clk_bulk_data *grp_clks;
    227	int nr_clocks;
    228	struct clk *ebi1_clk, *core_clk, *rbbmtimer_clk;
    229	uint32_t fast_rate;
    230
    231	/* Hang and Inactivity Detection:
    232	 */
    233#define DRM_MSM_INACTIVE_PERIOD   66 /* in ms (roughly four frames) */
    234
    235#define DRM_MSM_HANGCHECK_DEFAULT_PERIOD 500 /* in ms */
    236	struct timer_list hangcheck_timer;
    237
    238	/* Fault info for most recent iova fault: */
    239	struct msm_gpu_fault_info fault_info;
    240
    241	/* work for handling GPU ioval faults: */
    242	struct kthread_work fault_work;
    243
    244	/* work for handling GPU recovery: */
    245	struct kthread_work recover_work;
    246
    247	/** retire_event: notified when submits are retired: */
    248	wait_queue_head_t retire_event;
    249
    250	/* work for handling active-list retiring: */
    251	struct kthread_work retire_work;
    252
    253	/* worker for retire/recover: */
    254	struct kthread_worker *worker;
    255
    256	struct drm_gem_object *memptrs_bo;
    257
    258	struct msm_gpu_devfreq devfreq;
    259
    260	uint32_t suspend_count;
    261
    262	struct msm_gpu_state *crashstate;
    263
    264	/* Enable clamping to idle freq when inactive: */
    265	bool clamp_to_idle;
    266
    267	/* True if the hardware supports expanded apriv (a650 and newer) */
    268	bool hw_apriv;
    269
    270	struct thermal_cooling_device *cooling;
    271};
    272
    273static inline struct msm_gpu *dev_to_gpu(struct device *dev)
    274{
    275	struct adreno_smmu_priv *adreno_smmu = dev_get_drvdata(dev);
    276	return container_of(adreno_smmu, struct msm_gpu, adreno_smmu);
    277}
    278
    279/* It turns out that all targets use the same ringbuffer size */
    280#define MSM_GPU_RINGBUFFER_SZ SZ_32K
    281#define MSM_GPU_RINGBUFFER_BLKSIZE 32
    282
    283#define MSM_GPU_RB_CNTL_DEFAULT \
    284		(AXXX_CP_RB_CNTL_BUFSZ(ilog2(MSM_GPU_RINGBUFFER_SZ / 8)) | \
    285		AXXX_CP_RB_CNTL_BLKSZ(ilog2(MSM_GPU_RINGBUFFER_BLKSIZE / 8)))
    286
    287static inline bool msm_gpu_active(struct msm_gpu *gpu)
    288{
    289	int i;
    290
    291	for (i = 0; i < gpu->nr_rings; i++) {
    292		struct msm_ringbuffer *ring = gpu->rb[i];
    293
    294		if (fence_after(ring->fctx->last_fence, ring->memptrs->fence))
    295			return true;
    296	}
    297
    298	return false;
    299}
    300
    301/* Perf-Counters:
    302 * The select_reg and select_val are just there for the benefit of the child
    303 * class that actually enables the perf counter..  but msm_gpu base class
    304 * will handle sampling/displaying the counters.
    305 */
    306
    307struct msm_gpu_perfcntr {
    308	uint32_t select_reg;
    309	uint32_t sample_reg;
    310	uint32_t select_val;
    311	const char *name;
    312};
    313
    314/*
    315 * The number of priority levels provided by drm gpu scheduler.  The
    316 * DRM_SCHED_PRIORITY_KERNEL priority level is treated specially in some
    317 * cases, so we don't use it (no need for kernel generated jobs).
    318 */
    319#define NR_SCHED_PRIORITIES (1 + DRM_SCHED_PRIORITY_HIGH - DRM_SCHED_PRIORITY_MIN)
    320
    321/**
    322 * struct msm_file_private - per-drm_file context
    323 *
    324 * @queuelock:    synchronizes access to submitqueues list
    325 * @submitqueues: list of &msm_gpu_submitqueue created by userspace
    326 * @queueid:      counter incremented each time a submitqueue is created,
    327 *                used to assign &msm_gpu_submitqueue.id
    328 * @aspace:       the per-process GPU address-space
    329 * @ref:          reference count
    330 * @seqno:        unique per process seqno
    331 */
    332struct msm_file_private {
    333	rwlock_t queuelock;
    334	struct list_head submitqueues;
    335	int queueid;
    336	struct msm_gem_address_space *aspace;
    337	struct kref ref;
    338	int seqno;
    339
    340	/**
    341	 * sysprof:
    342	 *
    343	 * The value of MSM_PARAM_SYSPROF set by userspace.  This is
    344	 * intended to be used by system profiling tools like Mesa's
    345	 * pps-producer (perfetto), and restricted to CAP_SYS_ADMIN.
    346	 *
    347	 * Setting a value of 1 will preserve performance counters across
    348	 * context switches.  Setting a value of 2 will in addition
    349	 * suppress suspend.  (Performance counters lose state across
    350	 * power collapse, which is undesirable for profiling in some
    351	 * cases.)
    352	 *
    353	 * The value automatically reverts to zero when the drm device
    354	 * file is closed.
    355	 */
    356	int sysprof;
    357
    358	/** comm: Overridden task comm, see MSM_PARAM_COMM */
    359	char *comm;
    360
    361	/** cmdline: Overridden task cmdline, see MSM_PARAM_CMDLINE */
    362	char *cmdline;
    363
    364	/**
    365	 * entities:
    366	 *
    367	 * Table of per-priority-level sched entities used by submitqueues
    368	 * associated with this &drm_file.  Because some userspace apps
    369	 * make assumptions about rendering from multiple gl contexts
    370	 * (of the same priority) within the process happening in FIFO
    371	 * order without requiring any fencing beyond MakeCurrent(), we
    372	 * create at most one &drm_sched_entity per-process per-priority-
    373	 * level.
    374	 */
    375	struct drm_sched_entity *entities[NR_SCHED_PRIORITIES * MSM_GPU_MAX_RINGS];
    376};
    377
    378/**
    379 * msm_gpu_convert_priority - Map userspace priority to ring # and sched priority
    380 *
    381 * @gpu:        the gpu instance
    382 * @prio:       the userspace priority level
    383 * @ring_nr:    [out] the ringbuffer the userspace priority maps to
    384 * @sched_prio: [out] the gpu scheduler priority level which the userspace
    385 *              priority maps to
    386 *
    387 * With drm/scheduler providing it's own level of prioritization, our total
    388 * number of available priority levels is (nr_rings * NR_SCHED_PRIORITIES).
    389 * Each ring is associated with it's own scheduler instance.  However, our
    390 * UABI is that lower numerical values are higher priority.  So mapping the
    391 * single userspace priority level into ring_nr and sched_prio takes some
    392 * care.  The userspace provided priority (when a submitqueue is created)
    393 * is mapped to ring nr and scheduler priority as such:
    394 *
    395 *   ring_nr    = userspace_prio / NR_SCHED_PRIORITIES
    396 *   sched_prio = NR_SCHED_PRIORITIES -
    397 *                (userspace_prio % NR_SCHED_PRIORITIES) - 1
    398 *
    399 * This allows generations without preemption (nr_rings==1) to have some
    400 * amount of prioritization, and provides more priority levels for gens
    401 * that do have preemption.
    402 */
    403static inline int msm_gpu_convert_priority(struct msm_gpu *gpu, int prio,
    404		unsigned *ring_nr, enum drm_sched_priority *sched_prio)
    405{
    406	unsigned rn, sp;
    407
    408	rn = div_u64_rem(prio, NR_SCHED_PRIORITIES, &sp);
    409
    410	/* invert sched priority to map to higher-numeric-is-higher-
    411	 * priority convention
    412	 */
    413	sp = NR_SCHED_PRIORITIES - sp - 1;
    414
    415	if (rn >= gpu->nr_rings)
    416		return -EINVAL;
    417
    418	*ring_nr = rn;
    419	*sched_prio = sp;
    420
    421	return 0;
    422}
    423
    424/**
    425 * struct msm_gpu_submitqueues - Userspace created context.
    426 *
    427 * A submitqueue is associated with a gl context or vk queue (or equiv)
    428 * in userspace.
    429 *
    430 * @id:        userspace id for the submitqueue, unique within the drm_file
    431 * @flags:     userspace flags for the submitqueue, specified at creation
    432 *             (currently unusued)
    433 * @ring_nr:   the ringbuffer used by this submitqueue, which is determined
    434 *             by the submitqueue's priority
    435 * @faults:    the number of GPU hangs associated with this submitqueue
    436 * @last_fence: the sequence number of the last allocated fence (for error
    437 *             checking)
    438 * @ctx:       the per-drm_file context associated with the submitqueue (ie.
    439 *             which set of pgtables do submits jobs associated with the
    440 *             submitqueue use)
    441 * @node:      node in the context's list of submitqueues
    442 * @fence_idr: maps fence-id to dma_fence for userspace visible fence
    443 *             seqno, protected by submitqueue lock
    444 * @lock:      submitqueue lock
    445 * @ref:       reference count
    446 * @entity:    the submit job-queue
    447 */
    448struct msm_gpu_submitqueue {
    449	int id;
    450	u32 flags;
    451	u32 ring_nr;
    452	int faults;
    453	uint32_t last_fence;
    454	struct msm_file_private *ctx;
    455	struct list_head node;
    456	struct idr fence_idr;
    457	struct mutex lock;
    458	struct kref ref;
    459	struct drm_sched_entity *entity;
    460};
    461
    462struct msm_gpu_state_bo {
    463	u64 iova;
    464	size_t size;
    465	void *data;
    466	bool encoded;
    467};
    468
    469struct msm_gpu_state {
    470	struct kref ref;
    471	struct timespec64 time;
    472
    473	struct {
    474		u64 iova;
    475		u32 fence;
    476		u32 seqno;
    477		u32 rptr;
    478		u32 wptr;
    479		void *data;
    480		int data_size;
    481		bool encoded;
    482	} ring[MSM_GPU_MAX_RINGS];
    483
    484	int nr_registers;
    485	u32 *registers;
    486
    487	u32 rbbm_status;
    488
    489	char *comm;
    490	char *cmd;
    491
    492	struct msm_gpu_fault_info fault_info;
    493
    494	int nr_bos;
    495	struct msm_gpu_state_bo *bos;
    496};
    497
    498static inline void gpu_write(struct msm_gpu *gpu, u32 reg, u32 data)
    499{
    500	msm_writel(data, gpu->mmio + (reg << 2));
    501}
    502
    503static inline u32 gpu_read(struct msm_gpu *gpu, u32 reg)
    504{
    505	return msm_readl(gpu->mmio + (reg << 2));
    506}
    507
    508static inline void gpu_rmw(struct msm_gpu *gpu, u32 reg, u32 mask, u32 or)
    509{
    510	msm_rmw(gpu->mmio + (reg << 2), mask, or);
    511}
    512
    513static inline u64 gpu_read64(struct msm_gpu *gpu, u32 lo, u32 hi)
    514{
    515	u64 val;
    516
    517	/*
    518	 * Why not a readq here? Two reasons: 1) many of the LO registers are
    519	 * not quad word aligned and 2) the GPU hardware designers have a bit
    520	 * of a history of putting registers where they fit, especially in
    521	 * spins. The longer a GPU family goes the higher the chance that
    522	 * we'll get burned.  We could do a series of validity checks if we
    523	 * wanted to, but really is a readq() that much better? Nah.
    524	 */
    525
    526	/*
    527	 * For some lo/hi registers (like perfcounters), the hi value is latched
    528	 * when the lo is read, so make sure to read the lo first to trigger
    529	 * that
    530	 */
    531	val = (u64) msm_readl(gpu->mmio + (lo << 2));
    532	val |= ((u64) msm_readl(gpu->mmio + (hi << 2)) << 32);
    533
    534	return val;
    535}
    536
    537static inline void gpu_write64(struct msm_gpu *gpu, u32 lo, u32 hi, u64 val)
    538{
    539	/* Why not a writeq here? Read the screed above */
    540	msm_writel(lower_32_bits(val), gpu->mmio + (lo << 2));
    541	msm_writel(upper_32_bits(val), gpu->mmio + (hi << 2));
    542}
    543
    544int msm_gpu_pm_suspend(struct msm_gpu *gpu);
    545int msm_gpu_pm_resume(struct msm_gpu *gpu);
    546
    547int msm_submitqueue_init(struct drm_device *drm, struct msm_file_private *ctx);
    548struct msm_gpu_submitqueue *msm_submitqueue_get(struct msm_file_private *ctx,
    549		u32 id);
    550int msm_submitqueue_create(struct drm_device *drm,
    551		struct msm_file_private *ctx,
    552		u32 prio, u32 flags, u32 *id);
    553int msm_submitqueue_query(struct drm_device *drm, struct msm_file_private *ctx,
    554		struct drm_msm_submitqueue_query *args);
    555int msm_submitqueue_remove(struct msm_file_private *ctx, u32 id);
    556void msm_submitqueue_close(struct msm_file_private *ctx);
    557
    558void msm_submitqueue_destroy(struct kref *kref);
    559
    560int msm_file_private_set_sysprof(struct msm_file_private *ctx,
    561				 struct msm_gpu *gpu, int sysprof);
    562void __msm_file_private_destroy(struct kref *kref);
    563
    564static inline void msm_file_private_put(struct msm_file_private *ctx)
    565{
    566	kref_put(&ctx->ref, __msm_file_private_destroy);
    567}
    568
    569static inline struct msm_file_private *msm_file_private_get(
    570	struct msm_file_private *ctx)
    571{
    572	kref_get(&ctx->ref);
    573	return ctx;
    574}
    575
    576void msm_devfreq_init(struct msm_gpu *gpu);
    577void msm_devfreq_cleanup(struct msm_gpu *gpu);
    578void msm_devfreq_resume(struct msm_gpu *gpu);
    579void msm_devfreq_suspend(struct msm_gpu *gpu);
    580void msm_devfreq_boost(struct msm_gpu *gpu, unsigned factor);
    581void msm_devfreq_active(struct msm_gpu *gpu);
    582void msm_devfreq_idle(struct msm_gpu *gpu);
    583
    584int msm_gpu_hw_init(struct msm_gpu *gpu);
    585
    586void msm_gpu_perfcntr_start(struct msm_gpu *gpu);
    587void msm_gpu_perfcntr_stop(struct msm_gpu *gpu);
    588int msm_gpu_perfcntr_sample(struct msm_gpu *gpu, uint32_t *activetime,
    589		uint32_t *totaltime, uint32_t ncntrs, uint32_t *cntrs);
    590
    591void msm_gpu_retire(struct msm_gpu *gpu);
    592void msm_gpu_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit);
    593
    594int msm_gpu_init(struct drm_device *drm, struct platform_device *pdev,
    595		struct msm_gpu *gpu, const struct msm_gpu_funcs *funcs,
    596		const char *name, struct msm_gpu_config *config);
    597
    598struct msm_gem_address_space *
    599msm_gpu_create_private_address_space(struct msm_gpu *gpu, struct task_struct *task);
    600
    601void msm_gpu_cleanup(struct msm_gpu *gpu);
    602
    603struct msm_gpu *adreno_load_gpu(struct drm_device *dev);
    604void __init adreno_register(void);
    605void __exit adreno_unregister(void);
    606
    607static inline void msm_submitqueue_put(struct msm_gpu_submitqueue *queue)
    608{
    609	if (queue)
    610		kref_put(&queue->ref, msm_submitqueue_destroy);
    611}
    612
    613static inline struct msm_gpu_state *msm_gpu_crashstate_get(struct msm_gpu *gpu)
    614{
    615	struct msm_gpu_state *state = NULL;
    616
    617	mutex_lock(&gpu->lock);
    618
    619	if (gpu->crashstate) {
    620		kref_get(&gpu->crashstate->ref);
    621		state = gpu->crashstate;
    622	}
    623
    624	mutex_unlock(&gpu->lock);
    625
    626	return state;
    627}
    628
    629static inline void msm_gpu_crashstate_put(struct msm_gpu *gpu)
    630{
    631	mutex_lock(&gpu->lock);
    632
    633	if (gpu->crashstate) {
    634		if (gpu->funcs->gpu_state_put(gpu->crashstate))
    635			gpu->crashstate = NULL;
    636	}
    637
    638	mutex_unlock(&gpu->lock);
    639}
    640
    641/*
    642 * Simple macro to semi-cleanly add the MAP_PRIV flag for targets that can
    643 * support expanded privileges
    644 */
    645#define check_apriv(gpu, flags) \
    646	(((gpu)->hw_apriv ? MSM_BO_MAP_PRIV : 0) | (flags))
    647
    648
    649#endif /* __MSM_GPU_H__ */