cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

nv50.c (15119B)


      1/*
      2 * Copyright 2012 Red Hat Inc.
      3 *
      4 * Permission is hereby granted, free of charge, to any person obtaining a
      5 * copy of this software and associated documentation files (the "Software"),
      6 * to deal in the Software without restriction, including without limitation
      7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8 * and/or sell copies of the Software, and to permit persons to whom the
      9 * Software is furnished to do so, subject to the following conditions:
     10 *
     11 * The above copyright notice and this permission notice shall be included in
     12 * all copies or substantial portions of the Software.
     13 *
     14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
     18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
     19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
     20 * OTHER DEALINGS IN THE SOFTWARE.
     21 *
     22 * Authors: Ben Skeggs
     23 */
     24#include "nv50.h"
     25#include "pll.h"
     26#include "seq.h"
     27
     28#include <subdev/bios.h>
     29#include <subdev/bios/pll.h>
     30
     31static u32
     32read_div(struct nv50_clk *clk)
     33{
     34	struct nvkm_device *device = clk->base.subdev.device;
     35	switch (device->chipset) {
     36	case 0x50: /* it exists, but only has bit 31, not the dividers.. */
     37	case 0x84:
     38	case 0x86:
     39	case 0x98:
     40	case 0xa0:
     41		return nvkm_rd32(device, 0x004700);
     42	case 0x92:
     43	case 0x94:
     44	case 0x96:
     45		return nvkm_rd32(device, 0x004800);
     46	default:
     47		return 0x00000000;
     48	}
     49}
     50
     51static u32
     52read_pll_src(struct nv50_clk *clk, u32 base)
     53{
     54	struct nvkm_subdev *subdev = &clk->base.subdev;
     55	struct nvkm_device *device = subdev->device;
     56	u32 coef, ref = nvkm_clk_read(&clk->base, nv_clk_src_crystal);
     57	u32 rsel = nvkm_rd32(device, 0x00e18c);
     58	int P, N, M, id;
     59
     60	switch (device->chipset) {
     61	case 0x50:
     62	case 0xa0:
     63		switch (base) {
     64		case 0x4020:
     65		case 0x4028: id = !!(rsel & 0x00000004); break;
     66		case 0x4008: id = !!(rsel & 0x00000008); break;
     67		case 0x4030: id = 0; break;
     68		default:
     69			nvkm_error(subdev, "ref: bad pll %06x\n", base);
     70			return 0;
     71		}
     72
     73		coef = nvkm_rd32(device, 0x00e81c + (id * 0x0c));
     74		ref *=  (coef & 0x01000000) ? 2 : 4;
     75		P    =  (coef & 0x00070000) >> 16;
     76		N    = ((coef & 0x0000ff00) >> 8) + 1;
     77		M    = ((coef & 0x000000ff) >> 0) + 1;
     78		break;
     79	case 0x84:
     80	case 0x86:
     81	case 0x92:
     82		coef = nvkm_rd32(device, 0x00e81c);
     83		P    = (coef & 0x00070000) >> 16;
     84		N    = (coef & 0x0000ff00) >> 8;
     85		M    = (coef & 0x000000ff) >> 0;
     86		break;
     87	case 0x94:
     88	case 0x96:
     89	case 0x98:
     90		rsel = nvkm_rd32(device, 0x00c050);
     91		switch (base) {
     92		case 0x4020: rsel = (rsel & 0x00000003) >> 0; break;
     93		case 0x4008: rsel = (rsel & 0x0000000c) >> 2; break;
     94		case 0x4028: rsel = (rsel & 0x00001800) >> 11; break;
     95		case 0x4030: rsel = 3; break;
     96		default:
     97			nvkm_error(subdev, "ref: bad pll %06x\n", base);
     98			return 0;
     99		}
    100
    101		switch (rsel) {
    102		case 0: id = 1; break;
    103		case 1: return nvkm_clk_read(&clk->base, nv_clk_src_crystal);
    104		case 2: return nvkm_clk_read(&clk->base, nv_clk_src_href);
    105		case 3: id = 0; break;
    106		}
    107
    108		coef =  nvkm_rd32(device, 0x00e81c + (id * 0x28));
    109		P    = (nvkm_rd32(device, 0x00e824 + (id * 0x28)) >> 16) & 7;
    110		P   += (coef & 0x00070000) >> 16;
    111		N    = (coef & 0x0000ff00) >> 8;
    112		M    = (coef & 0x000000ff) >> 0;
    113		break;
    114	default:
    115		BUG();
    116	}
    117
    118	if (M)
    119		return (ref * N / M) >> P;
    120
    121	return 0;
    122}
    123
    124static u32
    125read_pll_ref(struct nv50_clk *clk, u32 base)
    126{
    127	struct nvkm_subdev *subdev = &clk->base.subdev;
    128	struct nvkm_device *device = subdev->device;
    129	u32 src, mast = nvkm_rd32(device, 0x00c040);
    130
    131	switch (base) {
    132	case 0x004028:
    133		src = !!(mast & 0x00200000);
    134		break;
    135	case 0x004020:
    136		src = !!(mast & 0x00400000);
    137		break;
    138	case 0x004008:
    139		src = !!(mast & 0x00010000);
    140		break;
    141	case 0x004030:
    142		src = !!(mast & 0x02000000);
    143		break;
    144	case 0x00e810:
    145		return nvkm_clk_read(&clk->base, nv_clk_src_crystal);
    146	default:
    147		nvkm_error(subdev, "bad pll %06x\n", base);
    148		return 0;
    149	}
    150
    151	if (src)
    152		return nvkm_clk_read(&clk->base, nv_clk_src_href);
    153
    154	return read_pll_src(clk, base);
    155}
    156
    157static u32
    158read_pll(struct nv50_clk *clk, u32 base)
    159{
    160	struct nvkm_device *device = clk->base.subdev.device;
    161	u32 mast = nvkm_rd32(device, 0x00c040);
    162	u32 ctrl = nvkm_rd32(device, base + 0);
    163	u32 coef = nvkm_rd32(device, base + 4);
    164	u32 ref = read_pll_ref(clk, base);
    165	u32 freq = 0;
    166	int N1, N2, M1, M2;
    167
    168	if (base == 0x004028 && (mast & 0x00100000)) {
    169		/* wtf, appears to only disable post-divider on gt200 */
    170		if (device->chipset != 0xa0)
    171			return nvkm_clk_read(&clk->base, nv_clk_src_dom6);
    172	}
    173
    174	N2 = (coef & 0xff000000) >> 24;
    175	M2 = (coef & 0x00ff0000) >> 16;
    176	N1 = (coef & 0x0000ff00) >> 8;
    177	M1 = (coef & 0x000000ff);
    178	if ((ctrl & 0x80000000) && M1) {
    179		freq = ref * N1 / M1;
    180		if ((ctrl & 0x40000100) == 0x40000000) {
    181			if (M2)
    182				freq = freq * N2 / M2;
    183			else
    184				freq = 0;
    185		}
    186	}
    187
    188	return freq;
    189}
    190
    191int
    192nv50_clk_read(struct nvkm_clk *base, enum nv_clk_src src)
    193{
    194	struct nv50_clk *clk = nv50_clk(base);
    195	struct nvkm_subdev *subdev = &clk->base.subdev;
    196	struct nvkm_device *device = subdev->device;
    197	u32 mast = nvkm_rd32(device, 0x00c040);
    198	u32 P = 0;
    199
    200	switch (src) {
    201	case nv_clk_src_crystal:
    202		return device->crystal;
    203	case nv_clk_src_href:
    204		return 100000; /* PCIE reference clock */
    205	case nv_clk_src_hclk:
    206		return div_u64((u64)nvkm_clk_read(&clk->base, nv_clk_src_href) * 27778, 10000);
    207	case nv_clk_src_hclkm3:
    208		return nvkm_clk_read(&clk->base, nv_clk_src_hclk) * 3;
    209	case nv_clk_src_hclkm3d2:
    210		return nvkm_clk_read(&clk->base, nv_clk_src_hclk) * 3 / 2;
    211	case nv_clk_src_host:
    212		switch (mast & 0x30000000) {
    213		case 0x00000000: return nvkm_clk_read(&clk->base, nv_clk_src_href);
    214		case 0x10000000: break;
    215		case 0x20000000: /* !0x50 */
    216		case 0x30000000: return nvkm_clk_read(&clk->base, nv_clk_src_hclk);
    217		}
    218		break;
    219	case nv_clk_src_core:
    220		if (!(mast & 0x00100000))
    221			P = (nvkm_rd32(device, 0x004028) & 0x00070000) >> 16;
    222		switch (mast & 0x00000003) {
    223		case 0x00000000: return nvkm_clk_read(&clk->base, nv_clk_src_crystal) >> P;
    224		case 0x00000001: return nvkm_clk_read(&clk->base, nv_clk_src_dom6);
    225		case 0x00000002: return read_pll(clk, 0x004020) >> P;
    226		case 0x00000003: return read_pll(clk, 0x004028) >> P;
    227		}
    228		break;
    229	case nv_clk_src_shader:
    230		P = (nvkm_rd32(device, 0x004020) & 0x00070000) >> 16;
    231		switch (mast & 0x00000030) {
    232		case 0x00000000:
    233			if (mast & 0x00000080)
    234				return nvkm_clk_read(&clk->base, nv_clk_src_host) >> P;
    235			return nvkm_clk_read(&clk->base, nv_clk_src_crystal) >> P;
    236		case 0x00000010: break;
    237		case 0x00000020: return read_pll(clk, 0x004028) >> P;
    238		case 0x00000030: return read_pll(clk, 0x004020) >> P;
    239		}
    240		break;
    241	case nv_clk_src_mem:
    242		P = (nvkm_rd32(device, 0x004008) & 0x00070000) >> 16;
    243		if (nvkm_rd32(device, 0x004008) & 0x00000200) {
    244			switch (mast & 0x0000c000) {
    245			case 0x00000000:
    246				return nvkm_clk_read(&clk->base, nv_clk_src_crystal) >> P;
    247			case 0x00008000:
    248			case 0x0000c000:
    249				return nvkm_clk_read(&clk->base, nv_clk_src_href) >> P;
    250			}
    251		} else {
    252			return read_pll(clk, 0x004008) >> P;
    253		}
    254		break;
    255	case nv_clk_src_vdec:
    256		P = (read_div(clk) & 0x00000700) >> 8;
    257		switch (device->chipset) {
    258		case 0x84:
    259		case 0x86:
    260		case 0x92:
    261		case 0x94:
    262		case 0x96:
    263		case 0xa0:
    264			switch (mast & 0x00000c00) {
    265			case 0x00000000:
    266				if (device->chipset == 0xa0) /* wtf?? */
    267					return nvkm_clk_read(&clk->base, nv_clk_src_core) >> P;
    268				return nvkm_clk_read(&clk->base, nv_clk_src_crystal) >> P;
    269			case 0x00000400:
    270				return 0;
    271			case 0x00000800:
    272				if (mast & 0x01000000)
    273					return read_pll(clk, 0x004028) >> P;
    274				return read_pll(clk, 0x004030) >> P;
    275			case 0x00000c00:
    276				return nvkm_clk_read(&clk->base, nv_clk_src_core) >> P;
    277			}
    278			break;
    279		case 0x98:
    280			switch (mast & 0x00000c00) {
    281			case 0x00000000:
    282				return nvkm_clk_read(&clk->base, nv_clk_src_core) >> P;
    283			case 0x00000400:
    284				return 0;
    285			case 0x00000800:
    286				return nvkm_clk_read(&clk->base, nv_clk_src_hclkm3d2) >> P;
    287			case 0x00000c00:
    288				return nvkm_clk_read(&clk->base, nv_clk_src_mem) >> P;
    289			}
    290			break;
    291		}
    292		break;
    293	case nv_clk_src_dom6:
    294		switch (device->chipset) {
    295		case 0x50:
    296		case 0xa0:
    297			return read_pll(clk, 0x00e810) >> 2;
    298		case 0x84:
    299		case 0x86:
    300		case 0x92:
    301		case 0x94:
    302		case 0x96:
    303		case 0x98:
    304			P = (read_div(clk) & 0x00000007) >> 0;
    305			switch (mast & 0x0c000000) {
    306			case 0x00000000: return nvkm_clk_read(&clk->base, nv_clk_src_href);
    307			case 0x04000000: break;
    308			case 0x08000000: return nvkm_clk_read(&clk->base, nv_clk_src_hclk);
    309			case 0x0c000000:
    310				return nvkm_clk_read(&clk->base, nv_clk_src_hclkm3) >> P;
    311			}
    312			break;
    313		default:
    314			break;
    315		}
    316		break;
    317	default:
    318		break;
    319	}
    320
    321	nvkm_debug(subdev, "unknown clock source %d %08x\n", src, mast);
    322	return -EINVAL;
    323}
    324
    325static u32
    326calc_pll(struct nv50_clk *clk, u32 reg, u32 idx, int *N, int *M, int *P)
    327{
    328	struct nvkm_subdev *subdev = &clk->base.subdev;
    329	struct nvbios_pll pll;
    330	int ret;
    331
    332	ret = nvbios_pll_parse(subdev->device->bios, reg, &pll);
    333	if (ret)
    334		return 0;
    335
    336	pll.vco2.max_freq = 0;
    337	pll.refclk = read_pll_ref(clk, reg);
    338	if (!pll.refclk)
    339		return 0;
    340
    341	return nv04_pll_calc(subdev, &pll, idx, N, M, NULL, NULL, P);
    342}
    343
    344static inline u32
    345calc_div(u32 src, u32 target, int *div)
    346{
    347	u32 clk0 = src, clk1 = src;
    348	for (*div = 0; *div <= 7; (*div)++) {
    349		if (clk0 <= target) {
    350			clk1 = clk0 << (*div ? 1 : 0);
    351			break;
    352		}
    353		clk0 >>= 1;
    354	}
    355
    356	if (target - clk0 <= clk1 - target)
    357		return clk0;
    358	(*div)--;
    359	return clk1;
    360}
    361
    362static inline u32
    363clk_same(u32 a, u32 b)
    364{
    365	return ((a / 1000) == (b / 1000));
    366}
    367
    368int
    369nv50_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate)
    370{
    371	struct nv50_clk *clk = nv50_clk(base);
    372	struct nv50_clk_hwsq *hwsq = &clk->hwsq;
    373	struct nvkm_subdev *subdev = &clk->base.subdev;
    374	struct nvkm_device *device = subdev->device;
    375	const int shader = cstate->domain[nv_clk_src_shader];
    376	const int core = cstate->domain[nv_clk_src_core];
    377	const int vdec = cstate->domain[nv_clk_src_vdec];
    378	const int dom6 = cstate->domain[nv_clk_src_dom6];
    379	u32 mastm = 0, mastv = 0;
    380	u32 divsm = 0, divsv = 0;
    381	int N, M, P1, P2;
    382	int freq, out;
    383
    384	/* prepare a hwsq script from which we'll perform the reclock */
    385	out = clk_init(hwsq, subdev);
    386	if (out)
    387		return out;
    388
    389	clk_wr32(hwsq, fifo, 0x00000001); /* block fifo */
    390	clk_nsec(hwsq, 8000);
    391	clk_setf(hwsq, 0x10, 0x00); /* disable fb */
    392	clk_wait(hwsq, 0x00, 0x01); /* wait for fb disabled */
    393
    394	/* vdec: avoid modifying xpll until we know exactly how the other
    395	 * clock domains work, i suspect at least some of them can also be
    396	 * tied to xpll...
    397	 */
    398	if (vdec) {
    399		/* see how close we can get using nvclk as a source */
    400		freq = calc_div(core, vdec, &P1);
    401
    402		/* see how close we can get using xpll/hclk as a source */
    403		if (device->chipset != 0x98)
    404			out = read_pll(clk, 0x004030);
    405		else
    406			out = nvkm_clk_read(&clk->base, nv_clk_src_hclkm3d2);
    407		out = calc_div(out, vdec, &P2);
    408
    409		/* select whichever gets us closest */
    410		if (abs(vdec - freq) <= abs(vdec - out)) {
    411			if (device->chipset != 0x98)
    412				mastv |= 0x00000c00;
    413			divsv |= P1 << 8;
    414		} else {
    415			mastv |= 0x00000800;
    416			divsv |= P2 << 8;
    417		}
    418
    419		mastm |= 0x00000c00;
    420		divsm |= 0x00000700;
    421	}
    422
    423	/* dom6: nfi what this is, but we're limited to various combinations
    424	 * of the host clock frequency
    425	 */
    426	if (dom6) {
    427		if (clk_same(dom6, nvkm_clk_read(&clk->base, nv_clk_src_href))) {
    428			mastv |= 0x00000000;
    429		} else
    430		if (clk_same(dom6, nvkm_clk_read(&clk->base, nv_clk_src_hclk))) {
    431			mastv |= 0x08000000;
    432		} else {
    433			freq = nvkm_clk_read(&clk->base, nv_clk_src_hclk) * 3;
    434			calc_div(freq, dom6, &P1);
    435
    436			mastv |= 0x0c000000;
    437			divsv |= P1;
    438		}
    439
    440		mastm |= 0x0c000000;
    441		divsm |= 0x00000007;
    442	}
    443
    444	/* vdec/dom6: switch to "safe" clocks temporarily, update dividers
    445	 * and then switch to target clocks
    446	 */
    447	clk_mask(hwsq, mast, mastm, 0x00000000);
    448	clk_mask(hwsq, divs, divsm, divsv);
    449	clk_mask(hwsq, mast, mastm, mastv);
    450
    451	/* core/shader: disconnect nvclk/sclk from their PLLs (nvclk to dom6,
    452	 * sclk to hclk) before reprogramming
    453	 */
    454	if (device->chipset < 0x92)
    455		clk_mask(hwsq, mast, 0x001000b0, 0x00100080);
    456	else
    457		clk_mask(hwsq, mast, 0x000000b3, 0x00000081);
    458
    459	/* core: for the moment at least, always use nvpll */
    460	freq = calc_pll(clk, 0x4028, core, &N, &M, &P1);
    461	if (freq == 0)
    462		return -ERANGE;
    463
    464	clk_mask(hwsq, nvpll[0], 0xc03f0100,
    465				 0x80000000 | (P1 << 19) | (P1 << 16));
    466	clk_mask(hwsq, nvpll[1], 0x0000ffff, (N << 8) | M);
    467
    468	/* shader: tie to nvclk if possible, otherwise use spll.  have to be
    469	 * very careful that the shader clock is at least twice the core, or
    470	 * some chipsets will be very unhappy.  i expect most or all of these
    471	 * cases will be handled by tying to nvclk, but it's possible there's
    472	 * corners
    473	 */
    474	if (P1-- && shader == (core << 1)) {
    475		clk_mask(hwsq, spll[0], 0xc03f0100, (P1 << 19) | (P1 << 16));
    476		clk_mask(hwsq, mast, 0x00100033, 0x00000023);
    477	} else {
    478		freq = calc_pll(clk, 0x4020, shader, &N, &M, &P1);
    479		if (freq == 0)
    480			return -ERANGE;
    481
    482		clk_mask(hwsq, spll[0], 0xc03f0100,
    483					0x80000000 | (P1 << 19) | (P1 << 16));
    484		clk_mask(hwsq, spll[1], 0x0000ffff, (N << 8) | M);
    485		clk_mask(hwsq, mast, 0x00100033, 0x00000033);
    486	}
    487
    488	/* restore normal operation */
    489	clk_setf(hwsq, 0x10, 0x01); /* enable fb */
    490	clk_wait(hwsq, 0x00, 0x00); /* wait for fb enabled */
    491	clk_wr32(hwsq, fifo, 0x00000000); /* un-block fifo */
    492	return 0;
    493}
    494
    495int
    496nv50_clk_prog(struct nvkm_clk *base)
    497{
    498	struct nv50_clk *clk = nv50_clk(base);
    499	return clk_exec(&clk->hwsq, true);
    500}
    501
    502void
    503nv50_clk_tidy(struct nvkm_clk *base)
    504{
    505	struct nv50_clk *clk = nv50_clk(base);
    506	clk_exec(&clk->hwsq, false);
    507}
    508
    509int
    510nv50_clk_new_(const struct nvkm_clk_func *func, struct nvkm_device *device,
    511	      enum nvkm_subdev_type type, int inst, bool allow_reclock, struct nvkm_clk **pclk)
    512{
    513	struct nv50_clk *clk;
    514	int ret;
    515
    516	if (!(clk = kzalloc(sizeof(*clk), GFP_KERNEL)))
    517		return -ENOMEM;
    518	ret = nvkm_clk_ctor(func, device, type, inst, allow_reclock, &clk->base);
    519	*pclk = &clk->base;
    520	if (ret)
    521		return ret;
    522
    523	clk->hwsq.r_fifo = hwsq_reg(0x002504);
    524	clk->hwsq.r_spll[0] = hwsq_reg(0x004020);
    525	clk->hwsq.r_spll[1] = hwsq_reg(0x004024);
    526	clk->hwsq.r_nvpll[0] = hwsq_reg(0x004028);
    527	clk->hwsq.r_nvpll[1] = hwsq_reg(0x00402c);
    528	switch (device->chipset) {
    529	case 0x92:
    530	case 0x94:
    531	case 0x96:
    532		clk->hwsq.r_divs = hwsq_reg(0x004800);
    533		break;
    534	default:
    535		clk->hwsq.r_divs = hwsq_reg(0x004700);
    536		break;
    537	}
    538	clk->hwsq.r_mast = hwsq_reg(0x00c040);
    539	return 0;
    540}
    541
    542static const struct nvkm_clk_func
    543nv50_clk = {
    544	.read = nv50_clk_read,
    545	.calc = nv50_clk_calc,
    546	.prog = nv50_clk_prog,
    547	.tidy = nv50_clk_tidy,
    548	.domains = {
    549		{ nv_clk_src_crystal, 0xff },
    550		{ nv_clk_src_href   , 0xff },
    551		{ nv_clk_src_core   , 0xff, 0, "core", 1000 },
    552		{ nv_clk_src_shader , 0xff, 0, "shader", 1000 },
    553		{ nv_clk_src_mem    , 0xff, 0, "memory", 1000 },
    554		{ nv_clk_src_max }
    555	}
    556};
    557
    558int
    559nv50_clk_new(struct nvkm_device *device, enum nvkm_subdev_type type, int inst,
    560	     struct nvkm_clk **pclk)
    561{
    562	return nv50_clk_new_(&nv50_clk, device, type, inst, false, pclk);
    563}