rcar_du_group.c (10836B)
1// SPDX-License-Identifier: GPL-2.0+ 2/* 3 * rcar_du_group.c -- R-Car Display Unit Channels Pair 4 * 5 * Copyright (C) 2013-2015 Renesas Electronics Corporation 6 * 7 * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com) 8 */ 9 10/* 11 * The R8A7779 DU is split in per-CRTC resources (scan-out engine, blending 12 * unit, timings generator, ...) and device-global resources (start/stop 13 * control, planes, ...) shared between the two CRTCs. 14 * 15 * The R8A7790 introduced a third CRTC with its own set of global resources. 16 * This would be modeled as two separate DU device instances if it wasn't for 17 * a handful or resources that are shared between the three CRTCs (mostly 18 * related to input and output routing). For this reason the R8A7790 DU must be 19 * modeled as a single device with three CRTCs, two sets of "semi-global" 20 * resources, and a few device-global resources. 21 * 22 * The rcar_du_group object is a driver specific object, without any real 23 * counterpart in the DU documentation, that models those semi-global resources. 24 */ 25 26#include <linux/clk.h> 27#include <linux/io.h> 28 29#include "rcar_du_drv.h" 30#include "rcar_du_group.h" 31#include "rcar_du_regs.h" 32 33u32 rcar_du_group_read(struct rcar_du_group *rgrp, u32 reg) 34{ 35 return rcar_du_read(rgrp->dev, rgrp->mmio_offset + reg); 36} 37 38void rcar_du_group_write(struct rcar_du_group *rgrp, u32 reg, u32 data) 39{ 40 rcar_du_write(rgrp->dev, rgrp->mmio_offset + reg, data); 41} 42 43static void rcar_du_group_setup_pins(struct rcar_du_group *rgrp) 44{ 45 u32 defr6 = DEFR6_CODE; 46 47 if (rgrp->channels_mask & BIT(0)) 48 defr6 |= DEFR6_ODPM02_DISP; 49 50 if (rgrp->channels_mask & BIT(1)) 51 defr6 |= DEFR6_ODPM12_DISP; 52 53 rcar_du_group_write(rgrp, DEFR6, defr6); 54} 55 56static void rcar_du_group_setup_defr8(struct rcar_du_group *rgrp) 57{ 58 struct rcar_du_device *rcdu = rgrp->dev; 59 u32 defr8 = DEFR8_CODE; 60 61 if (rcdu->info->gen < 3) { 62 defr8 |= DEFR8_DEFE8; 63 64 /* 65 * On Gen2 the DEFR8 register for the first group also controls 66 * RGB output routing to DPAD0 and VSPD1 routing to DU0/1/2 for 67 * DU instances that support it. 68 */ 69 if (rgrp->index == 0) { 70 defr8 |= DEFR8_DRGBS_DU(rcdu->dpad0_source); 71 if (rgrp->dev->vspd1_sink == 2) 72 defr8 |= DEFR8_VSCS; 73 } 74 } else { 75 /* 76 * On Gen3 VSPD routing can't be configured, and DPAD routing 77 * is set in the group corresponding to the DPAD output (no Gen3 78 * SoC has multiple DPAD sources belonging to separate groups). 79 */ 80 if (rgrp->index == rcdu->dpad0_source / 2) 81 defr8 |= DEFR8_DRGBS_DU(rcdu->dpad0_source); 82 } 83 84 rcar_du_group_write(rgrp, DEFR8, defr8); 85} 86 87static void rcar_du_group_setup_didsr(struct rcar_du_group *rgrp) 88{ 89 struct rcar_du_device *rcdu = rgrp->dev; 90 struct rcar_du_crtc *rcrtc; 91 unsigned int num_crtcs = 0; 92 unsigned int i; 93 u32 didsr; 94 95 /* 96 * Configure input dot clock routing with a hardcoded configuration. If 97 * the DU channel can use the LVDS encoder output clock as the dot 98 * clock, do so. Otherwise route DU_DOTCLKINn signal to DUn. 99 * 100 * Each channel can then select between the dot clock configured here 101 * and the clock provided by the CPG through the ESCR register. 102 */ 103 if (rcdu->info->gen < 3 && rgrp->index == 0) { 104 /* 105 * On Gen2 a single register in the first group controls dot 106 * clock selection for all channels. 107 */ 108 rcrtc = rcdu->crtcs; 109 num_crtcs = rcdu->num_crtcs; 110 } else if (rcdu->info->gen == 3 && rgrp->num_crtcs > 1) { 111 /* 112 * On Gen3 dot clocks are setup through per-group registers, 113 * only available when the group has two channels. 114 */ 115 rcrtc = &rcdu->crtcs[rgrp->index * 2]; 116 num_crtcs = rgrp->num_crtcs; 117 } 118 119 if (!num_crtcs) 120 return; 121 122 didsr = DIDSR_CODE; 123 for (i = 0; i < num_crtcs; ++i, ++rcrtc) { 124 if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index)) 125 didsr |= DIDSR_LDCS_LVDS0(i) 126 | DIDSR_PDCS_CLK(i, 0); 127 else if (rcdu->info->dsi_clk_mask & BIT(rcrtc->index)) 128 didsr |= DIDSR_LDCS_DSI(i); 129 else 130 didsr |= DIDSR_LDCS_DCLKIN(i) 131 | DIDSR_PDCS_CLK(i, 0); 132 } 133 134 rcar_du_group_write(rgrp, DIDSR, didsr); 135} 136 137static void rcar_du_group_setup(struct rcar_du_group *rgrp) 138{ 139 struct rcar_du_device *rcdu = rgrp->dev; 140 u32 defr7 = DEFR7_CODE; 141 142 /* Enable extended features */ 143 rcar_du_group_write(rgrp, DEFR, DEFR_CODE | DEFR_DEFE); 144 if (rcdu->info->gen < 3) { 145 rcar_du_group_write(rgrp, DEFR2, DEFR2_CODE | DEFR2_DEFE2G); 146 rcar_du_group_write(rgrp, DEFR3, DEFR3_CODE | DEFR3_DEFE3); 147 rcar_du_group_write(rgrp, DEFR4, DEFR4_CODE); 148 } 149 rcar_du_group_write(rgrp, DEFR5, DEFR5_CODE | DEFR5_DEFE5); 150 151 rcar_du_group_setup_pins(rgrp); 152 153 /* 154 * TODO: Handle routing of the DU output to CMM dynamically, as we 155 * should bypass CMM completely when no color management feature is 156 * used. 157 */ 158 defr7 |= (rgrp->cmms_mask & BIT(1) ? DEFR7_CMME1 : 0) | 159 (rgrp->cmms_mask & BIT(0) ? DEFR7_CMME0 : 0); 160 rcar_du_group_write(rgrp, DEFR7, defr7); 161 162 if (rcdu->info->gen >= 2) { 163 rcar_du_group_setup_defr8(rgrp); 164 rcar_du_group_setup_didsr(rgrp); 165 } 166 167 if (rcdu->info->gen >= 3) 168 rcar_du_group_write(rgrp, DEFR10, DEFR10_CODE | DEFR10_DEFE10); 169 170 /* 171 * Use DS1PR and DS2PR to configure planes priorities and connects the 172 * superposition 0 to DU0 pins. DU1 pins will be configured dynamically. 173 */ 174 rcar_du_group_write(rgrp, DORCR, DORCR_PG1D_DS1 | DORCR_DPRS); 175 176 /* Apply planes to CRTCs association. */ 177 mutex_lock(&rgrp->lock); 178 rcar_du_group_write(rgrp, DPTSR, (rgrp->dptsr_planes << 16) | 179 rgrp->dptsr_planes); 180 mutex_unlock(&rgrp->lock); 181} 182 183/* 184 * rcar_du_group_get - Acquire a reference to the DU channels group 185 * 186 * Acquiring the first reference setups core registers. A reference must be held 187 * before accessing any hardware registers. 188 * 189 * This function must be called with the DRM mode_config lock held. 190 * 191 * Return 0 in case of success or a negative error code otherwise. 192 */ 193int rcar_du_group_get(struct rcar_du_group *rgrp) 194{ 195 if (rgrp->use_count) 196 goto done; 197 198 rcar_du_group_setup(rgrp); 199 200done: 201 rgrp->use_count++; 202 return 0; 203} 204 205/* 206 * rcar_du_group_put - Release a reference to the DU 207 * 208 * This function must be called with the DRM mode_config lock held. 209 */ 210void rcar_du_group_put(struct rcar_du_group *rgrp) 211{ 212 --rgrp->use_count; 213} 214 215static void __rcar_du_group_start_stop(struct rcar_du_group *rgrp, bool start) 216{ 217 struct rcar_du_device *rcdu = rgrp->dev; 218 219 /* 220 * Group start/stop is controlled by the DRES and DEN bits of DSYSR0 221 * for the first group and DSYSR2 for the second group. On most DU 222 * instances, this maps to the first CRTC of the group, and we can just 223 * use rcar_du_crtc_dsysr_clr_set() to access the correct DSYSR. On 224 * M3-N, however, DU2 doesn't exist, but DSYSR2 does. We thus need to 225 * access the register directly using group read/write. 226 */ 227 if (rcdu->info->channels_mask & BIT(rgrp->index * 2)) { 228 struct rcar_du_crtc *rcrtc = &rgrp->dev->crtcs[rgrp->index * 2]; 229 230 rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_DRES | DSYSR_DEN, 231 start ? DSYSR_DEN : DSYSR_DRES); 232 } else { 233 rcar_du_group_write(rgrp, DSYSR, 234 start ? DSYSR_DEN : DSYSR_DRES); 235 } 236} 237 238void rcar_du_group_start_stop(struct rcar_du_group *rgrp, bool start) 239{ 240 /* 241 * Many of the configuration bits are only updated when the display 242 * reset (DRES) bit in DSYSR is set to 1, disabling *both* CRTCs. Some 243 * of those bits could be pre-configured, but others (especially the 244 * bits related to plane assignment to display timing controllers) need 245 * to be modified at runtime. 246 * 247 * Restart the display controller if a start is requested. Sorry for the 248 * flicker. It should be possible to move most of the "DRES-update" bits 249 * setup to driver initialization time and minimize the number of cases 250 * when the display controller will have to be restarted. 251 */ 252 if (start) { 253 if (rgrp->used_crtcs++ != 0) 254 __rcar_du_group_start_stop(rgrp, false); 255 __rcar_du_group_start_stop(rgrp, true); 256 } else { 257 if (--rgrp->used_crtcs == 0) 258 __rcar_du_group_start_stop(rgrp, false); 259 } 260} 261 262void rcar_du_group_restart(struct rcar_du_group *rgrp) 263{ 264 rgrp->need_restart = false; 265 266 __rcar_du_group_start_stop(rgrp, false); 267 __rcar_du_group_start_stop(rgrp, true); 268} 269 270int rcar_du_set_dpad0_vsp1_routing(struct rcar_du_device *rcdu) 271{ 272 struct rcar_du_group *rgrp; 273 struct rcar_du_crtc *crtc; 274 unsigned int index; 275 int ret; 276 277 if (rcdu->info->gen < 2) 278 return 0; 279 280 /* 281 * RGB output routing to DPAD0 and VSP1D routing to DU0/1/2 are 282 * configured in the DEFR8 register of the first group on Gen2 and the 283 * last group on Gen3. As this function can be called with the DU 284 * channels of the corresponding CRTCs disabled, we need to enable the 285 * group clock before accessing the register. 286 */ 287 index = rcdu->info->gen < 3 ? 0 : DIV_ROUND_UP(rcdu->num_crtcs, 2) - 1; 288 rgrp = &rcdu->groups[index]; 289 crtc = &rcdu->crtcs[index * 2]; 290 291 ret = clk_prepare_enable(crtc->clock); 292 if (ret < 0) 293 return ret; 294 295 rcar_du_group_setup_defr8(rgrp); 296 297 clk_disable_unprepare(crtc->clock); 298 299 return 0; 300} 301 302static void rcar_du_group_set_dpad_levels(struct rcar_du_group *rgrp) 303{ 304 static const u32 doflr_values[2] = { 305 DOFLR_HSYCFL0 | DOFLR_VSYCFL0 | DOFLR_ODDFL0 | 306 DOFLR_DISPFL0 | DOFLR_CDEFL0 | DOFLR_RGBFL0, 307 DOFLR_HSYCFL1 | DOFLR_VSYCFL1 | DOFLR_ODDFL1 | 308 DOFLR_DISPFL1 | DOFLR_CDEFL1 | DOFLR_RGBFL1, 309 }; 310 static const u32 dpad_mask = BIT(RCAR_DU_OUTPUT_DPAD1) 311 | BIT(RCAR_DU_OUTPUT_DPAD0); 312 struct rcar_du_device *rcdu = rgrp->dev; 313 u32 doflr = DOFLR_CODE; 314 unsigned int i; 315 316 if (rcdu->info->gen < 2) 317 return; 318 319 /* 320 * The DPAD outputs can't be controlled directly. However, the parallel 321 * output of the DU channels routed to DPAD can be set to fixed levels 322 * through the DOFLR group register. Use this to turn the DPAD on or off 323 * by driving fixed low-level signals at the output of any DU channel 324 * not routed to a DPAD output. This doesn't affect the DU output 325 * signals going to other outputs, such as the internal LVDS and HDMI 326 * encoders. 327 */ 328 329 for (i = 0; i < rgrp->num_crtcs; ++i) { 330 struct rcar_du_crtc_state *rstate; 331 struct rcar_du_crtc *rcrtc; 332 333 rcrtc = &rcdu->crtcs[rgrp->index * 2 + i]; 334 rstate = to_rcar_crtc_state(rcrtc->crtc.state); 335 336 if (!(rstate->outputs & dpad_mask)) 337 doflr |= doflr_values[i]; 338 } 339 340 rcar_du_group_write(rgrp, DOFLR, doflr); 341} 342 343int rcar_du_group_set_routing(struct rcar_du_group *rgrp) 344{ 345 struct rcar_du_device *rcdu = rgrp->dev; 346 u32 dorcr = rcar_du_group_read(rgrp, DORCR); 347 348 dorcr &= ~(DORCR_PG2T | DORCR_DK2S | DORCR_PG2D_MASK); 349 350 /* 351 * Set the DPAD1 pins sources. Select CRTC 0 if explicitly requested and 352 * CRTC 1 in all other cases to avoid cloning CRTC 0 to DPAD0 and DPAD1 353 * by default. 354 */ 355 if (rcdu->dpad1_source == rgrp->index * 2) 356 dorcr |= DORCR_PG2D_DS1; 357 else 358 dorcr |= DORCR_PG2T | DORCR_DK2S | DORCR_PG2D_DS2; 359 360 rcar_du_group_write(rgrp, DORCR, dorcr); 361 362 rcar_du_group_set_dpad_levels(rgrp); 363 364 return rcar_du_set_dpad0_vsp1_routing(rgrp->dev); 365}