cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

rcar_du_group.c (10836B)


      1// SPDX-License-Identifier: GPL-2.0+
      2/*
      3 * rcar_du_group.c  --  R-Car Display Unit Channels Pair
      4 *
      5 * Copyright (C) 2013-2015 Renesas Electronics Corporation
      6 *
      7 * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
      8 */
      9
     10/*
     11 * The R8A7779 DU is split in per-CRTC resources (scan-out engine, blending
     12 * unit, timings generator, ...) and device-global resources (start/stop
     13 * control, planes, ...) shared between the two CRTCs.
     14 *
     15 * The R8A7790 introduced a third CRTC with its own set of global resources.
     16 * This would be modeled as two separate DU device instances if it wasn't for
     17 * a handful or resources that are shared between the three CRTCs (mostly
     18 * related to input and output routing). For this reason the R8A7790 DU must be
     19 * modeled as a single device with three CRTCs, two sets of "semi-global"
     20 * resources, and a few device-global resources.
     21 *
     22 * The rcar_du_group object is a driver specific object, without any real
     23 * counterpart in the DU documentation, that models those semi-global resources.
     24 */
     25
     26#include <linux/clk.h>
     27#include <linux/io.h>
     28
     29#include "rcar_du_drv.h"
     30#include "rcar_du_group.h"
     31#include "rcar_du_regs.h"
     32
     33u32 rcar_du_group_read(struct rcar_du_group *rgrp, u32 reg)
     34{
     35	return rcar_du_read(rgrp->dev, rgrp->mmio_offset + reg);
     36}
     37
     38void rcar_du_group_write(struct rcar_du_group *rgrp, u32 reg, u32 data)
     39{
     40	rcar_du_write(rgrp->dev, rgrp->mmio_offset + reg, data);
     41}
     42
     43static void rcar_du_group_setup_pins(struct rcar_du_group *rgrp)
     44{
     45	u32 defr6 = DEFR6_CODE;
     46
     47	if (rgrp->channels_mask & BIT(0))
     48		defr6 |= DEFR6_ODPM02_DISP;
     49
     50	if (rgrp->channels_mask & BIT(1))
     51		defr6 |= DEFR6_ODPM12_DISP;
     52
     53	rcar_du_group_write(rgrp, DEFR6, defr6);
     54}
     55
     56static void rcar_du_group_setup_defr8(struct rcar_du_group *rgrp)
     57{
     58	struct rcar_du_device *rcdu = rgrp->dev;
     59	u32 defr8 = DEFR8_CODE;
     60
     61	if (rcdu->info->gen < 3) {
     62		defr8 |= DEFR8_DEFE8;
     63
     64		/*
     65		 * On Gen2 the DEFR8 register for the first group also controls
     66		 * RGB output routing to DPAD0 and VSPD1 routing to DU0/1/2 for
     67		 * DU instances that support it.
     68		 */
     69		if (rgrp->index == 0) {
     70			defr8 |= DEFR8_DRGBS_DU(rcdu->dpad0_source);
     71			if (rgrp->dev->vspd1_sink == 2)
     72				defr8 |= DEFR8_VSCS;
     73		}
     74	} else {
     75		/*
     76		 * On Gen3 VSPD routing can't be configured, and DPAD routing
     77		 * is set in the group corresponding to the DPAD output (no Gen3
     78		 * SoC has multiple DPAD sources belonging to separate groups).
     79		 */
     80		if (rgrp->index == rcdu->dpad0_source / 2)
     81			defr8 |= DEFR8_DRGBS_DU(rcdu->dpad0_source);
     82	}
     83
     84	rcar_du_group_write(rgrp, DEFR8, defr8);
     85}
     86
     87static void rcar_du_group_setup_didsr(struct rcar_du_group *rgrp)
     88{
     89	struct rcar_du_device *rcdu = rgrp->dev;
     90	struct rcar_du_crtc *rcrtc;
     91	unsigned int num_crtcs = 0;
     92	unsigned int i;
     93	u32 didsr;
     94
     95	/*
     96	 * Configure input dot clock routing with a hardcoded configuration. If
     97	 * the DU channel can use the LVDS encoder output clock as the dot
     98	 * clock, do so. Otherwise route DU_DOTCLKINn signal to DUn.
     99	 *
    100	 * Each channel can then select between the dot clock configured here
    101	 * and the clock provided by the CPG through the ESCR register.
    102	 */
    103	if (rcdu->info->gen < 3 && rgrp->index == 0) {
    104		/*
    105		 * On Gen2 a single register in the first group controls dot
    106		 * clock selection for all channels.
    107		 */
    108		rcrtc = rcdu->crtcs;
    109		num_crtcs = rcdu->num_crtcs;
    110	} else if (rcdu->info->gen == 3 && rgrp->num_crtcs > 1) {
    111		/*
    112		 * On Gen3 dot clocks are setup through per-group registers,
    113		 * only available when the group has two channels.
    114		 */
    115		rcrtc = &rcdu->crtcs[rgrp->index * 2];
    116		num_crtcs = rgrp->num_crtcs;
    117	}
    118
    119	if (!num_crtcs)
    120		return;
    121
    122	didsr = DIDSR_CODE;
    123	for (i = 0; i < num_crtcs; ++i, ++rcrtc) {
    124		if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index))
    125			didsr |= DIDSR_LDCS_LVDS0(i)
    126			      |  DIDSR_PDCS_CLK(i, 0);
    127		else if (rcdu->info->dsi_clk_mask & BIT(rcrtc->index))
    128			didsr |= DIDSR_LDCS_DSI(i);
    129		else
    130			didsr |= DIDSR_LDCS_DCLKIN(i)
    131			      |  DIDSR_PDCS_CLK(i, 0);
    132	}
    133
    134	rcar_du_group_write(rgrp, DIDSR, didsr);
    135}
    136
    137static void rcar_du_group_setup(struct rcar_du_group *rgrp)
    138{
    139	struct rcar_du_device *rcdu = rgrp->dev;
    140	u32 defr7 = DEFR7_CODE;
    141
    142	/* Enable extended features */
    143	rcar_du_group_write(rgrp, DEFR, DEFR_CODE | DEFR_DEFE);
    144	if (rcdu->info->gen < 3) {
    145		rcar_du_group_write(rgrp, DEFR2, DEFR2_CODE | DEFR2_DEFE2G);
    146		rcar_du_group_write(rgrp, DEFR3, DEFR3_CODE | DEFR3_DEFE3);
    147		rcar_du_group_write(rgrp, DEFR4, DEFR4_CODE);
    148	}
    149	rcar_du_group_write(rgrp, DEFR5, DEFR5_CODE | DEFR5_DEFE5);
    150
    151	rcar_du_group_setup_pins(rgrp);
    152
    153	/*
    154	 * TODO: Handle routing of the DU output to CMM dynamically, as we
    155	 * should bypass CMM completely when no color management feature is
    156	 * used.
    157	 */
    158	defr7 |= (rgrp->cmms_mask & BIT(1) ? DEFR7_CMME1 : 0) |
    159		 (rgrp->cmms_mask & BIT(0) ? DEFR7_CMME0 : 0);
    160	rcar_du_group_write(rgrp, DEFR7, defr7);
    161
    162	if (rcdu->info->gen >= 2) {
    163		rcar_du_group_setup_defr8(rgrp);
    164		rcar_du_group_setup_didsr(rgrp);
    165	}
    166
    167	if (rcdu->info->gen >= 3)
    168		rcar_du_group_write(rgrp, DEFR10, DEFR10_CODE | DEFR10_DEFE10);
    169
    170	/*
    171	 * Use DS1PR and DS2PR to configure planes priorities and connects the
    172	 * superposition 0 to DU0 pins. DU1 pins will be configured dynamically.
    173	 */
    174	rcar_du_group_write(rgrp, DORCR, DORCR_PG1D_DS1 | DORCR_DPRS);
    175
    176	/* Apply planes to CRTCs association. */
    177	mutex_lock(&rgrp->lock);
    178	rcar_du_group_write(rgrp, DPTSR, (rgrp->dptsr_planes << 16) |
    179			    rgrp->dptsr_planes);
    180	mutex_unlock(&rgrp->lock);
    181}
    182
    183/*
    184 * rcar_du_group_get - Acquire a reference to the DU channels group
    185 *
    186 * Acquiring the first reference setups core registers. A reference must be held
    187 * before accessing any hardware registers.
    188 *
    189 * This function must be called with the DRM mode_config lock held.
    190 *
    191 * Return 0 in case of success or a negative error code otherwise.
    192 */
    193int rcar_du_group_get(struct rcar_du_group *rgrp)
    194{
    195	if (rgrp->use_count)
    196		goto done;
    197
    198	rcar_du_group_setup(rgrp);
    199
    200done:
    201	rgrp->use_count++;
    202	return 0;
    203}
    204
    205/*
    206 * rcar_du_group_put - Release a reference to the DU
    207 *
    208 * This function must be called with the DRM mode_config lock held.
    209 */
    210void rcar_du_group_put(struct rcar_du_group *rgrp)
    211{
    212	--rgrp->use_count;
    213}
    214
    215static void __rcar_du_group_start_stop(struct rcar_du_group *rgrp, bool start)
    216{
    217	struct rcar_du_device *rcdu = rgrp->dev;
    218
    219	/*
    220	 * Group start/stop is controlled by the DRES and DEN bits of DSYSR0
    221	 * for the first group and DSYSR2 for the second group. On most DU
    222	 * instances, this maps to the first CRTC of the group, and we can just
    223	 * use rcar_du_crtc_dsysr_clr_set() to access the correct DSYSR. On
    224	 * M3-N, however, DU2 doesn't exist, but DSYSR2 does. We thus need to
    225	 * access the register directly using group read/write.
    226	 */
    227	if (rcdu->info->channels_mask & BIT(rgrp->index * 2)) {
    228		struct rcar_du_crtc *rcrtc = &rgrp->dev->crtcs[rgrp->index * 2];
    229
    230		rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_DRES | DSYSR_DEN,
    231					   start ? DSYSR_DEN : DSYSR_DRES);
    232	} else {
    233		rcar_du_group_write(rgrp, DSYSR,
    234				    start ? DSYSR_DEN : DSYSR_DRES);
    235	}
    236}
    237
    238void rcar_du_group_start_stop(struct rcar_du_group *rgrp, bool start)
    239{
    240	/*
    241	 * Many of the configuration bits are only updated when the display
    242	 * reset (DRES) bit in DSYSR is set to 1, disabling *both* CRTCs. Some
    243	 * of those bits could be pre-configured, but others (especially the
    244	 * bits related to plane assignment to display timing controllers) need
    245	 * to be modified at runtime.
    246	 *
    247	 * Restart the display controller if a start is requested. Sorry for the
    248	 * flicker. It should be possible to move most of the "DRES-update" bits
    249	 * setup to driver initialization time and minimize the number of cases
    250	 * when the display controller will have to be restarted.
    251	 */
    252	if (start) {
    253		if (rgrp->used_crtcs++ != 0)
    254			__rcar_du_group_start_stop(rgrp, false);
    255		__rcar_du_group_start_stop(rgrp, true);
    256	} else {
    257		if (--rgrp->used_crtcs == 0)
    258			__rcar_du_group_start_stop(rgrp, false);
    259	}
    260}
    261
    262void rcar_du_group_restart(struct rcar_du_group *rgrp)
    263{
    264	rgrp->need_restart = false;
    265
    266	__rcar_du_group_start_stop(rgrp, false);
    267	__rcar_du_group_start_stop(rgrp, true);
    268}
    269
    270int rcar_du_set_dpad0_vsp1_routing(struct rcar_du_device *rcdu)
    271{
    272	struct rcar_du_group *rgrp;
    273	struct rcar_du_crtc *crtc;
    274	unsigned int index;
    275	int ret;
    276
    277	if (rcdu->info->gen < 2)
    278		return 0;
    279
    280	/*
    281	 * RGB output routing to DPAD0 and VSP1D routing to DU0/1/2 are
    282	 * configured in the DEFR8 register of the first group on Gen2 and the
    283	 * last group on Gen3. As this function can be called with the DU
    284	 * channels of the corresponding CRTCs disabled, we need to enable the
    285	 * group clock before accessing the register.
    286	 */
    287	index = rcdu->info->gen < 3 ? 0 : DIV_ROUND_UP(rcdu->num_crtcs, 2) - 1;
    288	rgrp = &rcdu->groups[index];
    289	crtc = &rcdu->crtcs[index * 2];
    290
    291	ret = clk_prepare_enable(crtc->clock);
    292	if (ret < 0)
    293		return ret;
    294
    295	rcar_du_group_setup_defr8(rgrp);
    296
    297	clk_disable_unprepare(crtc->clock);
    298
    299	return 0;
    300}
    301
    302static void rcar_du_group_set_dpad_levels(struct rcar_du_group *rgrp)
    303{
    304	static const u32 doflr_values[2] = {
    305		DOFLR_HSYCFL0 | DOFLR_VSYCFL0 | DOFLR_ODDFL0 |
    306		DOFLR_DISPFL0 | DOFLR_CDEFL0  | DOFLR_RGBFL0,
    307		DOFLR_HSYCFL1 | DOFLR_VSYCFL1 | DOFLR_ODDFL1 |
    308		DOFLR_DISPFL1 | DOFLR_CDEFL1  | DOFLR_RGBFL1,
    309	};
    310	static const u32 dpad_mask = BIT(RCAR_DU_OUTPUT_DPAD1)
    311				   | BIT(RCAR_DU_OUTPUT_DPAD0);
    312	struct rcar_du_device *rcdu = rgrp->dev;
    313	u32 doflr = DOFLR_CODE;
    314	unsigned int i;
    315
    316	if (rcdu->info->gen < 2)
    317		return;
    318
    319	/*
    320	 * The DPAD outputs can't be controlled directly. However, the parallel
    321	 * output of the DU channels routed to DPAD can be set to fixed levels
    322	 * through the DOFLR group register. Use this to turn the DPAD on or off
    323	 * by driving fixed low-level signals at the output of any DU channel
    324	 * not routed to a DPAD output. This doesn't affect the DU output
    325	 * signals going to other outputs, such as the internal LVDS and HDMI
    326	 * encoders.
    327	 */
    328
    329	for (i = 0; i < rgrp->num_crtcs; ++i) {
    330		struct rcar_du_crtc_state *rstate;
    331		struct rcar_du_crtc *rcrtc;
    332
    333		rcrtc = &rcdu->crtcs[rgrp->index * 2 + i];
    334		rstate = to_rcar_crtc_state(rcrtc->crtc.state);
    335
    336		if (!(rstate->outputs & dpad_mask))
    337			doflr |= doflr_values[i];
    338	}
    339
    340	rcar_du_group_write(rgrp, DOFLR, doflr);
    341}
    342
    343int rcar_du_group_set_routing(struct rcar_du_group *rgrp)
    344{
    345	struct rcar_du_device *rcdu = rgrp->dev;
    346	u32 dorcr = rcar_du_group_read(rgrp, DORCR);
    347
    348	dorcr &= ~(DORCR_PG2T | DORCR_DK2S | DORCR_PG2D_MASK);
    349
    350	/*
    351	 * Set the DPAD1 pins sources. Select CRTC 0 if explicitly requested and
    352	 * CRTC 1 in all other cases to avoid cloning CRTC 0 to DPAD0 and DPAD1
    353	 * by default.
    354	 */
    355	if (rcdu->dpad1_source == rgrp->index * 2)
    356		dorcr |= DORCR_PG2D_DS1;
    357	else
    358		dorcr |= DORCR_PG2T | DORCR_DK2S | DORCR_PG2D_DS2;
    359
    360	rcar_du_group_write(rgrp, DORCR, dorcr);
    361
    362	rcar_du_group_set_dpad_levels(rgrp);
    363
    364	return rcar_du_set_dpad0_vsp1_routing(rgrp->dev);
    365}