cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

vc4_crtc.c (39862B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Copyright (C) 2015 Broadcom
      4 */
      5
      6/**
      7 * DOC: VC4 CRTC module
      8 *
      9 * In VC4, the Pixel Valve is what most closely corresponds to the
     10 * DRM's concept of a CRTC.  The PV generates video timings from the
     11 * encoder's clock plus its configuration.  It pulls scaled pixels from
     12 * the HVS at that timing, and feeds it to the encoder.
     13 *
     14 * However, the DRM CRTC also collects the configuration of all the
     15 * DRM planes attached to it.  As a result, the CRTC is also
     16 * responsible for writing the display list for the HVS channel that
     17 * the CRTC will use.
     18 *
     19 * The 2835 has 3 different pixel valves.  pv0 in the audio power
     20 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
     21 * image domain can feed either HDMI or the SDTV controller.  The
     22 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
     23 * SDTV, etc.) according to which output type is chosen in the mux.
     24 *
     25 * For power management, the pixel valve's registers are all clocked
     26 * by the AXI clock, while the timings and FIFOs make use of the
     27 * output-specific clock.  Since the encoders also directly consume
     28 * the CPRMAN clocks, and know what timings they need, they are the
     29 * ones that set the clock.
     30 */
     31
     32#include <linux/clk.h>
     33#include <linux/component.h>
     34#include <linux/of_device.h>
     35#include <linux/pm_runtime.h>
     36
     37#include <drm/drm_atomic.h>
     38#include <drm/drm_atomic_helper.h>
     39#include <drm/drm_atomic_uapi.h>
     40#include <drm/drm_fb_cma_helper.h>
     41#include <drm/drm_print.h>
     42#include <drm/drm_probe_helper.h>
     43#include <drm/drm_vblank.h>
     44
     45#include "vc4_drv.h"
     46#include "vc4_hdmi.h"
     47#include "vc4_regs.h"
     48
     49#define HVS_FIFO_LATENCY_PIX	6
     50
     51#define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
     52#define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
     53
     54static const struct debugfs_reg32 crtc_regs[] = {
     55	VC4_REG32(PV_CONTROL),
     56	VC4_REG32(PV_V_CONTROL),
     57	VC4_REG32(PV_VSYNCD_EVEN),
     58	VC4_REG32(PV_HORZA),
     59	VC4_REG32(PV_HORZB),
     60	VC4_REG32(PV_VERTA),
     61	VC4_REG32(PV_VERTB),
     62	VC4_REG32(PV_VERTA_EVEN),
     63	VC4_REG32(PV_VERTB_EVEN),
     64	VC4_REG32(PV_INTEN),
     65	VC4_REG32(PV_INTSTAT),
     66	VC4_REG32(PV_STAT),
     67	VC4_REG32(PV_HACT_ACT),
     68};
     69
     70static unsigned int
     71vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel)
     72{
     73	struct vc4_hvs *hvs = vc4->hvs;
     74	u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel));
     75	/* Top/base are supposed to be 4-pixel aligned, but the
     76	 * Raspberry Pi firmware fills the low bits (which are
     77	 * presumably ignored).
     78	 */
     79	u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
     80	u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
     81
     82	return top - base + 4;
     83}
     84
     85static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc,
     86					  bool in_vblank_irq,
     87					  int *vpos, int *hpos,
     88					  ktime_t *stime, ktime_t *etime,
     89					  const struct drm_display_mode *mode)
     90{
     91	struct drm_device *dev = crtc->dev;
     92	struct vc4_dev *vc4 = to_vc4_dev(dev);
     93	struct vc4_hvs *hvs = vc4->hvs;
     94	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
     95	struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
     96	unsigned int cob_size;
     97	u32 val;
     98	int fifo_lines;
     99	int vblank_lines;
    100	bool ret = false;
    101
    102	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
    103
    104	/* Get optional system timestamp before query. */
    105	if (stime)
    106		*stime = ktime_get();
    107
    108	/*
    109	 * Read vertical scanline which is currently composed for our
    110	 * pixelvalve by the HVS, and also the scaler status.
    111	 */
    112	val = HVS_READ(SCALER_DISPSTATX(vc4_crtc_state->assigned_channel));
    113
    114	/* Get optional system timestamp after query. */
    115	if (etime)
    116		*etime = ktime_get();
    117
    118	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
    119
    120	/* Vertical position of hvs composed scanline. */
    121	*vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
    122	*hpos = 0;
    123
    124	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
    125		*vpos /= 2;
    126
    127		/* Use hpos to correct for field offset in interlaced mode. */
    128		if (vc4_hvs_get_fifo_frame_count(hvs, vc4_crtc_state->assigned_channel) % 2)
    129			*hpos += mode->crtc_htotal / 2;
    130	}
    131
    132	cob_size = vc4_crtc_get_cob_allocation(vc4, vc4_crtc_state->assigned_channel);
    133	/* This is the offset we need for translating hvs -> pv scanout pos. */
    134	fifo_lines = cob_size / mode->crtc_hdisplay;
    135
    136	if (fifo_lines > 0)
    137		ret = true;
    138
    139	/* HVS more than fifo_lines into frame for compositing? */
    140	if (*vpos > fifo_lines) {
    141		/*
    142		 * We are in active scanout and can get some meaningful results
    143		 * from HVS. The actual PV scanout can not trail behind more
    144		 * than fifo_lines as that is the fifo's capacity. Assume that
    145		 * in active scanout the HVS and PV work in lockstep wrt. HVS
    146		 * refilling the fifo and PV consuming from the fifo, ie.
    147		 * whenever the PV consumes and frees up a scanline in the
    148		 * fifo, the HVS will immediately refill it, therefore
    149		 * incrementing vpos. Therefore we choose HVS read position -
    150		 * fifo size in scanlines as a estimate of the real scanout
    151		 * position of the PV.
    152		 */
    153		*vpos -= fifo_lines + 1;
    154
    155		return ret;
    156	}
    157
    158	/*
    159	 * Less: This happens when we are in vblank and the HVS, after getting
    160	 * the VSTART restart signal from the PV, just started refilling its
    161	 * fifo with new lines from the top-most lines of the new framebuffers.
    162	 * The PV does not scan out in vblank, so does not remove lines from
    163	 * the fifo, so the fifo will be full quickly and the HVS has to pause.
    164	 * We can't get meaningful readings wrt. scanline position of the PV
    165	 * and need to make things up in a approximative but consistent way.
    166	 */
    167	vblank_lines = mode->vtotal - mode->vdisplay;
    168
    169	if (in_vblank_irq) {
    170		/*
    171		 * Assume the irq handler got called close to first
    172		 * line of vblank, so PV has about a full vblank
    173		 * scanlines to go, and as a base timestamp use the
    174		 * one taken at entry into vblank irq handler, so it
    175		 * is not affected by random delays due to lock
    176		 * contention on event_lock or vblank_time lock in
    177		 * the core.
    178		 */
    179		*vpos = -vblank_lines;
    180
    181		if (stime)
    182			*stime = vc4_crtc->t_vblank;
    183		if (etime)
    184			*etime = vc4_crtc->t_vblank;
    185
    186		/*
    187		 * If the HVS fifo is not yet full then we know for certain
    188		 * we are at the very beginning of vblank, as the hvs just
    189		 * started refilling, and the stime and etime timestamps
    190		 * truly correspond to start of vblank.
    191		 *
    192		 * Unfortunately there's no way to report this to upper levels
    193		 * and make it more useful.
    194		 */
    195	} else {
    196		/*
    197		 * No clue where we are inside vblank. Return a vpos of zero,
    198		 * which will cause calling code to just return the etime
    199		 * timestamp uncorrected. At least this is no worse than the
    200		 * standard fallback.
    201		 */
    202		*vpos = 0;
    203	}
    204
    205	return ret;
    206}
    207
    208void vc4_crtc_destroy(struct drm_crtc *crtc)
    209{
    210	drm_crtc_cleanup(crtc);
    211}
    212
    213static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format)
    214{
    215	const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
    216	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
    217	struct vc4_dev *vc4 = to_vc4_dev(vc4_crtc->base.dev);
    218	u32 fifo_len_bytes = pv_data->fifo_depth;
    219
    220	/*
    221	 * Pixels are pulled from the HVS if the number of bytes is
    222	 * lower than the FIFO full level.
    223	 *
    224	 * The latency of the pixel fetch mechanism is 6 pixels, so we
    225	 * need to convert those 6 pixels in bytes, depending on the
    226	 * format, and then subtract that from the length of the FIFO
    227	 * to make sure we never end up in a situation where the FIFO
    228	 * is full.
    229	 */
    230	switch (format) {
    231	case PV_CONTROL_FORMAT_DSIV_16:
    232	case PV_CONTROL_FORMAT_DSIC_16:
    233		return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX;
    234	case PV_CONTROL_FORMAT_DSIV_18:
    235		return fifo_len_bytes - 14;
    236	case PV_CONTROL_FORMAT_24:
    237	case PV_CONTROL_FORMAT_DSIV_24:
    238	default:
    239		/*
    240		 * For some reason, the pixelvalve4 doesn't work with
    241		 * the usual formula and will only work with 32.
    242		 */
    243		if (crtc_data->hvs_output == 5)
    244			return 32;
    245
    246		/*
    247		 * It looks like in some situations, we will overflow
    248		 * the PixelValve FIFO (with the bit 10 of PV stat being
    249		 * set) and stall the HVS / PV, eventually resulting in
    250		 * a page flip timeout.
    251		 *
    252		 * Displaying the video overlay during a playback with
    253		 * Kodi on an RPi3 seems to be a great solution with a
    254		 * failure rate around 50%.
    255		 *
    256		 * Removing 1 from the FIFO full level however
    257		 * seems to completely remove that issue.
    258		 */
    259		if (!vc4->is_vc5)
    260			return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX - 1;
    261
    262		return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX;
    263	}
    264}
    265
    266static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc,
    267					     u32 format)
    268{
    269	u32 level = vc4_get_fifo_full_level(vc4_crtc, format);
    270	u32 ret = 0;
    271
    272	ret |= VC4_SET_FIELD((level >> 6),
    273			     PV5_CONTROL_FIFO_LEVEL_HIGH);
    274
    275	return ret | VC4_SET_FIELD(level & 0x3f,
    276				   PV_CONTROL_FIFO_LEVEL);
    277}
    278
    279/*
    280 * Returns the encoder attached to the CRTC.
    281 *
    282 * VC4 can only scan out to one encoder at a time, while the DRM core
    283 * allows drivers to push pixels to more than one encoder from the
    284 * same CRTC.
    285 */
    286struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc,
    287					 struct drm_crtc_state *state)
    288{
    289	struct drm_encoder *encoder;
    290
    291	WARN_ON(hweight32(state->encoder_mask) > 1);
    292
    293	drm_for_each_encoder_mask(encoder, crtc->dev, state->encoder_mask)
    294		return encoder;
    295
    296	return NULL;
    297}
    298
    299static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc)
    300{
    301	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
    302
    303	/* The PV needs to be disabled before it can be flushed */
    304	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN);
    305	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR);
    306}
    307
    308static void vc4_crtc_config_pv(struct drm_crtc *crtc, struct drm_encoder *encoder,
    309			       struct drm_atomic_state *state)
    310{
    311	struct drm_device *dev = crtc->dev;
    312	struct vc4_dev *vc4 = to_vc4_dev(dev);
    313	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
    314	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
    315	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
    316	struct drm_crtc_state *crtc_state = crtc->state;
    317	struct drm_display_mode *mode = &crtc_state->adjusted_mode;
    318	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
    319	u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
    320	bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
    321		       vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
    322	u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
    323	u8 ppc = pv_data->pixels_per_clock;
    324	bool debug_dump_regs = false;
    325
    326	if (debug_dump_regs) {
    327		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
    328		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
    329			 drm_crtc_index(crtc));
    330		drm_print_regset32(&p, &vc4_crtc->regset);
    331	}
    332
    333	vc4_crtc_pixelvalve_reset(crtc);
    334
    335	CRTC_WRITE(PV_HORZA,
    336		   VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc,
    337				 PV_HORZA_HBP) |
    338		   VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc,
    339				 PV_HORZA_HSYNC));
    340
    341	CRTC_WRITE(PV_HORZB,
    342		   VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc,
    343				 PV_HORZB_HFP) |
    344		   VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc,
    345				 PV_HORZB_HACTIVE));
    346
    347	CRTC_WRITE(PV_VERTA,
    348		   VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
    349				 PV_VERTA_VBP) |
    350		   VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
    351				 PV_VERTA_VSYNC));
    352	CRTC_WRITE(PV_VERTB,
    353		   VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
    354				 PV_VERTB_VFP) |
    355		   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
    356
    357	if (interlace) {
    358		CRTC_WRITE(PV_VERTA_EVEN,
    359			   VC4_SET_FIELD(mode->crtc_vtotal -
    360					 mode->crtc_vsync_end - 1,
    361					 PV_VERTA_VBP) |
    362			   VC4_SET_FIELD(mode->crtc_vsync_end -
    363					 mode->crtc_vsync_start,
    364					 PV_VERTA_VSYNC));
    365		CRTC_WRITE(PV_VERTB_EVEN,
    366			   VC4_SET_FIELD(mode->crtc_vsync_start -
    367					 mode->crtc_vdisplay,
    368					 PV_VERTB_VFP) |
    369			   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
    370
    371		/* We set up first field even mode for HDMI.  VEC's
    372		 * NTSC mode would want first field odd instead, once
    373		 * we support it (to do so, set ODD_FIRST and put the
    374		 * delay in VSYNCD_EVEN instead).
    375		 */
    376		CRTC_WRITE(PV_V_CONTROL,
    377			   PV_VCONTROL_CONTINUOUS |
    378			   (is_dsi ? PV_VCONTROL_DSI : 0) |
    379			   PV_VCONTROL_INTERLACE |
    380			   VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
    381					 PV_VCONTROL_ODD_DELAY));
    382		CRTC_WRITE(PV_VSYNCD_EVEN, 0);
    383	} else {
    384		CRTC_WRITE(PV_V_CONTROL,
    385			   PV_VCONTROL_CONTINUOUS |
    386			   (is_dsi ? PV_VCONTROL_DSI : 0));
    387	}
    388
    389	if (is_dsi)
    390		CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
    391
    392	if (vc4->is_vc5)
    393		CRTC_WRITE(PV_MUX_CFG,
    394			   VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP,
    395					 PV_MUX_CFG_RGB_PIXEL_MUX_MODE));
    396
    397	CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR |
    398		   vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) |
    399		   VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
    400		   VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
    401		   PV_CONTROL_CLR_AT_START |
    402		   PV_CONTROL_TRIGGER_UNDERFLOW |
    403		   PV_CONTROL_WAIT_HSTART |
    404		   VC4_SET_FIELD(vc4_encoder->clock_select,
    405				 PV_CONTROL_CLK_SELECT));
    406
    407	if (debug_dump_regs) {
    408		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
    409		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
    410			 drm_crtc_index(crtc));
    411		drm_print_regset32(&p, &vc4_crtc->regset);
    412	}
    413}
    414
    415static void require_hvs_enabled(struct drm_device *dev)
    416{
    417	struct vc4_dev *vc4 = to_vc4_dev(dev);
    418	struct vc4_hvs *hvs = vc4->hvs;
    419
    420	WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
    421		     SCALER_DISPCTRL_ENABLE);
    422}
    423
    424static int vc4_crtc_disable(struct drm_crtc *crtc,
    425			    struct drm_encoder *encoder,
    426			    struct drm_atomic_state *state,
    427			    unsigned int channel)
    428{
    429	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
    430	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
    431	struct drm_device *dev = crtc->dev;
    432	struct vc4_dev *vc4 = to_vc4_dev(dev);
    433	int ret;
    434
    435	CRTC_WRITE(PV_V_CONTROL,
    436		   CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
    437	ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
    438	WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
    439
    440	/*
    441	 * This delay is needed to avoid to get a pixel stuck in an
    442	 * unflushable FIFO between the pixelvalve and the HDMI
    443	 * controllers on the BCM2711.
    444	 *
    445	 * Timing is fairly sensitive here, so mdelay is the safest
    446	 * approach.
    447	 *
    448	 * If it was to be reworked, the stuck pixel happens on a
    449	 * BCM2711 when changing mode with a good probability, so a
    450	 * script that changes mode on a regular basis should trigger
    451	 * the bug after less than 10 attempts. It manifests itself with
    452	 * every pixels being shifted by one to the right, and thus the
    453	 * last pixel of a line actually being displayed as the first
    454	 * pixel on the next line.
    455	 */
    456	mdelay(20);
    457
    458	if (vc4_encoder && vc4_encoder->post_crtc_disable)
    459		vc4_encoder->post_crtc_disable(encoder, state);
    460
    461	vc4_crtc_pixelvalve_reset(crtc);
    462	vc4_hvs_stop_channel(vc4->hvs, channel);
    463
    464	if (vc4_encoder && vc4_encoder->post_crtc_powerdown)
    465		vc4_encoder->post_crtc_powerdown(encoder, state);
    466
    467	return 0;
    468}
    469
    470static struct drm_encoder *vc4_crtc_get_encoder_by_type(struct drm_crtc *crtc,
    471							enum vc4_encoder_type type)
    472{
    473	struct drm_encoder *encoder;
    474
    475	drm_for_each_encoder(encoder, crtc->dev) {
    476		struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
    477
    478		if (vc4_encoder->type == type)
    479			return encoder;
    480	}
    481
    482	return NULL;
    483}
    484
    485int vc4_crtc_disable_at_boot(struct drm_crtc *crtc)
    486{
    487	struct drm_device *drm = crtc->dev;
    488	struct vc4_dev *vc4 = to_vc4_dev(drm);
    489	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
    490	enum vc4_encoder_type encoder_type;
    491	const struct vc4_pv_data *pv_data;
    492	struct drm_encoder *encoder;
    493	struct vc4_hdmi *vc4_hdmi;
    494	unsigned encoder_sel;
    495	int channel;
    496	int ret;
    497
    498	if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
    499				      "brcm,bcm2711-pixelvalve2") ||
    500	      of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
    501				      "brcm,bcm2711-pixelvalve4")))
    502		return 0;
    503
    504	if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN))
    505		return 0;
    506
    507	if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN))
    508		return 0;
    509
    510	channel = vc4_hvs_get_fifo_from_output(vc4->hvs, vc4_crtc->data->hvs_output);
    511	if (channel < 0)
    512		return 0;
    513
    514	encoder_sel = VC4_GET_FIELD(CRTC_READ(PV_CONTROL), PV_CONTROL_CLK_SELECT);
    515	if (WARN_ON(encoder_sel != 0))
    516		return 0;
    517
    518	pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
    519	encoder_type = pv_data->encoder_types[encoder_sel];
    520	encoder = vc4_crtc_get_encoder_by_type(crtc, encoder_type);
    521	if (WARN_ON(!encoder))
    522		return 0;
    523
    524	vc4_hdmi = encoder_to_vc4_hdmi(encoder);
    525	ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev);
    526	if (ret)
    527		return ret;
    528
    529	ret = vc4_crtc_disable(crtc, encoder, NULL, channel);
    530	if (ret)
    531		return ret;
    532
    533	/*
    534	 * post_crtc_powerdown will have called pm_runtime_put, so we
    535	 * don't need it here otherwise we'll get the reference counting
    536	 * wrong.
    537	 */
    538
    539	return 0;
    540}
    541
    542static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
    543				    struct drm_atomic_state *state)
    544{
    545	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
    546									 crtc);
    547	struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state);
    548	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, old_state);
    549	struct drm_device *dev = crtc->dev;
    550
    551	drm_dbg(dev, "Disabling CRTC %s (%u) connected to Encoder %s (%u)",
    552		crtc->name, crtc->base.id, encoder->name, encoder->base.id);
    553
    554	require_hvs_enabled(dev);
    555
    556	/* Disable vblank irq handling before crtc is disabled. */
    557	drm_crtc_vblank_off(crtc);
    558
    559	vc4_crtc_disable(crtc, encoder, state, old_vc4_state->assigned_channel);
    560
    561	/*
    562	 * Make sure we issue a vblank event after disabling the CRTC if
    563	 * someone was waiting it.
    564	 */
    565	if (crtc->state->event) {
    566		unsigned long flags;
    567
    568		spin_lock_irqsave(&dev->event_lock, flags);
    569		drm_crtc_send_vblank_event(crtc, crtc->state->event);
    570		crtc->state->event = NULL;
    571		spin_unlock_irqrestore(&dev->event_lock, flags);
    572	}
    573}
    574
    575static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
    576				   struct drm_atomic_state *state)
    577{
    578	struct drm_crtc_state *new_state = drm_atomic_get_new_crtc_state(state,
    579									 crtc);
    580	struct drm_device *dev = crtc->dev;
    581	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
    582	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, new_state);
    583	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
    584
    585	drm_dbg(dev, "Enabling CRTC %s (%u) connected to Encoder %s (%u)",
    586		crtc->name, crtc->base.id, encoder->name, encoder->base.id);
    587
    588	require_hvs_enabled(dev);
    589
    590	/* Enable vblank irq handling before crtc is started otherwise
    591	 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
    592	 */
    593	drm_crtc_vblank_on(crtc);
    594
    595	vc4_hvs_atomic_enable(crtc, state);
    596
    597	if (vc4_encoder->pre_crtc_configure)
    598		vc4_encoder->pre_crtc_configure(encoder, state);
    599
    600	vc4_crtc_config_pv(crtc, encoder, state);
    601
    602	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN);
    603
    604	if (vc4_encoder->pre_crtc_enable)
    605		vc4_encoder->pre_crtc_enable(encoder, state);
    606
    607	/* When feeding the transposer block the pixelvalve is unneeded and
    608	 * should not be enabled.
    609	 */
    610	CRTC_WRITE(PV_V_CONTROL,
    611		   CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
    612
    613	if (vc4_encoder->post_crtc_enable)
    614		vc4_encoder->post_crtc_enable(encoder, state);
    615}
    616
    617static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
    618						const struct drm_display_mode *mode)
    619{
    620	/* Do not allow doublescan modes from user space */
    621	if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
    622		DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
    623			      crtc->base.id);
    624		return MODE_NO_DBLESCAN;
    625	}
    626
    627	return MODE_OK;
    628}
    629
    630void vc4_crtc_get_margins(struct drm_crtc_state *state,
    631			  unsigned int *left, unsigned int *right,
    632			  unsigned int *top, unsigned int *bottom)
    633{
    634	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
    635	struct drm_connector_state *conn_state;
    636	struct drm_connector *conn;
    637	int i;
    638
    639	*left = vc4_state->margins.left;
    640	*right = vc4_state->margins.right;
    641	*top = vc4_state->margins.top;
    642	*bottom = vc4_state->margins.bottom;
    643
    644	/* We have to interate over all new connector states because
    645	 * vc4_crtc_get_margins() might be called before
    646	 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
    647	 * might be outdated.
    648	 */
    649	for_each_new_connector_in_state(state->state, conn, conn_state, i) {
    650		if (conn_state->crtc != state->crtc)
    651			continue;
    652
    653		*left = conn_state->tv.margins.left;
    654		*right = conn_state->tv.margins.right;
    655		*top = conn_state->tv.margins.top;
    656		*bottom = conn_state->tv.margins.bottom;
    657		break;
    658	}
    659}
    660
    661static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
    662				 struct drm_atomic_state *state)
    663{
    664	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
    665									  crtc);
    666	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
    667	struct drm_connector *conn;
    668	struct drm_connector_state *conn_state;
    669	struct drm_encoder *encoder;
    670	int ret, i;
    671
    672	ret = vc4_hvs_atomic_check(crtc, state);
    673	if (ret)
    674		return ret;
    675
    676	encoder = vc4_get_crtc_encoder(crtc, crtc_state);
    677	if (encoder) {
    678		const struct drm_display_mode *mode = &crtc_state->adjusted_mode;
    679		struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
    680
    681		if (vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0) {
    682			vc4_state->hvs_load = max(mode->clock * mode->hdisplay / mode->htotal + 1000,
    683						  mode->clock * 9 / 10) * 1000;
    684		} else {
    685			vc4_state->hvs_load = mode->clock * 1000;
    686		}
    687	}
    688
    689	for_each_new_connector_in_state(state, conn, conn_state,
    690					i) {
    691		if (conn_state->crtc != crtc)
    692			continue;
    693
    694		vc4_state->margins.left = conn_state->tv.margins.left;
    695		vc4_state->margins.right = conn_state->tv.margins.right;
    696		vc4_state->margins.top = conn_state->tv.margins.top;
    697		vc4_state->margins.bottom = conn_state->tv.margins.bottom;
    698		break;
    699	}
    700
    701	return 0;
    702}
    703
    704static int vc4_enable_vblank(struct drm_crtc *crtc)
    705{
    706	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
    707
    708	CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
    709
    710	return 0;
    711}
    712
    713static void vc4_disable_vblank(struct drm_crtc *crtc)
    714{
    715	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
    716
    717	CRTC_WRITE(PV_INTEN, 0);
    718}
    719
    720static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
    721{
    722	struct drm_crtc *crtc = &vc4_crtc->base;
    723	struct drm_device *dev = crtc->dev;
    724	struct vc4_dev *vc4 = to_vc4_dev(dev);
    725	struct vc4_hvs *hvs = vc4->hvs;
    726	u32 chan = vc4_crtc->current_hvs_channel;
    727	unsigned long flags;
    728
    729	spin_lock_irqsave(&dev->event_lock, flags);
    730	spin_lock(&vc4_crtc->irq_lock);
    731	if (vc4_crtc->event &&
    732	    (vc4_crtc->current_dlist == HVS_READ(SCALER_DISPLACTX(chan)) ||
    733	     vc4_crtc->feeds_txp)) {
    734		drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
    735		vc4_crtc->event = NULL;
    736		drm_crtc_vblank_put(crtc);
    737
    738		/* Wait for the page flip to unmask the underrun to ensure that
    739		 * the display list was updated by the hardware. Before that
    740		 * happens, the HVS will be using the previous display list with
    741		 * the CRTC and encoder already reconfigured, leading to
    742		 * underruns. This can be seen when reconfiguring the CRTC.
    743		 */
    744		vc4_hvs_unmask_underrun(hvs, chan);
    745	}
    746	spin_unlock(&vc4_crtc->irq_lock);
    747	spin_unlock_irqrestore(&dev->event_lock, flags);
    748}
    749
    750void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
    751{
    752	crtc->t_vblank = ktime_get();
    753	drm_crtc_handle_vblank(&crtc->base);
    754	vc4_crtc_handle_page_flip(crtc);
    755}
    756
    757static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
    758{
    759	struct vc4_crtc *vc4_crtc = data;
    760	u32 stat = CRTC_READ(PV_INTSTAT);
    761	irqreturn_t ret = IRQ_NONE;
    762
    763	if (stat & PV_INT_VFP_START) {
    764		CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
    765		vc4_crtc_handle_vblank(vc4_crtc);
    766		ret = IRQ_HANDLED;
    767	}
    768
    769	return ret;
    770}
    771
    772struct vc4_async_flip_state {
    773	struct drm_crtc *crtc;
    774	struct drm_framebuffer *fb;
    775	struct drm_framebuffer *old_fb;
    776	struct drm_pending_vblank_event *event;
    777
    778	union {
    779		struct dma_fence_cb fence;
    780		struct vc4_seqno_cb seqno;
    781	} cb;
    782};
    783
    784/* Called when the V3D execution for the BO being flipped to is done, so that
    785 * we can actually update the plane's address to point to it.
    786 */
    787static void
    788vc4_async_page_flip_complete(struct vc4_async_flip_state *flip_state)
    789{
    790	struct drm_crtc *crtc = flip_state->crtc;
    791	struct drm_device *dev = crtc->dev;
    792	struct drm_plane *plane = crtc->primary;
    793
    794	vc4_plane_async_set_fb(plane, flip_state->fb);
    795	if (flip_state->event) {
    796		unsigned long flags;
    797
    798		spin_lock_irqsave(&dev->event_lock, flags);
    799		drm_crtc_send_vblank_event(crtc, flip_state->event);
    800		spin_unlock_irqrestore(&dev->event_lock, flags);
    801	}
    802
    803	drm_crtc_vblank_put(crtc);
    804	drm_framebuffer_put(flip_state->fb);
    805
    806	if (flip_state->old_fb)
    807		drm_framebuffer_put(flip_state->old_fb);
    808
    809	kfree(flip_state);
    810}
    811
    812static void vc4_async_page_flip_seqno_complete(struct vc4_seqno_cb *cb)
    813{
    814	struct vc4_async_flip_state *flip_state =
    815		container_of(cb, struct vc4_async_flip_state, cb.seqno);
    816	struct vc4_bo *bo = NULL;
    817
    818	if (flip_state->old_fb) {
    819		struct drm_gem_cma_object *cma_bo =
    820			drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
    821		bo = to_vc4_bo(&cma_bo->base);
    822	}
    823
    824	vc4_async_page_flip_complete(flip_state);
    825
    826	/*
    827	 * Decrement the BO usecnt in order to keep the inc/dec
    828	 * calls balanced when the planes are updated through
    829	 * the async update path.
    830	 *
    831	 * FIXME: we should move to generic async-page-flip when
    832	 * it's available, so that we can get rid of this
    833	 * hand-made cleanup_fb() logic.
    834	 */
    835	if (bo)
    836		vc4_bo_dec_usecnt(bo);
    837}
    838
    839static void vc4_async_page_flip_fence_complete(struct dma_fence *fence,
    840					       struct dma_fence_cb *cb)
    841{
    842	struct vc4_async_flip_state *flip_state =
    843		container_of(cb, struct vc4_async_flip_state, cb.fence);
    844
    845	vc4_async_page_flip_complete(flip_state);
    846	dma_fence_put(fence);
    847}
    848
    849static int vc4_async_set_fence_cb(struct drm_device *dev,
    850				  struct vc4_async_flip_state *flip_state)
    851{
    852	struct drm_framebuffer *fb = flip_state->fb;
    853	struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
    854	struct vc4_dev *vc4 = to_vc4_dev(dev);
    855	struct dma_fence *fence;
    856	int ret;
    857
    858	if (!vc4->is_vc5) {
    859		struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
    860
    861		return vc4_queue_seqno_cb(dev, &flip_state->cb.seqno, bo->seqno,
    862					  vc4_async_page_flip_seqno_complete);
    863	}
    864
    865	ret = dma_resv_get_singleton(cma_bo->base.resv, DMA_RESV_USAGE_READ, &fence);
    866	if (ret)
    867		return ret;
    868
    869	/* If there's no fence, complete the page flip immediately */
    870	if (!fence) {
    871		vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence);
    872		return 0;
    873	}
    874
    875	/* If the fence has already been completed, complete the page flip */
    876	if (dma_fence_add_callback(fence, &flip_state->cb.fence,
    877				   vc4_async_page_flip_fence_complete))
    878		vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence);
    879
    880	return 0;
    881}
    882
    883static int
    884vc4_async_page_flip_common(struct drm_crtc *crtc,
    885			   struct drm_framebuffer *fb,
    886			   struct drm_pending_vblank_event *event,
    887			   uint32_t flags)
    888{
    889	struct drm_device *dev = crtc->dev;
    890	struct drm_plane *plane = crtc->primary;
    891	struct vc4_async_flip_state *flip_state;
    892
    893	flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
    894	if (!flip_state)
    895		return -ENOMEM;
    896
    897	drm_framebuffer_get(fb);
    898	flip_state->fb = fb;
    899	flip_state->crtc = crtc;
    900	flip_state->event = event;
    901
    902	/* Save the current FB before it's replaced by the new one in
    903	 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
    904	 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
    905	 * it consistent.
    906	 * FIXME: we should move to generic async-page-flip when it's
    907	 * available, so that we can get rid of this hand-made cleanup_fb()
    908	 * logic.
    909	 */
    910	flip_state->old_fb = plane->state->fb;
    911	if (flip_state->old_fb)
    912		drm_framebuffer_get(flip_state->old_fb);
    913
    914	WARN_ON(drm_crtc_vblank_get(crtc) != 0);
    915
    916	/* Immediately update the plane's legacy fb pointer, so that later
    917	 * modeset prep sees the state that will be present when the semaphore
    918	 * is released.
    919	 */
    920	drm_atomic_set_fb_for_plane(plane->state, fb);
    921
    922	vc4_async_set_fence_cb(dev, flip_state);
    923
    924	/* Driver takes ownership of state on successful async commit. */
    925	return 0;
    926}
    927
    928/* Implements async (non-vblank-synced) page flips.
    929 *
    930 * The page flip ioctl needs to return immediately, so we grab the
    931 * modeset semaphore on the pipe, and queue the address update for
    932 * when V3D is done with the BO being flipped to.
    933 */
    934static int vc4_async_page_flip(struct drm_crtc *crtc,
    935			       struct drm_framebuffer *fb,
    936			       struct drm_pending_vblank_event *event,
    937			       uint32_t flags)
    938{
    939	struct drm_device *dev = crtc->dev;
    940	struct vc4_dev *vc4 = to_vc4_dev(dev);
    941	struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
    942	struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
    943	int ret;
    944
    945	if (WARN_ON_ONCE(vc4->is_vc5))
    946		return -ENODEV;
    947
    948	/*
    949	 * Increment the BO usecnt here, so that we never end up with an
    950	 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
    951	 * plane is later updated through the non-async path.
    952	 *
    953	 * FIXME: we should move to generic async-page-flip when
    954	 * it's available, so that we can get rid of this
    955	 * hand-made prepare_fb() logic.
    956	 */
    957	ret = vc4_bo_inc_usecnt(bo);
    958	if (ret)
    959		return ret;
    960
    961	ret = vc4_async_page_flip_common(crtc, fb, event, flags);
    962	if (ret) {
    963		vc4_bo_dec_usecnt(bo);
    964		return ret;
    965	}
    966
    967	return 0;
    968}
    969
    970static int vc5_async_page_flip(struct drm_crtc *crtc,
    971			       struct drm_framebuffer *fb,
    972			       struct drm_pending_vblank_event *event,
    973			       uint32_t flags)
    974{
    975	return vc4_async_page_flip_common(crtc, fb, event, flags);
    976}
    977
    978int vc4_page_flip(struct drm_crtc *crtc,
    979		  struct drm_framebuffer *fb,
    980		  struct drm_pending_vblank_event *event,
    981		  uint32_t flags,
    982		  struct drm_modeset_acquire_ctx *ctx)
    983{
    984	if (flags & DRM_MODE_PAGE_FLIP_ASYNC) {
    985		struct drm_device *dev = crtc->dev;
    986		struct vc4_dev *vc4 = to_vc4_dev(dev);
    987
    988		if (vc4->is_vc5)
    989			return vc5_async_page_flip(crtc, fb, event, flags);
    990		else
    991			return vc4_async_page_flip(crtc, fb, event, flags);
    992	} else {
    993		return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
    994	}
    995}
    996
    997struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
    998{
    999	struct vc4_crtc_state *vc4_state, *old_vc4_state;
   1000
   1001	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
   1002	if (!vc4_state)
   1003		return NULL;
   1004
   1005	old_vc4_state = to_vc4_crtc_state(crtc->state);
   1006	vc4_state->margins = old_vc4_state->margins;
   1007	vc4_state->assigned_channel = old_vc4_state->assigned_channel;
   1008
   1009	__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
   1010	return &vc4_state->base;
   1011}
   1012
   1013void vc4_crtc_destroy_state(struct drm_crtc *crtc,
   1014			    struct drm_crtc_state *state)
   1015{
   1016	struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
   1017	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
   1018
   1019	if (drm_mm_node_allocated(&vc4_state->mm)) {
   1020		unsigned long flags;
   1021
   1022		spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
   1023		drm_mm_remove_node(&vc4_state->mm);
   1024		spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
   1025
   1026	}
   1027
   1028	drm_atomic_helper_crtc_destroy_state(crtc, state);
   1029}
   1030
   1031void vc4_crtc_reset(struct drm_crtc *crtc)
   1032{
   1033	struct vc4_crtc_state *vc4_crtc_state;
   1034
   1035	if (crtc->state)
   1036		vc4_crtc_destroy_state(crtc, crtc->state);
   1037
   1038	vc4_crtc_state = kzalloc(sizeof(*vc4_crtc_state), GFP_KERNEL);
   1039	if (!vc4_crtc_state) {
   1040		crtc->state = NULL;
   1041		return;
   1042	}
   1043
   1044	vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
   1045	__drm_atomic_helper_crtc_reset(crtc, &vc4_crtc_state->base);
   1046}
   1047
   1048static const struct drm_crtc_funcs vc4_crtc_funcs = {
   1049	.set_config = drm_atomic_helper_set_config,
   1050	.destroy = vc4_crtc_destroy,
   1051	.page_flip = vc4_page_flip,
   1052	.set_property = NULL,
   1053	.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
   1054	.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
   1055	.reset = vc4_crtc_reset,
   1056	.atomic_duplicate_state = vc4_crtc_duplicate_state,
   1057	.atomic_destroy_state = vc4_crtc_destroy_state,
   1058	.enable_vblank = vc4_enable_vblank,
   1059	.disable_vblank = vc4_disable_vblank,
   1060	.get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
   1061};
   1062
   1063static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
   1064	.mode_valid = vc4_crtc_mode_valid,
   1065	.atomic_check = vc4_crtc_atomic_check,
   1066	.atomic_begin = vc4_hvs_atomic_begin,
   1067	.atomic_flush = vc4_hvs_atomic_flush,
   1068	.atomic_enable = vc4_crtc_atomic_enable,
   1069	.atomic_disable = vc4_crtc_atomic_disable,
   1070	.get_scanout_position = vc4_crtc_get_scanout_position,
   1071};
   1072
   1073static const struct vc4_pv_data bcm2835_pv0_data = {
   1074	.base = {
   1075		.hvs_available_channels = BIT(0),
   1076		.hvs_output = 0,
   1077	},
   1078	.debugfs_name = "crtc0_regs",
   1079	.fifo_depth = 64,
   1080	.pixels_per_clock = 1,
   1081	.encoder_types = {
   1082		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
   1083		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
   1084	},
   1085};
   1086
   1087static const struct vc4_pv_data bcm2835_pv1_data = {
   1088	.base = {
   1089		.hvs_available_channels = BIT(2),
   1090		.hvs_output = 2,
   1091	},
   1092	.debugfs_name = "crtc1_regs",
   1093	.fifo_depth = 64,
   1094	.pixels_per_clock = 1,
   1095	.encoder_types = {
   1096		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
   1097		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
   1098	},
   1099};
   1100
   1101static const struct vc4_pv_data bcm2835_pv2_data = {
   1102	.base = {
   1103		.hvs_available_channels = BIT(1),
   1104		.hvs_output = 1,
   1105	},
   1106	.debugfs_name = "crtc2_regs",
   1107	.fifo_depth = 64,
   1108	.pixels_per_clock = 1,
   1109	.encoder_types = {
   1110		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0,
   1111		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
   1112	},
   1113};
   1114
   1115static const struct vc4_pv_data bcm2711_pv0_data = {
   1116	.base = {
   1117		.hvs_available_channels = BIT(0),
   1118		.hvs_output = 0,
   1119	},
   1120	.debugfs_name = "crtc0_regs",
   1121	.fifo_depth = 64,
   1122	.pixels_per_clock = 1,
   1123	.encoder_types = {
   1124		[0] = VC4_ENCODER_TYPE_DSI0,
   1125		[1] = VC4_ENCODER_TYPE_DPI,
   1126	},
   1127};
   1128
   1129static const struct vc4_pv_data bcm2711_pv1_data = {
   1130	.base = {
   1131		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
   1132		.hvs_output = 3,
   1133	},
   1134	.debugfs_name = "crtc1_regs",
   1135	.fifo_depth = 64,
   1136	.pixels_per_clock = 1,
   1137	.encoder_types = {
   1138		[0] = VC4_ENCODER_TYPE_DSI1,
   1139		[1] = VC4_ENCODER_TYPE_SMI,
   1140	},
   1141};
   1142
   1143static const struct vc4_pv_data bcm2711_pv2_data = {
   1144	.base = {
   1145		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
   1146		.hvs_output = 4,
   1147	},
   1148	.debugfs_name = "crtc2_regs",
   1149	.fifo_depth = 256,
   1150	.pixels_per_clock = 2,
   1151	.encoder_types = {
   1152		[0] = VC4_ENCODER_TYPE_HDMI0,
   1153	},
   1154};
   1155
   1156static const struct vc4_pv_data bcm2711_pv3_data = {
   1157	.base = {
   1158		.hvs_available_channels = BIT(1),
   1159		.hvs_output = 1,
   1160	},
   1161	.debugfs_name = "crtc3_regs",
   1162	.fifo_depth = 64,
   1163	.pixels_per_clock = 1,
   1164	.encoder_types = {
   1165		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
   1166	},
   1167};
   1168
   1169static const struct vc4_pv_data bcm2711_pv4_data = {
   1170	.base = {
   1171		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
   1172		.hvs_output = 5,
   1173	},
   1174	.debugfs_name = "crtc4_regs",
   1175	.fifo_depth = 64,
   1176	.pixels_per_clock = 2,
   1177	.encoder_types = {
   1178		[0] = VC4_ENCODER_TYPE_HDMI1,
   1179	},
   1180};
   1181
   1182static const struct of_device_id vc4_crtc_dt_match[] = {
   1183	{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data },
   1184	{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data },
   1185	{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data },
   1186	{ .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data },
   1187	{ .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data },
   1188	{ .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data },
   1189	{ .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data },
   1190	{ .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data },
   1191	{}
   1192};
   1193
   1194static void vc4_set_crtc_possible_masks(struct drm_device *drm,
   1195					struct drm_crtc *crtc)
   1196{
   1197	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
   1198	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
   1199	const enum vc4_encoder_type *encoder_types = pv_data->encoder_types;
   1200	struct drm_encoder *encoder;
   1201
   1202	drm_for_each_encoder(encoder, drm) {
   1203		struct vc4_encoder *vc4_encoder;
   1204		int i;
   1205
   1206		if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
   1207			continue;
   1208
   1209		vc4_encoder = to_vc4_encoder(encoder);
   1210		for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) {
   1211			if (vc4_encoder->type == encoder_types[i]) {
   1212				vc4_encoder->clock_select = i;
   1213				encoder->possible_crtcs |= drm_crtc_mask(crtc);
   1214				break;
   1215			}
   1216		}
   1217	}
   1218}
   1219
   1220int vc4_crtc_init(struct drm_device *drm, struct vc4_crtc *vc4_crtc,
   1221		  const struct drm_crtc_funcs *crtc_funcs,
   1222		  const struct drm_crtc_helper_funcs *crtc_helper_funcs)
   1223{
   1224	struct vc4_dev *vc4 = to_vc4_dev(drm);
   1225	struct drm_crtc *crtc = &vc4_crtc->base;
   1226	struct drm_plane *primary_plane;
   1227	unsigned int i;
   1228
   1229	/* For now, we create just the primary and the legacy cursor
   1230	 * planes.  We should be able to stack more planes on easily,
   1231	 * but to do that we would need to compute the bandwidth
   1232	 * requirement of the plane configuration, and reject ones
   1233	 * that will take too much.
   1234	 */
   1235	primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
   1236	if (IS_ERR(primary_plane)) {
   1237		dev_err(drm->dev, "failed to construct primary plane\n");
   1238		return PTR_ERR(primary_plane);
   1239	}
   1240
   1241	spin_lock_init(&vc4_crtc->irq_lock);
   1242	drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
   1243				  crtc_funcs, NULL);
   1244	drm_crtc_helper_add(crtc, crtc_helper_funcs);
   1245
   1246	if (!vc4->is_vc5) {
   1247		drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
   1248
   1249		drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
   1250
   1251		/* We support CTM, but only for one CRTC at a time. It's therefore
   1252		 * implemented as private driver state in vc4_kms, not here.
   1253		 */
   1254		drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
   1255	}
   1256
   1257	for (i = 0; i < crtc->gamma_size; i++) {
   1258		vc4_crtc->lut_r[i] = i;
   1259		vc4_crtc->lut_g[i] = i;
   1260		vc4_crtc->lut_b[i] = i;
   1261	}
   1262
   1263	return 0;
   1264}
   1265
   1266static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
   1267{
   1268	struct platform_device *pdev = to_platform_device(dev);
   1269	struct drm_device *drm = dev_get_drvdata(master);
   1270	const struct vc4_pv_data *pv_data;
   1271	struct vc4_crtc *vc4_crtc;
   1272	struct drm_crtc *crtc;
   1273	struct drm_plane *destroy_plane, *temp;
   1274	int ret;
   1275
   1276	vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
   1277	if (!vc4_crtc)
   1278		return -ENOMEM;
   1279	crtc = &vc4_crtc->base;
   1280
   1281	pv_data = of_device_get_match_data(dev);
   1282	if (!pv_data)
   1283		return -ENODEV;
   1284	vc4_crtc->data = &pv_data->base;
   1285	vc4_crtc->pdev = pdev;
   1286
   1287	vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
   1288	if (IS_ERR(vc4_crtc->regs))
   1289		return PTR_ERR(vc4_crtc->regs);
   1290
   1291	vc4_crtc->regset.base = vc4_crtc->regs;
   1292	vc4_crtc->regset.regs = crtc_regs;
   1293	vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
   1294
   1295	ret = vc4_crtc_init(drm, vc4_crtc,
   1296			    &vc4_crtc_funcs, &vc4_crtc_helper_funcs);
   1297	if (ret)
   1298		return ret;
   1299	vc4_set_crtc_possible_masks(drm, crtc);
   1300
   1301	CRTC_WRITE(PV_INTEN, 0);
   1302	CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
   1303	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
   1304			       vc4_crtc_irq_handler,
   1305			       IRQF_SHARED,
   1306			       "vc4 crtc", vc4_crtc);
   1307	if (ret)
   1308		goto err_destroy_planes;
   1309
   1310	platform_set_drvdata(pdev, vc4_crtc);
   1311
   1312	vc4_debugfs_add_regset32(drm, pv_data->debugfs_name,
   1313				 &vc4_crtc->regset);
   1314
   1315	return 0;
   1316
   1317err_destroy_planes:
   1318	list_for_each_entry_safe(destroy_plane, temp,
   1319				 &drm->mode_config.plane_list, head) {
   1320		if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
   1321		    destroy_plane->funcs->destroy(destroy_plane);
   1322	}
   1323
   1324	return ret;
   1325}
   1326
   1327static void vc4_crtc_unbind(struct device *dev, struct device *master,
   1328			    void *data)
   1329{
   1330	struct platform_device *pdev = to_platform_device(dev);
   1331	struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
   1332
   1333	vc4_crtc_destroy(&vc4_crtc->base);
   1334
   1335	CRTC_WRITE(PV_INTEN, 0);
   1336
   1337	platform_set_drvdata(pdev, NULL);
   1338}
   1339
   1340static const struct component_ops vc4_crtc_ops = {
   1341	.bind   = vc4_crtc_bind,
   1342	.unbind = vc4_crtc_unbind,
   1343};
   1344
   1345static int vc4_crtc_dev_probe(struct platform_device *pdev)
   1346{
   1347	return component_add(&pdev->dev, &vc4_crtc_ops);
   1348}
   1349
   1350static int vc4_crtc_dev_remove(struct platform_device *pdev)
   1351{
   1352	component_del(&pdev->dev, &vc4_crtc_ops);
   1353	return 0;
   1354}
   1355
   1356struct platform_driver vc4_crtc_driver = {
   1357	.probe = vc4_crtc_dev_probe,
   1358	.remove = vc4_crtc_dev_remove,
   1359	.driver = {
   1360		.name = "vc4_crtc",
   1361		.of_match_table = vc4_crtc_dt_match,
   1362	},
   1363};