cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

vc4_dsi.c (51133B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Copyright (C) 2016 Broadcom
      4 */
      5
      6/**
      7 * DOC: VC4 DSI0/DSI1 module
      8 *
      9 * BCM2835 contains two DSI modules, DSI0 and DSI1.  DSI0 is a
     10 * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI
     11 * controller.
     12 *
     13 * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector,
     14 * while the compute module brings both DSI0 and DSI1 out.
     15 *
     16 * This driver has been tested for DSI1 video-mode display only
     17 * currently, with most of the information necessary for DSI0
     18 * hopefully present.
     19 */
     20
     21#include <linux/clk-provider.h>
     22#include <linux/clk.h>
     23#include <linux/completion.h>
     24#include <linux/component.h>
     25#include <linux/dma-mapping.h>
     26#include <linux/dmaengine.h>
     27#include <linux/i2c.h>
     28#include <linux/io.h>
     29#include <linux/of_address.h>
     30#include <linux/of_platform.h>
     31#include <linux/pm_runtime.h>
     32
     33#include <drm/drm_atomic_helper.h>
     34#include <drm/drm_bridge.h>
     35#include <drm/drm_edid.h>
     36#include <drm/drm_mipi_dsi.h>
     37#include <drm/drm_of.h>
     38#include <drm/drm_panel.h>
     39#include <drm/drm_probe_helper.h>
     40#include <drm/drm_simple_kms_helper.h>
     41
     42#include "vc4_drv.h"
     43#include "vc4_regs.h"
     44
     45#define DSI_CMD_FIFO_DEPTH  16
     46#define DSI_PIX_FIFO_DEPTH 256
     47#define DSI_PIX_FIFO_WIDTH   4
     48
     49#define DSI0_CTRL		0x00
     50
     51/* Command packet control. */
     52#define DSI0_TXPKT1C		0x04 /* AKA PKTC */
     53#define DSI1_TXPKT1C		0x04
     54# define DSI_TXPKT1C_TRIG_CMD_MASK	VC4_MASK(31, 24)
     55# define DSI_TXPKT1C_TRIG_CMD_SHIFT	24
     56# define DSI_TXPKT1C_CMD_REPEAT_MASK	VC4_MASK(23, 10)
     57# define DSI_TXPKT1C_CMD_REPEAT_SHIFT	10
     58
     59# define DSI_TXPKT1C_DISPLAY_NO_MASK	VC4_MASK(9, 8)
     60# define DSI_TXPKT1C_DISPLAY_NO_SHIFT	8
     61/* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */
     62# define DSI_TXPKT1C_DISPLAY_NO_SHORT		0
     63/* Primary display where cmdfifo provides part of the payload and
     64 * pixelvalve the rest.
     65 */
     66# define DSI_TXPKT1C_DISPLAY_NO_PRIMARY		1
     67/* Secondary display where cmdfifo provides part of the payload and
     68 * pixfifo the rest.
     69 */
     70# define DSI_TXPKT1C_DISPLAY_NO_SECONDARY	2
     71
     72# define DSI_TXPKT1C_CMD_TX_TIME_MASK	VC4_MASK(7, 6)
     73# define DSI_TXPKT1C_CMD_TX_TIME_SHIFT	6
     74
     75# define DSI_TXPKT1C_CMD_CTRL_MASK	VC4_MASK(5, 4)
     76# define DSI_TXPKT1C_CMD_CTRL_SHIFT	4
     77/* Command only.  Uses TXPKT1H and DISPLAY_NO */
     78# define DSI_TXPKT1C_CMD_CTRL_TX	0
     79/* Command with BTA for either ack or read data. */
     80# define DSI_TXPKT1C_CMD_CTRL_RX	1
     81/* Trigger according to TRIG_CMD */
     82# define DSI_TXPKT1C_CMD_CTRL_TRIG	2
     83/* BTA alone for getting error status after a command, or a TE trigger
     84 * without a previous command.
     85 */
     86# define DSI_TXPKT1C_CMD_CTRL_BTA	3
     87
     88# define DSI_TXPKT1C_CMD_MODE_LP	BIT(3)
     89# define DSI_TXPKT1C_CMD_TYPE_LONG	BIT(2)
     90# define DSI_TXPKT1C_CMD_TE_EN		BIT(1)
     91# define DSI_TXPKT1C_CMD_EN		BIT(0)
     92
     93/* Command packet header. */
     94#define DSI0_TXPKT1H		0x08 /* AKA PKTH */
     95#define DSI1_TXPKT1H		0x08
     96# define DSI_TXPKT1H_BC_CMDFIFO_MASK	VC4_MASK(31, 24)
     97# define DSI_TXPKT1H_BC_CMDFIFO_SHIFT	24
     98# define DSI_TXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
     99# define DSI_TXPKT1H_BC_PARAM_SHIFT	8
    100# define DSI_TXPKT1H_BC_DT_MASK		VC4_MASK(7, 0)
    101# define DSI_TXPKT1H_BC_DT_SHIFT	0
    102
    103#define DSI0_RXPKT1H		0x0c /* AKA RX1_PKTH */
    104#define DSI1_RXPKT1H		0x14
    105# define DSI_RXPKT1H_CRC_ERR		BIT(31)
    106# define DSI_RXPKT1H_DET_ERR		BIT(30)
    107# define DSI_RXPKT1H_ECC_ERR		BIT(29)
    108# define DSI_RXPKT1H_COR_ERR		BIT(28)
    109# define DSI_RXPKT1H_INCOMP_PKT		BIT(25)
    110# define DSI_RXPKT1H_PKT_TYPE_LONG	BIT(24)
    111/* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */
    112# define DSI_RXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
    113# define DSI_RXPKT1H_BC_PARAM_SHIFT	8
    114/* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */
    115# define DSI_RXPKT1H_SHORT_1_MASK	VC4_MASK(23, 16)
    116# define DSI_RXPKT1H_SHORT_1_SHIFT	16
    117# define DSI_RXPKT1H_SHORT_0_MASK	VC4_MASK(15, 8)
    118# define DSI_RXPKT1H_SHORT_0_SHIFT	8
    119# define DSI_RXPKT1H_DT_LP_CMD_MASK	VC4_MASK(7, 0)
    120# define DSI_RXPKT1H_DT_LP_CMD_SHIFT	0
    121
    122#define DSI0_RXPKT2H		0x10 /* AKA RX2_PKTH */
    123#define DSI1_RXPKT2H		0x18
    124# define DSI_RXPKT1H_DET_ERR		BIT(30)
    125# define DSI_RXPKT1H_ECC_ERR		BIT(29)
    126# define DSI_RXPKT1H_COR_ERR		BIT(28)
    127# define DSI_RXPKT1H_INCOMP_PKT		BIT(25)
    128# define DSI_RXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
    129# define DSI_RXPKT1H_BC_PARAM_SHIFT	8
    130# define DSI_RXPKT1H_DT_MASK		VC4_MASK(7, 0)
    131# define DSI_RXPKT1H_DT_SHIFT		0
    132
    133#define DSI0_TXPKT_CMD_FIFO	0x14 /* AKA CMD_DATAF */
    134#define DSI1_TXPKT_CMD_FIFO	0x1c
    135
    136#define DSI0_DISP0_CTRL		0x18
    137# define DSI_DISP0_PIX_CLK_DIV_MASK	VC4_MASK(21, 13)
    138# define DSI_DISP0_PIX_CLK_DIV_SHIFT	13
    139# define DSI_DISP0_LP_STOP_CTRL_MASK	VC4_MASK(12, 11)
    140# define DSI_DISP0_LP_STOP_CTRL_SHIFT	11
    141# define DSI_DISP0_LP_STOP_DISABLE	0
    142# define DSI_DISP0_LP_STOP_PERLINE	1
    143# define DSI_DISP0_LP_STOP_PERFRAME	2
    144
    145/* Transmit RGB pixels and null packets only during HACTIVE, instead
    146 * of going to LP-STOP.
    147 */
    148# define DSI_DISP_HACTIVE_NULL		BIT(10)
    149/* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */
    150# define DSI_DISP_VBLP_CTRL		BIT(9)
    151/* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */
    152# define DSI_DISP_HFP_CTRL		BIT(8)
    153/* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */
    154# define DSI_DISP_HBP_CTRL		BIT(7)
    155# define DSI_DISP0_CHANNEL_MASK		VC4_MASK(6, 5)
    156# define DSI_DISP0_CHANNEL_SHIFT	5
    157/* Enables end events for HSYNC/VSYNC, not just start events. */
    158# define DSI_DISP0_ST_END		BIT(4)
    159# define DSI_DISP0_PFORMAT_MASK		VC4_MASK(3, 2)
    160# define DSI_DISP0_PFORMAT_SHIFT	2
    161# define DSI_PFORMAT_RGB565		0
    162# define DSI_PFORMAT_RGB666_PACKED	1
    163# define DSI_PFORMAT_RGB666		2
    164# define DSI_PFORMAT_RGB888		3
    165/* Default is VIDEO mode. */
    166# define DSI_DISP0_COMMAND_MODE		BIT(1)
    167# define DSI_DISP0_ENABLE		BIT(0)
    168
    169#define DSI0_DISP1_CTRL		0x1c
    170#define DSI1_DISP1_CTRL		0x2c
    171/* Format of the data written to TXPKT_PIX_FIFO. */
    172# define DSI_DISP1_PFORMAT_MASK		VC4_MASK(2, 1)
    173# define DSI_DISP1_PFORMAT_SHIFT	1
    174# define DSI_DISP1_PFORMAT_16BIT	0
    175# define DSI_DISP1_PFORMAT_24BIT	1
    176# define DSI_DISP1_PFORMAT_32BIT_LE	2
    177# define DSI_DISP1_PFORMAT_32BIT_BE	3
    178
    179/* DISP1 is always command mode. */
    180# define DSI_DISP1_ENABLE		BIT(0)
    181
    182#define DSI0_TXPKT_PIX_FIFO		0x20 /* AKA PIX_FIFO */
    183
    184#define DSI0_INT_STAT		0x24
    185#define DSI0_INT_EN		0x28
    186# define DSI1_INT_PHY_D3_ULPS		BIT(30)
    187# define DSI1_INT_PHY_D3_STOP		BIT(29)
    188# define DSI1_INT_PHY_D2_ULPS		BIT(28)
    189# define DSI1_INT_PHY_D2_STOP		BIT(27)
    190# define DSI1_INT_PHY_D1_ULPS		BIT(26)
    191# define DSI1_INT_PHY_D1_STOP		BIT(25)
    192# define DSI1_INT_PHY_D0_ULPS		BIT(24)
    193# define DSI1_INT_PHY_D0_STOP		BIT(23)
    194# define DSI1_INT_FIFO_ERR		BIT(22)
    195# define DSI1_INT_PHY_DIR_RTF		BIT(21)
    196# define DSI1_INT_PHY_RXLPDT		BIT(20)
    197# define DSI1_INT_PHY_RXTRIG		BIT(19)
    198# define DSI1_INT_PHY_D0_LPDT		BIT(18)
    199# define DSI1_INT_PHY_DIR_FTR		BIT(17)
    200
    201/* Signaled when the clock lane enters the given state. */
    202# define DSI1_INT_PHY_CLOCK_ULPS	BIT(16)
    203# define DSI1_INT_PHY_CLOCK_HS		BIT(15)
    204# define DSI1_INT_PHY_CLOCK_STOP	BIT(14)
    205
    206/* Signaled on timeouts */
    207# define DSI1_INT_PR_TO			BIT(13)
    208# define DSI1_INT_TA_TO			BIT(12)
    209# define DSI1_INT_LPRX_TO		BIT(11)
    210# define DSI1_INT_HSTX_TO		BIT(10)
    211
    212/* Contention on a line when trying to drive the line low */
    213# define DSI1_INT_ERR_CONT_LP1		BIT(9)
    214# define DSI1_INT_ERR_CONT_LP0		BIT(8)
    215
    216/* Control error: incorrect line state sequence on data lane 0. */
    217# define DSI1_INT_ERR_CONTROL		BIT(7)
    218/* LPDT synchronization error (bits received not a multiple of 8. */
    219
    220# define DSI1_INT_ERR_SYNC_ESC		BIT(6)
    221/* Signaled after receiving an error packet from the display in
    222 * response to a read.
    223 */
    224# define DSI1_INT_RXPKT2		BIT(5)
    225/* Signaled after receiving a packet.  The header and optional short
    226 * response will be in RXPKT1H, and a long response will be in the
    227 * RXPKT_FIFO.
    228 */
    229# define DSI1_INT_RXPKT1		BIT(4)
    230# define DSI1_INT_TXPKT2_DONE		BIT(3)
    231# define DSI1_INT_TXPKT2_END		BIT(2)
    232/* Signaled after all repeats of TXPKT1 are transferred. */
    233# define DSI1_INT_TXPKT1_DONE		BIT(1)
    234/* Signaled after each TXPKT1 repeat is scheduled. */
    235# define DSI1_INT_TXPKT1_END		BIT(0)
    236
    237#define DSI1_INTERRUPTS_ALWAYS_ENABLED	(DSI1_INT_ERR_SYNC_ESC | \
    238					 DSI1_INT_ERR_CONTROL |	 \
    239					 DSI1_INT_ERR_CONT_LP0 | \
    240					 DSI1_INT_ERR_CONT_LP1 | \
    241					 DSI1_INT_HSTX_TO |	 \
    242					 DSI1_INT_LPRX_TO |	 \
    243					 DSI1_INT_TA_TO |	 \
    244					 DSI1_INT_PR_TO)
    245
    246#define DSI0_STAT		0x2c
    247#define DSI0_HSTX_TO_CNT	0x30
    248#define DSI0_LPRX_TO_CNT	0x34
    249#define DSI0_TA_TO_CNT		0x38
    250#define DSI0_PR_TO_CNT		0x3c
    251#define DSI0_PHYC		0x40
    252# define DSI1_PHYC_ESC_CLK_LPDT_MASK	VC4_MASK(25, 20)
    253# define DSI1_PHYC_ESC_CLK_LPDT_SHIFT	20
    254# define DSI1_PHYC_HS_CLK_CONTINUOUS	BIT(18)
    255# define DSI0_PHYC_ESC_CLK_LPDT_MASK	VC4_MASK(17, 12)
    256# define DSI0_PHYC_ESC_CLK_LPDT_SHIFT	12
    257# define DSI1_PHYC_CLANE_ULPS		BIT(17)
    258# define DSI1_PHYC_CLANE_ENABLE		BIT(16)
    259# define DSI_PHYC_DLANE3_ULPS		BIT(13)
    260# define DSI_PHYC_DLANE3_ENABLE		BIT(12)
    261# define DSI0_PHYC_HS_CLK_CONTINUOUS	BIT(10)
    262# define DSI0_PHYC_CLANE_ULPS		BIT(9)
    263# define DSI_PHYC_DLANE2_ULPS		BIT(9)
    264# define DSI0_PHYC_CLANE_ENABLE		BIT(8)
    265# define DSI_PHYC_DLANE2_ENABLE		BIT(8)
    266# define DSI_PHYC_DLANE1_ULPS		BIT(5)
    267# define DSI_PHYC_DLANE1_ENABLE		BIT(4)
    268# define DSI_PHYC_DLANE0_FORCE_STOP	BIT(2)
    269# define DSI_PHYC_DLANE0_ULPS		BIT(1)
    270# define DSI_PHYC_DLANE0_ENABLE		BIT(0)
    271
    272#define DSI0_HS_CLT0		0x44
    273#define DSI0_HS_CLT1		0x48
    274#define DSI0_HS_CLT2		0x4c
    275#define DSI0_HS_DLT3		0x50
    276#define DSI0_HS_DLT4		0x54
    277#define DSI0_HS_DLT5		0x58
    278#define DSI0_HS_DLT6		0x5c
    279#define DSI0_HS_DLT7		0x60
    280
    281#define DSI0_PHY_AFEC0		0x64
    282# define DSI0_PHY_AFEC0_DDR2CLK_EN		BIT(26)
    283# define DSI0_PHY_AFEC0_DDRCLK_EN		BIT(25)
    284# define DSI0_PHY_AFEC0_LATCH_ULPS		BIT(24)
    285# define DSI1_PHY_AFEC0_IDR_DLANE3_MASK		VC4_MASK(31, 29)
    286# define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT	29
    287# define DSI1_PHY_AFEC0_IDR_DLANE2_MASK		VC4_MASK(28, 26)
    288# define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT	26
    289# define DSI1_PHY_AFEC0_IDR_DLANE1_MASK		VC4_MASK(27, 23)
    290# define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT	23
    291# define DSI1_PHY_AFEC0_IDR_DLANE0_MASK		VC4_MASK(22, 20)
    292# define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT	20
    293# define DSI1_PHY_AFEC0_IDR_CLANE_MASK		VC4_MASK(19, 17)
    294# define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT		17
    295# define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK	VC4_MASK(23, 20)
    296# define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT	20
    297# define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK	VC4_MASK(19, 16)
    298# define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT	16
    299# define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK	VC4_MASK(15, 12)
    300# define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT	12
    301# define DSI1_PHY_AFEC0_DDR2CLK_EN		BIT(16)
    302# define DSI1_PHY_AFEC0_DDRCLK_EN		BIT(15)
    303# define DSI1_PHY_AFEC0_LATCH_ULPS		BIT(14)
    304# define DSI1_PHY_AFEC0_RESET			BIT(13)
    305# define DSI1_PHY_AFEC0_PD			BIT(12)
    306# define DSI0_PHY_AFEC0_RESET			BIT(11)
    307# define DSI1_PHY_AFEC0_PD_BG			BIT(11)
    308# define DSI0_PHY_AFEC0_PD			BIT(10)
    309# define DSI1_PHY_AFEC0_PD_DLANE1		BIT(10)
    310# define DSI0_PHY_AFEC0_PD_BG			BIT(9)
    311# define DSI1_PHY_AFEC0_PD_DLANE2		BIT(9)
    312# define DSI0_PHY_AFEC0_PD_DLANE1		BIT(8)
    313# define DSI1_PHY_AFEC0_PD_DLANE3		BIT(8)
    314# define DSI_PHY_AFEC0_PTATADJ_MASK		VC4_MASK(7, 4)
    315# define DSI_PHY_AFEC0_PTATADJ_SHIFT		4
    316# define DSI_PHY_AFEC0_CTATADJ_MASK		VC4_MASK(3, 0)
    317# define DSI_PHY_AFEC0_CTATADJ_SHIFT		0
    318
    319#define DSI0_PHY_AFEC1		0x68
    320# define DSI0_PHY_AFEC1_IDR_DLANE1_MASK		VC4_MASK(10, 8)
    321# define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT	8
    322# define DSI0_PHY_AFEC1_IDR_DLANE0_MASK		VC4_MASK(6, 4)
    323# define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT	4
    324# define DSI0_PHY_AFEC1_IDR_CLANE_MASK		VC4_MASK(2, 0)
    325# define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT		0
    326
    327#define DSI0_TST_SEL		0x6c
    328#define DSI0_TST_MON		0x70
    329#define DSI0_ID			0x74
    330# define DSI_ID_VALUE		0x00647369
    331
    332#define DSI1_CTRL		0x00
    333# define DSI_CTRL_HS_CLKC_MASK		VC4_MASK(15, 14)
    334# define DSI_CTRL_HS_CLKC_SHIFT		14
    335# define DSI_CTRL_HS_CLKC_BYTE		0
    336# define DSI_CTRL_HS_CLKC_DDR2		1
    337# define DSI_CTRL_HS_CLKC_DDR		2
    338
    339# define DSI_CTRL_RX_LPDT_EOT_DISABLE	BIT(13)
    340# define DSI_CTRL_LPDT_EOT_DISABLE	BIT(12)
    341# define DSI_CTRL_HSDT_EOT_DISABLE	BIT(11)
    342# define DSI_CTRL_SOFT_RESET_CFG	BIT(10)
    343# define DSI_CTRL_CAL_BYTE		BIT(9)
    344# define DSI_CTRL_INV_BYTE		BIT(8)
    345# define DSI_CTRL_CLR_LDF		BIT(7)
    346# define DSI0_CTRL_CLR_PBCF		BIT(6)
    347# define DSI1_CTRL_CLR_RXF		BIT(6)
    348# define DSI0_CTRL_CLR_CPBCF		BIT(5)
    349# define DSI1_CTRL_CLR_PDF		BIT(5)
    350# define DSI0_CTRL_CLR_PDF		BIT(4)
    351# define DSI1_CTRL_CLR_CDF		BIT(4)
    352# define DSI0_CTRL_CLR_CDF		BIT(3)
    353# define DSI0_CTRL_CTRL2		BIT(2)
    354# define DSI1_CTRL_DISABLE_DISP_CRCC	BIT(2)
    355# define DSI0_CTRL_CTRL1		BIT(1)
    356# define DSI1_CTRL_DISABLE_DISP_ECCC	BIT(1)
    357# define DSI0_CTRL_CTRL0		BIT(0)
    358# define DSI1_CTRL_EN			BIT(0)
    359# define DSI0_CTRL_RESET_FIFOS		(DSI_CTRL_CLR_LDF | \
    360					 DSI0_CTRL_CLR_PBCF | \
    361					 DSI0_CTRL_CLR_CPBCF |	\
    362					 DSI0_CTRL_CLR_PDF | \
    363					 DSI0_CTRL_CLR_CDF)
    364# define DSI1_CTRL_RESET_FIFOS		(DSI_CTRL_CLR_LDF | \
    365					 DSI1_CTRL_CLR_RXF | \
    366					 DSI1_CTRL_CLR_PDF | \
    367					 DSI1_CTRL_CLR_CDF)
    368
    369#define DSI1_TXPKT2C		0x0c
    370#define DSI1_TXPKT2H		0x10
    371#define DSI1_TXPKT_PIX_FIFO	0x20
    372#define DSI1_RXPKT_FIFO		0x24
    373#define DSI1_DISP0_CTRL		0x28
    374#define DSI1_INT_STAT		0x30
    375#define DSI1_INT_EN		0x34
    376/* State reporting bits.  These mostly behave like INT_STAT, where
    377 * writing a 1 clears the bit.
    378 */
    379#define DSI1_STAT		0x38
    380# define DSI1_STAT_PHY_D3_ULPS		BIT(31)
    381# define DSI1_STAT_PHY_D3_STOP		BIT(30)
    382# define DSI1_STAT_PHY_D2_ULPS		BIT(29)
    383# define DSI1_STAT_PHY_D2_STOP		BIT(28)
    384# define DSI1_STAT_PHY_D1_ULPS		BIT(27)
    385# define DSI1_STAT_PHY_D1_STOP		BIT(26)
    386# define DSI1_STAT_PHY_D0_ULPS		BIT(25)
    387# define DSI1_STAT_PHY_D0_STOP		BIT(24)
    388# define DSI1_STAT_FIFO_ERR		BIT(23)
    389# define DSI1_STAT_PHY_RXLPDT		BIT(22)
    390# define DSI1_STAT_PHY_RXTRIG		BIT(21)
    391# define DSI1_STAT_PHY_D0_LPDT		BIT(20)
    392/* Set when in forward direction */
    393# define DSI1_STAT_PHY_DIR		BIT(19)
    394# define DSI1_STAT_PHY_CLOCK_ULPS	BIT(18)
    395# define DSI1_STAT_PHY_CLOCK_HS		BIT(17)
    396# define DSI1_STAT_PHY_CLOCK_STOP	BIT(16)
    397# define DSI1_STAT_PR_TO		BIT(15)
    398# define DSI1_STAT_TA_TO		BIT(14)
    399# define DSI1_STAT_LPRX_TO		BIT(13)
    400# define DSI1_STAT_HSTX_TO		BIT(12)
    401# define DSI1_STAT_ERR_CONT_LP1		BIT(11)
    402# define DSI1_STAT_ERR_CONT_LP0		BIT(10)
    403# define DSI1_STAT_ERR_CONTROL		BIT(9)
    404# define DSI1_STAT_ERR_SYNC_ESC		BIT(8)
    405# define DSI1_STAT_RXPKT2		BIT(7)
    406# define DSI1_STAT_RXPKT1		BIT(6)
    407# define DSI1_STAT_TXPKT2_BUSY		BIT(5)
    408# define DSI1_STAT_TXPKT2_DONE		BIT(4)
    409# define DSI1_STAT_TXPKT2_END		BIT(3)
    410# define DSI1_STAT_TXPKT1_BUSY		BIT(2)
    411# define DSI1_STAT_TXPKT1_DONE		BIT(1)
    412# define DSI1_STAT_TXPKT1_END		BIT(0)
    413
    414#define DSI1_HSTX_TO_CNT	0x3c
    415#define DSI1_LPRX_TO_CNT	0x40
    416#define DSI1_TA_TO_CNT		0x44
    417#define DSI1_PR_TO_CNT		0x48
    418#define DSI1_PHYC		0x4c
    419
    420#define DSI1_HS_CLT0		0x50
    421# define DSI_HS_CLT0_CZERO_MASK		VC4_MASK(26, 18)
    422# define DSI_HS_CLT0_CZERO_SHIFT	18
    423# define DSI_HS_CLT0_CPRE_MASK		VC4_MASK(17, 9)
    424# define DSI_HS_CLT0_CPRE_SHIFT		9
    425# define DSI_HS_CLT0_CPREP_MASK		VC4_MASK(8, 0)
    426# define DSI_HS_CLT0_CPREP_SHIFT	0
    427
    428#define DSI1_HS_CLT1		0x54
    429# define DSI_HS_CLT1_CTRAIL_MASK	VC4_MASK(17, 9)
    430# define DSI_HS_CLT1_CTRAIL_SHIFT	9
    431# define DSI_HS_CLT1_CPOST_MASK		VC4_MASK(8, 0)
    432# define DSI_HS_CLT1_CPOST_SHIFT	0
    433
    434#define DSI1_HS_CLT2		0x58
    435# define DSI_HS_CLT2_WUP_MASK		VC4_MASK(23, 0)
    436# define DSI_HS_CLT2_WUP_SHIFT		0
    437
    438#define DSI1_HS_DLT3		0x5c
    439# define DSI_HS_DLT3_EXIT_MASK		VC4_MASK(26, 18)
    440# define DSI_HS_DLT3_EXIT_SHIFT		18
    441# define DSI_HS_DLT3_ZERO_MASK		VC4_MASK(17, 9)
    442# define DSI_HS_DLT3_ZERO_SHIFT		9
    443# define DSI_HS_DLT3_PRE_MASK		VC4_MASK(8, 0)
    444# define DSI_HS_DLT3_PRE_SHIFT		0
    445
    446#define DSI1_HS_DLT4		0x60
    447# define DSI_HS_DLT4_ANLAT_MASK		VC4_MASK(22, 18)
    448# define DSI_HS_DLT4_ANLAT_SHIFT	18
    449# define DSI_HS_DLT4_TRAIL_MASK		VC4_MASK(17, 9)
    450# define DSI_HS_DLT4_TRAIL_SHIFT	9
    451# define DSI_HS_DLT4_LPX_MASK		VC4_MASK(8, 0)
    452# define DSI_HS_DLT4_LPX_SHIFT		0
    453
    454#define DSI1_HS_DLT5		0x64
    455# define DSI_HS_DLT5_INIT_MASK		VC4_MASK(23, 0)
    456# define DSI_HS_DLT5_INIT_SHIFT		0
    457
    458#define DSI1_HS_DLT6		0x68
    459# define DSI_HS_DLT6_TA_GET_MASK	VC4_MASK(31, 24)
    460# define DSI_HS_DLT6_TA_GET_SHIFT	24
    461# define DSI_HS_DLT6_TA_SURE_MASK	VC4_MASK(23, 16)
    462# define DSI_HS_DLT6_TA_SURE_SHIFT	16
    463# define DSI_HS_DLT6_TA_GO_MASK		VC4_MASK(15, 8)
    464# define DSI_HS_DLT6_TA_GO_SHIFT	8
    465# define DSI_HS_DLT6_LP_LPX_MASK	VC4_MASK(7, 0)
    466# define DSI_HS_DLT6_LP_LPX_SHIFT	0
    467
    468#define DSI1_HS_DLT7		0x6c
    469# define DSI_HS_DLT7_LP_WUP_MASK	VC4_MASK(23, 0)
    470# define DSI_HS_DLT7_LP_WUP_SHIFT	0
    471
    472#define DSI1_PHY_AFEC0		0x70
    473
    474#define DSI1_PHY_AFEC1		0x74
    475# define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK	VC4_MASK(19, 16)
    476# define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT	16
    477# define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK	VC4_MASK(15, 12)
    478# define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT	12
    479# define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK	VC4_MASK(11, 8)
    480# define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT	8
    481# define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK	VC4_MASK(7, 4)
    482# define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT	4
    483# define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK	VC4_MASK(3, 0)
    484# define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT	0
    485
    486#define DSI1_TST_SEL		0x78
    487#define DSI1_TST_MON		0x7c
    488#define DSI1_PHY_TST1		0x80
    489#define DSI1_PHY_TST2		0x84
    490#define DSI1_PHY_FIFO_STAT	0x88
    491/* Actually, all registers in the range that aren't otherwise claimed
    492 * will return the ID.
    493 */
    494#define DSI1_ID			0x8c
    495
    496struct vc4_dsi_variant {
    497	/* Whether we're on bcm2835's DSI0 or DSI1. */
    498	unsigned int port;
    499
    500	bool broken_axi_workaround;
    501
    502	const char *debugfs_name;
    503	const struct debugfs_reg32 *regs;
    504	size_t nregs;
    505
    506};
    507
    508/* General DSI hardware state. */
    509struct vc4_dsi {
    510	struct platform_device *pdev;
    511
    512	struct mipi_dsi_host dsi_host;
    513	struct drm_encoder *encoder;
    514	struct drm_bridge *bridge;
    515	struct list_head bridge_chain;
    516
    517	void __iomem *regs;
    518
    519	struct dma_chan *reg_dma_chan;
    520	dma_addr_t reg_dma_paddr;
    521	u32 *reg_dma_mem;
    522	dma_addr_t reg_paddr;
    523
    524	const struct vc4_dsi_variant *variant;
    525
    526	/* DSI channel for the panel we're connected to. */
    527	u32 channel;
    528	u32 lanes;
    529	u32 format;
    530	u32 divider;
    531	u32 mode_flags;
    532
    533	/* Input clock from CPRMAN to the digital PHY, for the DSI
    534	 * escape clock.
    535	 */
    536	struct clk *escape_clock;
    537
    538	/* Input clock to the analog PHY, used to generate the DSI bit
    539	 * clock.
    540	 */
    541	struct clk *pll_phy_clock;
    542
    543	/* HS Clocks generated within the DSI analog PHY. */
    544	struct clk_fixed_factor phy_clocks[3];
    545
    546	struct clk_hw_onecell_data *clk_onecell;
    547
    548	/* Pixel clock output to the pixelvalve, generated from the HS
    549	 * clock.
    550	 */
    551	struct clk *pixel_clock;
    552
    553	struct completion xfer_completion;
    554	int xfer_result;
    555
    556	struct debugfs_regset32 regset;
    557};
    558
    559#define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host)
    560
    561static inline void
    562dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val)
    563{
    564	struct dma_chan *chan = dsi->reg_dma_chan;
    565	struct dma_async_tx_descriptor *tx;
    566	dma_cookie_t cookie;
    567	int ret;
    568
    569	/* DSI0 should be able to write normally. */
    570	if (!chan) {
    571		writel(val, dsi->regs + offset);
    572		return;
    573	}
    574
    575	*dsi->reg_dma_mem = val;
    576
    577	tx = chan->device->device_prep_dma_memcpy(chan,
    578						  dsi->reg_paddr + offset,
    579						  dsi->reg_dma_paddr,
    580						  4, 0);
    581	if (!tx) {
    582		DRM_ERROR("Failed to set up DMA register write\n");
    583		return;
    584	}
    585
    586	cookie = tx->tx_submit(tx);
    587	ret = dma_submit_error(cookie);
    588	if (ret) {
    589		DRM_ERROR("Failed to submit DMA: %d\n", ret);
    590		return;
    591	}
    592	ret = dma_sync_wait(chan, cookie);
    593	if (ret)
    594		DRM_ERROR("Failed to wait for DMA: %d\n", ret);
    595}
    596
    597#define DSI_READ(offset) readl(dsi->regs + (offset))
    598#define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val)
    599#define DSI_PORT_READ(offset) \
    600	DSI_READ(dsi->variant->port ? DSI1_##offset : DSI0_##offset)
    601#define DSI_PORT_WRITE(offset, val) \
    602	DSI_WRITE(dsi->variant->port ? DSI1_##offset : DSI0_##offset, val)
    603#define DSI_PORT_BIT(bit) (dsi->variant->port ? DSI1_##bit : DSI0_##bit)
    604
    605/* VC4 DSI encoder KMS struct */
    606struct vc4_dsi_encoder {
    607	struct vc4_encoder base;
    608	struct vc4_dsi *dsi;
    609};
    610
    611static inline struct vc4_dsi_encoder *
    612to_vc4_dsi_encoder(struct drm_encoder *encoder)
    613{
    614	return container_of(encoder, struct vc4_dsi_encoder, base.base);
    615}
    616
    617static const struct debugfs_reg32 dsi0_regs[] = {
    618	VC4_REG32(DSI0_CTRL),
    619	VC4_REG32(DSI0_STAT),
    620	VC4_REG32(DSI0_HSTX_TO_CNT),
    621	VC4_REG32(DSI0_LPRX_TO_CNT),
    622	VC4_REG32(DSI0_TA_TO_CNT),
    623	VC4_REG32(DSI0_PR_TO_CNT),
    624	VC4_REG32(DSI0_DISP0_CTRL),
    625	VC4_REG32(DSI0_DISP1_CTRL),
    626	VC4_REG32(DSI0_INT_STAT),
    627	VC4_REG32(DSI0_INT_EN),
    628	VC4_REG32(DSI0_PHYC),
    629	VC4_REG32(DSI0_HS_CLT0),
    630	VC4_REG32(DSI0_HS_CLT1),
    631	VC4_REG32(DSI0_HS_CLT2),
    632	VC4_REG32(DSI0_HS_DLT3),
    633	VC4_REG32(DSI0_HS_DLT4),
    634	VC4_REG32(DSI0_HS_DLT5),
    635	VC4_REG32(DSI0_HS_DLT6),
    636	VC4_REG32(DSI0_HS_DLT7),
    637	VC4_REG32(DSI0_PHY_AFEC0),
    638	VC4_REG32(DSI0_PHY_AFEC1),
    639	VC4_REG32(DSI0_ID),
    640};
    641
    642static const struct debugfs_reg32 dsi1_regs[] = {
    643	VC4_REG32(DSI1_CTRL),
    644	VC4_REG32(DSI1_STAT),
    645	VC4_REG32(DSI1_HSTX_TO_CNT),
    646	VC4_REG32(DSI1_LPRX_TO_CNT),
    647	VC4_REG32(DSI1_TA_TO_CNT),
    648	VC4_REG32(DSI1_PR_TO_CNT),
    649	VC4_REG32(DSI1_DISP0_CTRL),
    650	VC4_REG32(DSI1_DISP1_CTRL),
    651	VC4_REG32(DSI1_INT_STAT),
    652	VC4_REG32(DSI1_INT_EN),
    653	VC4_REG32(DSI1_PHYC),
    654	VC4_REG32(DSI1_HS_CLT0),
    655	VC4_REG32(DSI1_HS_CLT1),
    656	VC4_REG32(DSI1_HS_CLT2),
    657	VC4_REG32(DSI1_HS_DLT3),
    658	VC4_REG32(DSI1_HS_DLT4),
    659	VC4_REG32(DSI1_HS_DLT5),
    660	VC4_REG32(DSI1_HS_DLT6),
    661	VC4_REG32(DSI1_HS_DLT7),
    662	VC4_REG32(DSI1_PHY_AFEC0),
    663	VC4_REG32(DSI1_PHY_AFEC1),
    664	VC4_REG32(DSI1_ID),
    665};
    666
    667static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch)
    668{
    669	u32 afec0 = DSI_PORT_READ(PHY_AFEC0);
    670
    671	if (latch)
    672		afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
    673	else
    674		afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
    675
    676	DSI_PORT_WRITE(PHY_AFEC0, afec0);
    677}
    678
    679/* Enters or exits Ultra Low Power State. */
    680static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps)
    681{
    682	bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS;
    683	u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) |
    684			 DSI_PHYC_DLANE0_ULPS |
    685			 (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) |
    686			 (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) |
    687			 (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0));
    688	u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) |
    689			 DSI1_STAT_PHY_D0_ULPS |
    690			 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) |
    691			 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) |
    692			 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0));
    693	u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) |
    694			 DSI1_STAT_PHY_D0_STOP |
    695			 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) |
    696			 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) |
    697			 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0));
    698	int ret;
    699	bool ulps_currently_enabled = (DSI_PORT_READ(PHY_AFEC0) &
    700				       DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS));
    701
    702	if (ulps == ulps_currently_enabled)
    703		return;
    704
    705	DSI_PORT_WRITE(STAT, stat_ulps);
    706	DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps);
    707	ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200);
    708	if (ret) {
    709		dev_warn(&dsi->pdev->dev,
    710			 "Timeout waiting for DSI ULPS entry: STAT 0x%08x",
    711			 DSI_PORT_READ(STAT));
    712		DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
    713		vc4_dsi_latch_ulps(dsi, false);
    714		return;
    715	}
    716
    717	/* The DSI module can't be disabled while the module is
    718	 * generating ULPS state.  So, to be able to disable the
    719	 * module, we have the AFE latch the ULPS state and continue
    720	 * on to having the module enter STOP.
    721	 */
    722	vc4_dsi_latch_ulps(dsi, ulps);
    723
    724	DSI_PORT_WRITE(STAT, stat_stop);
    725	DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
    726	ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200);
    727	if (ret) {
    728		dev_warn(&dsi->pdev->dev,
    729			 "Timeout waiting for DSI STOP entry: STAT 0x%08x",
    730			 DSI_PORT_READ(STAT));
    731		DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
    732		return;
    733	}
    734}
    735
    736static u32
    737dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui)
    738{
    739	/* The HS timings have to be rounded up to a multiple of 8
    740	 * because we're using the byte clock.
    741	 */
    742	return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8);
    743}
    744
    745/* ESC always runs at 100Mhz. */
    746#define ESC_TIME_NS 10
    747
    748static u32
    749dsi_esc_timing(u32 ns)
    750{
    751	return DIV_ROUND_UP(ns, ESC_TIME_NS);
    752}
    753
    754static void vc4_dsi_encoder_disable(struct drm_encoder *encoder)
    755{
    756	struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
    757	struct vc4_dsi *dsi = vc4_encoder->dsi;
    758	struct device *dev = &dsi->pdev->dev;
    759	struct drm_bridge *iter;
    760
    761	list_for_each_entry_reverse(iter, &dsi->bridge_chain, chain_node) {
    762		if (iter->funcs->disable)
    763			iter->funcs->disable(iter);
    764	}
    765
    766	vc4_dsi_ulps(dsi, true);
    767
    768	list_for_each_entry_from(iter, &dsi->bridge_chain, chain_node) {
    769		if (iter->funcs->post_disable)
    770			iter->funcs->post_disable(iter);
    771	}
    772
    773	clk_disable_unprepare(dsi->pll_phy_clock);
    774	clk_disable_unprepare(dsi->escape_clock);
    775	clk_disable_unprepare(dsi->pixel_clock);
    776
    777	pm_runtime_put(dev);
    778}
    779
    780/* Extends the mode's blank intervals to handle BCM2835's integer-only
    781 * DSI PLL divider.
    782 *
    783 * On 2835, PLLD is set to 2Ghz, and may not be changed by the display
    784 * driver since most peripherals are hanging off of the PLLD_PER
    785 * divider.  PLLD_DSI1, which drives our DSI bit clock (and therefore
    786 * the pixel clock), only has an integer divider off of DSI.
    787 *
    788 * To get our panel mode to refresh at the expected 60Hz, we need to
    789 * extend the horizontal blank time.  This means we drive a
    790 * higher-than-expected clock rate to the panel, but that's what the
    791 * firmware does too.
    792 */
    793static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder *encoder,
    794				       const struct drm_display_mode *mode,
    795				       struct drm_display_mode *adjusted_mode)
    796{
    797	struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
    798	struct vc4_dsi *dsi = vc4_encoder->dsi;
    799	struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock);
    800	unsigned long parent_rate = clk_get_rate(phy_parent);
    801	unsigned long pixel_clock_hz = mode->clock * 1000;
    802	unsigned long pll_clock = pixel_clock_hz * dsi->divider;
    803	int divider;
    804
    805	/* Find what divider gets us a faster clock than the requested
    806	 * pixel clock.
    807	 */
    808	for (divider = 1; divider < 8; divider++) {
    809		if (parent_rate / divider < pll_clock) {
    810			divider--;
    811			break;
    812		}
    813	}
    814
    815	/* Now that we've picked a PLL divider, calculate back to its
    816	 * pixel clock.
    817	 */
    818	pll_clock = parent_rate / divider;
    819	pixel_clock_hz = pll_clock / dsi->divider;
    820
    821	adjusted_mode->clock = pixel_clock_hz / 1000;
    822
    823	/* Given the new pixel clock, adjust HFP to keep vrefresh the same. */
    824	adjusted_mode->htotal = adjusted_mode->clock * mode->htotal /
    825				mode->clock;
    826	adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal;
    827	adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal;
    828
    829	return true;
    830}
    831
    832static void vc4_dsi_encoder_enable(struct drm_encoder *encoder)
    833{
    834	struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode;
    835	struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
    836	struct vc4_dsi *dsi = vc4_encoder->dsi;
    837	struct device *dev = &dsi->pdev->dev;
    838	bool debug_dump_regs = false;
    839	struct drm_bridge *iter;
    840	unsigned long hs_clock;
    841	u32 ui_ns;
    842	/* Minimum LP state duration in escape clock cycles. */
    843	u32 lpx = dsi_esc_timing(60);
    844	unsigned long pixel_clock_hz = mode->clock * 1000;
    845	unsigned long dsip_clock;
    846	unsigned long phy_clock;
    847	int ret;
    848
    849	ret = pm_runtime_resume_and_get(dev);
    850	if (ret) {
    851		DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->variant->port);
    852		return;
    853	}
    854
    855	if (debug_dump_regs) {
    856		struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
    857		dev_info(&dsi->pdev->dev, "DSI regs before:\n");
    858		drm_print_regset32(&p, &dsi->regset);
    859	}
    860
    861	/* Round up the clk_set_rate() request slightly, since
    862	 * PLLD_DSI1 is an integer divider and its rate selection will
    863	 * never round up.
    864	 */
    865	phy_clock = (pixel_clock_hz + 1000) * dsi->divider;
    866	ret = clk_set_rate(dsi->pll_phy_clock, phy_clock);
    867	if (ret) {
    868		dev_err(&dsi->pdev->dev,
    869			"Failed to set phy clock to %ld: %d\n", phy_clock, ret);
    870	}
    871
    872	/* Reset the DSI and all its fifos. */
    873	DSI_PORT_WRITE(CTRL,
    874		       DSI_CTRL_SOFT_RESET_CFG |
    875		       DSI_PORT_BIT(CTRL_RESET_FIFOS));
    876
    877	DSI_PORT_WRITE(CTRL,
    878		       DSI_CTRL_HSDT_EOT_DISABLE |
    879		       DSI_CTRL_RX_LPDT_EOT_DISABLE);
    880
    881	/* Clear all stat bits so we see what has happened during enable. */
    882	DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT));
    883
    884	/* Set AFE CTR00/CTR1 to release powerdown of analog. */
    885	if (dsi->variant->port == 0) {
    886		u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
    887			     VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ));
    888
    889		if (dsi->lanes < 2)
    890			afec0 |= DSI0_PHY_AFEC0_PD_DLANE1;
    891
    892		if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO))
    893			afec0 |= DSI0_PHY_AFEC0_RESET;
    894
    895		DSI_PORT_WRITE(PHY_AFEC0, afec0);
    896
    897		DSI_PORT_WRITE(PHY_AFEC1,
    898			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_DLANE1) |
    899			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_DLANE0) |
    900			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_CLANE));
    901	} else {
    902		u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
    903			     VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) |
    904			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) |
    905			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) |
    906			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) |
    907			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) |
    908			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3));
    909
    910		if (dsi->lanes < 4)
    911			afec0 |= DSI1_PHY_AFEC0_PD_DLANE3;
    912		if (dsi->lanes < 3)
    913			afec0 |= DSI1_PHY_AFEC0_PD_DLANE2;
    914		if (dsi->lanes < 2)
    915			afec0 |= DSI1_PHY_AFEC0_PD_DLANE1;
    916
    917		afec0 |= DSI1_PHY_AFEC0_RESET;
    918
    919		DSI_PORT_WRITE(PHY_AFEC0, afec0);
    920
    921		DSI_PORT_WRITE(PHY_AFEC1, 0);
    922
    923		/* AFEC reset hold time */
    924		mdelay(1);
    925	}
    926
    927	ret = clk_prepare_enable(dsi->escape_clock);
    928	if (ret) {
    929		DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret);
    930		return;
    931	}
    932
    933	ret = clk_prepare_enable(dsi->pll_phy_clock);
    934	if (ret) {
    935		DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret);
    936		return;
    937	}
    938
    939	hs_clock = clk_get_rate(dsi->pll_phy_clock);
    940
    941	/* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate,
    942	 * not the pixel clock rate.  DSIxP take from the APHY's byte,
    943	 * DDR2, or DDR4 clock (we use byte) and feed into the PV at
    944	 * that rate.  Separately, a value derived from PIX_CLK_DIV
    945	 * and HS_CLKC is fed into the PV to divide down to the actual
    946	 * pixel clock for pushing pixels into DSI.
    947	 */
    948	dsip_clock = phy_clock / 8;
    949	ret = clk_set_rate(dsi->pixel_clock, dsip_clock);
    950	if (ret) {
    951		dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n",
    952			dsip_clock, ret);
    953	}
    954
    955	ret = clk_prepare_enable(dsi->pixel_clock);
    956	if (ret) {
    957		DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret);
    958		return;
    959	}
    960
    961	/* How many ns one DSI unit interval is.  Note that the clock
    962	 * is DDR, so there's an extra divide by 2.
    963	 */
    964	ui_ns = DIV_ROUND_UP(500000000, hs_clock);
    965
    966	DSI_PORT_WRITE(HS_CLT0,
    967		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0),
    968				     DSI_HS_CLT0_CZERO) |
    969		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8),
    970				     DSI_HS_CLT0_CPRE) |
    971		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0),
    972				     DSI_HS_CLT0_CPREP));
    973
    974	DSI_PORT_WRITE(HS_CLT1,
    975		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0),
    976				     DSI_HS_CLT1_CTRAIL) |
    977		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52),
    978				     DSI_HS_CLT1_CPOST));
    979
    980	DSI_PORT_WRITE(HS_CLT2,
    981		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0),
    982				     DSI_HS_CLT2_WUP));
    983
    984	DSI_PORT_WRITE(HS_DLT3,
    985		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0),
    986				     DSI_HS_DLT3_EXIT) |
    987		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6),
    988				     DSI_HS_DLT3_ZERO) |
    989		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4),
    990				     DSI_HS_DLT3_PRE));
    991
    992	DSI_PORT_WRITE(HS_DLT4,
    993		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0),
    994				     DSI_HS_DLT4_LPX) |
    995		       VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8),
    996					 dsi_hs_timing(ui_ns, 60, 4)),
    997				     DSI_HS_DLT4_TRAIL) |
    998		       VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT));
    999
   1000	/* T_INIT is how long STOP is driven after power-up to
   1001	 * indicate to the slave (also coming out of power-up) that
   1002	 * master init is complete, and should be greater than the
   1003	 * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE.  The
   1004	 * D-PHY spec gives a minimum 100us for T_INIT,MASTER and
   1005	 * T_INIT,SLAVE, while allowing protocols on top of it to give
   1006	 * greater minimums.  The vc4 firmware uses an extremely
   1007	 * conservative 5ms, and we maintain that here.
   1008	 */
   1009	DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns,
   1010							    5 * 1000 * 1000, 0),
   1011					      DSI_HS_DLT5_INIT));
   1012
   1013	DSI_PORT_WRITE(HS_DLT6,
   1014		       VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) |
   1015		       VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) |
   1016		       VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) |
   1017		       VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX));
   1018
   1019	DSI_PORT_WRITE(HS_DLT7,
   1020		       VC4_SET_FIELD(dsi_esc_timing(1000000),
   1021				     DSI_HS_DLT7_LP_WUP));
   1022
   1023	DSI_PORT_WRITE(PHYC,
   1024		       DSI_PHYC_DLANE0_ENABLE |
   1025		       (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) |
   1026		       (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) |
   1027		       (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) |
   1028		       DSI_PORT_BIT(PHYC_CLANE_ENABLE) |
   1029		       ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ?
   1030			0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) |
   1031		       (dsi->variant->port == 0 ?
   1032			VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) :
   1033			VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT)));
   1034
   1035	DSI_PORT_WRITE(CTRL,
   1036		       DSI_PORT_READ(CTRL) |
   1037		       DSI_CTRL_CAL_BYTE);
   1038
   1039	/* HS timeout in HS clock cycles: disabled. */
   1040	DSI_PORT_WRITE(HSTX_TO_CNT, 0);
   1041	/* LP receive timeout in HS clocks. */
   1042	DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff);
   1043	/* Bus turnaround timeout */
   1044	DSI_PORT_WRITE(TA_TO_CNT, 100000);
   1045	/* Display reset sequence timeout */
   1046	DSI_PORT_WRITE(PR_TO_CNT, 100000);
   1047
   1048	/* Set up DISP1 for transferring long command payloads through
   1049	 * the pixfifo.
   1050	 */
   1051	DSI_PORT_WRITE(DISP1_CTRL,
   1052		       VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE,
   1053				     DSI_DISP1_PFORMAT) |
   1054		       DSI_DISP1_ENABLE);
   1055
   1056	/* Ungate the block. */
   1057	if (dsi->variant->port == 0)
   1058		DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0);
   1059	else
   1060		DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN);
   1061
   1062	/* Bring AFE out of reset. */
   1063	if (dsi->variant->port == 0) {
   1064	} else {
   1065		DSI_PORT_WRITE(PHY_AFEC0,
   1066			       DSI_PORT_READ(PHY_AFEC0) &
   1067			       ~DSI1_PHY_AFEC0_RESET);
   1068	}
   1069
   1070	vc4_dsi_ulps(dsi, false);
   1071
   1072	list_for_each_entry_reverse(iter, &dsi->bridge_chain, chain_node) {
   1073		if (iter->funcs->pre_enable)
   1074			iter->funcs->pre_enable(iter);
   1075	}
   1076
   1077	if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
   1078		DSI_PORT_WRITE(DISP0_CTRL,
   1079			       VC4_SET_FIELD(dsi->divider,
   1080					     DSI_DISP0_PIX_CLK_DIV) |
   1081			       VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) |
   1082			       VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME,
   1083					     DSI_DISP0_LP_STOP_CTRL) |
   1084			       DSI_DISP0_ST_END |
   1085			       DSI_DISP0_ENABLE);
   1086	} else {
   1087		DSI_PORT_WRITE(DISP0_CTRL,
   1088			       DSI_DISP0_COMMAND_MODE |
   1089			       DSI_DISP0_ENABLE);
   1090	}
   1091
   1092	list_for_each_entry(iter, &dsi->bridge_chain, chain_node) {
   1093		if (iter->funcs->enable)
   1094			iter->funcs->enable(iter);
   1095	}
   1096
   1097	if (debug_dump_regs) {
   1098		struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
   1099		dev_info(&dsi->pdev->dev, "DSI regs after:\n");
   1100		drm_print_regset32(&p, &dsi->regset);
   1101	}
   1102}
   1103
   1104static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host,
   1105				     const struct mipi_dsi_msg *msg)
   1106{
   1107	struct vc4_dsi *dsi = host_to_dsi(host);
   1108	struct mipi_dsi_packet packet;
   1109	u32 pkth = 0, pktc = 0;
   1110	int i, ret;
   1111	bool is_long = mipi_dsi_packet_format_is_long(msg->type);
   1112	u32 cmd_fifo_len = 0, pix_fifo_len = 0;
   1113
   1114	mipi_dsi_create_packet(&packet, msg);
   1115
   1116	pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT);
   1117	pkth |= VC4_SET_FIELD(packet.header[1] |
   1118			      (packet.header[2] << 8),
   1119			      DSI_TXPKT1H_BC_PARAM);
   1120	if (is_long) {
   1121		/* Divide data across the various FIFOs we have available.
   1122		 * The command FIFO takes byte-oriented data, but is of
   1123		 * limited size. The pixel FIFO (never actually used for
   1124		 * pixel data in reality) is word oriented, and substantially
   1125		 * larger. So, we use the pixel FIFO for most of the data,
   1126		 * sending the residual bytes in the command FIFO at the start.
   1127		 *
   1128		 * With this arrangement, the command FIFO will never get full.
   1129		 */
   1130		if (packet.payload_length <= 16) {
   1131			cmd_fifo_len = packet.payload_length;
   1132			pix_fifo_len = 0;
   1133		} else {
   1134			cmd_fifo_len = (packet.payload_length %
   1135					DSI_PIX_FIFO_WIDTH);
   1136			pix_fifo_len = ((packet.payload_length - cmd_fifo_len) /
   1137					DSI_PIX_FIFO_WIDTH);
   1138		}
   1139
   1140		WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH);
   1141
   1142		pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO);
   1143	}
   1144
   1145	if (msg->rx_len) {
   1146		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX,
   1147				      DSI_TXPKT1C_CMD_CTRL);
   1148	} else {
   1149		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX,
   1150				      DSI_TXPKT1C_CMD_CTRL);
   1151	}
   1152
   1153	for (i = 0; i < cmd_fifo_len; i++)
   1154		DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]);
   1155	for (i = 0; i < pix_fifo_len; i++) {
   1156		const u8 *pix = packet.payload + cmd_fifo_len + i * 4;
   1157
   1158		DSI_PORT_WRITE(TXPKT_PIX_FIFO,
   1159			       pix[0] |
   1160			       pix[1] << 8 |
   1161			       pix[2] << 16 |
   1162			       pix[3] << 24);
   1163	}
   1164
   1165	if (msg->flags & MIPI_DSI_MSG_USE_LPM)
   1166		pktc |= DSI_TXPKT1C_CMD_MODE_LP;
   1167	if (is_long)
   1168		pktc |= DSI_TXPKT1C_CMD_TYPE_LONG;
   1169
   1170	/* Send one copy of the packet.  Larger repeats are used for pixel
   1171	 * data in command mode.
   1172	 */
   1173	pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT);
   1174
   1175	pktc |= DSI_TXPKT1C_CMD_EN;
   1176	if (pix_fifo_len) {
   1177		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY,
   1178				      DSI_TXPKT1C_DISPLAY_NO);
   1179	} else {
   1180		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT,
   1181				      DSI_TXPKT1C_DISPLAY_NO);
   1182	}
   1183
   1184	/* Enable the appropriate interrupt for the transfer completion. */
   1185	dsi->xfer_result = 0;
   1186	reinit_completion(&dsi->xfer_completion);
   1187	DSI_PORT_WRITE(INT_STAT, DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF);
   1188	if (msg->rx_len) {
   1189		DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
   1190					DSI1_INT_PHY_DIR_RTF));
   1191	} else {
   1192		DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
   1193					DSI1_INT_TXPKT1_DONE));
   1194	}
   1195
   1196	/* Send the packet. */
   1197	DSI_PORT_WRITE(TXPKT1H, pkth);
   1198	DSI_PORT_WRITE(TXPKT1C, pktc);
   1199
   1200	if (!wait_for_completion_timeout(&dsi->xfer_completion,
   1201					 msecs_to_jiffies(1000))) {
   1202		dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout");
   1203		dev_err(&dsi->pdev->dev, "instat: 0x%08x\n",
   1204			DSI_PORT_READ(INT_STAT));
   1205		ret = -ETIMEDOUT;
   1206	} else {
   1207		ret = dsi->xfer_result;
   1208	}
   1209
   1210	DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
   1211
   1212	if (ret)
   1213		goto reset_fifo_and_return;
   1214
   1215	if (ret == 0 && msg->rx_len) {
   1216		u32 rxpkt1h = DSI_PORT_READ(RXPKT1H);
   1217		u8 *msg_rx = msg->rx_buf;
   1218
   1219		if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) {
   1220			u32 rxlen = VC4_GET_FIELD(rxpkt1h,
   1221						  DSI_RXPKT1H_BC_PARAM);
   1222
   1223			if (rxlen != msg->rx_len) {
   1224				DRM_ERROR("DSI returned %db, expecting %db\n",
   1225					  rxlen, (int)msg->rx_len);
   1226				ret = -ENXIO;
   1227				goto reset_fifo_and_return;
   1228			}
   1229
   1230			for (i = 0; i < msg->rx_len; i++)
   1231				msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO);
   1232		} else {
   1233			/* FINISHME: Handle AWER */
   1234
   1235			msg_rx[0] = VC4_GET_FIELD(rxpkt1h,
   1236						  DSI_RXPKT1H_SHORT_0);
   1237			if (msg->rx_len > 1) {
   1238				msg_rx[1] = VC4_GET_FIELD(rxpkt1h,
   1239							  DSI_RXPKT1H_SHORT_1);
   1240			}
   1241		}
   1242	}
   1243
   1244	return ret;
   1245
   1246reset_fifo_and_return:
   1247	DRM_ERROR("DSI transfer failed, resetting: %d\n", ret);
   1248
   1249	DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN);
   1250	udelay(1);
   1251	DSI_PORT_WRITE(CTRL,
   1252		       DSI_PORT_READ(CTRL) |
   1253		       DSI_PORT_BIT(CTRL_RESET_FIFOS));
   1254
   1255	DSI_PORT_WRITE(TXPKT1C, 0);
   1256	DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
   1257	return ret;
   1258}
   1259
   1260static const struct component_ops vc4_dsi_ops;
   1261static int vc4_dsi_host_attach(struct mipi_dsi_host *host,
   1262			       struct mipi_dsi_device *device)
   1263{
   1264	struct vc4_dsi *dsi = host_to_dsi(host);
   1265
   1266	dsi->lanes = device->lanes;
   1267	dsi->channel = device->channel;
   1268	dsi->mode_flags = device->mode_flags;
   1269
   1270	switch (device->format) {
   1271	case MIPI_DSI_FMT_RGB888:
   1272		dsi->format = DSI_PFORMAT_RGB888;
   1273		dsi->divider = 24 / dsi->lanes;
   1274		break;
   1275	case MIPI_DSI_FMT_RGB666:
   1276		dsi->format = DSI_PFORMAT_RGB666;
   1277		dsi->divider = 24 / dsi->lanes;
   1278		break;
   1279	case MIPI_DSI_FMT_RGB666_PACKED:
   1280		dsi->format = DSI_PFORMAT_RGB666_PACKED;
   1281		dsi->divider = 18 / dsi->lanes;
   1282		break;
   1283	case MIPI_DSI_FMT_RGB565:
   1284		dsi->format = DSI_PFORMAT_RGB565;
   1285		dsi->divider = 16 / dsi->lanes;
   1286		break;
   1287	default:
   1288		dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n",
   1289			dsi->format);
   1290		return 0;
   1291	}
   1292
   1293	if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) {
   1294		dev_err(&dsi->pdev->dev,
   1295			"Only VIDEO mode panels supported currently.\n");
   1296		return 0;
   1297	}
   1298
   1299	return component_add(&dsi->pdev->dev, &vc4_dsi_ops);
   1300}
   1301
   1302static int vc4_dsi_host_detach(struct mipi_dsi_host *host,
   1303			       struct mipi_dsi_device *device)
   1304{
   1305	struct vc4_dsi *dsi = host_to_dsi(host);
   1306
   1307	component_del(&dsi->pdev->dev, &vc4_dsi_ops);
   1308	return 0;
   1309}
   1310
   1311static const struct mipi_dsi_host_ops vc4_dsi_host_ops = {
   1312	.attach = vc4_dsi_host_attach,
   1313	.detach = vc4_dsi_host_detach,
   1314	.transfer = vc4_dsi_host_transfer,
   1315};
   1316
   1317static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = {
   1318	.disable = vc4_dsi_encoder_disable,
   1319	.enable = vc4_dsi_encoder_enable,
   1320	.mode_fixup = vc4_dsi_encoder_mode_fixup,
   1321};
   1322
   1323static const struct vc4_dsi_variant bcm2711_dsi1_variant = {
   1324	.port			= 1,
   1325	.debugfs_name		= "dsi1_regs",
   1326	.regs			= dsi1_regs,
   1327	.nregs			= ARRAY_SIZE(dsi1_regs),
   1328};
   1329
   1330static const struct vc4_dsi_variant bcm2835_dsi0_variant = {
   1331	.port			= 0,
   1332	.debugfs_name		= "dsi0_regs",
   1333	.regs			= dsi0_regs,
   1334	.nregs			= ARRAY_SIZE(dsi0_regs),
   1335};
   1336
   1337static const struct vc4_dsi_variant bcm2835_dsi1_variant = {
   1338	.port			= 1,
   1339	.broken_axi_workaround	= true,
   1340	.debugfs_name		= "dsi1_regs",
   1341	.regs			= dsi1_regs,
   1342	.nregs			= ARRAY_SIZE(dsi1_regs),
   1343};
   1344
   1345static const struct of_device_id vc4_dsi_dt_match[] = {
   1346	{ .compatible = "brcm,bcm2711-dsi1", &bcm2711_dsi1_variant },
   1347	{ .compatible = "brcm,bcm2835-dsi0", &bcm2835_dsi0_variant },
   1348	{ .compatible = "brcm,bcm2835-dsi1", &bcm2835_dsi1_variant },
   1349	{}
   1350};
   1351
   1352static void dsi_handle_error(struct vc4_dsi *dsi,
   1353			     irqreturn_t *ret, u32 stat, u32 bit,
   1354			     const char *type)
   1355{
   1356	if (!(stat & bit))
   1357		return;
   1358
   1359	DRM_ERROR("DSI%d: %s error\n", dsi->variant->port, type);
   1360	*ret = IRQ_HANDLED;
   1361}
   1362
   1363/*
   1364 * Initial handler for port 1 where we need the reg_dma workaround.
   1365 * The register DMA writes sleep, so we can't do it in the top half.
   1366 * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the
   1367 * parent interrupt contrller until our interrupt thread is done.
   1368 */
   1369static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data)
   1370{
   1371	struct vc4_dsi *dsi = data;
   1372	u32 stat = DSI_PORT_READ(INT_STAT);
   1373
   1374	if (!stat)
   1375		return IRQ_NONE;
   1376
   1377	return IRQ_WAKE_THREAD;
   1378}
   1379
   1380/*
   1381 * Normal IRQ handler for port 0, or the threaded IRQ handler for port
   1382 * 1 where we need the reg_dma workaround.
   1383 */
   1384static irqreturn_t vc4_dsi_irq_handler(int irq, void *data)
   1385{
   1386	struct vc4_dsi *dsi = data;
   1387	u32 stat = DSI_PORT_READ(INT_STAT);
   1388	irqreturn_t ret = IRQ_NONE;
   1389
   1390	DSI_PORT_WRITE(INT_STAT, stat);
   1391
   1392	dsi_handle_error(dsi, &ret, stat,
   1393			 DSI1_INT_ERR_SYNC_ESC, "LPDT sync");
   1394	dsi_handle_error(dsi, &ret, stat,
   1395			 DSI1_INT_ERR_CONTROL, "data lane 0 sequence");
   1396	dsi_handle_error(dsi, &ret, stat,
   1397			 DSI1_INT_ERR_CONT_LP0, "LP0 contention");
   1398	dsi_handle_error(dsi, &ret, stat,
   1399			 DSI1_INT_ERR_CONT_LP1, "LP1 contention");
   1400	dsi_handle_error(dsi, &ret, stat,
   1401			 DSI1_INT_HSTX_TO, "HSTX timeout");
   1402	dsi_handle_error(dsi, &ret, stat,
   1403			 DSI1_INT_LPRX_TO, "LPRX timeout");
   1404	dsi_handle_error(dsi, &ret, stat,
   1405			 DSI1_INT_TA_TO, "turnaround timeout");
   1406	dsi_handle_error(dsi, &ret, stat,
   1407			 DSI1_INT_PR_TO, "peripheral reset timeout");
   1408
   1409	if (stat & (DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF)) {
   1410		complete(&dsi->xfer_completion);
   1411		ret = IRQ_HANDLED;
   1412	} else if (stat & DSI1_INT_HSTX_TO) {
   1413		complete(&dsi->xfer_completion);
   1414		dsi->xfer_result = -ETIMEDOUT;
   1415		ret = IRQ_HANDLED;
   1416	}
   1417
   1418	return ret;
   1419}
   1420
   1421/**
   1422 * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog
   1423 * PHY that are consumed by CPRMAN (clk-bcm2835.c).
   1424 * @dsi: DSI encoder
   1425 */
   1426static int
   1427vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi)
   1428{
   1429	struct device *dev = &dsi->pdev->dev;
   1430	const char *parent_name = __clk_get_name(dsi->pll_phy_clock);
   1431	static const struct {
   1432		const char *name;
   1433		int div;
   1434	} phy_clocks[] = {
   1435		{ "byte", 8 },
   1436		{ "ddr2", 4 },
   1437		{ "ddr", 2 },
   1438	};
   1439	int i;
   1440
   1441	dsi->clk_onecell = devm_kzalloc(dev,
   1442					sizeof(*dsi->clk_onecell) +
   1443					ARRAY_SIZE(phy_clocks) *
   1444					sizeof(struct clk_hw *),
   1445					GFP_KERNEL);
   1446	if (!dsi->clk_onecell)
   1447		return -ENOMEM;
   1448	dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks);
   1449
   1450	for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) {
   1451		struct clk_fixed_factor *fix = &dsi->phy_clocks[i];
   1452		struct clk_init_data init;
   1453		char clk_name[16];
   1454		int ret;
   1455
   1456		snprintf(clk_name, sizeof(clk_name),
   1457			 "dsi%u_%s", dsi->variant->port, phy_clocks[i].name);
   1458
   1459		/* We just use core fixed factor clock ops for the PHY
   1460		 * clocks.  The clocks are actually gated by the
   1461		 * PHY_AFEC0_DDRCLK_EN bits, which we should be
   1462		 * setting if we use the DDR/DDR2 clocks.  However,
   1463		 * vc4_dsi_encoder_enable() is setting up both AFEC0,
   1464		 * setting both our parent DSI PLL's rate and this
   1465		 * clock's rate, so it knows if DDR/DDR2 are going to
   1466		 * be used and could enable the gates itself.
   1467		 */
   1468		fix->mult = 1;
   1469		fix->div = phy_clocks[i].div;
   1470		fix->hw.init = &init;
   1471
   1472		memset(&init, 0, sizeof(init));
   1473		init.parent_names = &parent_name;
   1474		init.num_parents = 1;
   1475		init.name = clk_name;
   1476		init.ops = &clk_fixed_factor_ops;
   1477
   1478		ret = devm_clk_hw_register(dev, &fix->hw);
   1479		if (ret)
   1480			return ret;
   1481
   1482		dsi->clk_onecell->hws[i] = &fix->hw;
   1483	}
   1484
   1485	return of_clk_add_hw_provider(dev->of_node,
   1486				      of_clk_hw_onecell_get,
   1487				      dsi->clk_onecell);
   1488}
   1489
   1490static int vc4_dsi_bind(struct device *dev, struct device *master, void *data)
   1491{
   1492	struct platform_device *pdev = to_platform_device(dev);
   1493	struct drm_device *drm = dev_get_drvdata(master);
   1494	struct vc4_dsi *dsi = dev_get_drvdata(dev);
   1495	struct vc4_dsi_encoder *vc4_dsi_encoder;
   1496	dma_cap_mask_t dma_mask;
   1497	int ret;
   1498
   1499	dsi->variant = of_device_get_match_data(dev);
   1500
   1501	vc4_dsi_encoder = devm_kzalloc(dev, sizeof(*vc4_dsi_encoder),
   1502				       GFP_KERNEL);
   1503	if (!vc4_dsi_encoder)
   1504		return -ENOMEM;
   1505
   1506	INIT_LIST_HEAD(&dsi->bridge_chain);
   1507	vc4_dsi_encoder->base.type = VC4_ENCODER_TYPE_DSI1;
   1508	vc4_dsi_encoder->dsi = dsi;
   1509	dsi->encoder = &vc4_dsi_encoder->base.base;
   1510
   1511	dsi->regs = vc4_ioremap_regs(pdev, 0);
   1512	if (IS_ERR(dsi->regs))
   1513		return PTR_ERR(dsi->regs);
   1514
   1515	dsi->regset.base = dsi->regs;
   1516	dsi->regset.regs = dsi->variant->regs;
   1517	dsi->regset.nregs = dsi->variant->nregs;
   1518
   1519	if (DSI_PORT_READ(ID) != DSI_ID_VALUE) {
   1520		dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n",
   1521			DSI_PORT_READ(ID), DSI_ID_VALUE);
   1522		return -ENODEV;
   1523	}
   1524
   1525	/* DSI1 on BCM2835/6/7 has a broken AXI slave that doesn't respond to
   1526	 * writes from the ARM.  It does handle writes from the DMA engine,
   1527	 * so set up a channel for talking to it.
   1528	 */
   1529	if (dsi->variant->broken_axi_workaround) {
   1530		dsi->reg_dma_mem = dma_alloc_coherent(dev, 4,
   1531						      &dsi->reg_dma_paddr,
   1532						      GFP_KERNEL);
   1533		if (!dsi->reg_dma_mem) {
   1534			DRM_ERROR("Failed to get DMA memory\n");
   1535			return -ENOMEM;
   1536		}
   1537
   1538		dma_cap_zero(dma_mask);
   1539		dma_cap_set(DMA_MEMCPY, dma_mask);
   1540		dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask);
   1541		if (IS_ERR(dsi->reg_dma_chan)) {
   1542			ret = PTR_ERR(dsi->reg_dma_chan);
   1543			if (ret != -EPROBE_DEFER)
   1544				DRM_ERROR("Failed to get DMA channel: %d\n",
   1545					  ret);
   1546			return ret;
   1547		}
   1548
   1549		/* Get the physical address of the device's registers.  The
   1550		 * struct resource for the regs gives us the bus address
   1551		 * instead.
   1552		 */
   1553		dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node,
   1554							     0, NULL, NULL));
   1555	}
   1556
   1557	init_completion(&dsi->xfer_completion);
   1558	/* At startup enable error-reporting interrupts and nothing else. */
   1559	DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
   1560	/* Clear any existing interrupt state. */
   1561	DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT));
   1562
   1563	if (dsi->reg_dma_mem)
   1564		ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0),
   1565						vc4_dsi_irq_defer_to_thread_handler,
   1566						vc4_dsi_irq_handler,
   1567						IRQF_ONESHOT,
   1568						"vc4 dsi", dsi);
   1569	else
   1570		ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
   1571				       vc4_dsi_irq_handler, 0, "vc4 dsi", dsi);
   1572	if (ret) {
   1573		if (ret != -EPROBE_DEFER)
   1574			dev_err(dev, "Failed to get interrupt: %d\n", ret);
   1575		return ret;
   1576	}
   1577
   1578	dsi->escape_clock = devm_clk_get(dev, "escape");
   1579	if (IS_ERR(dsi->escape_clock)) {
   1580		ret = PTR_ERR(dsi->escape_clock);
   1581		if (ret != -EPROBE_DEFER)
   1582			dev_err(dev, "Failed to get escape clock: %d\n", ret);
   1583		return ret;
   1584	}
   1585
   1586	dsi->pll_phy_clock = devm_clk_get(dev, "phy");
   1587	if (IS_ERR(dsi->pll_phy_clock)) {
   1588		ret = PTR_ERR(dsi->pll_phy_clock);
   1589		if (ret != -EPROBE_DEFER)
   1590			dev_err(dev, "Failed to get phy clock: %d\n", ret);
   1591		return ret;
   1592	}
   1593
   1594	dsi->pixel_clock = devm_clk_get(dev, "pixel");
   1595	if (IS_ERR(dsi->pixel_clock)) {
   1596		ret = PTR_ERR(dsi->pixel_clock);
   1597		if (ret != -EPROBE_DEFER)
   1598			dev_err(dev, "Failed to get pixel clock: %d\n", ret);
   1599		return ret;
   1600	}
   1601
   1602	dsi->bridge = devm_drm_of_get_bridge(dev, dev->of_node, 0, 0);
   1603	if (IS_ERR(dsi->bridge))
   1604		return PTR_ERR(dsi->bridge);
   1605
   1606	/* The esc clock rate is supposed to always be 100Mhz. */
   1607	ret = clk_set_rate(dsi->escape_clock, 100 * 1000000);
   1608	if (ret) {
   1609		dev_err(dev, "Failed to set esc clock: %d\n", ret);
   1610		return ret;
   1611	}
   1612
   1613	ret = vc4_dsi_init_phy_clocks(dsi);
   1614	if (ret)
   1615		return ret;
   1616
   1617	drm_simple_encoder_init(drm, dsi->encoder, DRM_MODE_ENCODER_DSI);
   1618	drm_encoder_helper_add(dsi->encoder, &vc4_dsi_encoder_helper_funcs);
   1619
   1620	ret = drm_bridge_attach(dsi->encoder, dsi->bridge, NULL, 0);
   1621	if (ret)
   1622		return ret;
   1623	/* Disable the atomic helper calls into the bridge.  We
   1624	 * manually call the bridge pre_enable / enable / etc. calls
   1625	 * from our driver, since we need to sequence them within the
   1626	 * encoder's enable/disable paths.
   1627	 */
   1628	list_splice_init(&dsi->encoder->bridge_chain, &dsi->bridge_chain);
   1629
   1630	vc4_debugfs_add_regset32(drm, dsi->variant->debugfs_name, &dsi->regset);
   1631
   1632	pm_runtime_enable(dev);
   1633
   1634	return 0;
   1635}
   1636
   1637static void vc4_dsi_unbind(struct device *dev, struct device *master,
   1638			   void *data)
   1639{
   1640	struct vc4_dsi *dsi = dev_get_drvdata(dev);
   1641
   1642	pm_runtime_disable(dev);
   1643
   1644	/*
   1645	 * Restore the bridge_chain so the bridge detach procedure can happen
   1646	 * normally.
   1647	 */
   1648	list_splice_init(&dsi->bridge_chain, &dsi->encoder->bridge_chain);
   1649	drm_encoder_cleanup(dsi->encoder);
   1650}
   1651
   1652static const struct component_ops vc4_dsi_ops = {
   1653	.bind   = vc4_dsi_bind,
   1654	.unbind = vc4_dsi_unbind,
   1655};
   1656
   1657static int vc4_dsi_dev_probe(struct platform_device *pdev)
   1658{
   1659	struct device *dev = &pdev->dev;
   1660	struct vc4_dsi *dsi;
   1661
   1662	dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
   1663	if (!dsi)
   1664		return -ENOMEM;
   1665	dev_set_drvdata(dev, dsi);
   1666
   1667	dsi->pdev = pdev;
   1668	dsi->dsi_host.ops = &vc4_dsi_host_ops;
   1669	dsi->dsi_host.dev = dev;
   1670	mipi_dsi_host_register(&dsi->dsi_host);
   1671
   1672	return 0;
   1673}
   1674
   1675static int vc4_dsi_dev_remove(struct platform_device *pdev)
   1676{
   1677	struct device *dev = &pdev->dev;
   1678	struct vc4_dsi *dsi = dev_get_drvdata(dev);
   1679
   1680	mipi_dsi_host_unregister(&dsi->dsi_host);
   1681	return 0;
   1682}
   1683
   1684struct platform_driver vc4_dsi_driver = {
   1685	.probe = vc4_dsi_dev_probe,
   1686	.remove = vc4_dsi_dev_remove,
   1687	.driver = {
   1688		.name = "vc4_dsi",
   1689		.of_match_table = vc4_dsi_dt_match,
   1690	},
   1691};