vc4_dsi.c (51133B)
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * Copyright (C) 2016 Broadcom 4 */ 5 6/** 7 * DOC: VC4 DSI0/DSI1 module 8 * 9 * BCM2835 contains two DSI modules, DSI0 and DSI1. DSI0 is a 10 * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI 11 * controller. 12 * 13 * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector, 14 * while the compute module brings both DSI0 and DSI1 out. 15 * 16 * This driver has been tested for DSI1 video-mode display only 17 * currently, with most of the information necessary for DSI0 18 * hopefully present. 19 */ 20 21#include <linux/clk-provider.h> 22#include <linux/clk.h> 23#include <linux/completion.h> 24#include <linux/component.h> 25#include <linux/dma-mapping.h> 26#include <linux/dmaengine.h> 27#include <linux/i2c.h> 28#include <linux/io.h> 29#include <linux/of_address.h> 30#include <linux/of_platform.h> 31#include <linux/pm_runtime.h> 32 33#include <drm/drm_atomic_helper.h> 34#include <drm/drm_bridge.h> 35#include <drm/drm_edid.h> 36#include <drm/drm_mipi_dsi.h> 37#include <drm/drm_of.h> 38#include <drm/drm_panel.h> 39#include <drm/drm_probe_helper.h> 40#include <drm/drm_simple_kms_helper.h> 41 42#include "vc4_drv.h" 43#include "vc4_regs.h" 44 45#define DSI_CMD_FIFO_DEPTH 16 46#define DSI_PIX_FIFO_DEPTH 256 47#define DSI_PIX_FIFO_WIDTH 4 48 49#define DSI0_CTRL 0x00 50 51/* Command packet control. */ 52#define DSI0_TXPKT1C 0x04 /* AKA PKTC */ 53#define DSI1_TXPKT1C 0x04 54# define DSI_TXPKT1C_TRIG_CMD_MASK VC4_MASK(31, 24) 55# define DSI_TXPKT1C_TRIG_CMD_SHIFT 24 56# define DSI_TXPKT1C_CMD_REPEAT_MASK VC4_MASK(23, 10) 57# define DSI_TXPKT1C_CMD_REPEAT_SHIFT 10 58 59# define DSI_TXPKT1C_DISPLAY_NO_MASK VC4_MASK(9, 8) 60# define DSI_TXPKT1C_DISPLAY_NO_SHIFT 8 61/* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */ 62# define DSI_TXPKT1C_DISPLAY_NO_SHORT 0 63/* Primary display where cmdfifo provides part of the payload and 64 * pixelvalve the rest. 65 */ 66# define DSI_TXPKT1C_DISPLAY_NO_PRIMARY 1 67/* Secondary display where cmdfifo provides part of the payload and 68 * pixfifo the rest. 69 */ 70# define DSI_TXPKT1C_DISPLAY_NO_SECONDARY 2 71 72# define DSI_TXPKT1C_CMD_TX_TIME_MASK VC4_MASK(7, 6) 73# define DSI_TXPKT1C_CMD_TX_TIME_SHIFT 6 74 75# define DSI_TXPKT1C_CMD_CTRL_MASK VC4_MASK(5, 4) 76# define DSI_TXPKT1C_CMD_CTRL_SHIFT 4 77/* Command only. Uses TXPKT1H and DISPLAY_NO */ 78# define DSI_TXPKT1C_CMD_CTRL_TX 0 79/* Command with BTA for either ack or read data. */ 80# define DSI_TXPKT1C_CMD_CTRL_RX 1 81/* Trigger according to TRIG_CMD */ 82# define DSI_TXPKT1C_CMD_CTRL_TRIG 2 83/* BTA alone for getting error status after a command, or a TE trigger 84 * without a previous command. 85 */ 86# define DSI_TXPKT1C_CMD_CTRL_BTA 3 87 88# define DSI_TXPKT1C_CMD_MODE_LP BIT(3) 89# define DSI_TXPKT1C_CMD_TYPE_LONG BIT(2) 90# define DSI_TXPKT1C_CMD_TE_EN BIT(1) 91# define DSI_TXPKT1C_CMD_EN BIT(0) 92 93/* Command packet header. */ 94#define DSI0_TXPKT1H 0x08 /* AKA PKTH */ 95#define DSI1_TXPKT1H 0x08 96# define DSI_TXPKT1H_BC_CMDFIFO_MASK VC4_MASK(31, 24) 97# define DSI_TXPKT1H_BC_CMDFIFO_SHIFT 24 98# define DSI_TXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) 99# define DSI_TXPKT1H_BC_PARAM_SHIFT 8 100# define DSI_TXPKT1H_BC_DT_MASK VC4_MASK(7, 0) 101# define DSI_TXPKT1H_BC_DT_SHIFT 0 102 103#define DSI0_RXPKT1H 0x0c /* AKA RX1_PKTH */ 104#define DSI1_RXPKT1H 0x14 105# define DSI_RXPKT1H_CRC_ERR BIT(31) 106# define DSI_RXPKT1H_DET_ERR BIT(30) 107# define DSI_RXPKT1H_ECC_ERR BIT(29) 108# define DSI_RXPKT1H_COR_ERR BIT(28) 109# define DSI_RXPKT1H_INCOMP_PKT BIT(25) 110# define DSI_RXPKT1H_PKT_TYPE_LONG BIT(24) 111/* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */ 112# define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) 113# define DSI_RXPKT1H_BC_PARAM_SHIFT 8 114/* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */ 115# define DSI_RXPKT1H_SHORT_1_MASK VC4_MASK(23, 16) 116# define DSI_RXPKT1H_SHORT_1_SHIFT 16 117# define DSI_RXPKT1H_SHORT_0_MASK VC4_MASK(15, 8) 118# define DSI_RXPKT1H_SHORT_0_SHIFT 8 119# define DSI_RXPKT1H_DT_LP_CMD_MASK VC4_MASK(7, 0) 120# define DSI_RXPKT1H_DT_LP_CMD_SHIFT 0 121 122#define DSI0_RXPKT2H 0x10 /* AKA RX2_PKTH */ 123#define DSI1_RXPKT2H 0x18 124# define DSI_RXPKT1H_DET_ERR BIT(30) 125# define DSI_RXPKT1H_ECC_ERR BIT(29) 126# define DSI_RXPKT1H_COR_ERR BIT(28) 127# define DSI_RXPKT1H_INCOMP_PKT BIT(25) 128# define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) 129# define DSI_RXPKT1H_BC_PARAM_SHIFT 8 130# define DSI_RXPKT1H_DT_MASK VC4_MASK(7, 0) 131# define DSI_RXPKT1H_DT_SHIFT 0 132 133#define DSI0_TXPKT_CMD_FIFO 0x14 /* AKA CMD_DATAF */ 134#define DSI1_TXPKT_CMD_FIFO 0x1c 135 136#define DSI0_DISP0_CTRL 0x18 137# define DSI_DISP0_PIX_CLK_DIV_MASK VC4_MASK(21, 13) 138# define DSI_DISP0_PIX_CLK_DIV_SHIFT 13 139# define DSI_DISP0_LP_STOP_CTRL_MASK VC4_MASK(12, 11) 140# define DSI_DISP0_LP_STOP_CTRL_SHIFT 11 141# define DSI_DISP0_LP_STOP_DISABLE 0 142# define DSI_DISP0_LP_STOP_PERLINE 1 143# define DSI_DISP0_LP_STOP_PERFRAME 2 144 145/* Transmit RGB pixels and null packets only during HACTIVE, instead 146 * of going to LP-STOP. 147 */ 148# define DSI_DISP_HACTIVE_NULL BIT(10) 149/* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */ 150# define DSI_DISP_VBLP_CTRL BIT(9) 151/* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */ 152# define DSI_DISP_HFP_CTRL BIT(8) 153/* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */ 154# define DSI_DISP_HBP_CTRL BIT(7) 155# define DSI_DISP0_CHANNEL_MASK VC4_MASK(6, 5) 156# define DSI_DISP0_CHANNEL_SHIFT 5 157/* Enables end events for HSYNC/VSYNC, not just start events. */ 158# define DSI_DISP0_ST_END BIT(4) 159# define DSI_DISP0_PFORMAT_MASK VC4_MASK(3, 2) 160# define DSI_DISP0_PFORMAT_SHIFT 2 161# define DSI_PFORMAT_RGB565 0 162# define DSI_PFORMAT_RGB666_PACKED 1 163# define DSI_PFORMAT_RGB666 2 164# define DSI_PFORMAT_RGB888 3 165/* Default is VIDEO mode. */ 166# define DSI_DISP0_COMMAND_MODE BIT(1) 167# define DSI_DISP0_ENABLE BIT(0) 168 169#define DSI0_DISP1_CTRL 0x1c 170#define DSI1_DISP1_CTRL 0x2c 171/* Format of the data written to TXPKT_PIX_FIFO. */ 172# define DSI_DISP1_PFORMAT_MASK VC4_MASK(2, 1) 173# define DSI_DISP1_PFORMAT_SHIFT 1 174# define DSI_DISP1_PFORMAT_16BIT 0 175# define DSI_DISP1_PFORMAT_24BIT 1 176# define DSI_DISP1_PFORMAT_32BIT_LE 2 177# define DSI_DISP1_PFORMAT_32BIT_BE 3 178 179/* DISP1 is always command mode. */ 180# define DSI_DISP1_ENABLE BIT(0) 181 182#define DSI0_TXPKT_PIX_FIFO 0x20 /* AKA PIX_FIFO */ 183 184#define DSI0_INT_STAT 0x24 185#define DSI0_INT_EN 0x28 186# define DSI1_INT_PHY_D3_ULPS BIT(30) 187# define DSI1_INT_PHY_D3_STOP BIT(29) 188# define DSI1_INT_PHY_D2_ULPS BIT(28) 189# define DSI1_INT_PHY_D2_STOP BIT(27) 190# define DSI1_INT_PHY_D1_ULPS BIT(26) 191# define DSI1_INT_PHY_D1_STOP BIT(25) 192# define DSI1_INT_PHY_D0_ULPS BIT(24) 193# define DSI1_INT_PHY_D0_STOP BIT(23) 194# define DSI1_INT_FIFO_ERR BIT(22) 195# define DSI1_INT_PHY_DIR_RTF BIT(21) 196# define DSI1_INT_PHY_RXLPDT BIT(20) 197# define DSI1_INT_PHY_RXTRIG BIT(19) 198# define DSI1_INT_PHY_D0_LPDT BIT(18) 199# define DSI1_INT_PHY_DIR_FTR BIT(17) 200 201/* Signaled when the clock lane enters the given state. */ 202# define DSI1_INT_PHY_CLOCK_ULPS BIT(16) 203# define DSI1_INT_PHY_CLOCK_HS BIT(15) 204# define DSI1_INT_PHY_CLOCK_STOP BIT(14) 205 206/* Signaled on timeouts */ 207# define DSI1_INT_PR_TO BIT(13) 208# define DSI1_INT_TA_TO BIT(12) 209# define DSI1_INT_LPRX_TO BIT(11) 210# define DSI1_INT_HSTX_TO BIT(10) 211 212/* Contention on a line when trying to drive the line low */ 213# define DSI1_INT_ERR_CONT_LP1 BIT(9) 214# define DSI1_INT_ERR_CONT_LP0 BIT(8) 215 216/* Control error: incorrect line state sequence on data lane 0. */ 217# define DSI1_INT_ERR_CONTROL BIT(7) 218/* LPDT synchronization error (bits received not a multiple of 8. */ 219 220# define DSI1_INT_ERR_SYNC_ESC BIT(6) 221/* Signaled after receiving an error packet from the display in 222 * response to a read. 223 */ 224# define DSI1_INT_RXPKT2 BIT(5) 225/* Signaled after receiving a packet. The header and optional short 226 * response will be in RXPKT1H, and a long response will be in the 227 * RXPKT_FIFO. 228 */ 229# define DSI1_INT_RXPKT1 BIT(4) 230# define DSI1_INT_TXPKT2_DONE BIT(3) 231# define DSI1_INT_TXPKT2_END BIT(2) 232/* Signaled after all repeats of TXPKT1 are transferred. */ 233# define DSI1_INT_TXPKT1_DONE BIT(1) 234/* Signaled after each TXPKT1 repeat is scheduled. */ 235# define DSI1_INT_TXPKT1_END BIT(0) 236 237#define DSI1_INTERRUPTS_ALWAYS_ENABLED (DSI1_INT_ERR_SYNC_ESC | \ 238 DSI1_INT_ERR_CONTROL | \ 239 DSI1_INT_ERR_CONT_LP0 | \ 240 DSI1_INT_ERR_CONT_LP1 | \ 241 DSI1_INT_HSTX_TO | \ 242 DSI1_INT_LPRX_TO | \ 243 DSI1_INT_TA_TO | \ 244 DSI1_INT_PR_TO) 245 246#define DSI0_STAT 0x2c 247#define DSI0_HSTX_TO_CNT 0x30 248#define DSI0_LPRX_TO_CNT 0x34 249#define DSI0_TA_TO_CNT 0x38 250#define DSI0_PR_TO_CNT 0x3c 251#define DSI0_PHYC 0x40 252# define DSI1_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(25, 20) 253# define DSI1_PHYC_ESC_CLK_LPDT_SHIFT 20 254# define DSI1_PHYC_HS_CLK_CONTINUOUS BIT(18) 255# define DSI0_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(17, 12) 256# define DSI0_PHYC_ESC_CLK_LPDT_SHIFT 12 257# define DSI1_PHYC_CLANE_ULPS BIT(17) 258# define DSI1_PHYC_CLANE_ENABLE BIT(16) 259# define DSI_PHYC_DLANE3_ULPS BIT(13) 260# define DSI_PHYC_DLANE3_ENABLE BIT(12) 261# define DSI0_PHYC_HS_CLK_CONTINUOUS BIT(10) 262# define DSI0_PHYC_CLANE_ULPS BIT(9) 263# define DSI_PHYC_DLANE2_ULPS BIT(9) 264# define DSI0_PHYC_CLANE_ENABLE BIT(8) 265# define DSI_PHYC_DLANE2_ENABLE BIT(8) 266# define DSI_PHYC_DLANE1_ULPS BIT(5) 267# define DSI_PHYC_DLANE1_ENABLE BIT(4) 268# define DSI_PHYC_DLANE0_FORCE_STOP BIT(2) 269# define DSI_PHYC_DLANE0_ULPS BIT(1) 270# define DSI_PHYC_DLANE0_ENABLE BIT(0) 271 272#define DSI0_HS_CLT0 0x44 273#define DSI0_HS_CLT1 0x48 274#define DSI0_HS_CLT2 0x4c 275#define DSI0_HS_DLT3 0x50 276#define DSI0_HS_DLT4 0x54 277#define DSI0_HS_DLT5 0x58 278#define DSI0_HS_DLT6 0x5c 279#define DSI0_HS_DLT7 0x60 280 281#define DSI0_PHY_AFEC0 0x64 282# define DSI0_PHY_AFEC0_DDR2CLK_EN BIT(26) 283# define DSI0_PHY_AFEC0_DDRCLK_EN BIT(25) 284# define DSI0_PHY_AFEC0_LATCH_ULPS BIT(24) 285# define DSI1_PHY_AFEC0_IDR_DLANE3_MASK VC4_MASK(31, 29) 286# define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT 29 287# define DSI1_PHY_AFEC0_IDR_DLANE2_MASK VC4_MASK(28, 26) 288# define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT 26 289# define DSI1_PHY_AFEC0_IDR_DLANE1_MASK VC4_MASK(27, 23) 290# define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT 23 291# define DSI1_PHY_AFEC0_IDR_DLANE0_MASK VC4_MASK(22, 20) 292# define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT 20 293# define DSI1_PHY_AFEC0_IDR_CLANE_MASK VC4_MASK(19, 17) 294# define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT 17 295# define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK VC4_MASK(23, 20) 296# define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT 20 297# define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK VC4_MASK(19, 16) 298# define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT 16 299# define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK VC4_MASK(15, 12) 300# define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT 12 301# define DSI1_PHY_AFEC0_DDR2CLK_EN BIT(16) 302# define DSI1_PHY_AFEC0_DDRCLK_EN BIT(15) 303# define DSI1_PHY_AFEC0_LATCH_ULPS BIT(14) 304# define DSI1_PHY_AFEC0_RESET BIT(13) 305# define DSI1_PHY_AFEC0_PD BIT(12) 306# define DSI0_PHY_AFEC0_RESET BIT(11) 307# define DSI1_PHY_AFEC0_PD_BG BIT(11) 308# define DSI0_PHY_AFEC0_PD BIT(10) 309# define DSI1_PHY_AFEC0_PD_DLANE1 BIT(10) 310# define DSI0_PHY_AFEC0_PD_BG BIT(9) 311# define DSI1_PHY_AFEC0_PD_DLANE2 BIT(9) 312# define DSI0_PHY_AFEC0_PD_DLANE1 BIT(8) 313# define DSI1_PHY_AFEC0_PD_DLANE3 BIT(8) 314# define DSI_PHY_AFEC0_PTATADJ_MASK VC4_MASK(7, 4) 315# define DSI_PHY_AFEC0_PTATADJ_SHIFT 4 316# define DSI_PHY_AFEC0_CTATADJ_MASK VC4_MASK(3, 0) 317# define DSI_PHY_AFEC0_CTATADJ_SHIFT 0 318 319#define DSI0_PHY_AFEC1 0x68 320# define DSI0_PHY_AFEC1_IDR_DLANE1_MASK VC4_MASK(10, 8) 321# define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT 8 322# define DSI0_PHY_AFEC1_IDR_DLANE0_MASK VC4_MASK(6, 4) 323# define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT 4 324# define DSI0_PHY_AFEC1_IDR_CLANE_MASK VC4_MASK(2, 0) 325# define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT 0 326 327#define DSI0_TST_SEL 0x6c 328#define DSI0_TST_MON 0x70 329#define DSI0_ID 0x74 330# define DSI_ID_VALUE 0x00647369 331 332#define DSI1_CTRL 0x00 333# define DSI_CTRL_HS_CLKC_MASK VC4_MASK(15, 14) 334# define DSI_CTRL_HS_CLKC_SHIFT 14 335# define DSI_CTRL_HS_CLKC_BYTE 0 336# define DSI_CTRL_HS_CLKC_DDR2 1 337# define DSI_CTRL_HS_CLKC_DDR 2 338 339# define DSI_CTRL_RX_LPDT_EOT_DISABLE BIT(13) 340# define DSI_CTRL_LPDT_EOT_DISABLE BIT(12) 341# define DSI_CTRL_HSDT_EOT_DISABLE BIT(11) 342# define DSI_CTRL_SOFT_RESET_CFG BIT(10) 343# define DSI_CTRL_CAL_BYTE BIT(9) 344# define DSI_CTRL_INV_BYTE BIT(8) 345# define DSI_CTRL_CLR_LDF BIT(7) 346# define DSI0_CTRL_CLR_PBCF BIT(6) 347# define DSI1_CTRL_CLR_RXF BIT(6) 348# define DSI0_CTRL_CLR_CPBCF BIT(5) 349# define DSI1_CTRL_CLR_PDF BIT(5) 350# define DSI0_CTRL_CLR_PDF BIT(4) 351# define DSI1_CTRL_CLR_CDF BIT(4) 352# define DSI0_CTRL_CLR_CDF BIT(3) 353# define DSI0_CTRL_CTRL2 BIT(2) 354# define DSI1_CTRL_DISABLE_DISP_CRCC BIT(2) 355# define DSI0_CTRL_CTRL1 BIT(1) 356# define DSI1_CTRL_DISABLE_DISP_ECCC BIT(1) 357# define DSI0_CTRL_CTRL0 BIT(0) 358# define DSI1_CTRL_EN BIT(0) 359# define DSI0_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \ 360 DSI0_CTRL_CLR_PBCF | \ 361 DSI0_CTRL_CLR_CPBCF | \ 362 DSI0_CTRL_CLR_PDF | \ 363 DSI0_CTRL_CLR_CDF) 364# define DSI1_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \ 365 DSI1_CTRL_CLR_RXF | \ 366 DSI1_CTRL_CLR_PDF | \ 367 DSI1_CTRL_CLR_CDF) 368 369#define DSI1_TXPKT2C 0x0c 370#define DSI1_TXPKT2H 0x10 371#define DSI1_TXPKT_PIX_FIFO 0x20 372#define DSI1_RXPKT_FIFO 0x24 373#define DSI1_DISP0_CTRL 0x28 374#define DSI1_INT_STAT 0x30 375#define DSI1_INT_EN 0x34 376/* State reporting bits. These mostly behave like INT_STAT, where 377 * writing a 1 clears the bit. 378 */ 379#define DSI1_STAT 0x38 380# define DSI1_STAT_PHY_D3_ULPS BIT(31) 381# define DSI1_STAT_PHY_D3_STOP BIT(30) 382# define DSI1_STAT_PHY_D2_ULPS BIT(29) 383# define DSI1_STAT_PHY_D2_STOP BIT(28) 384# define DSI1_STAT_PHY_D1_ULPS BIT(27) 385# define DSI1_STAT_PHY_D1_STOP BIT(26) 386# define DSI1_STAT_PHY_D0_ULPS BIT(25) 387# define DSI1_STAT_PHY_D0_STOP BIT(24) 388# define DSI1_STAT_FIFO_ERR BIT(23) 389# define DSI1_STAT_PHY_RXLPDT BIT(22) 390# define DSI1_STAT_PHY_RXTRIG BIT(21) 391# define DSI1_STAT_PHY_D0_LPDT BIT(20) 392/* Set when in forward direction */ 393# define DSI1_STAT_PHY_DIR BIT(19) 394# define DSI1_STAT_PHY_CLOCK_ULPS BIT(18) 395# define DSI1_STAT_PHY_CLOCK_HS BIT(17) 396# define DSI1_STAT_PHY_CLOCK_STOP BIT(16) 397# define DSI1_STAT_PR_TO BIT(15) 398# define DSI1_STAT_TA_TO BIT(14) 399# define DSI1_STAT_LPRX_TO BIT(13) 400# define DSI1_STAT_HSTX_TO BIT(12) 401# define DSI1_STAT_ERR_CONT_LP1 BIT(11) 402# define DSI1_STAT_ERR_CONT_LP0 BIT(10) 403# define DSI1_STAT_ERR_CONTROL BIT(9) 404# define DSI1_STAT_ERR_SYNC_ESC BIT(8) 405# define DSI1_STAT_RXPKT2 BIT(7) 406# define DSI1_STAT_RXPKT1 BIT(6) 407# define DSI1_STAT_TXPKT2_BUSY BIT(5) 408# define DSI1_STAT_TXPKT2_DONE BIT(4) 409# define DSI1_STAT_TXPKT2_END BIT(3) 410# define DSI1_STAT_TXPKT1_BUSY BIT(2) 411# define DSI1_STAT_TXPKT1_DONE BIT(1) 412# define DSI1_STAT_TXPKT1_END BIT(0) 413 414#define DSI1_HSTX_TO_CNT 0x3c 415#define DSI1_LPRX_TO_CNT 0x40 416#define DSI1_TA_TO_CNT 0x44 417#define DSI1_PR_TO_CNT 0x48 418#define DSI1_PHYC 0x4c 419 420#define DSI1_HS_CLT0 0x50 421# define DSI_HS_CLT0_CZERO_MASK VC4_MASK(26, 18) 422# define DSI_HS_CLT0_CZERO_SHIFT 18 423# define DSI_HS_CLT0_CPRE_MASK VC4_MASK(17, 9) 424# define DSI_HS_CLT0_CPRE_SHIFT 9 425# define DSI_HS_CLT0_CPREP_MASK VC4_MASK(8, 0) 426# define DSI_HS_CLT0_CPREP_SHIFT 0 427 428#define DSI1_HS_CLT1 0x54 429# define DSI_HS_CLT1_CTRAIL_MASK VC4_MASK(17, 9) 430# define DSI_HS_CLT1_CTRAIL_SHIFT 9 431# define DSI_HS_CLT1_CPOST_MASK VC4_MASK(8, 0) 432# define DSI_HS_CLT1_CPOST_SHIFT 0 433 434#define DSI1_HS_CLT2 0x58 435# define DSI_HS_CLT2_WUP_MASK VC4_MASK(23, 0) 436# define DSI_HS_CLT2_WUP_SHIFT 0 437 438#define DSI1_HS_DLT3 0x5c 439# define DSI_HS_DLT3_EXIT_MASK VC4_MASK(26, 18) 440# define DSI_HS_DLT3_EXIT_SHIFT 18 441# define DSI_HS_DLT3_ZERO_MASK VC4_MASK(17, 9) 442# define DSI_HS_DLT3_ZERO_SHIFT 9 443# define DSI_HS_DLT3_PRE_MASK VC4_MASK(8, 0) 444# define DSI_HS_DLT3_PRE_SHIFT 0 445 446#define DSI1_HS_DLT4 0x60 447# define DSI_HS_DLT4_ANLAT_MASK VC4_MASK(22, 18) 448# define DSI_HS_DLT4_ANLAT_SHIFT 18 449# define DSI_HS_DLT4_TRAIL_MASK VC4_MASK(17, 9) 450# define DSI_HS_DLT4_TRAIL_SHIFT 9 451# define DSI_HS_DLT4_LPX_MASK VC4_MASK(8, 0) 452# define DSI_HS_DLT4_LPX_SHIFT 0 453 454#define DSI1_HS_DLT5 0x64 455# define DSI_HS_DLT5_INIT_MASK VC4_MASK(23, 0) 456# define DSI_HS_DLT5_INIT_SHIFT 0 457 458#define DSI1_HS_DLT6 0x68 459# define DSI_HS_DLT6_TA_GET_MASK VC4_MASK(31, 24) 460# define DSI_HS_DLT6_TA_GET_SHIFT 24 461# define DSI_HS_DLT6_TA_SURE_MASK VC4_MASK(23, 16) 462# define DSI_HS_DLT6_TA_SURE_SHIFT 16 463# define DSI_HS_DLT6_TA_GO_MASK VC4_MASK(15, 8) 464# define DSI_HS_DLT6_TA_GO_SHIFT 8 465# define DSI_HS_DLT6_LP_LPX_MASK VC4_MASK(7, 0) 466# define DSI_HS_DLT6_LP_LPX_SHIFT 0 467 468#define DSI1_HS_DLT7 0x6c 469# define DSI_HS_DLT7_LP_WUP_MASK VC4_MASK(23, 0) 470# define DSI_HS_DLT7_LP_WUP_SHIFT 0 471 472#define DSI1_PHY_AFEC0 0x70 473 474#define DSI1_PHY_AFEC1 0x74 475# define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK VC4_MASK(19, 16) 476# define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT 16 477# define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK VC4_MASK(15, 12) 478# define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT 12 479# define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK VC4_MASK(11, 8) 480# define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT 8 481# define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK VC4_MASK(7, 4) 482# define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT 4 483# define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK VC4_MASK(3, 0) 484# define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT 0 485 486#define DSI1_TST_SEL 0x78 487#define DSI1_TST_MON 0x7c 488#define DSI1_PHY_TST1 0x80 489#define DSI1_PHY_TST2 0x84 490#define DSI1_PHY_FIFO_STAT 0x88 491/* Actually, all registers in the range that aren't otherwise claimed 492 * will return the ID. 493 */ 494#define DSI1_ID 0x8c 495 496struct vc4_dsi_variant { 497 /* Whether we're on bcm2835's DSI0 or DSI1. */ 498 unsigned int port; 499 500 bool broken_axi_workaround; 501 502 const char *debugfs_name; 503 const struct debugfs_reg32 *regs; 504 size_t nregs; 505 506}; 507 508/* General DSI hardware state. */ 509struct vc4_dsi { 510 struct platform_device *pdev; 511 512 struct mipi_dsi_host dsi_host; 513 struct drm_encoder *encoder; 514 struct drm_bridge *bridge; 515 struct list_head bridge_chain; 516 517 void __iomem *regs; 518 519 struct dma_chan *reg_dma_chan; 520 dma_addr_t reg_dma_paddr; 521 u32 *reg_dma_mem; 522 dma_addr_t reg_paddr; 523 524 const struct vc4_dsi_variant *variant; 525 526 /* DSI channel for the panel we're connected to. */ 527 u32 channel; 528 u32 lanes; 529 u32 format; 530 u32 divider; 531 u32 mode_flags; 532 533 /* Input clock from CPRMAN to the digital PHY, for the DSI 534 * escape clock. 535 */ 536 struct clk *escape_clock; 537 538 /* Input clock to the analog PHY, used to generate the DSI bit 539 * clock. 540 */ 541 struct clk *pll_phy_clock; 542 543 /* HS Clocks generated within the DSI analog PHY. */ 544 struct clk_fixed_factor phy_clocks[3]; 545 546 struct clk_hw_onecell_data *clk_onecell; 547 548 /* Pixel clock output to the pixelvalve, generated from the HS 549 * clock. 550 */ 551 struct clk *pixel_clock; 552 553 struct completion xfer_completion; 554 int xfer_result; 555 556 struct debugfs_regset32 regset; 557}; 558 559#define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host) 560 561static inline void 562dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val) 563{ 564 struct dma_chan *chan = dsi->reg_dma_chan; 565 struct dma_async_tx_descriptor *tx; 566 dma_cookie_t cookie; 567 int ret; 568 569 /* DSI0 should be able to write normally. */ 570 if (!chan) { 571 writel(val, dsi->regs + offset); 572 return; 573 } 574 575 *dsi->reg_dma_mem = val; 576 577 tx = chan->device->device_prep_dma_memcpy(chan, 578 dsi->reg_paddr + offset, 579 dsi->reg_dma_paddr, 580 4, 0); 581 if (!tx) { 582 DRM_ERROR("Failed to set up DMA register write\n"); 583 return; 584 } 585 586 cookie = tx->tx_submit(tx); 587 ret = dma_submit_error(cookie); 588 if (ret) { 589 DRM_ERROR("Failed to submit DMA: %d\n", ret); 590 return; 591 } 592 ret = dma_sync_wait(chan, cookie); 593 if (ret) 594 DRM_ERROR("Failed to wait for DMA: %d\n", ret); 595} 596 597#define DSI_READ(offset) readl(dsi->regs + (offset)) 598#define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val) 599#define DSI_PORT_READ(offset) \ 600 DSI_READ(dsi->variant->port ? DSI1_##offset : DSI0_##offset) 601#define DSI_PORT_WRITE(offset, val) \ 602 DSI_WRITE(dsi->variant->port ? DSI1_##offset : DSI0_##offset, val) 603#define DSI_PORT_BIT(bit) (dsi->variant->port ? DSI1_##bit : DSI0_##bit) 604 605/* VC4 DSI encoder KMS struct */ 606struct vc4_dsi_encoder { 607 struct vc4_encoder base; 608 struct vc4_dsi *dsi; 609}; 610 611static inline struct vc4_dsi_encoder * 612to_vc4_dsi_encoder(struct drm_encoder *encoder) 613{ 614 return container_of(encoder, struct vc4_dsi_encoder, base.base); 615} 616 617static const struct debugfs_reg32 dsi0_regs[] = { 618 VC4_REG32(DSI0_CTRL), 619 VC4_REG32(DSI0_STAT), 620 VC4_REG32(DSI0_HSTX_TO_CNT), 621 VC4_REG32(DSI0_LPRX_TO_CNT), 622 VC4_REG32(DSI0_TA_TO_CNT), 623 VC4_REG32(DSI0_PR_TO_CNT), 624 VC4_REG32(DSI0_DISP0_CTRL), 625 VC4_REG32(DSI0_DISP1_CTRL), 626 VC4_REG32(DSI0_INT_STAT), 627 VC4_REG32(DSI0_INT_EN), 628 VC4_REG32(DSI0_PHYC), 629 VC4_REG32(DSI0_HS_CLT0), 630 VC4_REG32(DSI0_HS_CLT1), 631 VC4_REG32(DSI0_HS_CLT2), 632 VC4_REG32(DSI0_HS_DLT3), 633 VC4_REG32(DSI0_HS_DLT4), 634 VC4_REG32(DSI0_HS_DLT5), 635 VC4_REG32(DSI0_HS_DLT6), 636 VC4_REG32(DSI0_HS_DLT7), 637 VC4_REG32(DSI0_PHY_AFEC0), 638 VC4_REG32(DSI0_PHY_AFEC1), 639 VC4_REG32(DSI0_ID), 640}; 641 642static const struct debugfs_reg32 dsi1_regs[] = { 643 VC4_REG32(DSI1_CTRL), 644 VC4_REG32(DSI1_STAT), 645 VC4_REG32(DSI1_HSTX_TO_CNT), 646 VC4_REG32(DSI1_LPRX_TO_CNT), 647 VC4_REG32(DSI1_TA_TO_CNT), 648 VC4_REG32(DSI1_PR_TO_CNT), 649 VC4_REG32(DSI1_DISP0_CTRL), 650 VC4_REG32(DSI1_DISP1_CTRL), 651 VC4_REG32(DSI1_INT_STAT), 652 VC4_REG32(DSI1_INT_EN), 653 VC4_REG32(DSI1_PHYC), 654 VC4_REG32(DSI1_HS_CLT0), 655 VC4_REG32(DSI1_HS_CLT1), 656 VC4_REG32(DSI1_HS_CLT2), 657 VC4_REG32(DSI1_HS_DLT3), 658 VC4_REG32(DSI1_HS_DLT4), 659 VC4_REG32(DSI1_HS_DLT5), 660 VC4_REG32(DSI1_HS_DLT6), 661 VC4_REG32(DSI1_HS_DLT7), 662 VC4_REG32(DSI1_PHY_AFEC0), 663 VC4_REG32(DSI1_PHY_AFEC1), 664 VC4_REG32(DSI1_ID), 665}; 666 667static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch) 668{ 669 u32 afec0 = DSI_PORT_READ(PHY_AFEC0); 670 671 if (latch) 672 afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS); 673 else 674 afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS); 675 676 DSI_PORT_WRITE(PHY_AFEC0, afec0); 677} 678 679/* Enters or exits Ultra Low Power State. */ 680static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps) 681{ 682 bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS; 683 u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) | 684 DSI_PHYC_DLANE0_ULPS | 685 (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) | 686 (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) | 687 (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0)); 688 u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) | 689 DSI1_STAT_PHY_D0_ULPS | 690 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) | 691 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) | 692 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0)); 693 u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) | 694 DSI1_STAT_PHY_D0_STOP | 695 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) | 696 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) | 697 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0)); 698 int ret; 699 bool ulps_currently_enabled = (DSI_PORT_READ(PHY_AFEC0) & 700 DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS)); 701 702 if (ulps == ulps_currently_enabled) 703 return; 704 705 DSI_PORT_WRITE(STAT, stat_ulps); 706 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps); 707 ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200); 708 if (ret) { 709 dev_warn(&dsi->pdev->dev, 710 "Timeout waiting for DSI ULPS entry: STAT 0x%08x", 711 DSI_PORT_READ(STAT)); 712 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); 713 vc4_dsi_latch_ulps(dsi, false); 714 return; 715 } 716 717 /* The DSI module can't be disabled while the module is 718 * generating ULPS state. So, to be able to disable the 719 * module, we have the AFE latch the ULPS state and continue 720 * on to having the module enter STOP. 721 */ 722 vc4_dsi_latch_ulps(dsi, ulps); 723 724 DSI_PORT_WRITE(STAT, stat_stop); 725 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); 726 ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200); 727 if (ret) { 728 dev_warn(&dsi->pdev->dev, 729 "Timeout waiting for DSI STOP entry: STAT 0x%08x", 730 DSI_PORT_READ(STAT)); 731 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); 732 return; 733 } 734} 735 736static u32 737dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui) 738{ 739 /* The HS timings have to be rounded up to a multiple of 8 740 * because we're using the byte clock. 741 */ 742 return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8); 743} 744 745/* ESC always runs at 100Mhz. */ 746#define ESC_TIME_NS 10 747 748static u32 749dsi_esc_timing(u32 ns) 750{ 751 return DIV_ROUND_UP(ns, ESC_TIME_NS); 752} 753 754static void vc4_dsi_encoder_disable(struct drm_encoder *encoder) 755{ 756 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder); 757 struct vc4_dsi *dsi = vc4_encoder->dsi; 758 struct device *dev = &dsi->pdev->dev; 759 struct drm_bridge *iter; 760 761 list_for_each_entry_reverse(iter, &dsi->bridge_chain, chain_node) { 762 if (iter->funcs->disable) 763 iter->funcs->disable(iter); 764 } 765 766 vc4_dsi_ulps(dsi, true); 767 768 list_for_each_entry_from(iter, &dsi->bridge_chain, chain_node) { 769 if (iter->funcs->post_disable) 770 iter->funcs->post_disable(iter); 771 } 772 773 clk_disable_unprepare(dsi->pll_phy_clock); 774 clk_disable_unprepare(dsi->escape_clock); 775 clk_disable_unprepare(dsi->pixel_clock); 776 777 pm_runtime_put(dev); 778} 779 780/* Extends the mode's blank intervals to handle BCM2835's integer-only 781 * DSI PLL divider. 782 * 783 * On 2835, PLLD is set to 2Ghz, and may not be changed by the display 784 * driver since most peripherals are hanging off of the PLLD_PER 785 * divider. PLLD_DSI1, which drives our DSI bit clock (and therefore 786 * the pixel clock), only has an integer divider off of DSI. 787 * 788 * To get our panel mode to refresh at the expected 60Hz, we need to 789 * extend the horizontal blank time. This means we drive a 790 * higher-than-expected clock rate to the panel, but that's what the 791 * firmware does too. 792 */ 793static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder *encoder, 794 const struct drm_display_mode *mode, 795 struct drm_display_mode *adjusted_mode) 796{ 797 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder); 798 struct vc4_dsi *dsi = vc4_encoder->dsi; 799 struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock); 800 unsigned long parent_rate = clk_get_rate(phy_parent); 801 unsigned long pixel_clock_hz = mode->clock * 1000; 802 unsigned long pll_clock = pixel_clock_hz * dsi->divider; 803 int divider; 804 805 /* Find what divider gets us a faster clock than the requested 806 * pixel clock. 807 */ 808 for (divider = 1; divider < 8; divider++) { 809 if (parent_rate / divider < pll_clock) { 810 divider--; 811 break; 812 } 813 } 814 815 /* Now that we've picked a PLL divider, calculate back to its 816 * pixel clock. 817 */ 818 pll_clock = parent_rate / divider; 819 pixel_clock_hz = pll_clock / dsi->divider; 820 821 adjusted_mode->clock = pixel_clock_hz / 1000; 822 823 /* Given the new pixel clock, adjust HFP to keep vrefresh the same. */ 824 adjusted_mode->htotal = adjusted_mode->clock * mode->htotal / 825 mode->clock; 826 adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal; 827 adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal; 828 829 return true; 830} 831 832static void vc4_dsi_encoder_enable(struct drm_encoder *encoder) 833{ 834 struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode; 835 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder); 836 struct vc4_dsi *dsi = vc4_encoder->dsi; 837 struct device *dev = &dsi->pdev->dev; 838 bool debug_dump_regs = false; 839 struct drm_bridge *iter; 840 unsigned long hs_clock; 841 u32 ui_ns; 842 /* Minimum LP state duration in escape clock cycles. */ 843 u32 lpx = dsi_esc_timing(60); 844 unsigned long pixel_clock_hz = mode->clock * 1000; 845 unsigned long dsip_clock; 846 unsigned long phy_clock; 847 int ret; 848 849 ret = pm_runtime_resume_and_get(dev); 850 if (ret) { 851 DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->variant->port); 852 return; 853 } 854 855 if (debug_dump_regs) { 856 struct drm_printer p = drm_info_printer(&dsi->pdev->dev); 857 dev_info(&dsi->pdev->dev, "DSI regs before:\n"); 858 drm_print_regset32(&p, &dsi->regset); 859 } 860 861 /* Round up the clk_set_rate() request slightly, since 862 * PLLD_DSI1 is an integer divider and its rate selection will 863 * never round up. 864 */ 865 phy_clock = (pixel_clock_hz + 1000) * dsi->divider; 866 ret = clk_set_rate(dsi->pll_phy_clock, phy_clock); 867 if (ret) { 868 dev_err(&dsi->pdev->dev, 869 "Failed to set phy clock to %ld: %d\n", phy_clock, ret); 870 } 871 872 /* Reset the DSI and all its fifos. */ 873 DSI_PORT_WRITE(CTRL, 874 DSI_CTRL_SOFT_RESET_CFG | 875 DSI_PORT_BIT(CTRL_RESET_FIFOS)); 876 877 DSI_PORT_WRITE(CTRL, 878 DSI_CTRL_HSDT_EOT_DISABLE | 879 DSI_CTRL_RX_LPDT_EOT_DISABLE); 880 881 /* Clear all stat bits so we see what has happened during enable. */ 882 DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT)); 883 884 /* Set AFE CTR00/CTR1 to release powerdown of analog. */ 885 if (dsi->variant->port == 0) { 886 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) | 887 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ)); 888 889 if (dsi->lanes < 2) 890 afec0 |= DSI0_PHY_AFEC0_PD_DLANE1; 891 892 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) 893 afec0 |= DSI0_PHY_AFEC0_RESET; 894 895 DSI_PORT_WRITE(PHY_AFEC0, afec0); 896 897 DSI_PORT_WRITE(PHY_AFEC1, 898 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE1) | 899 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE0) | 900 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_CLANE)); 901 } else { 902 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) | 903 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) | 904 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) | 905 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) | 906 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) | 907 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) | 908 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3)); 909 910 if (dsi->lanes < 4) 911 afec0 |= DSI1_PHY_AFEC0_PD_DLANE3; 912 if (dsi->lanes < 3) 913 afec0 |= DSI1_PHY_AFEC0_PD_DLANE2; 914 if (dsi->lanes < 2) 915 afec0 |= DSI1_PHY_AFEC0_PD_DLANE1; 916 917 afec0 |= DSI1_PHY_AFEC0_RESET; 918 919 DSI_PORT_WRITE(PHY_AFEC0, afec0); 920 921 DSI_PORT_WRITE(PHY_AFEC1, 0); 922 923 /* AFEC reset hold time */ 924 mdelay(1); 925 } 926 927 ret = clk_prepare_enable(dsi->escape_clock); 928 if (ret) { 929 DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret); 930 return; 931 } 932 933 ret = clk_prepare_enable(dsi->pll_phy_clock); 934 if (ret) { 935 DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret); 936 return; 937 } 938 939 hs_clock = clk_get_rate(dsi->pll_phy_clock); 940 941 /* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate, 942 * not the pixel clock rate. DSIxP take from the APHY's byte, 943 * DDR2, or DDR4 clock (we use byte) and feed into the PV at 944 * that rate. Separately, a value derived from PIX_CLK_DIV 945 * and HS_CLKC is fed into the PV to divide down to the actual 946 * pixel clock for pushing pixels into DSI. 947 */ 948 dsip_clock = phy_clock / 8; 949 ret = clk_set_rate(dsi->pixel_clock, dsip_clock); 950 if (ret) { 951 dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n", 952 dsip_clock, ret); 953 } 954 955 ret = clk_prepare_enable(dsi->pixel_clock); 956 if (ret) { 957 DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret); 958 return; 959 } 960 961 /* How many ns one DSI unit interval is. Note that the clock 962 * is DDR, so there's an extra divide by 2. 963 */ 964 ui_ns = DIV_ROUND_UP(500000000, hs_clock); 965 966 DSI_PORT_WRITE(HS_CLT0, 967 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0), 968 DSI_HS_CLT0_CZERO) | 969 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8), 970 DSI_HS_CLT0_CPRE) | 971 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0), 972 DSI_HS_CLT0_CPREP)); 973 974 DSI_PORT_WRITE(HS_CLT1, 975 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0), 976 DSI_HS_CLT1_CTRAIL) | 977 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52), 978 DSI_HS_CLT1_CPOST)); 979 980 DSI_PORT_WRITE(HS_CLT2, 981 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0), 982 DSI_HS_CLT2_WUP)); 983 984 DSI_PORT_WRITE(HS_DLT3, 985 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0), 986 DSI_HS_DLT3_EXIT) | 987 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6), 988 DSI_HS_DLT3_ZERO) | 989 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4), 990 DSI_HS_DLT3_PRE)); 991 992 DSI_PORT_WRITE(HS_DLT4, 993 VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0), 994 DSI_HS_DLT4_LPX) | 995 VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8), 996 dsi_hs_timing(ui_ns, 60, 4)), 997 DSI_HS_DLT4_TRAIL) | 998 VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT)); 999 1000 /* T_INIT is how long STOP is driven after power-up to 1001 * indicate to the slave (also coming out of power-up) that 1002 * master init is complete, and should be greater than the 1003 * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE. The 1004 * D-PHY spec gives a minimum 100us for T_INIT,MASTER and 1005 * T_INIT,SLAVE, while allowing protocols on top of it to give 1006 * greater minimums. The vc4 firmware uses an extremely 1007 * conservative 5ms, and we maintain that here. 1008 */ 1009 DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1010 5 * 1000 * 1000, 0), 1011 DSI_HS_DLT5_INIT)); 1012 1013 DSI_PORT_WRITE(HS_DLT6, 1014 VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) | 1015 VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) | 1016 VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) | 1017 VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX)); 1018 1019 DSI_PORT_WRITE(HS_DLT7, 1020 VC4_SET_FIELD(dsi_esc_timing(1000000), 1021 DSI_HS_DLT7_LP_WUP)); 1022 1023 DSI_PORT_WRITE(PHYC, 1024 DSI_PHYC_DLANE0_ENABLE | 1025 (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) | 1026 (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) | 1027 (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) | 1028 DSI_PORT_BIT(PHYC_CLANE_ENABLE) | 1029 ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ? 1030 0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) | 1031 (dsi->variant->port == 0 ? 1032 VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) : 1033 VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT))); 1034 1035 DSI_PORT_WRITE(CTRL, 1036 DSI_PORT_READ(CTRL) | 1037 DSI_CTRL_CAL_BYTE); 1038 1039 /* HS timeout in HS clock cycles: disabled. */ 1040 DSI_PORT_WRITE(HSTX_TO_CNT, 0); 1041 /* LP receive timeout in HS clocks. */ 1042 DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff); 1043 /* Bus turnaround timeout */ 1044 DSI_PORT_WRITE(TA_TO_CNT, 100000); 1045 /* Display reset sequence timeout */ 1046 DSI_PORT_WRITE(PR_TO_CNT, 100000); 1047 1048 /* Set up DISP1 for transferring long command payloads through 1049 * the pixfifo. 1050 */ 1051 DSI_PORT_WRITE(DISP1_CTRL, 1052 VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE, 1053 DSI_DISP1_PFORMAT) | 1054 DSI_DISP1_ENABLE); 1055 1056 /* Ungate the block. */ 1057 if (dsi->variant->port == 0) 1058 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0); 1059 else 1060 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN); 1061 1062 /* Bring AFE out of reset. */ 1063 if (dsi->variant->port == 0) { 1064 } else { 1065 DSI_PORT_WRITE(PHY_AFEC0, 1066 DSI_PORT_READ(PHY_AFEC0) & 1067 ~DSI1_PHY_AFEC0_RESET); 1068 } 1069 1070 vc4_dsi_ulps(dsi, false); 1071 1072 list_for_each_entry_reverse(iter, &dsi->bridge_chain, chain_node) { 1073 if (iter->funcs->pre_enable) 1074 iter->funcs->pre_enable(iter); 1075 } 1076 1077 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) { 1078 DSI_PORT_WRITE(DISP0_CTRL, 1079 VC4_SET_FIELD(dsi->divider, 1080 DSI_DISP0_PIX_CLK_DIV) | 1081 VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) | 1082 VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME, 1083 DSI_DISP0_LP_STOP_CTRL) | 1084 DSI_DISP0_ST_END | 1085 DSI_DISP0_ENABLE); 1086 } else { 1087 DSI_PORT_WRITE(DISP0_CTRL, 1088 DSI_DISP0_COMMAND_MODE | 1089 DSI_DISP0_ENABLE); 1090 } 1091 1092 list_for_each_entry(iter, &dsi->bridge_chain, chain_node) { 1093 if (iter->funcs->enable) 1094 iter->funcs->enable(iter); 1095 } 1096 1097 if (debug_dump_regs) { 1098 struct drm_printer p = drm_info_printer(&dsi->pdev->dev); 1099 dev_info(&dsi->pdev->dev, "DSI regs after:\n"); 1100 drm_print_regset32(&p, &dsi->regset); 1101 } 1102} 1103 1104static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host, 1105 const struct mipi_dsi_msg *msg) 1106{ 1107 struct vc4_dsi *dsi = host_to_dsi(host); 1108 struct mipi_dsi_packet packet; 1109 u32 pkth = 0, pktc = 0; 1110 int i, ret; 1111 bool is_long = mipi_dsi_packet_format_is_long(msg->type); 1112 u32 cmd_fifo_len = 0, pix_fifo_len = 0; 1113 1114 mipi_dsi_create_packet(&packet, msg); 1115 1116 pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT); 1117 pkth |= VC4_SET_FIELD(packet.header[1] | 1118 (packet.header[2] << 8), 1119 DSI_TXPKT1H_BC_PARAM); 1120 if (is_long) { 1121 /* Divide data across the various FIFOs we have available. 1122 * The command FIFO takes byte-oriented data, but is of 1123 * limited size. The pixel FIFO (never actually used for 1124 * pixel data in reality) is word oriented, and substantially 1125 * larger. So, we use the pixel FIFO for most of the data, 1126 * sending the residual bytes in the command FIFO at the start. 1127 * 1128 * With this arrangement, the command FIFO will never get full. 1129 */ 1130 if (packet.payload_length <= 16) { 1131 cmd_fifo_len = packet.payload_length; 1132 pix_fifo_len = 0; 1133 } else { 1134 cmd_fifo_len = (packet.payload_length % 1135 DSI_PIX_FIFO_WIDTH); 1136 pix_fifo_len = ((packet.payload_length - cmd_fifo_len) / 1137 DSI_PIX_FIFO_WIDTH); 1138 } 1139 1140 WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH); 1141 1142 pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO); 1143 } 1144 1145 if (msg->rx_len) { 1146 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX, 1147 DSI_TXPKT1C_CMD_CTRL); 1148 } else { 1149 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX, 1150 DSI_TXPKT1C_CMD_CTRL); 1151 } 1152 1153 for (i = 0; i < cmd_fifo_len; i++) 1154 DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]); 1155 for (i = 0; i < pix_fifo_len; i++) { 1156 const u8 *pix = packet.payload + cmd_fifo_len + i * 4; 1157 1158 DSI_PORT_WRITE(TXPKT_PIX_FIFO, 1159 pix[0] | 1160 pix[1] << 8 | 1161 pix[2] << 16 | 1162 pix[3] << 24); 1163 } 1164 1165 if (msg->flags & MIPI_DSI_MSG_USE_LPM) 1166 pktc |= DSI_TXPKT1C_CMD_MODE_LP; 1167 if (is_long) 1168 pktc |= DSI_TXPKT1C_CMD_TYPE_LONG; 1169 1170 /* Send one copy of the packet. Larger repeats are used for pixel 1171 * data in command mode. 1172 */ 1173 pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT); 1174 1175 pktc |= DSI_TXPKT1C_CMD_EN; 1176 if (pix_fifo_len) { 1177 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY, 1178 DSI_TXPKT1C_DISPLAY_NO); 1179 } else { 1180 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT, 1181 DSI_TXPKT1C_DISPLAY_NO); 1182 } 1183 1184 /* Enable the appropriate interrupt for the transfer completion. */ 1185 dsi->xfer_result = 0; 1186 reinit_completion(&dsi->xfer_completion); 1187 DSI_PORT_WRITE(INT_STAT, DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF); 1188 if (msg->rx_len) { 1189 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED | 1190 DSI1_INT_PHY_DIR_RTF)); 1191 } else { 1192 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED | 1193 DSI1_INT_TXPKT1_DONE)); 1194 } 1195 1196 /* Send the packet. */ 1197 DSI_PORT_WRITE(TXPKT1H, pkth); 1198 DSI_PORT_WRITE(TXPKT1C, pktc); 1199 1200 if (!wait_for_completion_timeout(&dsi->xfer_completion, 1201 msecs_to_jiffies(1000))) { 1202 dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout"); 1203 dev_err(&dsi->pdev->dev, "instat: 0x%08x\n", 1204 DSI_PORT_READ(INT_STAT)); 1205 ret = -ETIMEDOUT; 1206 } else { 1207 ret = dsi->xfer_result; 1208 } 1209 1210 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED); 1211 1212 if (ret) 1213 goto reset_fifo_and_return; 1214 1215 if (ret == 0 && msg->rx_len) { 1216 u32 rxpkt1h = DSI_PORT_READ(RXPKT1H); 1217 u8 *msg_rx = msg->rx_buf; 1218 1219 if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) { 1220 u32 rxlen = VC4_GET_FIELD(rxpkt1h, 1221 DSI_RXPKT1H_BC_PARAM); 1222 1223 if (rxlen != msg->rx_len) { 1224 DRM_ERROR("DSI returned %db, expecting %db\n", 1225 rxlen, (int)msg->rx_len); 1226 ret = -ENXIO; 1227 goto reset_fifo_and_return; 1228 } 1229 1230 for (i = 0; i < msg->rx_len; i++) 1231 msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO); 1232 } else { 1233 /* FINISHME: Handle AWER */ 1234 1235 msg_rx[0] = VC4_GET_FIELD(rxpkt1h, 1236 DSI_RXPKT1H_SHORT_0); 1237 if (msg->rx_len > 1) { 1238 msg_rx[1] = VC4_GET_FIELD(rxpkt1h, 1239 DSI_RXPKT1H_SHORT_1); 1240 } 1241 } 1242 } 1243 1244 return ret; 1245 1246reset_fifo_and_return: 1247 DRM_ERROR("DSI transfer failed, resetting: %d\n", ret); 1248 1249 DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN); 1250 udelay(1); 1251 DSI_PORT_WRITE(CTRL, 1252 DSI_PORT_READ(CTRL) | 1253 DSI_PORT_BIT(CTRL_RESET_FIFOS)); 1254 1255 DSI_PORT_WRITE(TXPKT1C, 0); 1256 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED); 1257 return ret; 1258} 1259 1260static const struct component_ops vc4_dsi_ops; 1261static int vc4_dsi_host_attach(struct mipi_dsi_host *host, 1262 struct mipi_dsi_device *device) 1263{ 1264 struct vc4_dsi *dsi = host_to_dsi(host); 1265 1266 dsi->lanes = device->lanes; 1267 dsi->channel = device->channel; 1268 dsi->mode_flags = device->mode_flags; 1269 1270 switch (device->format) { 1271 case MIPI_DSI_FMT_RGB888: 1272 dsi->format = DSI_PFORMAT_RGB888; 1273 dsi->divider = 24 / dsi->lanes; 1274 break; 1275 case MIPI_DSI_FMT_RGB666: 1276 dsi->format = DSI_PFORMAT_RGB666; 1277 dsi->divider = 24 / dsi->lanes; 1278 break; 1279 case MIPI_DSI_FMT_RGB666_PACKED: 1280 dsi->format = DSI_PFORMAT_RGB666_PACKED; 1281 dsi->divider = 18 / dsi->lanes; 1282 break; 1283 case MIPI_DSI_FMT_RGB565: 1284 dsi->format = DSI_PFORMAT_RGB565; 1285 dsi->divider = 16 / dsi->lanes; 1286 break; 1287 default: 1288 dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n", 1289 dsi->format); 1290 return 0; 1291 } 1292 1293 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) { 1294 dev_err(&dsi->pdev->dev, 1295 "Only VIDEO mode panels supported currently.\n"); 1296 return 0; 1297 } 1298 1299 return component_add(&dsi->pdev->dev, &vc4_dsi_ops); 1300} 1301 1302static int vc4_dsi_host_detach(struct mipi_dsi_host *host, 1303 struct mipi_dsi_device *device) 1304{ 1305 struct vc4_dsi *dsi = host_to_dsi(host); 1306 1307 component_del(&dsi->pdev->dev, &vc4_dsi_ops); 1308 return 0; 1309} 1310 1311static const struct mipi_dsi_host_ops vc4_dsi_host_ops = { 1312 .attach = vc4_dsi_host_attach, 1313 .detach = vc4_dsi_host_detach, 1314 .transfer = vc4_dsi_host_transfer, 1315}; 1316 1317static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = { 1318 .disable = vc4_dsi_encoder_disable, 1319 .enable = vc4_dsi_encoder_enable, 1320 .mode_fixup = vc4_dsi_encoder_mode_fixup, 1321}; 1322 1323static const struct vc4_dsi_variant bcm2711_dsi1_variant = { 1324 .port = 1, 1325 .debugfs_name = "dsi1_regs", 1326 .regs = dsi1_regs, 1327 .nregs = ARRAY_SIZE(dsi1_regs), 1328}; 1329 1330static const struct vc4_dsi_variant bcm2835_dsi0_variant = { 1331 .port = 0, 1332 .debugfs_name = "dsi0_regs", 1333 .regs = dsi0_regs, 1334 .nregs = ARRAY_SIZE(dsi0_regs), 1335}; 1336 1337static const struct vc4_dsi_variant bcm2835_dsi1_variant = { 1338 .port = 1, 1339 .broken_axi_workaround = true, 1340 .debugfs_name = "dsi1_regs", 1341 .regs = dsi1_regs, 1342 .nregs = ARRAY_SIZE(dsi1_regs), 1343}; 1344 1345static const struct of_device_id vc4_dsi_dt_match[] = { 1346 { .compatible = "brcm,bcm2711-dsi1", &bcm2711_dsi1_variant }, 1347 { .compatible = "brcm,bcm2835-dsi0", &bcm2835_dsi0_variant }, 1348 { .compatible = "brcm,bcm2835-dsi1", &bcm2835_dsi1_variant }, 1349 {} 1350}; 1351 1352static void dsi_handle_error(struct vc4_dsi *dsi, 1353 irqreturn_t *ret, u32 stat, u32 bit, 1354 const char *type) 1355{ 1356 if (!(stat & bit)) 1357 return; 1358 1359 DRM_ERROR("DSI%d: %s error\n", dsi->variant->port, type); 1360 *ret = IRQ_HANDLED; 1361} 1362 1363/* 1364 * Initial handler for port 1 where we need the reg_dma workaround. 1365 * The register DMA writes sleep, so we can't do it in the top half. 1366 * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the 1367 * parent interrupt contrller until our interrupt thread is done. 1368 */ 1369static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data) 1370{ 1371 struct vc4_dsi *dsi = data; 1372 u32 stat = DSI_PORT_READ(INT_STAT); 1373 1374 if (!stat) 1375 return IRQ_NONE; 1376 1377 return IRQ_WAKE_THREAD; 1378} 1379 1380/* 1381 * Normal IRQ handler for port 0, or the threaded IRQ handler for port 1382 * 1 where we need the reg_dma workaround. 1383 */ 1384static irqreturn_t vc4_dsi_irq_handler(int irq, void *data) 1385{ 1386 struct vc4_dsi *dsi = data; 1387 u32 stat = DSI_PORT_READ(INT_STAT); 1388 irqreturn_t ret = IRQ_NONE; 1389 1390 DSI_PORT_WRITE(INT_STAT, stat); 1391 1392 dsi_handle_error(dsi, &ret, stat, 1393 DSI1_INT_ERR_SYNC_ESC, "LPDT sync"); 1394 dsi_handle_error(dsi, &ret, stat, 1395 DSI1_INT_ERR_CONTROL, "data lane 0 sequence"); 1396 dsi_handle_error(dsi, &ret, stat, 1397 DSI1_INT_ERR_CONT_LP0, "LP0 contention"); 1398 dsi_handle_error(dsi, &ret, stat, 1399 DSI1_INT_ERR_CONT_LP1, "LP1 contention"); 1400 dsi_handle_error(dsi, &ret, stat, 1401 DSI1_INT_HSTX_TO, "HSTX timeout"); 1402 dsi_handle_error(dsi, &ret, stat, 1403 DSI1_INT_LPRX_TO, "LPRX timeout"); 1404 dsi_handle_error(dsi, &ret, stat, 1405 DSI1_INT_TA_TO, "turnaround timeout"); 1406 dsi_handle_error(dsi, &ret, stat, 1407 DSI1_INT_PR_TO, "peripheral reset timeout"); 1408 1409 if (stat & (DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF)) { 1410 complete(&dsi->xfer_completion); 1411 ret = IRQ_HANDLED; 1412 } else if (stat & DSI1_INT_HSTX_TO) { 1413 complete(&dsi->xfer_completion); 1414 dsi->xfer_result = -ETIMEDOUT; 1415 ret = IRQ_HANDLED; 1416 } 1417 1418 return ret; 1419} 1420 1421/** 1422 * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog 1423 * PHY that are consumed by CPRMAN (clk-bcm2835.c). 1424 * @dsi: DSI encoder 1425 */ 1426static int 1427vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi) 1428{ 1429 struct device *dev = &dsi->pdev->dev; 1430 const char *parent_name = __clk_get_name(dsi->pll_phy_clock); 1431 static const struct { 1432 const char *name; 1433 int div; 1434 } phy_clocks[] = { 1435 { "byte", 8 }, 1436 { "ddr2", 4 }, 1437 { "ddr", 2 }, 1438 }; 1439 int i; 1440 1441 dsi->clk_onecell = devm_kzalloc(dev, 1442 sizeof(*dsi->clk_onecell) + 1443 ARRAY_SIZE(phy_clocks) * 1444 sizeof(struct clk_hw *), 1445 GFP_KERNEL); 1446 if (!dsi->clk_onecell) 1447 return -ENOMEM; 1448 dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks); 1449 1450 for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) { 1451 struct clk_fixed_factor *fix = &dsi->phy_clocks[i]; 1452 struct clk_init_data init; 1453 char clk_name[16]; 1454 int ret; 1455 1456 snprintf(clk_name, sizeof(clk_name), 1457 "dsi%u_%s", dsi->variant->port, phy_clocks[i].name); 1458 1459 /* We just use core fixed factor clock ops for the PHY 1460 * clocks. The clocks are actually gated by the 1461 * PHY_AFEC0_DDRCLK_EN bits, which we should be 1462 * setting if we use the DDR/DDR2 clocks. However, 1463 * vc4_dsi_encoder_enable() is setting up both AFEC0, 1464 * setting both our parent DSI PLL's rate and this 1465 * clock's rate, so it knows if DDR/DDR2 are going to 1466 * be used and could enable the gates itself. 1467 */ 1468 fix->mult = 1; 1469 fix->div = phy_clocks[i].div; 1470 fix->hw.init = &init; 1471 1472 memset(&init, 0, sizeof(init)); 1473 init.parent_names = &parent_name; 1474 init.num_parents = 1; 1475 init.name = clk_name; 1476 init.ops = &clk_fixed_factor_ops; 1477 1478 ret = devm_clk_hw_register(dev, &fix->hw); 1479 if (ret) 1480 return ret; 1481 1482 dsi->clk_onecell->hws[i] = &fix->hw; 1483 } 1484 1485 return of_clk_add_hw_provider(dev->of_node, 1486 of_clk_hw_onecell_get, 1487 dsi->clk_onecell); 1488} 1489 1490static int vc4_dsi_bind(struct device *dev, struct device *master, void *data) 1491{ 1492 struct platform_device *pdev = to_platform_device(dev); 1493 struct drm_device *drm = dev_get_drvdata(master); 1494 struct vc4_dsi *dsi = dev_get_drvdata(dev); 1495 struct vc4_dsi_encoder *vc4_dsi_encoder; 1496 dma_cap_mask_t dma_mask; 1497 int ret; 1498 1499 dsi->variant = of_device_get_match_data(dev); 1500 1501 vc4_dsi_encoder = devm_kzalloc(dev, sizeof(*vc4_dsi_encoder), 1502 GFP_KERNEL); 1503 if (!vc4_dsi_encoder) 1504 return -ENOMEM; 1505 1506 INIT_LIST_HEAD(&dsi->bridge_chain); 1507 vc4_dsi_encoder->base.type = VC4_ENCODER_TYPE_DSI1; 1508 vc4_dsi_encoder->dsi = dsi; 1509 dsi->encoder = &vc4_dsi_encoder->base.base; 1510 1511 dsi->regs = vc4_ioremap_regs(pdev, 0); 1512 if (IS_ERR(dsi->regs)) 1513 return PTR_ERR(dsi->regs); 1514 1515 dsi->regset.base = dsi->regs; 1516 dsi->regset.regs = dsi->variant->regs; 1517 dsi->regset.nregs = dsi->variant->nregs; 1518 1519 if (DSI_PORT_READ(ID) != DSI_ID_VALUE) { 1520 dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n", 1521 DSI_PORT_READ(ID), DSI_ID_VALUE); 1522 return -ENODEV; 1523 } 1524 1525 /* DSI1 on BCM2835/6/7 has a broken AXI slave that doesn't respond to 1526 * writes from the ARM. It does handle writes from the DMA engine, 1527 * so set up a channel for talking to it. 1528 */ 1529 if (dsi->variant->broken_axi_workaround) { 1530 dsi->reg_dma_mem = dma_alloc_coherent(dev, 4, 1531 &dsi->reg_dma_paddr, 1532 GFP_KERNEL); 1533 if (!dsi->reg_dma_mem) { 1534 DRM_ERROR("Failed to get DMA memory\n"); 1535 return -ENOMEM; 1536 } 1537 1538 dma_cap_zero(dma_mask); 1539 dma_cap_set(DMA_MEMCPY, dma_mask); 1540 dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask); 1541 if (IS_ERR(dsi->reg_dma_chan)) { 1542 ret = PTR_ERR(dsi->reg_dma_chan); 1543 if (ret != -EPROBE_DEFER) 1544 DRM_ERROR("Failed to get DMA channel: %d\n", 1545 ret); 1546 return ret; 1547 } 1548 1549 /* Get the physical address of the device's registers. The 1550 * struct resource for the regs gives us the bus address 1551 * instead. 1552 */ 1553 dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node, 1554 0, NULL, NULL)); 1555 } 1556 1557 init_completion(&dsi->xfer_completion); 1558 /* At startup enable error-reporting interrupts and nothing else. */ 1559 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED); 1560 /* Clear any existing interrupt state. */ 1561 DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT)); 1562 1563 if (dsi->reg_dma_mem) 1564 ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0), 1565 vc4_dsi_irq_defer_to_thread_handler, 1566 vc4_dsi_irq_handler, 1567 IRQF_ONESHOT, 1568 "vc4 dsi", dsi); 1569 else 1570 ret = devm_request_irq(dev, platform_get_irq(pdev, 0), 1571 vc4_dsi_irq_handler, 0, "vc4 dsi", dsi); 1572 if (ret) { 1573 if (ret != -EPROBE_DEFER) 1574 dev_err(dev, "Failed to get interrupt: %d\n", ret); 1575 return ret; 1576 } 1577 1578 dsi->escape_clock = devm_clk_get(dev, "escape"); 1579 if (IS_ERR(dsi->escape_clock)) { 1580 ret = PTR_ERR(dsi->escape_clock); 1581 if (ret != -EPROBE_DEFER) 1582 dev_err(dev, "Failed to get escape clock: %d\n", ret); 1583 return ret; 1584 } 1585 1586 dsi->pll_phy_clock = devm_clk_get(dev, "phy"); 1587 if (IS_ERR(dsi->pll_phy_clock)) { 1588 ret = PTR_ERR(dsi->pll_phy_clock); 1589 if (ret != -EPROBE_DEFER) 1590 dev_err(dev, "Failed to get phy clock: %d\n", ret); 1591 return ret; 1592 } 1593 1594 dsi->pixel_clock = devm_clk_get(dev, "pixel"); 1595 if (IS_ERR(dsi->pixel_clock)) { 1596 ret = PTR_ERR(dsi->pixel_clock); 1597 if (ret != -EPROBE_DEFER) 1598 dev_err(dev, "Failed to get pixel clock: %d\n", ret); 1599 return ret; 1600 } 1601 1602 dsi->bridge = devm_drm_of_get_bridge(dev, dev->of_node, 0, 0); 1603 if (IS_ERR(dsi->bridge)) 1604 return PTR_ERR(dsi->bridge); 1605 1606 /* The esc clock rate is supposed to always be 100Mhz. */ 1607 ret = clk_set_rate(dsi->escape_clock, 100 * 1000000); 1608 if (ret) { 1609 dev_err(dev, "Failed to set esc clock: %d\n", ret); 1610 return ret; 1611 } 1612 1613 ret = vc4_dsi_init_phy_clocks(dsi); 1614 if (ret) 1615 return ret; 1616 1617 drm_simple_encoder_init(drm, dsi->encoder, DRM_MODE_ENCODER_DSI); 1618 drm_encoder_helper_add(dsi->encoder, &vc4_dsi_encoder_helper_funcs); 1619 1620 ret = drm_bridge_attach(dsi->encoder, dsi->bridge, NULL, 0); 1621 if (ret) 1622 return ret; 1623 /* Disable the atomic helper calls into the bridge. We 1624 * manually call the bridge pre_enable / enable / etc. calls 1625 * from our driver, since we need to sequence them within the 1626 * encoder's enable/disable paths. 1627 */ 1628 list_splice_init(&dsi->encoder->bridge_chain, &dsi->bridge_chain); 1629 1630 vc4_debugfs_add_regset32(drm, dsi->variant->debugfs_name, &dsi->regset); 1631 1632 pm_runtime_enable(dev); 1633 1634 return 0; 1635} 1636 1637static void vc4_dsi_unbind(struct device *dev, struct device *master, 1638 void *data) 1639{ 1640 struct vc4_dsi *dsi = dev_get_drvdata(dev); 1641 1642 pm_runtime_disable(dev); 1643 1644 /* 1645 * Restore the bridge_chain so the bridge detach procedure can happen 1646 * normally. 1647 */ 1648 list_splice_init(&dsi->bridge_chain, &dsi->encoder->bridge_chain); 1649 drm_encoder_cleanup(dsi->encoder); 1650} 1651 1652static const struct component_ops vc4_dsi_ops = { 1653 .bind = vc4_dsi_bind, 1654 .unbind = vc4_dsi_unbind, 1655}; 1656 1657static int vc4_dsi_dev_probe(struct platform_device *pdev) 1658{ 1659 struct device *dev = &pdev->dev; 1660 struct vc4_dsi *dsi; 1661 1662 dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL); 1663 if (!dsi) 1664 return -ENOMEM; 1665 dev_set_drvdata(dev, dsi); 1666 1667 dsi->pdev = pdev; 1668 dsi->dsi_host.ops = &vc4_dsi_host_ops; 1669 dsi->dsi_host.dev = dev; 1670 mipi_dsi_host_register(&dsi->dsi_host); 1671 1672 return 0; 1673} 1674 1675static int vc4_dsi_dev_remove(struct platform_device *pdev) 1676{ 1677 struct device *dev = &pdev->dev; 1678 struct vc4_dsi *dsi = dev_get_drvdata(dev); 1679 1680 mipi_dsi_host_unregister(&dsi->dsi_host); 1681 return 0; 1682} 1683 1684struct platform_driver vc4_dsi_driver = { 1685 .probe = vc4_dsi_dev_probe, 1686 .remove = vc4_dsi_dev_remove, 1687 .driver = { 1688 .name = "vc4_dsi", 1689 .of_match_table = vc4_dsi_dt_match, 1690 }, 1691};