cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

vc4_hvs.c (22509B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Copyright (C) 2015 Broadcom
      4 */
      5
      6/**
      7 * DOC: VC4 HVS module.
      8 *
      9 * The Hardware Video Scaler (HVS) is the piece of hardware that does
     10 * translation, scaling, colorspace conversion, and compositing of
     11 * pixels stored in framebuffers into a FIFO of pixels going out to
     12 * the Pixel Valve (CRTC).  It operates at the system clock rate (the
     13 * system audio clock gate, specifically), which is much higher than
     14 * the pixel clock rate.
     15 *
     16 * There is a single global HVS, with multiple output FIFOs that can
     17 * be consumed by the PVs.  This file just manages the resources for
     18 * the HVS, while the vc4_crtc.c code actually drives HVS setup for
     19 * each CRTC.
     20 */
     21
     22#include <linux/bitfield.h>
     23#include <linux/clk.h>
     24#include <linux/component.h>
     25#include <linux/platform_device.h>
     26
     27#include <drm/drm_atomic_helper.h>
     28#include <drm/drm_vblank.h>
     29
     30#include "vc4_drv.h"
     31#include "vc4_regs.h"
     32
     33static const struct debugfs_reg32 hvs_regs[] = {
     34	VC4_REG32(SCALER_DISPCTRL),
     35	VC4_REG32(SCALER_DISPSTAT),
     36	VC4_REG32(SCALER_DISPID),
     37	VC4_REG32(SCALER_DISPECTRL),
     38	VC4_REG32(SCALER_DISPPROF),
     39	VC4_REG32(SCALER_DISPDITHER),
     40	VC4_REG32(SCALER_DISPEOLN),
     41	VC4_REG32(SCALER_DISPLIST0),
     42	VC4_REG32(SCALER_DISPLIST1),
     43	VC4_REG32(SCALER_DISPLIST2),
     44	VC4_REG32(SCALER_DISPLSTAT),
     45	VC4_REG32(SCALER_DISPLACT0),
     46	VC4_REG32(SCALER_DISPLACT1),
     47	VC4_REG32(SCALER_DISPLACT2),
     48	VC4_REG32(SCALER_DISPCTRL0),
     49	VC4_REG32(SCALER_DISPBKGND0),
     50	VC4_REG32(SCALER_DISPSTAT0),
     51	VC4_REG32(SCALER_DISPBASE0),
     52	VC4_REG32(SCALER_DISPCTRL1),
     53	VC4_REG32(SCALER_DISPBKGND1),
     54	VC4_REG32(SCALER_DISPSTAT1),
     55	VC4_REG32(SCALER_DISPBASE1),
     56	VC4_REG32(SCALER_DISPCTRL2),
     57	VC4_REG32(SCALER_DISPBKGND2),
     58	VC4_REG32(SCALER_DISPSTAT2),
     59	VC4_REG32(SCALER_DISPBASE2),
     60	VC4_REG32(SCALER_DISPALPHA2),
     61	VC4_REG32(SCALER_OLEDOFFS),
     62	VC4_REG32(SCALER_OLEDCOEF0),
     63	VC4_REG32(SCALER_OLEDCOEF1),
     64	VC4_REG32(SCALER_OLEDCOEF2),
     65};
     66
     67void vc4_hvs_dump_state(struct vc4_hvs *hvs)
     68{
     69	struct drm_printer p = drm_info_printer(&hvs->pdev->dev);
     70	int i;
     71
     72	drm_print_regset32(&p, &hvs->regset);
     73
     74	DRM_INFO("HVS ctx:\n");
     75	for (i = 0; i < 64; i += 4) {
     76		DRM_INFO("0x%08x (%s): 0x%08x 0x%08x 0x%08x 0x%08x\n",
     77			 i * 4, i < HVS_BOOTLOADER_DLIST_END ? "B" : "D",
     78			 readl((u32 __iomem *)hvs->dlist + i + 0),
     79			 readl((u32 __iomem *)hvs->dlist + i + 1),
     80			 readl((u32 __iomem *)hvs->dlist + i + 2),
     81			 readl((u32 __iomem *)hvs->dlist + i + 3));
     82	}
     83}
     84
     85static int vc4_hvs_debugfs_underrun(struct seq_file *m, void *data)
     86{
     87	struct drm_info_node *node = m->private;
     88	struct drm_device *dev = node->minor->dev;
     89	struct vc4_dev *vc4 = to_vc4_dev(dev);
     90	struct drm_printer p = drm_seq_file_printer(m);
     91
     92	drm_printf(&p, "%d\n", atomic_read(&vc4->underrun));
     93
     94	return 0;
     95}
     96
     97/* The filter kernel is composed of dwords each containing 3 9-bit
     98 * signed integers packed next to each other.
     99 */
    100#define VC4_INT_TO_COEFF(coeff) (coeff & 0x1ff)
    101#define VC4_PPF_FILTER_WORD(c0, c1, c2)				\
    102	((((c0) & 0x1ff) << 0) |				\
    103	 (((c1) & 0x1ff) << 9) |				\
    104	 (((c2) & 0x1ff) << 18))
    105
    106/* The whole filter kernel is arranged as the coefficients 0-16 going
    107 * up, then a pad, then 17-31 going down and reversed within the
    108 * dwords.  This means that a linear phase kernel (where it's
    109 * symmetrical at the boundary between 15 and 16) has the last 5
    110 * dwords matching the first 5, but reversed.
    111 */
    112#define VC4_LINEAR_PHASE_KERNEL(c0, c1, c2, c3, c4, c5, c6, c7, c8,	\
    113				c9, c10, c11, c12, c13, c14, c15)	\
    114	{VC4_PPF_FILTER_WORD(c0, c1, c2),				\
    115	 VC4_PPF_FILTER_WORD(c3, c4, c5),				\
    116	 VC4_PPF_FILTER_WORD(c6, c7, c8),				\
    117	 VC4_PPF_FILTER_WORD(c9, c10, c11),				\
    118	 VC4_PPF_FILTER_WORD(c12, c13, c14),				\
    119	 VC4_PPF_FILTER_WORD(c15, c15, 0)}
    120
    121#define VC4_LINEAR_PHASE_KERNEL_DWORDS 6
    122#define VC4_KERNEL_DWORDS (VC4_LINEAR_PHASE_KERNEL_DWORDS * 2 - 1)
    123
    124/* Recommended B=1/3, C=1/3 filter choice from Mitchell/Netravali.
    125 * http://www.cs.utexas.edu/~fussell/courses/cs384g/lectures/mitchell/Mitchell.pdf
    126 */
    127static const u32 mitchell_netravali_1_3_1_3_kernel[] =
    128	VC4_LINEAR_PHASE_KERNEL(0, -2, -6, -8, -10, -8, -3, 2, 18,
    129				50, 82, 119, 155, 187, 213, 227);
    130
    131static int vc4_hvs_upload_linear_kernel(struct vc4_hvs *hvs,
    132					struct drm_mm_node *space,
    133					const u32 *kernel)
    134{
    135	int ret, i;
    136	u32 __iomem *dst_kernel;
    137
    138	ret = drm_mm_insert_node(&hvs->dlist_mm, space, VC4_KERNEL_DWORDS);
    139	if (ret) {
    140		DRM_ERROR("Failed to allocate space for filter kernel: %d\n",
    141			  ret);
    142		return ret;
    143	}
    144
    145	dst_kernel = hvs->dlist + space->start;
    146
    147	for (i = 0; i < VC4_KERNEL_DWORDS; i++) {
    148		if (i < VC4_LINEAR_PHASE_KERNEL_DWORDS)
    149			writel(kernel[i], &dst_kernel[i]);
    150		else {
    151			writel(kernel[VC4_KERNEL_DWORDS - i - 1],
    152			       &dst_kernel[i]);
    153		}
    154	}
    155
    156	return 0;
    157}
    158
    159static void vc4_hvs_lut_load(struct vc4_hvs *hvs,
    160			     struct vc4_crtc *vc4_crtc)
    161{
    162	struct drm_crtc *crtc = &vc4_crtc->base;
    163	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
    164	u32 i;
    165
    166	/* The LUT memory is laid out with each HVS channel in order,
    167	 * each of which takes 256 writes for R, 256 for G, then 256
    168	 * for B.
    169	 */
    170	HVS_WRITE(SCALER_GAMADDR,
    171		  SCALER_GAMADDR_AUTOINC |
    172		  (vc4_state->assigned_channel * 3 * crtc->gamma_size));
    173
    174	for (i = 0; i < crtc->gamma_size; i++)
    175		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
    176	for (i = 0; i < crtc->gamma_size; i++)
    177		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
    178	for (i = 0; i < crtc->gamma_size; i++)
    179		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
    180}
    181
    182static void vc4_hvs_update_gamma_lut(struct vc4_hvs *hvs,
    183				     struct vc4_crtc *vc4_crtc)
    184{
    185	struct drm_crtc_state *crtc_state = vc4_crtc->base.state;
    186	struct drm_color_lut *lut = crtc_state->gamma_lut->data;
    187	u32 length = drm_color_lut_size(crtc_state->gamma_lut);
    188	u32 i;
    189
    190	for (i = 0; i < length; i++) {
    191		vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8);
    192		vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8);
    193		vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8);
    194	}
    195
    196	vc4_hvs_lut_load(hvs, vc4_crtc);
    197}
    198
    199u8 vc4_hvs_get_fifo_frame_count(struct vc4_hvs *hvs, unsigned int fifo)
    200{
    201	u8 field = 0;
    202
    203	switch (fifo) {
    204	case 0:
    205		field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT1),
    206				      SCALER_DISPSTAT1_FRCNT0);
    207		break;
    208	case 1:
    209		field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT1),
    210				      SCALER_DISPSTAT1_FRCNT1);
    211		break;
    212	case 2:
    213		field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT2),
    214				      SCALER_DISPSTAT2_FRCNT2);
    215		break;
    216	}
    217
    218	return field;
    219}
    220
    221int vc4_hvs_get_fifo_from_output(struct vc4_hvs *hvs, unsigned int output)
    222{
    223	struct vc4_dev *vc4 = hvs->vc4;
    224	u32 reg;
    225	int ret;
    226
    227	if (!vc4->is_vc5)
    228		return output;
    229
    230	switch (output) {
    231	case 0:
    232		return 0;
    233
    234	case 1:
    235		return 1;
    236
    237	case 2:
    238		reg = HVS_READ(SCALER_DISPECTRL);
    239		ret = FIELD_GET(SCALER_DISPECTRL_DSP2_MUX_MASK, reg);
    240		if (ret == 0)
    241			return 2;
    242
    243		return 0;
    244
    245	case 3:
    246		reg = HVS_READ(SCALER_DISPCTRL);
    247		ret = FIELD_GET(SCALER_DISPCTRL_DSP3_MUX_MASK, reg);
    248		if (ret == 3)
    249			return -EPIPE;
    250
    251		return ret;
    252
    253	case 4:
    254		reg = HVS_READ(SCALER_DISPEOLN);
    255		ret = FIELD_GET(SCALER_DISPEOLN_DSP4_MUX_MASK, reg);
    256		if (ret == 3)
    257			return -EPIPE;
    258
    259		return ret;
    260
    261	case 5:
    262		reg = HVS_READ(SCALER_DISPDITHER);
    263		ret = FIELD_GET(SCALER_DISPDITHER_DSP5_MUX_MASK, reg);
    264		if (ret == 3)
    265			return -EPIPE;
    266
    267		return ret;
    268
    269	default:
    270		return -EPIPE;
    271	}
    272}
    273
    274static int vc4_hvs_init_channel(struct vc4_hvs *hvs, struct drm_crtc *crtc,
    275				struct drm_display_mode *mode, bool oneshot)
    276{
    277	struct vc4_dev *vc4 = hvs->vc4;
    278	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
    279	struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
    280	unsigned int chan = vc4_crtc_state->assigned_channel;
    281	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
    282	u32 dispbkgndx;
    283	u32 dispctrl;
    284
    285	HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
    286	HVS_WRITE(SCALER_DISPCTRLX(chan), SCALER_DISPCTRLX_RESET);
    287	HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
    288
    289	/* Turn on the scaler, which will wait for vstart to start
    290	 * compositing.
    291	 * When feeding the transposer, we should operate in oneshot
    292	 * mode.
    293	 */
    294	dispctrl = SCALER_DISPCTRLX_ENABLE;
    295
    296	if (!vc4->is_vc5)
    297		dispctrl |= VC4_SET_FIELD(mode->hdisplay,
    298					  SCALER_DISPCTRLX_WIDTH) |
    299			    VC4_SET_FIELD(mode->vdisplay,
    300					  SCALER_DISPCTRLX_HEIGHT) |
    301			    (oneshot ? SCALER_DISPCTRLX_ONESHOT : 0);
    302	else
    303		dispctrl |= VC4_SET_FIELD(mode->hdisplay,
    304					  SCALER5_DISPCTRLX_WIDTH) |
    305			    VC4_SET_FIELD(mode->vdisplay,
    306					  SCALER5_DISPCTRLX_HEIGHT) |
    307			    (oneshot ? SCALER5_DISPCTRLX_ONESHOT : 0);
    308
    309	HVS_WRITE(SCALER_DISPCTRLX(chan), dispctrl);
    310
    311	dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(chan));
    312	dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
    313	dispbkgndx &= ~SCALER_DISPBKGND_INTERLACE;
    314
    315	HVS_WRITE(SCALER_DISPBKGNDX(chan), dispbkgndx |
    316		  SCALER_DISPBKGND_AUTOHS |
    317		  ((!vc4->is_vc5) ? SCALER_DISPBKGND_GAMMA : 0) |
    318		  (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
    319
    320	/* Reload the LUT, since the SRAMs would have been disabled if
    321	 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
    322	 */
    323	vc4_hvs_lut_load(hvs, vc4_crtc);
    324
    325	return 0;
    326}
    327
    328void vc4_hvs_stop_channel(struct vc4_hvs *hvs, unsigned int chan)
    329{
    330	if (HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_ENABLE)
    331		return;
    332
    333	HVS_WRITE(SCALER_DISPCTRLX(chan),
    334		  HVS_READ(SCALER_DISPCTRLX(chan)) | SCALER_DISPCTRLX_RESET);
    335	HVS_WRITE(SCALER_DISPCTRLX(chan),
    336		  HVS_READ(SCALER_DISPCTRLX(chan)) & ~SCALER_DISPCTRLX_ENABLE);
    337
    338	/* Once we leave, the scaler should be disabled and its fifo empty. */
    339	WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
    340
    341	WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
    342				   SCALER_DISPSTATX_MODE) !=
    343		     SCALER_DISPSTATX_MODE_DISABLED);
    344
    345	WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
    346		      (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
    347		     SCALER_DISPSTATX_EMPTY);
    348}
    349
    350int vc4_hvs_atomic_check(struct drm_crtc *crtc, struct drm_atomic_state *state)
    351{
    352	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
    353	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
    354	struct drm_device *dev = crtc->dev;
    355	struct vc4_dev *vc4 = to_vc4_dev(dev);
    356	struct drm_plane *plane;
    357	unsigned long flags;
    358	const struct drm_plane_state *plane_state;
    359	u32 dlist_count = 0;
    360	int ret;
    361
    362	/* The pixelvalve can only feed one encoder (and encoders are
    363	 * 1:1 with connectors.)
    364	 */
    365	if (hweight32(crtc_state->connector_mask) > 1)
    366		return -EINVAL;
    367
    368	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state)
    369		dlist_count += vc4_plane_dlist_size(plane_state);
    370
    371	dlist_count++; /* Account for SCALER_CTL0_END. */
    372
    373	spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
    374	ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
    375				 dlist_count);
    376	spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
    377	if (ret)
    378		return ret;
    379
    380	return 0;
    381}
    382
    383static void vc4_hvs_install_dlist(struct drm_crtc *crtc)
    384{
    385	struct drm_device *dev = crtc->dev;
    386	struct vc4_dev *vc4 = to_vc4_dev(dev);
    387	struct vc4_hvs *hvs = vc4->hvs;
    388	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
    389
    390	HVS_WRITE(SCALER_DISPLISTX(vc4_state->assigned_channel),
    391		  vc4_state->mm.start);
    392}
    393
    394static void vc4_hvs_update_dlist(struct drm_crtc *crtc)
    395{
    396	struct drm_device *dev = crtc->dev;
    397	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
    398	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
    399	unsigned long flags;
    400
    401	if (crtc->state->event) {
    402		crtc->state->event->pipe = drm_crtc_index(crtc);
    403
    404		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
    405
    406		spin_lock_irqsave(&dev->event_lock, flags);
    407
    408		if (!vc4_crtc->feeds_txp || vc4_state->txp_armed) {
    409			vc4_crtc->event = crtc->state->event;
    410			crtc->state->event = NULL;
    411		}
    412
    413		spin_unlock_irqrestore(&dev->event_lock, flags);
    414	}
    415
    416	spin_lock_irqsave(&vc4_crtc->irq_lock, flags);
    417	vc4_crtc->current_dlist = vc4_state->mm.start;
    418	spin_unlock_irqrestore(&vc4_crtc->irq_lock, flags);
    419}
    420
    421void vc4_hvs_atomic_begin(struct drm_crtc *crtc,
    422			  struct drm_atomic_state *state)
    423{
    424	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
    425	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
    426	unsigned long flags;
    427
    428	spin_lock_irqsave(&vc4_crtc->irq_lock, flags);
    429	vc4_crtc->current_hvs_channel = vc4_state->assigned_channel;
    430	spin_unlock_irqrestore(&vc4_crtc->irq_lock, flags);
    431}
    432
    433void vc4_hvs_atomic_enable(struct drm_crtc *crtc,
    434			   struct drm_atomic_state *state)
    435{
    436	struct drm_device *dev = crtc->dev;
    437	struct vc4_dev *vc4 = to_vc4_dev(dev);
    438	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
    439	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
    440	bool oneshot = vc4_crtc->feeds_txp;
    441
    442	vc4_hvs_install_dlist(crtc);
    443	vc4_hvs_update_dlist(crtc);
    444	vc4_hvs_init_channel(vc4->hvs, crtc, mode, oneshot);
    445}
    446
    447void vc4_hvs_atomic_disable(struct drm_crtc *crtc,
    448			    struct drm_atomic_state *state)
    449{
    450	struct drm_device *dev = crtc->dev;
    451	struct vc4_dev *vc4 = to_vc4_dev(dev);
    452	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state, crtc);
    453	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(old_state);
    454	unsigned int chan = vc4_state->assigned_channel;
    455
    456	vc4_hvs_stop_channel(vc4->hvs, chan);
    457}
    458
    459void vc4_hvs_atomic_flush(struct drm_crtc *crtc,
    460			  struct drm_atomic_state *state)
    461{
    462	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
    463									 crtc);
    464	struct drm_device *dev = crtc->dev;
    465	struct vc4_dev *vc4 = to_vc4_dev(dev);
    466	struct vc4_hvs *hvs = vc4->hvs;
    467	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
    468	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
    469	unsigned int channel = vc4_state->assigned_channel;
    470	struct drm_plane *plane;
    471	struct vc4_plane_state *vc4_plane_state;
    472	bool debug_dump_regs = false;
    473	bool enable_bg_fill = false;
    474	u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
    475	u32 __iomem *dlist_next = dlist_start;
    476
    477	if (debug_dump_regs) {
    478		DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
    479		vc4_hvs_dump_state(hvs);
    480	}
    481
    482	/* Copy all the active planes' dlist contents to the hardware dlist. */
    483	drm_atomic_crtc_for_each_plane(plane, crtc) {
    484		/* Is this the first active plane? */
    485		if (dlist_next == dlist_start) {
    486			/* We need to enable background fill when a plane
    487			 * could be alpha blending from the background, i.e.
    488			 * where no other plane is underneath. It suffices to
    489			 * consider the first active plane here since we set
    490			 * needs_bg_fill such that either the first plane
    491			 * already needs it or all planes on top blend from
    492			 * the first or a lower plane.
    493			 */
    494			vc4_plane_state = to_vc4_plane_state(plane->state);
    495			enable_bg_fill = vc4_plane_state->needs_bg_fill;
    496		}
    497
    498		dlist_next += vc4_plane_write_dlist(plane, dlist_next);
    499	}
    500
    501	writel(SCALER_CTL0_END, dlist_next);
    502	dlist_next++;
    503
    504	WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
    505
    506	if (enable_bg_fill)
    507		/* This sets a black background color fill, as is the case
    508		 * with other DRM drivers.
    509		 */
    510		HVS_WRITE(SCALER_DISPBKGNDX(channel),
    511			  HVS_READ(SCALER_DISPBKGNDX(channel)) |
    512			  SCALER_DISPBKGND_FILL);
    513
    514	/* Only update DISPLIST if the CRTC was already running and is not
    515	 * being disabled.
    516	 * vc4_crtc_enable() takes care of updating the dlist just after
    517	 * re-enabling VBLANK interrupts and before enabling the engine.
    518	 * If the CRTC is being disabled, there's no point in updating this
    519	 * information.
    520	 */
    521	if (crtc->state->active && old_state->active) {
    522		vc4_hvs_install_dlist(crtc);
    523		vc4_hvs_update_dlist(crtc);
    524	}
    525
    526	if (crtc->state->color_mgmt_changed) {
    527		u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(channel));
    528
    529		if (crtc->state->gamma_lut) {
    530			vc4_hvs_update_gamma_lut(hvs, vc4_crtc);
    531			dispbkgndx |= SCALER_DISPBKGND_GAMMA;
    532		} else {
    533			/* Unsetting DISPBKGND_GAMMA skips the gamma lut step
    534			 * in hardware, which is the same as a linear lut that
    535			 * DRM expects us to use in absence of a user lut.
    536			 */
    537			dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
    538		}
    539		HVS_WRITE(SCALER_DISPBKGNDX(channel), dispbkgndx);
    540	}
    541
    542	if (debug_dump_regs) {
    543		DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
    544		vc4_hvs_dump_state(hvs);
    545	}
    546}
    547
    548void vc4_hvs_mask_underrun(struct vc4_hvs *hvs, int channel)
    549{
    550	u32 dispctrl = HVS_READ(SCALER_DISPCTRL);
    551
    552	dispctrl &= ~SCALER_DISPCTRL_DSPEISLUR(channel);
    553
    554	HVS_WRITE(SCALER_DISPCTRL, dispctrl);
    555}
    556
    557void vc4_hvs_unmask_underrun(struct vc4_hvs *hvs, int channel)
    558{
    559	u32 dispctrl = HVS_READ(SCALER_DISPCTRL);
    560
    561	dispctrl |= SCALER_DISPCTRL_DSPEISLUR(channel);
    562
    563	HVS_WRITE(SCALER_DISPSTAT,
    564		  SCALER_DISPSTAT_EUFLOW(channel));
    565	HVS_WRITE(SCALER_DISPCTRL, dispctrl);
    566}
    567
    568static void vc4_hvs_report_underrun(struct drm_device *dev)
    569{
    570	struct vc4_dev *vc4 = to_vc4_dev(dev);
    571
    572	atomic_inc(&vc4->underrun);
    573	DRM_DEV_ERROR(dev->dev, "HVS underrun\n");
    574}
    575
    576static irqreturn_t vc4_hvs_irq_handler(int irq, void *data)
    577{
    578	struct drm_device *dev = data;
    579	struct vc4_dev *vc4 = to_vc4_dev(dev);
    580	struct vc4_hvs *hvs = vc4->hvs;
    581	irqreturn_t irqret = IRQ_NONE;
    582	int channel;
    583	u32 control;
    584	u32 status;
    585
    586	status = HVS_READ(SCALER_DISPSTAT);
    587	control = HVS_READ(SCALER_DISPCTRL);
    588
    589	for (channel = 0; channel < SCALER_CHANNELS_COUNT; channel++) {
    590		/* Interrupt masking is not always honored, so check it here. */
    591		if (status & SCALER_DISPSTAT_EUFLOW(channel) &&
    592		    control & SCALER_DISPCTRL_DSPEISLUR(channel)) {
    593			vc4_hvs_mask_underrun(hvs, channel);
    594			vc4_hvs_report_underrun(dev);
    595
    596			irqret = IRQ_HANDLED;
    597		}
    598	}
    599
    600	/* Clear every per-channel interrupt flag. */
    601	HVS_WRITE(SCALER_DISPSTAT, SCALER_DISPSTAT_IRQMASK(0) |
    602				   SCALER_DISPSTAT_IRQMASK(1) |
    603				   SCALER_DISPSTAT_IRQMASK(2));
    604
    605	return irqret;
    606}
    607
    608static int vc4_hvs_bind(struct device *dev, struct device *master, void *data)
    609{
    610	struct platform_device *pdev = to_platform_device(dev);
    611	struct drm_device *drm = dev_get_drvdata(master);
    612	struct vc4_dev *vc4 = to_vc4_dev(drm);
    613	struct vc4_hvs *hvs = NULL;
    614	int ret;
    615	u32 dispctrl;
    616	u32 reg;
    617
    618	hvs = devm_kzalloc(&pdev->dev, sizeof(*hvs), GFP_KERNEL);
    619	if (!hvs)
    620		return -ENOMEM;
    621
    622	hvs->vc4 = vc4;
    623	hvs->pdev = pdev;
    624
    625	hvs->regs = vc4_ioremap_regs(pdev, 0);
    626	if (IS_ERR(hvs->regs))
    627		return PTR_ERR(hvs->regs);
    628
    629	hvs->regset.base = hvs->regs;
    630	hvs->regset.regs = hvs_regs;
    631	hvs->regset.nregs = ARRAY_SIZE(hvs_regs);
    632
    633	if (vc4->is_vc5) {
    634		hvs->core_clk = devm_clk_get(&pdev->dev, NULL);
    635		if (IS_ERR(hvs->core_clk)) {
    636			dev_err(&pdev->dev, "Couldn't get core clock\n");
    637			return PTR_ERR(hvs->core_clk);
    638		}
    639
    640		ret = clk_prepare_enable(hvs->core_clk);
    641		if (ret) {
    642			dev_err(&pdev->dev, "Couldn't enable the core clock\n");
    643			return ret;
    644		}
    645	}
    646
    647	if (!vc4->is_vc5)
    648		hvs->dlist = hvs->regs + SCALER_DLIST_START;
    649	else
    650		hvs->dlist = hvs->regs + SCALER5_DLIST_START;
    651
    652	spin_lock_init(&hvs->mm_lock);
    653
    654	/* Set up the HVS display list memory manager.  We never
    655	 * overwrite the setup from the bootloader (just 128b out of
    656	 * our 16K), since we don't want to scramble the screen when
    657	 * transitioning from the firmware's boot setup to runtime.
    658	 */
    659	drm_mm_init(&hvs->dlist_mm,
    660		    HVS_BOOTLOADER_DLIST_END,
    661		    (SCALER_DLIST_SIZE >> 2) - HVS_BOOTLOADER_DLIST_END);
    662
    663	/* Set up the HVS LBM memory manager.  We could have some more
    664	 * complicated data structure that allowed reuse of LBM areas
    665	 * between planes when they don't overlap on the screen, but
    666	 * for now we just allocate globally.
    667	 */
    668	if (!vc4->is_vc5)
    669		/* 48k words of 2x12-bit pixels */
    670		drm_mm_init(&hvs->lbm_mm, 0, 48 * 1024);
    671	else
    672		/* 60k words of 4x12-bit pixels */
    673		drm_mm_init(&hvs->lbm_mm, 0, 60 * 1024);
    674
    675	/* Upload filter kernels.  We only have the one for now, so we
    676	 * keep it around for the lifetime of the driver.
    677	 */
    678	ret = vc4_hvs_upload_linear_kernel(hvs,
    679					   &hvs->mitchell_netravali_filter,
    680					   mitchell_netravali_1_3_1_3_kernel);
    681	if (ret)
    682		return ret;
    683
    684	vc4->hvs = hvs;
    685
    686	reg = HVS_READ(SCALER_DISPECTRL);
    687	reg &= ~SCALER_DISPECTRL_DSP2_MUX_MASK;
    688	HVS_WRITE(SCALER_DISPECTRL,
    689		  reg | VC4_SET_FIELD(0, SCALER_DISPECTRL_DSP2_MUX));
    690
    691	reg = HVS_READ(SCALER_DISPCTRL);
    692	reg &= ~SCALER_DISPCTRL_DSP3_MUX_MASK;
    693	HVS_WRITE(SCALER_DISPCTRL,
    694		  reg | VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX));
    695
    696	reg = HVS_READ(SCALER_DISPEOLN);
    697	reg &= ~SCALER_DISPEOLN_DSP4_MUX_MASK;
    698	HVS_WRITE(SCALER_DISPEOLN,
    699		  reg | VC4_SET_FIELD(3, SCALER_DISPEOLN_DSP4_MUX));
    700
    701	reg = HVS_READ(SCALER_DISPDITHER);
    702	reg &= ~SCALER_DISPDITHER_DSP5_MUX_MASK;
    703	HVS_WRITE(SCALER_DISPDITHER,
    704		  reg | VC4_SET_FIELD(3, SCALER_DISPDITHER_DSP5_MUX));
    705
    706	dispctrl = HVS_READ(SCALER_DISPCTRL);
    707
    708	dispctrl |= SCALER_DISPCTRL_ENABLE;
    709	dispctrl |= SCALER_DISPCTRL_DISPEIRQ(0) |
    710		    SCALER_DISPCTRL_DISPEIRQ(1) |
    711		    SCALER_DISPCTRL_DISPEIRQ(2);
    712
    713	dispctrl &= ~(SCALER_DISPCTRL_DMAEIRQ |
    714		      SCALER_DISPCTRL_SLVWREIRQ |
    715		      SCALER_DISPCTRL_SLVRDEIRQ |
    716		      SCALER_DISPCTRL_DSPEIEOF(0) |
    717		      SCALER_DISPCTRL_DSPEIEOF(1) |
    718		      SCALER_DISPCTRL_DSPEIEOF(2) |
    719		      SCALER_DISPCTRL_DSPEIEOLN(0) |
    720		      SCALER_DISPCTRL_DSPEIEOLN(1) |
    721		      SCALER_DISPCTRL_DSPEIEOLN(2) |
    722		      SCALER_DISPCTRL_DSPEISLUR(0) |
    723		      SCALER_DISPCTRL_DSPEISLUR(1) |
    724		      SCALER_DISPCTRL_DSPEISLUR(2) |
    725		      SCALER_DISPCTRL_SCLEIRQ);
    726
    727	HVS_WRITE(SCALER_DISPCTRL, dispctrl);
    728
    729	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
    730			       vc4_hvs_irq_handler, 0, "vc4 hvs", drm);
    731	if (ret)
    732		return ret;
    733
    734	vc4_debugfs_add_regset32(drm, "hvs_regs", &hvs->regset);
    735	vc4_debugfs_add_file(drm, "hvs_underrun", vc4_hvs_debugfs_underrun,
    736			     NULL);
    737
    738	return 0;
    739}
    740
    741static void vc4_hvs_unbind(struct device *dev, struct device *master,
    742			   void *data)
    743{
    744	struct drm_device *drm = dev_get_drvdata(master);
    745	struct vc4_dev *vc4 = to_vc4_dev(drm);
    746	struct vc4_hvs *hvs = vc4->hvs;
    747
    748	if (drm_mm_node_allocated(&vc4->hvs->mitchell_netravali_filter))
    749		drm_mm_remove_node(&vc4->hvs->mitchell_netravali_filter);
    750
    751	drm_mm_takedown(&vc4->hvs->dlist_mm);
    752	drm_mm_takedown(&vc4->hvs->lbm_mm);
    753
    754	clk_disable_unprepare(hvs->core_clk);
    755
    756	vc4->hvs = NULL;
    757}
    758
    759static const struct component_ops vc4_hvs_ops = {
    760	.bind   = vc4_hvs_bind,
    761	.unbind = vc4_hvs_unbind,
    762};
    763
    764static int vc4_hvs_dev_probe(struct platform_device *pdev)
    765{
    766	return component_add(&pdev->dev, &vc4_hvs_ops);
    767}
    768
    769static int vc4_hvs_dev_remove(struct platform_device *pdev)
    770{
    771	component_del(&pdev->dev, &vc4_hvs_ops);
    772	return 0;
    773}
    774
    775static const struct of_device_id vc4_hvs_dt_match[] = {
    776	{ .compatible = "brcm,bcm2711-hvs" },
    777	{ .compatible = "brcm,bcm2835-hvs" },
    778	{}
    779};
    780
    781struct platform_driver vc4_hvs_driver = {
    782	.probe = vc4_hvs_dev_probe,
    783	.remove = vc4_hvs_dev_remove,
    784	.driver = {
    785		.name = "vc4_hvs",
    786		.of_match_table = vc4_hvs_dt_match,
    787	},
    788};