cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

operation.c (35805B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Greybus operations
      4 *
      5 * Copyright 2014-2015 Google Inc.
      6 * Copyright 2014-2015 Linaro Ltd.
      7 */
      8
      9#include <linux/kernel.h>
     10#include <linux/slab.h>
     11#include <linux/module.h>
     12#include <linux/sched.h>
     13#include <linux/wait.h>
     14#include <linux/workqueue.h>
     15#include <linux/greybus.h>
     16
     17#include "greybus_trace.h"
     18
     19static struct kmem_cache *gb_operation_cache;
     20static struct kmem_cache *gb_message_cache;
     21
     22/* Workqueue to handle Greybus operation completions. */
     23static struct workqueue_struct *gb_operation_completion_wq;
     24
     25/* Wait queue for synchronous cancellations. */
     26static DECLARE_WAIT_QUEUE_HEAD(gb_operation_cancellation_queue);
     27
     28/*
     29 * Protects updates to operation->errno.
     30 */
     31static DEFINE_SPINLOCK(gb_operations_lock);
     32
     33static int gb_operation_response_send(struct gb_operation *operation,
     34				      int errno);
     35
     36/*
     37 * Increment operation active count and add to connection list unless the
     38 * connection is going away.
     39 *
     40 * Caller holds operation reference.
     41 */
     42static int gb_operation_get_active(struct gb_operation *operation)
     43{
     44	struct gb_connection *connection = operation->connection;
     45	unsigned long flags;
     46
     47	spin_lock_irqsave(&connection->lock, flags);
     48	switch (connection->state) {
     49	case GB_CONNECTION_STATE_ENABLED:
     50		break;
     51	case GB_CONNECTION_STATE_ENABLED_TX:
     52		if (gb_operation_is_incoming(operation))
     53			goto err_unlock;
     54		break;
     55	case GB_CONNECTION_STATE_DISCONNECTING:
     56		if (!gb_operation_is_core(operation))
     57			goto err_unlock;
     58		break;
     59	default:
     60		goto err_unlock;
     61	}
     62
     63	if (operation->active++ == 0)
     64		list_add_tail(&operation->links, &connection->operations);
     65
     66	trace_gb_operation_get_active(operation);
     67
     68	spin_unlock_irqrestore(&connection->lock, flags);
     69
     70	return 0;
     71
     72err_unlock:
     73	spin_unlock_irqrestore(&connection->lock, flags);
     74
     75	return -ENOTCONN;
     76}
     77
     78/* Caller holds operation reference. */
     79static void gb_operation_put_active(struct gb_operation *operation)
     80{
     81	struct gb_connection *connection = operation->connection;
     82	unsigned long flags;
     83
     84	spin_lock_irqsave(&connection->lock, flags);
     85
     86	trace_gb_operation_put_active(operation);
     87
     88	if (--operation->active == 0) {
     89		list_del(&operation->links);
     90		if (atomic_read(&operation->waiters))
     91			wake_up(&gb_operation_cancellation_queue);
     92	}
     93	spin_unlock_irqrestore(&connection->lock, flags);
     94}
     95
     96static bool gb_operation_is_active(struct gb_operation *operation)
     97{
     98	struct gb_connection *connection = operation->connection;
     99	unsigned long flags;
    100	bool ret;
    101
    102	spin_lock_irqsave(&connection->lock, flags);
    103	ret = operation->active;
    104	spin_unlock_irqrestore(&connection->lock, flags);
    105
    106	return ret;
    107}
    108
    109/*
    110 * Set an operation's result.
    111 *
    112 * Initially an outgoing operation's errno value is -EBADR.
    113 * If no error occurs before sending the request message the only
    114 * valid value operation->errno can be set to is -EINPROGRESS,
    115 * indicating the request has been (or rather is about to be) sent.
    116 * At that point nobody should be looking at the result until the
    117 * response arrives.
    118 *
    119 * The first time the result gets set after the request has been
    120 * sent, that result "sticks."  That is, if two concurrent threads
    121 * race to set the result, the first one wins.  The return value
    122 * tells the caller whether its result was recorded; if not the
    123 * caller has nothing more to do.
    124 *
    125 * The result value -EILSEQ is reserved to signal an implementation
    126 * error; if it's ever observed, the code performing the request has
    127 * done something fundamentally wrong.  It is an error to try to set
    128 * the result to -EBADR, and attempts to do so result in a warning,
    129 * and -EILSEQ is used instead.  Similarly, the only valid result
    130 * value to set for an operation in initial state is -EINPROGRESS.
    131 * Attempts to do otherwise will also record a (successful) -EILSEQ
    132 * operation result.
    133 */
    134static bool gb_operation_result_set(struct gb_operation *operation, int result)
    135{
    136	unsigned long flags;
    137	int prev;
    138
    139	if (result == -EINPROGRESS) {
    140		/*
    141		 * -EINPROGRESS is used to indicate the request is
    142		 * in flight.  It should be the first result value
    143		 * set after the initial -EBADR.  Issue a warning
    144		 * and record an implementation error if it's
    145		 * set at any other time.
    146		 */
    147		spin_lock_irqsave(&gb_operations_lock, flags);
    148		prev = operation->errno;
    149		if (prev == -EBADR)
    150			operation->errno = result;
    151		else
    152			operation->errno = -EILSEQ;
    153		spin_unlock_irqrestore(&gb_operations_lock, flags);
    154		WARN_ON(prev != -EBADR);
    155
    156		return true;
    157	}
    158
    159	/*
    160	 * The first result value set after a request has been sent
    161	 * will be the final result of the operation.  Subsequent
    162	 * attempts to set the result are ignored.
    163	 *
    164	 * Note that -EBADR is a reserved "initial state" result
    165	 * value.  Attempts to set this value result in a warning,
    166	 * and the result code is set to -EILSEQ instead.
    167	 */
    168	if (WARN_ON(result == -EBADR))
    169		result = -EILSEQ; /* Nobody should be setting -EBADR */
    170
    171	spin_lock_irqsave(&gb_operations_lock, flags);
    172	prev = operation->errno;
    173	if (prev == -EINPROGRESS)
    174		operation->errno = result;	/* First and final result */
    175	spin_unlock_irqrestore(&gb_operations_lock, flags);
    176
    177	return prev == -EINPROGRESS;
    178}
    179
    180int gb_operation_result(struct gb_operation *operation)
    181{
    182	int result = operation->errno;
    183
    184	WARN_ON(result == -EBADR);
    185	WARN_ON(result == -EINPROGRESS);
    186
    187	return result;
    188}
    189EXPORT_SYMBOL_GPL(gb_operation_result);
    190
    191/*
    192 * Looks up an outgoing operation on a connection and returns a refcounted
    193 * pointer if found, or NULL otherwise.
    194 */
    195static struct gb_operation *
    196gb_operation_find_outgoing(struct gb_connection *connection, u16 operation_id)
    197{
    198	struct gb_operation *operation;
    199	unsigned long flags;
    200	bool found = false;
    201
    202	spin_lock_irqsave(&connection->lock, flags);
    203	list_for_each_entry(operation, &connection->operations, links)
    204		if (operation->id == operation_id &&
    205		    !gb_operation_is_incoming(operation)) {
    206			gb_operation_get(operation);
    207			found = true;
    208			break;
    209		}
    210	spin_unlock_irqrestore(&connection->lock, flags);
    211
    212	return found ? operation : NULL;
    213}
    214
    215static int gb_message_send(struct gb_message *message, gfp_t gfp)
    216{
    217	struct gb_connection *connection = message->operation->connection;
    218
    219	trace_gb_message_send(message);
    220	return connection->hd->driver->message_send(connection->hd,
    221					connection->hd_cport_id,
    222					message,
    223					gfp);
    224}
    225
    226/*
    227 * Cancel a message we have passed to the host device layer to be sent.
    228 */
    229static void gb_message_cancel(struct gb_message *message)
    230{
    231	struct gb_host_device *hd = message->operation->connection->hd;
    232
    233	hd->driver->message_cancel(message);
    234}
    235
    236static void gb_operation_request_handle(struct gb_operation *operation)
    237{
    238	struct gb_connection *connection = operation->connection;
    239	int status;
    240	int ret;
    241
    242	if (connection->handler) {
    243		status = connection->handler(operation);
    244	} else {
    245		dev_err(&connection->hd->dev,
    246			"%s: unexpected incoming request of type 0x%02x\n",
    247			connection->name, operation->type);
    248
    249		status = -EPROTONOSUPPORT;
    250	}
    251
    252	ret = gb_operation_response_send(operation, status);
    253	if (ret) {
    254		dev_err(&connection->hd->dev,
    255			"%s: failed to send response %d for type 0x%02x: %d\n",
    256			connection->name, status, operation->type, ret);
    257		return;
    258	}
    259}
    260
    261/*
    262 * Process operation work.
    263 *
    264 * For incoming requests, call the protocol request handler. The operation
    265 * result should be -EINPROGRESS at this point.
    266 *
    267 * For outgoing requests, the operation result value should have
    268 * been set before queueing this.  The operation callback function
    269 * allows the original requester to know the request has completed
    270 * and its result is available.
    271 */
    272static void gb_operation_work(struct work_struct *work)
    273{
    274	struct gb_operation *operation;
    275	int ret;
    276
    277	operation = container_of(work, struct gb_operation, work);
    278
    279	if (gb_operation_is_incoming(operation)) {
    280		gb_operation_request_handle(operation);
    281	} else {
    282		ret = del_timer_sync(&operation->timer);
    283		if (!ret) {
    284			/* Cancel request message if scheduled by timeout. */
    285			if (gb_operation_result(operation) == -ETIMEDOUT)
    286				gb_message_cancel(operation->request);
    287		}
    288
    289		operation->callback(operation);
    290	}
    291
    292	gb_operation_put_active(operation);
    293	gb_operation_put(operation);
    294}
    295
    296static void gb_operation_timeout(struct timer_list *t)
    297{
    298	struct gb_operation *operation = from_timer(operation, t, timer);
    299
    300	if (gb_operation_result_set(operation, -ETIMEDOUT)) {
    301		/*
    302		 * A stuck request message will be cancelled from the
    303		 * workqueue.
    304		 */
    305		queue_work(gb_operation_completion_wq, &operation->work);
    306	}
    307}
    308
    309static void gb_operation_message_init(struct gb_host_device *hd,
    310				      struct gb_message *message,
    311				      u16 operation_id,
    312				      size_t payload_size, u8 type)
    313{
    314	struct gb_operation_msg_hdr *header;
    315
    316	header = message->buffer;
    317
    318	message->header = header;
    319	message->payload = payload_size ? header + 1 : NULL;
    320	message->payload_size = payload_size;
    321
    322	/*
    323	 * The type supplied for incoming message buffers will be
    324	 * GB_REQUEST_TYPE_INVALID. Such buffers will be overwritten by
    325	 * arriving data so there's no need to initialize the message header.
    326	 */
    327	if (type != GB_REQUEST_TYPE_INVALID) {
    328		u16 message_size = (u16)(sizeof(*header) + payload_size);
    329
    330		/*
    331		 * For a request, the operation id gets filled in
    332		 * when the message is sent.  For a response, it
    333		 * will be copied from the request by the caller.
    334		 *
    335		 * The result field in a request message must be
    336		 * zero.  It will be set just prior to sending for
    337		 * a response.
    338		 */
    339		header->size = cpu_to_le16(message_size);
    340		header->operation_id = 0;
    341		header->type = type;
    342		header->result = 0;
    343	}
    344}
    345
    346/*
    347 * Allocate a message to be used for an operation request or response.
    348 * Both types of message contain a common header.  The request message
    349 * for an outgoing operation is outbound, as is the response message
    350 * for an incoming operation.  The message header for an outbound
    351 * message is partially initialized here.
    352 *
    353 * The headers for inbound messages don't need to be initialized;
    354 * they'll be filled in by arriving data.
    355 *
    356 * Our message buffers have the following layout:
    357 *	message header  \_ these combined are
    358 *	message payload /  the message size
    359 */
    360static struct gb_message *
    361gb_operation_message_alloc(struct gb_host_device *hd, u8 type,
    362			   size_t payload_size, gfp_t gfp_flags)
    363{
    364	struct gb_message *message;
    365	struct gb_operation_msg_hdr *header;
    366	size_t message_size = payload_size + sizeof(*header);
    367
    368	if (message_size > hd->buffer_size_max) {
    369		dev_warn(&hd->dev, "requested message size too big (%zu > %zu)\n",
    370			 message_size, hd->buffer_size_max);
    371		return NULL;
    372	}
    373
    374	/* Allocate the message structure and buffer. */
    375	message = kmem_cache_zalloc(gb_message_cache, gfp_flags);
    376	if (!message)
    377		return NULL;
    378
    379	message->buffer = kzalloc(message_size, gfp_flags);
    380	if (!message->buffer)
    381		goto err_free_message;
    382
    383	/* Initialize the message.  Operation id is filled in later. */
    384	gb_operation_message_init(hd, message, 0, payload_size, type);
    385
    386	return message;
    387
    388err_free_message:
    389	kmem_cache_free(gb_message_cache, message);
    390
    391	return NULL;
    392}
    393
    394static void gb_operation_message_free(struct gb_message *message)
    395{
    396	kfree(message->buffer);
    397	kmem_cache_free(gb_message_cache, message);
    398}
    399
    400/*
    401 * Map an enum gb_operation_status value (which is represented in a
    402 * message as a single byte) to an appropriate Linux negative errno.
    403 */
    404static int gb_operation_status_map(u8 status)
    405{
    406	switch (status) {
    407	case GB_OP_SUCCESS:
    408		return 0;
    409	case GB_OP_INTERRUPTED:
    410		return -EINTR;
    411	case GB_OP_TIMEOUT:
    412		return -ETIMEDOUT;
    413	case GB_OP_NO_MEMORY:
    414		return -ENOMEM;
    415	case GB_OP_PROTOCOL_BAD:
    416		return -EPROTONOSUPPORT;
    417	case GB_OP_OVERFLOW:
    418		return -EMSGSIZE;
    419	case GB_OP_INVALID:
    420		return -EINVAL;
    421	case GB_OP_RETRY:
    422		return -EAGAIN;
    423	case GB_OP_NONEXISTENT:
    424		return -ENODEV;
    425	case GB_OP_MALFUNCTION:
    426		return -EILSEQ;
    427	case GB_OP_UNKNOWN_ERROR:
    428	default:
    429		return -EIO;
    430	}
    431}
    432
    433/*
    434 * Map a Linux errno value (from operation->errno) into the value
    435 * that should represent it in a response message status sent
    436 * over the wire.  Returns an enum gb_operation_status value (which
    437 * is represented in a message as a single byte).
    438 */
    439static u8 gb_operation_errno_map(int errno)
    440{
    441	switch (errno) {
    442	case 0:
    443		return GB_OP_SUCCESS;
    444	case -EINTR:
    445		return GB_OP_INTERRUPTED;
    446	case -ETIMEDOUT:
    447		return GB_OP_TIMEOUT;
    448	case -ENOMEM:
    449		return GB_OP_NO_MEMORY;
    450	case -EPROTONOSUPPORT:
    451		return GB_OP_PROTOCOL_BAD;
    452	case -EMSGSIZE:
    453		return GB_OP_OVERFLOW;	/* Could be underflow too */
    454	case -EINVAL:
    455		return GB_OP_INVALID;
    456	case -EAGAIN:
    457		return GB_OP_RETRY;
    458	case -EILSEQ:
    459		return GB_OP_MALFUNCTION;
    460	case -ENODEV:
    461		return GB_OP_NONEXISTENT;
    462	case -EIO:
    463	default:
    464		return GB_OP_UNKNOWN_ERROR;
    465	}
    466}
    467
    468bool gb_operation_response_alloc(struct gb_operation *operation,
    469				 size_t response_size, gfp_t gfp)
    470{
    471	struct gb_host_device *hd = operation->connection->hd;
    472	struct gb_operation_msg_hdr *request_header;
    473	struct gb_message *response;
    474	u8 type;
    475
    476	type = operation->type | GB_MESSAGE_TYPE_RESPONSE;
    477	response = gb_operation_message_alloc(hd, type, response_size, gfp);
    478	if (!response)
    479		return false;
    480	response->operation = operation;
    481
    482	/*
    483	 * Size and type get initialized when the message is
    484	 * allocated.  The errno will be set before sending.  All
    485	 * that's left is the operation id, which we copy from the
    486	 * request message header (as-is, in little-endian order).
    487	 */
    488	request_header = operation->request->header;
    489	response->header->operation_id = request_header->operation_id;
    490	operation->response = response;
    491
    492	return true;
    493}
    494EXPORT_SYMBOL_GPL(gb_operation_response_alloc);
    495
    496/*
    497 * Create a Greybus operation to be sent over the given connection.
    498 * The request buffer will be big enough for a payload of the given
    499 * size.
    500 *
    501 * For outgoing requests, the request message's header will be
    502 * initialized with the type of the request and the message size.
    503 * Outgoing operations must also specify the response buffer size,
    504 * which must be sufficient to hold all expected response data.  The
    505 * response message header will eventually be overwritten, so there's
    506 * no need to initialize it here.
    507 *
    508 * Request messages for incoming operations can arrive in interrupt
    509 * context, so they must be allocated with GFP_ATOMIC.  In this case
    510 * the request buffer will be immediately overwritten, so there is
    511 * no need to initialize the message header.  Responsibility for
    512 * allocating a response buffer lies with the incoming request
    513 * handler for a protocol.  So we don't allocate that here.
    514 *
    515 * Returns a pointer to the new operation or a null pointer if an
    516 * error occurs.
    517 */
    518static struct gb_operation *
    519gb_operation_create_common(struct gb_connection *connection, u8 type,
    520			   size_t request_size, size_t response_size,
    521			   unsigned long op_flags, gfp_t gfp_flags)
    522{
    523	struct gb_host_device *hd = connection->hd;
    524	struct gb_operation *operation;
    525
    526	operation = kmem_cache_zalloc(gb_operation_cache, gfp_flags);
    527	if (!operation)
    528		return NULL;
    529	operation->connection = connection;
    530
    531	operation->request = gb_operation_message_alloc(hd, type, request_size,
    532							gfp_flags);
    533	if (!operation->request)
    534		goto err_cache;
    535	operation->request->operation = operation;
    536
    537	/* Allocate the response buffer for outgoing operations */
    538	if (!(op_flags & GB_OPERATION_FLAG_INCOMING)) {
    539		if (!gb_operation_response_alloc(operation, response_size,
    540						 gfp_flags)) {
    541			goto err_request;
    542		}
    543
    544		timer_setup(&operation->timer, gb_operation_timeout, 0);
    545	}
    546
    547	operation->flags = op_flags;
    548	operation->type = type;
    549	operation->errno = -EBADR;  /* Initial value--means "never set" */
    550
    551	INIT_WORK(&operation->work, gb_operation_work);
    552	init_completion(&operation->completion);
    553	kref_init(&operation->kref);
    554	atomic_set(&operation->waiters, 0);
    555
    556	return operation;
    557
    558err_request:
    559	gb_operation_message_free(operation->request);
    560err_cache:
    561	kmem_cache_free(gb_operation_cache, operation);
    562
    563	return NULL;
    564}
    565
    566/*
    567 * Create a new operation associated with the given connection.  The
    568 * request and response sizes provided are the number of bytes
    569 * required to hold the request/response payload only.  Both of
    570 * these are allowed to be 0.  Note that 0x00 is reserved as an
    571 * invalid operation type for all protocols, and this is enforced
    572 * here.
    573 */
    574struct gb_operation *
    575gb_operation_create_flags(struct gb_connection *connection,
    576			  u8 type, size_t request_size,
    577			  size_t response_size, unsigned long flags,
    578			  gfp_t gfp)
    579{
    580	struct gb_operation *operation;
    581
    582	if (WARN_ON_ONCE(type == GB_REQUEST_TYPE_INVALID))
    583		return NULL;
    584	if (WARN_ON_ONCE(type & GB_MESSAGE_TYPE_RESPONSE))
    585		type &= ~GB_MESSAGE_TYPE_RESPONSE;
    586
    587	if (WARN_ON_ONCE(flags & ~GB_OPERATION_FLAG_USER_MASK))
    588		flags &= GB_OPERATION_FLAG_USER_MASK;
    589
    590	operation = gb_operation_create_common(connection, type,
    591					       request_size, response_size,
    592					       flags, gfp);
    593	if (operation)
    594		trace_gb_operation_create(operation);
    595
    596	return operation;
    597}
    598EXPORT_SYMBOL_GPL(gb_operation_create_flags);
    599
    600struct gb_operation *
    601gb_operation_create_core(struct gb_connection *connection,
    602			 u8 type, size_t request_size,
    603			 size_t response_size, unsigned long flags,
    604			 gfp_t gfp)
    605{
    606	struct gb_operation *operation;
    607
    608	flags |= GB_OPERATION_FLAG_CORE;
    609
    610	operation = gb_operation_create_common(connection, type,
    611					       request_size, response_size,
    612					       flags, gfp);
    613	if (operation)
    614		trace_gb_operation_create_core(operation);
    615
    616	return operation;
    617}
    618
    619/* Do not export this function. */
    620
    621size_t gb_operation_get_payload_size_max(struct gb_connection *connection)
    622{
    623	struct gb_host_device *hd = connection->hd;
    624
    625	return hd->buffer_size_max - sizeof(struct gb_operation_msg_hdr);
    626}
    627EXPORT_SYMBOL_GPL(gb_operation_get_payload_size_max);
    628
    629static struct gb_operation *
    630gb_operation_create_incoming(struct gb_connection *connection, u16 id,
    631			     u8 type, void *data, size_t size)
    632{
    633	struct gb_operation *operation;
    634	size_t request_size;
    635	unsigned long flags = GB_OPERATION_FLAG_INCOMING;
    636
    637	/* Caller has made sure we at least have a message header. */
    638	request_size = size - sizeof(struct gb_operation_msg_hdr);
    639
    640	if (!id)
    641		flags |= GB_OPERATION_FLAG_UNIDIRECTIONAL;
    642
    643	operation = gb_operation_create_common(connection, type,
    644					       request_size,
    645					       GB_REQUEST_TYPE_INVALID,
    646					       flags, GFP_ATOMIC);
    647	if (!operation)
    648		return NULL;
    649
    650	operation->id = id;
    651	memcpy(operation->request->header, data, size);
    652	trace_gb_operation_create_incoming(operation);
    653
    654	return operation;
    655}
    656
    657/*
    658 * Get an additional reference on an operation.
    659 */
    660void gb_operation_get(struct gb_operation *operation)
    661{
    662	kref_get(&operation->kref);
    663}
    664EXPORT_SYMBOL_GPL(gb_operation_get);
    665
    666/*
    667 * Destroy a previously created operation.
    668 */
    669static void _gb_operation_destroy(struct kref *kref)
    670{
    671	struct gb_operation *operation;
    672
    673	operation = container_of(kref, struct gb_operation, kref);
    674
    675	trace_gb_operation_destroy(operation);
    676
    677	if (operation->response)
    678		gb_operation_message_free(operation->response);
    679	gb_operation_message_free(operation->request);
    680
    681	kmem_cache_free(gb_operation_cache, operation);
    682}
    683
    684/*
    685 * Drop a reference on an operation, and destroy it when the last
    686 * one is gone.
    687 */
    688void gb_operation_put(struct gb_operation *operation)
    689{
    690	if (WARN_ON(!operation))
    691		return;
    692
    693	kref_put(&operation->kref, _gb_operation_destroy);
    694}
    695EXPORT_SYMBOL_GPL(gb_operation_put);
    696
    697/* Tell the requester we're done */
    698static void gb_operation_sync_callback(struct gb_operation *operation)
    699{
    700	complete(&operation->completion);
    701}
    702
    703/**
    704 * gb_operation_request_send() - send an operation request message
    705 * @operation:	the operation to initiate
    706 * @callback:	the operation completion callback
    707 * @timeout:	operation timeout in milliseconds, or zero for no timeout
    708 * @gfp:	the memory flags to use for any allocations
    709 *
    710 * The caller has filled in any payload so the request message is ready to go.
    711 * The callback function supplied will be called when the response message has
    712 * arrived, a unidirectional request has been sent, or the operation is
    713 * cancelled, indicating that the operation is complete. The callback function
    714 * can fetch the result of the operation using gb_operation_result() if
    715 * desired.
    716 *
    717 * Return: 0 if the request was successfully queued in the host-driver queues,
    718 * or a negative errno.
    719 */
    720int gb_operation_request_send(struct gb_operation *operation,
    721			      gb_operation_callback callback,
    722			      unsigned int timeout,
    723			      gfp_t gfp)
    724{
    725	struct gb_connection *connection = operation->connection;
    726	struct gb_operation_msg_hdr *header;
    727	unsigned int cycle;
    728	int ret;
    729
    730	if (gb_connection_is_offloaded(connection))
    731		return -EBUSY;
    732
    733	if (!callback)
    734		return -EINVAL;
    735
    736	/*
    737	 * Record the callback function, which is executed in
    738	 * non-atomic (workqueue) context when the final result
    739	 * of an operation has been set.
    740	 */
    741	operation->callback = callback;
    742
    743	/*
    744	 * Assign the operation's id, and store it in the request header.
    745	 * Zero is a reserved operation id for unidirectional operations.
    746	 */
    747	if (gb_operation_is_unidirectional(operation)) {
    748		operation->id = 0;
    749	} else {
    750		cycle = (unsigned int)atomic_inc_return(&connection->op_cycle);
    751		operation->id = (u16)(cycle % U16_MAX + 1);
    752	}
    753
    754	header = operation->request->header;
    755	header->operation_id = cpu_to_le16(operation->id);
    756
    757	gb_operation_result_set(operation, -EINPROGRESS);
    758
    759	/*
    760	 * Get an extra reference on the operation. It'll be dropped when the
    761	 * operation completes.
    762	 */
    763	gb_operation_get(operation);
    764	ret = gb_operation_get_active(operation);
    765	if (ret)
    766		goto err_put;
    767
    768	ret = gb_message_send(operation->request, gfp);
    769	if (ret)
    770		goto err_put_active;
    771
    772	if (timeout) {
    773		operation->timer.expires = jiffies + msecs_to_jiffies(timeout);
    774		add_timer(&operation->timer);
    775	}
    776
    777	return 0;
    778
    779err_put_active:
    780	gb_operation_put_active(operation);
    781err_put:
    782	gb_operation_put(operation);
    783
    784	return ret;
    785}
    786EXPORT_SYMBOL_GPL(gb_operation_request_send);
    787
    788/*
    789 * Send a synchronous operation.  This function is expected to
    790 * block, returning only when the response has arrived, (or when an
    791 * error is detected.  The return value is the result of the
    792 * operation.
    793 */
    794int gb_operation_request_send_sync_timeout(struct gb_operation *operation,
    795					   unsigned int timeout)
    796{
    797	int ret;
    798
    799	ret = gb_operation_request_send(operation, gb_operation_sync_callback,
    800					timeout, GFP_KERNEL);
    801	if (ret)
    802		return ret;
    803
    804	ret = wait_for_completion_interruptible(&operation->completion);
    805	if (ret < 0) {
    806		/* Cancel the operation if interrupted */
    807		gb_operation_cancel(operation, -ECANCELED);
    808	}
    809
    810	return gb_operation_result(operation);
    811}
    812EXPORT_SYMBOL_GPL(gb_operation_request_send_sync_timeout);
    813
    814/*
    815 * Send a response for an incoming operation request.  A non-zero
    816 * errno indicates a failed operation.
    817 *
    818 * If there is any response payload, the incoming request handler is
    819 * responsible for allocating the response message.  Otherwise the
    820 * it can simply supply the result errno; this function will
    821 * allocate the response message if necessary.
    822 */
    823static int gb_operation_response_send(struct gb_operation *operation,
    824				      int errno)
    825{
    826	struct gb_connection *connection = operation->connection;
    827	int ret;
    828
    829	if (!operation->response &&
    830	    !gb_operation_is_unidirectional(operation)) {
    831		if (!gb_operation_response_alloc(operation, 0, GFP_KERNEL))
    832			return -ENOMEM;
    833	}
    834
    835	/* Record the result */
    836	if (!gb_operation_result_set(operation, errno)) {
    837		dev_err(&connection->hd->dev, "request result already set\n");
    838		return -EIO;	/* Shouldn't happen */
    839	}
    840
    841	/* Sender of request does not care about response. */
    842	if (gb_operation_is_unidirectional(operation))
    843		return 0;
    844
    845	/* Reference will be dropped when message has been sent. */
    846	gb_operation_get(operation);
    847	ret = gb_operation_get_active(operation);
    848	if (ret)
    849		goto err_put;
    850
    851	/* Fill in the response header and send it */
    852	operation->response->header->result = gb_operation_errno_map(errno);
    853
    854	ret = gb_message_send(operation->response, GFP_KERNEL);
    855	if (ret)
    856		goto err_put_active;
    857
    858	return 0;
    859
    860err_put_active:
    861	gb_operation_put_active(operation);
    862err_put:
    863	gb_operation_put(operation);
    864
    865	return ret;
    866}
    867
    868/*
    869 * This function is called when a message send request has completed.
    870 */
    871void greybus_message_sent(struct gb_host_device *hd,
    872			  struct gb_message *message, int status)
    873{
    874	struct gb_operation *operation = message->operation;
    875	struct gb_connection *connection = operation->connection;
    876
    877	/*
    878	 * If the message was a response, we just need to drop our
    879	 * reference to the operation.  If an error occurred, report
    880	 * it.
    881	 *
    882	 * For requests, if there's no error and the operation in not
    883	 * unidirectional, there's nothing more to do until the response
    884	 * arrives. If an error occurred attempting to send it, or if the
    885	 * operation is unidrectional, record the result of the operation and
    886	 * schedule its completion.
    887	 */
    888	if (message == operation->response) {
    889		if (status) {
    890			dev_err(&connection->hd->dev,
    891				"%s: error sending response 0x%02x: %d\n",
    892				connection->name, operation->type, status);
    893		}
    894
    895		gb_operation_put_active(operation);
    896		gb_operation_put(operation);
    897	} else if (status || gb_operation_is_unidirectional(operation)) {
    898		if (gb_operation_result_set(operation, status)) {
    899			queue_work(gb_operation_completion_wq,
    900				   &operation->work);
    901		}
    902	}
    903}
    904EXPORT_SYMBOL_GPL(greybus_message_sent);
    905
    906/*
    907 * We've received data on a connection, and it doesn't look like a
    908 * response, so we assume it's a request.
    909 *
    910 * This is called in interrupt context, so just copy the incoming
    911 * data into the request buffer and handle the rest via workqueue.
    912 */
    913static void gb_connection_recv_request(struct gb_connection *connection,
    914				const struct gb_operation_msg_hdr *header,
    915				void *data, size_t size)
    916{
    917	struct gb_operation *operation;
    918	u16 operation_id;
    919	u8 type;
    920	int ret;
    921
    922	operation_id = le16_to_cpu(header->operation_id);
    923	type = header->type;
    924
    925	operation = gb_operation_create_incoming(connection, operation_id,
    926						 type, data, size);
    927	if (!operation) {
    928		dev_err(&connection->hd->dev,
    929			"%s: can't create incoming operation\n",
    930			connection->name);
    931		return;
    932	}
    933
    934	ret = gb_operation_get_active(operation);
    935	if (ret) {
    936		gb_operation_put(operation);
    937		return;
    938	}
    939	trace_gb_message_recv_request(operation->request);
    940
    941	/*
    942	 * The initial reference to the operation will be dropped when the
    943	 * request handler returns.
    944	 */
    945	if (gb_operation_result_set(operation, -EINPROGRESS))
    946		queue_work(connection->wq, &operation->work);
    947}
    948
    949/*
    950 * We've received data that appears to be an operation response
    951 * message.  Look up the operation, and record that we've received
    952 * its response.
    953 *
    954 * This is called in interrupt context, so just copy the incoming
    955 * data into the response buffer and handle the rest via workqueue.
    956 */
    957static void gb_connection_recv_response(struct gb_connection *connection,
    958				const struct gb_operation_msg_hdr *header,
    959				void *data, size_t size)
    960{
    961	struct gb_operation *operation;
    962	struct gb_message *message;
    963	size_t message_size;
    964	u16 operation_id;
    965	int errno;
    966
    967	operation_id = le16_to_cpu(header->operation_id);
    968
    969	if (!operation_id) {
    970		dev_err_ratelimited(&connection->hd->dev,
    971				    "%s: invalid response id 0 received\n",
    972				    connection->name);
    973		return;
    974	}
    975
    976	operation = gb_operation_find_outgoing(connection, operation_id);
    977	if (!operation) {
    978		dev_err_ratelimited(&connection->hd->dev,
    979				    "%s: unexpected response id 0x%04x received\n",
    980				    connection->name, operation_id);
    981		return;
    982	}
    983
    984	errno = gb_operation_status_map(header->result);
    985	message = operation->response;
    986	message_size = sizeof(*header) + message->payload_size;
    987	if (!errno && size > message_size) {
    988		dev_err_ratelimited(&connection->hd->dev,
    989				    "%s: malformed response 0x%02x received (%zu > %zu)\n",
    990				    connection->name, header->type,
    991				    size, message_size);
    992		errno = -EMSGSIZE;
    993	} else if (!errno && size < message_size) {
    994		if (gb_operation_short_response_allowed(operation)) {
    995			message->payload_size = size - sizeof(*header);
    996		} else {
    997			dev_err_ratelimited(&connection->hd->dev,
    998					    "%s: short response 0x%02x received (%zu < %zu)\n",
    999					    connection->name, header->type,
   1000					    size, message_size);
   1001			errno = -EMSGSIZE;
   1002		}
   1003	}
   1004
   1005	/* We must ignore the payload if a bad status is returned */
   1006	if (errno)
   1007		size = sizeof(*header);
   1008
   1009	/* The rest will be handled in work queue context */
   1010	if (gb_operation_result_set(operation, errno)) {
   1011		memcpy(message->buffer, data, size);
   1012
   1013		trace_gb_message_recv_response(message);
   1014
   1015		queue_work(gb_operation_completion_wq, &operation->work);
   1016	}
   1017
   1018	gb_operation_put(operation);
   1019}
   1020
   1021/*
   1022 * Handle data arriving on a connection.  As soon as we return the
   1023 * supplied data buffer will be reused (so unless we do something
   1024 * with, it's effectively dropped).
   1025 */
   1026void gb_connection_recv(struct gb_connection *connection,
   1027			void *data, size_t size)
   1028{
   1029	struct gb_operation_msg_hdr header;
   1030	struct device *dev = &connection->hd->dev;
   1031	size_t msg_size;
   1032
   1033	if (connection->state == GB_CONNECTION_STATE_DISABLED ||
   1034	    gb_connection_is_offloaded(connection)) {
   1035		dev_warn_ratelimited(dev, "%s: dropping %zu received bytes\n",
   1036				     connection->name, size);
   1037		return;
   1038	}
   1039
   1040	if (size < sizeof(header)) {
   1041		dev_err_ratelimited(dev, "%s: short message received\n",
   1042				    connection->name);
   1043		return;
   1044	}
   1045
   1046	/* Use memcpy as data may be unaligned */
   1047	memcpy(&header, data, sizeof(header));
   1048	msg_size = le16_to_cpu(header.size);
   1049	if (size < msg_size) {
   1050		dev_err_ratelimited(dev,
   1051				    "%s: incomplete message 0x%04x of type 0x%02x received (%zu < %zu)\n",
   1052				    connection->name,
   1053				    le16_to_cpu(header.operation_id),
   1054				    header.type, size, msg_size);
   1055		return;		/* XXX Should still complete operation */
   1056	}
   1057
   1058	if (header.type & GB_MESSAGE_TYPE_RESPONSE) {
   1059		gb_connection_recv_response(connection,	&header, data,
   1060					    msg_size);
   1061	} else {
   1062		gb_connection_recv_request(connection, &header, data,
   1063					   msg_size);
   1064	}
   1065}
   1066
   1067/*
   1068 * Cancel an outgoing operation synchronously, and record the given error to
   1069 * indicate why.
   1070 */
   1071void gb_operation_cancel(struct gb_operation *operation, int errno)
   1072{
   1073	if (WARN_ON(gb_operation_is_incoming(operation)))
   1074		return;
   1075
   1076	if (gb_operation_result_set(operation, errno)) {
   1077		gb_message_cancel(operation->request);
   1078		queue_work(gb_operation_completion_wq, &operation->work);
   1079	}
   1080	trace_gb_message_cancel_outgoing(operation->request);
   1081
   1082	atomic_inc(&operation->waiters);
   1083	wait_event(gb_operation_cancellation_queue,
   1084		   !gb_operation_is_active(operation));
   1085	atomic_dec(&operation->waiters);
   1086}
   1087EXPORT_SYMBOL_GPL(gb_operation_cancel);
   1088
   1089/*
   1090 * Cancel an incoming operation synchronously. Called during connection tear
   1091 * down.
   1092 */
   1093void gb_operation_cancel_incoming(struct gb_operation *operation, int errno)
   1094{
   1095	if (WARN_ON(!gb_operation_is_incoming(operation)))
   1096		return;
   1097
   1098	if (!gb_operation_is_unidirectional(operation)) {
   1099		/*
   1100		 * Make sure the request handler has submitted the response
   1101		 * before cancelling it.
   1102		 */
   1103		flush_work(&operation->work);
   1104		if (!gb_operation_result_set(operation, errno))
   1105			gb_message_cancel(operation->response);
   1106	}
   1107	trace_gb_message_cancel_incoming(operation->response);
   1108
   1109	atomic_inc(&operation->waiters);
   1110	wait_event(gb_operation_cancellation_queue,
   1111		   !gb_operation_is_active(operation));
   1112	atomic_dec(&operation->waiters);
   1113}
   1114
   1115/**
   1116 * gb_operation_sync_timeout() - implement a "simple" synchronous operation
   1117 * @connection: the Greybus connection to send this to
   1118 * @type: the type of operation to send
   1119 * @request: pointer to a memory buffer to copy the request from
   1120 * @request_size: size of @request
   1121 * @response: pointer to a memory buffer to copy the response to
   1122 * @response_size: the size of @response.
   1123 * @timeout: operation timeout in milliseconds
   1124 *
   1125 * This function implements a simple synchronous Greybus operation.  It sends
   1126 * the provided operation request and waits (sleeps) until the corresponding
   1127 * operation response message has been successfully received, or an error
   1128 * occurs.  @request and @response are buffers to hold the request and response
   1129 * data respectively, and if they are not NULL, their size must be specified in
   1130 * @request_size and @response_size.
   1131 *
   1132 * If a response payload is to come back, and @response is not NULL,
   1133 * @response_size number of bytes will be copied into @response if the operation
   1134 * is successful.
   1135 *
   1136 * If there is an error, the response buffer is left alone.
   1137 */
   1138int gb_operation_sync_timeout(struct gb_connection *connection, int type,
   1139			      void *request, int request_size,
   1140			      void *response, int response_size,
   1141			      unsigned int timeout)
   1142{
   1143	struct gb_operation *operation;
   1144	int ret;
   1145
   1146	if ((response_size && !response) ||
   1147	    (request_size && !request))
   1148		return -EINVAL;
   1149
   1150	operation = gb_operation_create(connection, type,
   1151					request_size, response_size,
   1152					GFP_KERNEL);
   1153	if (!operation)
   1154		return -ENOMEM;
   1155
   1156	if (request_size)
   1157		memcpy(operation->request->payload, request, request_size);
   1158
   1159	ret = gb_operation_request_send_sync_timeout(operation, timeout);
   1160	if (ret) {
   1161		dev_err(&connection->hd->dev,
   1162			"%s: synchronous operation id 0x%04x of type 0x%02x failed: %d\n",
   1163			connection->name, operation->id, type, ret);
   1164	} else {
   1165		if (response_size) {
   1166			memcpy(response, operation->response->payload,
   1167			       response_size);
   1168		}
   1169	}
   1170
   1171	gb_operation_put(operation);
   1172
   1173	return ret;
   1174}
   1175EXPORT_SYMBOL_GPL(gb_operation_sync_timeout);
   1176
   1177/**
   1178 * gb_operation_unidirectional_timeout() - initiate a unidirectional operation
   1179 * @connection:		connection to use
   1180 * @type:		type of operation to send
   1181 * @request:		memory buffer to copy the request from
   1182 * @request_size:	size of @request
   1183 * @timeout:		send timeout in milliseconds
   1184 *
   1185 * Initiate a unidirectional operation by sending a request message and
   1186 * waiting for it to be acknowledged as sent by the host device.
   1187 *
   1188 * Note that successful send of a unidirectional operation does not imply that
   1189 * the request as actually reached the remote end of the connection.
   1190 */
   1191int gb_operation_unidirectional_timeout(struct gb_connection *connection,
   1192					int type, void *request,
   1193					int request_size,
   1194					unsigned int timeout)
   1195{
   1196	struct gb_operation *operation;
   1197	int ret;
   1198
   1199	if (request_size && !request)
   1200		return -EINVAL;
   1201
   1202	operation = gb_operation_create_flags(connection, type,
   1203					      request_size, 0,
   1204					      GB_OPERATION_FLAG_UNIDIRECTIONAL,
   1205					      GFP_KERNEL);
   1206	if (!operation)
   1207		return -ENOMEM;
   1208
   1209	if (request_size)
   1210		memcpy(operation->request->payload, request, request_size);
   1211
   1212	ret = gb_operation_request_send_sync_timeout(operation, timeout);
   1213	if (ret) {
   1214		dev_err(&connection->hd->dev,
   1215			"%s: unidirectional operation of type 0x%02x failed: %d\n",
   1216			connection->name, type, ret);
   1217	}
   1218
   1219	gb_operation_put(operation);
   1220
   1221	return ret;
   1222}
   1223EXPORT_SYMBOL_GPL(gb_operation_unidirectional_timeout);
   1224
   1225int __init gb_operation_init(void)
   1226{
   1227	gb_message_cache = kmem_cache_create("gb_message_cache",
   1228					     sizeof(struct gb_message), 0, 0,
   1229					     NULL);
   1230	if (!gb_message_cache)
   1231		return -ENOMEM;
   1232
   1233	gb_operation_cache = kmem_cache_create("gb_operation_cache",
   1234					       sizeof(struct gb_operation), 0,
   1235					       0, NULL);
   1236	if (!gb_operation_cache)
   1237		goto err_destroy_message_cache;
   1238
   1239	gb_operation_completion_wq = alloc_workqueue("greybus_completion",
   1240						     0, 0);
   1241	if (!gb_operation_completion_wq)
   1242		goto err_destroy_operation_cache;
   1243
   1244	return 0;
   1245
   1246err_destroy_operation_cache:
   1247	kmem_cache_destroy(gb_operation_cache);
   1248	gb_operation_cache = NULL;
   1249err_destroy_message_cache:
   1250	kmem_cache_destroy(gb_message_cache);
   1251	gb_message_cache = NULL;
   1252
   1253	return -ENOMEM;
   1254}
   1255
   1256void gb_operation_exit(void)
   1257{
   1258	destroy_workqueue(gb_operation_completion_wq);
   1259	gb_operation_completion_wq = NULL;
   1260	kmem_cache_destroy(gb_operation_cache);
   1261	gb_operation_cache = NULL;
   1262	kmem_cache_destroy(gb_message_cache);
   1263	gb_message_cache = NULL;
   1264}