cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

hid-core.c (73661B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 *  HID support for Linux
      4 *
      5 *  Copyright (c) 1999 Andreas Gal
      6 *  Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
      7 *  Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
      8 *  Copyright (c) 2006-2012 Jiri Kosina
      9 */
     10
     11/*
     12 */
     13
     14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
     15
     16#include <linux/module.h>
     17#include <linux/slab.h>
     18#include <linux/init.h>
     19#include <linux/kernel.h>
     20#include <linux/list.h>
     21#include <linux/mm.h>
     22#include <linux/spinlock.h>
     23#include <asm/unaligned.h>
     24#include <asm/byteorder.h>
     25#include <linux/input.h>
     26#include <linux/wait.h>
     27#include <linux/vmalloc.h>
     28#include <linux/sched.h>
     29#include <linux/semaphore.h>
     30
     31#include <linux/hid.h>
     32#include <linux/hiddev.h>
     33#include <linux/hid-debug.h>
     34#include <linux/hidraw.h>
     35
     36#include "hid-ids.h"
     37
     38/*
     39 * Version Information
     40 */
     41
     42#define DRIVER_DESC "HID core driver"
     43
     44int hid_debug = 0;
     45module_param_named(debug, hid_debug, int, 0600);
     46MODULE_PARM_DESC(debug, "toggle HID debugging messages");
     47EXPORT_SYMBOL_GPL(hid_debug);
     48
     49static int hid_ignore_special_drivers = 0;
     50module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
     51MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
     52
     53/*
     54 * Register a new report for a device.
     55 */
     56
     57struct hid_report *hid_register_report(struct hid_device *device,
     58				       unsigned int type, unsigned int id,
     59				       unsigned int application)
     60{
     61	struct hid_report_enum *report_enum = device->report_enum + type;
     62	struct hid_report *report;
     63
     64	if (id >= HID_MAX_IDS)
     65		return NULL;
     66	if (report_enum->report_id_hash[id])
     67		return report_enum->report_id_hash[id];
     68
     69	report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
     70	if (!report)
     71		return NULL;
     72
     73	if (id != 0)
     74		report_enum->numbered = 1;
     75
     76	report->id = id;
     77	report->type = type;
     78	report->size = 0;
     79	report->device = device;
     80	report->application = application;
     81	report_enum->report_id_hash[id] = report;
     82
     83	list_add_tail(&report->list, &report_enum->report_list);
     84	INIT_LIST_HEAD(&report->field_entry_list);
     85
     86	return report;
     87}
     88EXPORT_SYMBOL_GPL(hid_register_report);
     89
     90/*
     91 * Register a new field for this report.
     92 */
     93
     94static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages)
     95{
     96	struct hid_field *field;
     97
     98	if (report->maxfield == HID_MAX_FIELDS) {
     99		hid_err(report->device, "too many fields in report\n");
    100		return NULL;
    101	}
    102
    103	field = kzalloc((sizeof(struct hid_field) +
    104			 usages * sizeof(struct hid_usage) +
    105			 3 * usages * sizeof(unsigned int)), GFP_KERNEL);
    106	if (!field)
    107		return NULL;
    108
    109	field->index = report->maxfield++;
    110	report->field[field->index] = field;
    111	field->usage = (struct hid_usage *)(field + 1);
    112	field->value = (s32 *)(field->usage + usages);
    113	field->new_value = (s32 *)(field->value + usages);
    114	field->usages_priorities = (s32 *)(field->new_value + usages);
    115	field->report = report;
    116
    117	return field;
    118}
    119
    120/*
    121 * Open a collection. The type/usage is pushed on the stack.
    122 */
    123
    124static int open_collection(struct hid_parser *parser, unsigned type)
    125{
    126	struct hid_collection *collection;
    127	unsigned usage;
    128	int collection_index;
    129
    130	usage = parser->local.usage[0];
    131
    132	if (parser->collection_stack_ptr == parser->collection_stack_size) {
    133		unsigned int *collection_stack;
    134		unsigned int new_size = parser->collection_stack_size +
    135					HID_COLLECTION_STACK_SIZE;
    136
    137		collection_stack = krealloc(parser->collection_stack,
    138					    new_size * sizeof(unsigned int),
    139					    GFP_KERNEL);
    140		if (!collection_stack)
    141			return -ENOMEM;
    142
    143		parser->collection_stack = collection_stack;
    144		parser->collection_stack_size = new_size;
    145	}
    146
    147	if (parser->device->maxcollection == parser->device->collection_size) {
    148		collection = kmalloc(
    149				array3_size(sizeof(struct hid_collection),
    150					    parser->device->collection_size,
    151					    2),
    152				GFP_KERNEL);
    153		if (collection == NULL) {
    154			hid_err(parser->device, "failed to reallocate collection array\n");
    155			return -ENOMEM;
    156		}
    157		memcpy(collection, parser->device->collection,
    158			sizeof(struct hid_collection) *
    159			parser->device->collection_size);
    160		memset(collection + parser->device->collection_size, 0,
    161			sizeof(struct hid_collection) *
    162			parser->device->collection_size);
    163		kfree(parser->device->collection);
    164		parser->device->collection = collection;
    165		parser->device->collection_size *= 2;
    166	}
    167
    168	parser->collection_stack[parser->collection_stack_ptr++] =
    169		parser->device->maxcollection;
    170
    171	collection_index = parser->device->maxcollection++;
    172	collection = parser->device->collection + collection_index;
    173	collection->type = type;
    174	collection->usage = usage;
    175	collection->level = parser->collection_stack_ptr - 1;
    176	collection->parent_idx = (collection->level == 0) ? -1 :
    177		parser->collection_stack[collection->level - 1];
    178
    179	if (type == HID_COLLECTION_APPLICATION)
    180		parser->device->maxapplication++;
    181
    182	return 0;
    183}
    184
    185/*
    186 * Close a collection.
    187 */
    188
    189static int close_collection(struct hid_parser *parser)
    190{
    191	if (!parser->collection_stack_ptr) {
    192		hid_err(parser->device, "collection stack underflow\n");
    193		return -EINVAL;
    194	}
    195	parser->collection_stack_ptr--;
    196	return 0;
    197}
    198
    199/*
    200 * Climb up the stack, search for the specified collection type
    201 * and return the usage.
    202 */
    203
    204static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
    205{
    206	struct hid_collection *collection = parser->device->collection;
    207	int n;
    208
    209	for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
    210		unsigned index = parser->collection_stack[n];
    211		if (collection[index].type == type)
    212			return collection[index].usage;
    213	}
    214	return 0; /* we know nothing about this usage type */
    215}
    216
    217/*
    218 * Concatenate usage which defines 16 bits or less with the
    219 * currently defined usage page to form a 32 bit usage
    220 */
    221
    222static void complete_usage(struct hid_parser *parser, unsigned int index)
    223{
    224	parser->local.usage[index] &= 0xFFFF;
    225	parser->local.usage[index] |=
    226		(parser->global.usage_page & 0xFFFF) << 16;
    227}
    228
    229/*
    230 * Add a usage to the temporary parser table.
    231 */
    232
    233static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size)
    234{
    235	if (parser->local.usage_index >= HID_MAX_USAGES) {
    236		hid_err(parser->device, "usage index exceeded\n");
    237		return -1;
    238	}
    239	parser->local.usage[parser->local.usage_index] = usage;
    240
    241	/*
    242	 * If Usage item only includes usage id, concatenate it with
    243	 * currently defined usage page
    244	 */
    245	if (size <= 2)
    246		complete_usage(parser, parser->local.usage_index);
    247
    248	parser->local.usage_size[parser->local.usage_index] = size;
    249	parser->local.collection_index[parser->local.usage_index] =
    250		parser->collection_stack_ptr ?
    251		parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
    252	parser->local.usage_index++;
    253	return 0;
    254}
    255
    256/*
    257 * Register a new field for this report.
    258 */
    259
    260static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
    261{
    262	struct hid_report *report;
    263	struct hid_field *field;
    264	unsigned int usages;
    265	unsigned int offset;
    266	unsigned int i;
    267	unsigned int application;
    268
    269	application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
    270
    271	report = hid_register_report(parser->device, report_type,
    272				     parser->global.report_id, application);
    273	if (!report) {
    274		hid_err(parser->device, "hid_register_report failed\n");
    275		return -1;
    276	}
    277
    278	/* Handle both signed and unsigned cases properly */
    279	if ((parser->global.logical_minimum < 0 &&
    280		parser->global.logical_maximum <
    281		parser->global.logical_minimum) ||
    282		(parser->global.logical_minimum >= 0 &&
    283		(__u32)parser->global.logical_maximum <
    284		(__u32)parser->global.logical_minimum)) {
    285		dbg_hid("logical range invalid 0x%x 0x%x\n",
    286			parser->global.logical_minimum,
    287			parser->global.logical_maximum);
    288		return -1;
    289	}
    290
    291	offset = report->size;
    292	report->size += parser->global.report_size * parser->global.report_count;
    293
    294	/* Total size check: Allow for possible report index byte */
    295	if (report->size > (HID_MAX_BUFFER_SIZE - 1) << 3) {
    296		hid_err(parser->device, "report is too long\n");
    297		return -1;
    298	}
    299
    300	if (!parser->local.usage_index) /* Ignore padding fields */
    301		return 0;
    302
    303	usages = max_t(unsigned, parser->local.usage_index,
    304				 parser->global.report_count);
    305
    306	field = hid_register_field(report, usages);
    307	if (!field)
    308		return 0;
    309
    310	field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
    311	field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
    312	field->application = application;
    313
    314	for (i = 0; i < usages; i++) {
    315		unsigned j = i;
    316		/* Duplicate the last usage we parsed if we have excess values */
    317		if (i >= parser->local.usage_index)
    318			j = parser->local.usage_index - 1;
    319		field->usage[i].hid = parser->local.usage[j];
    320		field->usage[i].collection_index =
    321			parser->local.collection_index[j];
    322		field->usage[i].usage_index = i;
    323		field->usage[i].resolution_multiplier = 1;
    324	}
    325
    326	field->maxusage = usages;
    327	field->flags = flags;
    328	field->report_offset = offset;
    329	field->report_type = report_type;
    330	field->report_size = parser->global.report_size;
    331	field->report_count = parser->global.report_count;
    332	field->logical_minimum = parser->global.logical_minimum;
    333	field->logical_maximum = parser->global.logical_maximum;
    334	field->physical_minimum = parser->global.physical_minimum;
    335	field->physical_maximum = parser->global.physical_maximum;
    336	field->unit_exponent = parser->global.unit_exponent;
    337	field->unit = parser->global.unit;
    338
    339	return 0;
    340}
    341
    342/*
    343 * Read data value from item.
    344 */
    345
    346static u32 item_udata(struct hid_item *item)
    347{
    348	switch (item->size) {
    349	case 1: return item->data.u8;
    350	case 2: return item->data.u16;
    351	case 4: return item->data.u32;
    352	}
    353	return 0;
    354}
    355
    356static s32 item_sdata(struct hid_item *item)
    357{
    358	switch (item->size) {
    359	case 1: return item->data.s8;
    360	case 2: return item->data.s16;
    361	case 4: return item->data.s32;
    362	}
    363	return 0;
    364}
    365
    366/*
    367 * Process a global item.
    368 */
    369
    370static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
    371{
    372	__s32 raw_value;
    373	switch (item->tag) {
    374	case HID_GLOBAL_ITEM_TAG_PUSH:
    375
    376		if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
    377			hid_err(parser->device, "global environment stack overflow\n");
    378			return -1;
    379		}
    380
    381		memcpy(parser->global_stack + parser->global_stack_ptr++,
    382			&parser->global, sizeof(struct hid_global));
    383		return 0;
    384
    385	case HID_GLOBAL_ITEM_TAG_POP:
    386
    387		if (!parser->global_stack_ptr) {
    388			hid_err(parser->device, "global environment stack underflow\n");
    389			return -1;
    390		}
    391
    392		memcpy(&parser->global, parser->global_stack +
    393			--parser->global_stack_ptr, sizeof(struct hid_global));
    394		return 0;
    395
    396	case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
    397		parser->global.usage_page = item_udata(item);
    398		return 0;
    399
    400	case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
    401		parser->global.logical_minimum = item_sdata(item);
    402		return 0;
    403
    404	case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
    405		if (parser->global.logical_minimum < 0)
    406			parser->global.logical_maximum = item_sdata(item);
    407		else
    408			parser->global.logical_maximum = item_udata(item);
    409		return 0;
    410
    411	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
    412		parser->global.physical_minimum = item_sdata(item);
    413		return 0;
    414
    415	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
    416		if (parser->global.physical_minimum < 0)
    417			parser->global.physical_maximum = item_sdata(item);
    418		else
    419			parser->global.physical_maximum = item_udata(item);
    420		return 0;
    421
    422	case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
    423		/* Many devices provide unit exponent as a two's complement
    424		 * nibble due to the common misunderstanding of HID
    425		 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
    426		 * both this and the standard encoding. */
    427		raw_value = item_sdata(item);
    428		if (!(raw_value & 0xfffffff0))
    429			parser->global.unit_exponent = hid_snto32(raw_value, 4);
    430		else
    431			parser->global.unit_exponent = raw_value;
    432		return 0;
    433
    434	case HID_GLOBAL_ITEM_TAG_UNIT:
    435		parser->global.unit = item_udata(item);
    436		return 0;
    437
    438	case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
    439		parser->global.report_size = item_udata(item);
    440		if (parser->global.report_size > 256) {
    441			hid_err(parser->device, "invalid report_size %d\n",
    442					parser->global.report_size);
    443			return -1;
    444		}
    445		return 0;
    446
    447	case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
    448		parser->global.report_count = item_udata(item);
    449		if (parser->global.report_count > HID_MAX_USAGES) {
    450			hid_err(parser->device, "invalid report_count %d\n",
    451					parser->global.report_count);
    452			return -1;
    453		}
    454		return 0;
    455
    456	case HID_GLOBAL_ITEM_TAG_REPORT_ID:
    457		parser->global.report_id = item_udata(item);
    458		if (parser->global.report_id == 0 ||
    459		    parser->global.report_id >= HID_MAX_IDS) {
    460			hid_err(parser->device, "report_id %u is invalid\n",
    461				parser->global.report_id);
    462			return -1;
    463		}
    464		return 0;
    465
    466	default:
    467		hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
    468		return -1;
    469	}
    470}
    471
    472/*
    473 * Process a local item.
    474 */
    475
    476static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
    477{
    478	__u32 data;
    479	unsigned n;
    480	__u32 count;
    481
    482	data = item_udata(item);
    483
    484	switch (item->tag) {
    485	case HID_LOCAL_ITEM_TAG_DELIMITER:
    486
    487		if (data) {
    488			/*
    489			 * We treat items before the first delimiter
    490			 * as global to all usage sets (branch 0).
    491			 * In the moment we process only these global
    492			 * items and the first delimiter set.
    493			 */
    494			if (parser->local.delimiter_depth != 0) {
    495				hid_err(parser->device, "nested delimiters\n");
    496				return -1;
    497			}
    498			parser->local.delimiter_depth++;
    499			parser->local.delimiter_branch++;
    500		} else {
    501			if (parser->local.delimiter_depth < 1) {
    502				hid_err(parser->device, "bogus close delimiter\n");
    503				return -1;
    504			}
    505			parser->local.delimiter_depth--;
    506		}
    507		return 0;
    508
    509	case HID_LOCAL_ITEM_TAG_USAGE:
    510
    511		if (parser->local.delimiter_branch > 1) {
    512			dbg_hid("alternative usage ignored\n");
    513			return 0;
    514		}
    515
    516		return hid_add_usage(parser, data, item->size);
    517
    518	case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
    519
    520		if (parser->local.delimiter_branch > 1) {
    521			dbg_hid("alternative usage ignored\n");
    522			return 0;
    523		}
    524
    525		parser->local.usage_minimum = data;
    526		return 0;
    527
    528	case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
    529
    530		if (parser->local.delimiter_branch > 1) {
    531			dbg_hid("alternative usage ignored\n");
    532			return 0;
    533		}
    534
    535		count = data - parser->local.usage_minimum;
    536		if (count + parser->local.usage_index >= HID_MAX_USAGES) {
    537			/*
    538			 * We do not warn if the name is not set, we are
    539			 * actually pre-scanning the device.
    540			 */
    541			if (dev_name(&parser->device->dev))
    542				hid_warn(parser->device,
    543					 "ignoring exceeding usage max\n");
    544			data = HID_MAX_USAGES - parser->local.usage_index +
    545				parser->local.usage_minimum - 1;
    546			if (data <= 0) {
    547				hid_err(parser->device,
    548					"no more usage index available\n");
    549				return -1;
    550			}
    551		}
    552
    553		for (n = parser->local.usage_minimum; n <= data; n++)
    554			if (hid_add_usage(parser, n, item->size)) {
    555				dbg_hid("hid_add_usage failed\n");
    556				return -1;
    557			}
    558		return 0;
    559
    560	default:
    561
    562		dbg_hid("unknown local item tag 0x%x\n", item->tag);
    563		return 0;
    564	}
    565	return 0;
    566}
    567
    568/*
    569 * Concatenate Usage Pages into Usages where relevant:
    570 * As per specification, 6.2.2.8: "When the parser encounters a main item it
    571 * concatenates the last declared Usage Page with a Usage to form a complete
    572 * usage value."
    573 */
    574
    575static void hid_concatenate_last_usage_page(struct hid_parser *parser)
    576{
    577	int i;
    578	unsigned int usage_page;
    579	unsigned int current_page;
    580
    581	if (!parser->local.usage_index)
    582		return;
    583
    584	usage_page = parser->global.usage_page;
    585
    586	/*
    587	 * Concatenate usage page again only if last declared Usage Page
    588	 * has not been already used in previous usages concatenation
    589	 */
    590	for (i = parser->local.usage_index - 1; i >= 0; i--) {
    591		if (parser->local.usage_size[i] > 2)
    592			/* Ignore extended usages */
    593			continue;
    594
    595		current_page = parser->local.usage[i] >> 16;
    596		if (current_page == usage_page)
    597			break;
    598
    599		complete_usage(parser, i);
    600	}
    601}
    602
    603/*
    604 * Process a main item.
    605 */
    606
    607static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
    608{
    609	__u32 data;
    610	int ret;
    611
    612	hid_concatenate_last_usage_page(parser);
    613
    614	data = item_udata(item);
    615
    616	switch (item->tag) {
    617	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
    618		ret = open_collection(parser, data & 0xff);
    619		break;
    620	case HID_MAIN_ITEM_TAG_END_COLLECTION:
    621		ret = close_collection(parser);
    622		break;
    623	case HID_MAIN_ITEM_TAG_INPUT:
    624		ret = hid_add_field(parser, HID_INPUT_REPORT, data);
    625		break;
    626	case HID_MAIN_ITEM_TAG_OUTPUT:
    627		ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
    628		break;
    629	case HID_MAIN_ITEM_TAG_FEATURE:
    630		ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
    631		break;
    632	default:
    633		hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
    634		ret = 0;
    635	}
    636
    637	memset(&parser->local, 0, sizeof(parser->local));	/* Reset the local parser environment */
    638
    639	return ret;
    640}
    641
    642/*
    643 * Process a reserved item.
    644 */
    645
    646static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
    647{
    648	dbg_hid("reserved item type, tag 0x%x\n", item->tag);
    649	return 0;
    650}
    651
    652/*
    653 * Free a report and all registered fields. The field->usage and
    654 * field->value table's are allocated behind the field, so we need
    655 * only to free(field) itself.
    656 */
    657
    658static void hid_free_report(struct hid_report *report)
    659{
    660	unsigned n;
    661
    662	kfree(report->field_entries);
    663
    664	for (n = 0; n < report->maxfield; n++)
    665		kfree(report->field[n]);
    666	kfree(report);
    667}
    668
    669/*
    670 * Close report. This function returns the device
    671 * state to the point prior to hid_open_report().
    672 */
    673static void hid_close_report(struct hid_device *device)
    674{
    675	unsigned i, j;
    676
    677	for (i = 0; i < HID_REPORT_TYPES; i++) {
    678		struct hid_report_enum *report_enum = device->report_enum + i;
    679
    680		for (j = 0; j < HID_MAX_IDS; j++) {
    681			struct hid_report *report = report_enum->report_id_hash[j];
    682			if (report)
    683				hid_free_report(report);
    684		}
    685		memset(report_enum, 0, sizeof(*report_enum));
    686		INIT_LIST_HEAD(&report_enum->report_list);
    687	}
    688
    689	kfree(device->rdesc);
    690	device->rdesc = NULL;
    691	device->rsize = 0;
    692
    693	kfree(device->collection);
    694	device->collection = NULL;
    695	device->collection_size = 0;
    696	device->maxcollection = 0;
    697	device->maxapplication = 0;
    698
    699	device->status &= ~HID_STAT_PARSED;
    700}
    701
    702/*
    703 * Free a device structure, all reports, and all fields.
    704 */
    705
    706static void hid_device_release(struct device *dev)
    707{
    708	struct hid_device *hid = to_hid_device(dev);
    709
    710	hid_close_report(hid);
    711	kfree(hid->dev_rdesc);
    712	kfree(hid);
    713}
    714
    715/*
    716 * Fetch a report description item from the data stream. We support long
    717 * items, though they are not used yet.
    718 */
    719
    720static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
    721{
    722	u8 b;
    723
    724	if ((end - start) <= 0)
    725		return NULL;
    726
    727	b = *start++;
    728
    729	item->type = (b >> 2) & 3;
    730	item->tag  = (b >> 4) & 15;
    731
    732	if (item->tag == HID_ITEM_TAG_LONG) {
    733
    734		item->format = HID_ITEM_FORMAT_LONG;
    735
    736		if ((end - start) < 2)
    737			return NULL;
    738
    739		item->size = *start++;
    740		item->tag  = *start++;
    741
    742		if ((end - start) < item->size)
    743			return NULL;
    744
    745		item->data.longdata = start;
    746		start += item->size;
    747		return start;
    748	}
    749
    750	item->format = HID_ITEM_FORMAT_SHORT;
    751	item->size = b & 3;
    752
    753	switch (item->size) {
    754	case 0:
    755		return start;
    756
    757	case 1:
    758		if ((end - start) < 1)
    759			return NULL;
    760		item->data.u8 = *start++;
    761		return start;
    762
    763	case 2:
    764		if ((end - start) < 2)
    765			return NULL;
    766		item->data.u16 = get_unaligned_le16(start);
    767		start = (__u8 *)((__le16 *)start + 1);
    768		return start;
    769
    770	case 3:
    771		item->size++;
    772		if ((end - start) < 4)
    773			return NULL;
    774		item->data.u32 = get_unaligned_le32(start);
    775		start = (__u8 *)((__le32 *)start + 1);
    776		return start;
    777	}
    778
    779	return NULL;
    780}
    781
    782static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
    783{
    784	struct hid_device *hid = parser->device;
    785
    786	if (usage == HID_DG_CONTACTID)
    787		hid->group = HID_GROUP_MULTITOUCH;
    788}
    789
    790static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
    791{
    792	if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
    793	    parser->global.report_size == 8)
    794		parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
    795
    796	if (usage == 0xff0000c6 && parser->global.report_count == 1 &&
    797	    parser->global.report_size == 8)
    798		parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
    799}
    800
    801static void hid_scan_collection(struct hid_parser *parser, unsigned type)
    802{
    803	struct hid_device *hid = parser->device;
    804	int i;
    805
    806	if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
    807	    type == HID_COLLECTION_PHYSICAL)
    808		hid->group = HID_GROUP_SENSOR_HUB;
    809
    810	if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
    811	    hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
    812	    hid->group == HID_GROUP_MULTITOUCH)
    813		hid->group = HID_GROUP_GENERIC;
    814
    815	if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
    816		for (i = 0; i < parser->local.usage_index; i++)
    817			if (parser->local.usage[i] == HID_GD_POINTER)
    818				parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
    819
    820	if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
    821		parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
    822
    823	if ((parser->global.usage_page << 16) == HID_UP_GOOGLEVENDOR)
    824		for (i = 0; i < parser->local.usage_index; i++)
    825			if (parser->local.usage[i] ==
    826					(HID_UP_GOOGLEVENDOR | 0x0001))
    827				parser->device->group =
    828					HID_GROUP_VIVALDI;
    829}
    830
    831static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
    832{
    833	__u32 data;
    834	int i;
    835
    836	hid_concatenate_last_usage_page(parser);
    837
    838	data = item_udata(item);
    839
    840	switch (item->tag) {
    841	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
    842		hid_scan_collection(parser, data & 0xff);
    843		break;
    844	case HID_MAIN_ITEM_TAG_END_COLLECTION:
    845		break;
    846	case HID_MAIN_ITEM_TAG_INPUT:
    847		/* ignore constant inputs, they will be ignored by hid-input */
    848		if (data & HID_MAIN_ITEM_CONSTANT)
    849			break;
    850		for (i = 0; i < parser->local.usage_index; i++)
    851			hid_scan_input_usage(parser, parser->local.usage[i]);
    852		break;
    853	case HID_MAIN_ITEM_TAG_OUTPUT:
    854		break;
    855	case HID_MAIN_ITEM_TAG_FEATURE:
    856		for (i = 0; i < parser->local.usage_index; i++)
    857			hid_scan_feature_usage(parser, parser->local.usage[i]);
    858		break;
    859	}
    860
    861	/* Reset the local parser environment */
    862	memset(&parser->local, 0, sizeof(parser->local));
    863
    864	return 0;
    865}
    866
    867/*
    868 * Scan a report descriptor before the device is added to the bus.
    869 * Sets device groups and other properties that determine what driver
    870 * to load.
    871 */
    872static int hid_scan_report(struct hid_device *hid)
    873{
    874	struct hid_parser *parser;
    875	struct hid_item item;
    876	__u8 *start = hid->dev_rdesc;
    877	__u8 *end = start + hid->dev_rsize;
    878	static int (*dispatch_type[])(struct hid_parser *parser,
    879				      struct hid_item *item) = {
    880		hid_scan_main,
    881		hid_parser_global,
    882		hid_parser_local,
    883		hid_parser_reserved
    884	};
    885
    886	parser = vzalloc(sizeof(struct hid_parser));
    887	if (!parser)
    888		return -ENOMEM;
    889
    890	parser->device = hid;
    891	hid->group = HID_GROUP_GENERIC;
    892
    893	/*
    894	 * The parsing is simpler than the one in hid_open_report() as we should
    895	 * be robust against hid errors. Those errors will be raised by
    896	 * hid_open_report() anyway.
    897	 */
    898	while ((start = fetch_item(start, end, &item)) != NULL)
    899		dispatch_type[item.type](parser, &item);
    900
    901	/*
    902	 * Handle special flags set during scanning.
    903	 */
    904	if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
    905	    (hid->group == HID_GROUP_MULTITOUCH))
    906		hid->group = HID_GROUP_MULTITOUCH_WIN_8;
    907
    908	/*
    909	 * Vendor specific handlings
    910	 */
    911	switch (hid->vendor) {
    912	case USB_VENDOR_ID_WACOM:
    913		hid->group = HID_GROUP_WACOM;
    914		break;
    915	case USB_VENDOR_ID_SYNAPTICS:
    916		if (hid->group == HID_GROUP_GENERIC)
    917			if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
    918			    && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
    919				/*
    920				 * hid-rmi should take care of them,
    921				 * not hid-generic
    922				 */
    923				hid->group = HID_GROUP_RMI;
    924		break;
    925	}
    926
    927	kfree(parser->collection_stack);
    928	vfree(parser);
    929	return 0;
    930}
    931
    932/**
    933 * hid_parse_report - parse device report
    934 *
    935 * @hid: hid device
    936 * @start: report start
    937 * @size: report size
    938 *
    939 * Allocate the device report as read by the bus driver. This function should
    940 * only be called from parse() in ll drivers.
    941 */
    942int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
    943{
    944	hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
    945	if (!hid->dev_rdesc)
    946		return -ENOMEM;
    947	hid->dev_rsize = size;
    948	return 0;
    949}
    950EXPORT_SYMBOL_GPL(hid_parse_report);
    951
    952static const char * const hid_report_names[] = {
    953	"HID_INPUT_REPORT",
    954	"HID_OUTPUT_REPORT",
    955	"HID_FEATURE_REPORT",
    956};
    957/**
    958 * hid_validate_values - validate existing device report's value indexes
    959 *
    960 * @hid: hid device
    961 * @type: which report type to examine
    962 * @id: which report ID to examine (0 for first)
    963 * @field_index: which report field to examine
    964 * @report_counts: expected number of values
    965 *
    966 * Validate the number of values in a given field of a given report, after
    967 * parsing.
    968 */
    969struct hid_report *hid_validate_values(struct hid_device *hid,
    970				       unsigned int type, unsigned int id,
    971				       unsigned int field_index,
    972				       unsigned int report_counts)
    973{
    974	struct hid_report *report;
    975
    976	if (type > HID_FEATURE_REPORT) {
    977		hid_err(hid, "invalid HID report type %u\n", type);
    978		return NULL;
    979	}
    980
    981	if (id >= HID_MAX_IDS) {
    982		hid_err(hid, "invalid HID report id %u\n", id);
    983		return NULL;
    984	}
    985
    986	/*
    987	 * Explicitly not using hid_get_report() here since it depends on
    988	 * ->numbered being checked, which may not always be the case when
    989	 * drivers go to access report values.
    990	 */
    991	if (id == 0) {
    992		/*
    993		 * Validating on id 0 means we should examine the first
    994		 * report in the list.
    995		 */
    996		report = list_entry(
    997				hid->report_enum[type].report_list.next,
    998				struct hid_report, list);
    999	} else {
   1000		report = hid->report_enum[type].report_id_hash[id];
   1001	}
   1002	if (!report) {
   1003		hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
   1004		return NULL;
   1005	}
   1006	if (report->maxfield <= field_index) {
   1007		hid_err(hid, "not enough fields in %s %u\n",
   1008			hid_report_names[type], id);
   1009		return NULL;
   1010	}
   1011	if (report->field[field_index]->report_count < report_counts) {
   1012		hid_err(hid, "not enough values in %s %u field %u\n",
   1013			hid_report_names[type], id, field_index);
   1014		return NULL;
   1015	}
   1016	return report;
   1017}
   1018EXPORT_SYMBOL_GPL(hid_validate_values);
   1019
   1020static int hid_calculate_multiplier(struct hid_device *hid,
   1021				     struct hid_field *multiplier)
   1022{
   1023	int m;
   1024	__s32 v = *multiplier->value;
   1025	__s32 lmin = multiplier->logical_minimum;
   1026	__s32 lmax = multiplier->logical_maximum;
   1027	__s32 pmin = multiplier->physical_minimum;
   1028	__s32 pmax = multiplier->physical_maximum;
   1029
   1030	/*
   1031	 * "Because OS implementations will generally divide the control's
   1032	 * reported count by the Effective Resolution Multiplier, designers
   1033	 * should take care not to establish a potential Effective
   1034	 * Resolution Multiplier of zero."
   1035	 * HID Usage Table, v1.12, Section 4.3.1, p31
   1036	 */
   1037	if (lmax - lmin == 0)
   1038		return 1;
   1039	/*
   1040	 * Handling the unit exponent is left as an exercise to whoever
   1041	 * finds a device where that exponent is not 0.
   1042	 */
   1043	m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin);
   1044	if (unlikely(multiplier->unit_exponent != 0)) {
   1045		hid_warn(hid,
   1046			 "unsupported Resolution Multiplier unit exponent %d\n",
   1047			 multiplier->unit_exponent);
   1048	}
   1049
   1050	/* There are no devices with an effective multiplier > 255 */
   1051	if (unlikely(m == 0 || m > 255 || m < -255)) {
   1052		hid_warn(hid, "unsupported Resolution Multiplier %d\n", m);
   1053		m = 1;
   1054	}
   1055
   1056	return m;
   1057}
   1058
   1059static void hid_apply_multiplier_to_field(struct hid_device *hid,
   1060					  struct hid_field *field,
   1061					  struct hid_collection *multiplier_collection,
   1062					  int effective_multiplier)
   1063{
   1064	struct hid_collection *collection;
   1065	struct hid_usage *usage;
   1066	int i;
   1067
   1068	/*
   1069	 * If multiplier_collection is NULL, the multiplier applies
   1070	 * to all fields in the report.
   1071	 * Otherwise, it is the Logical Collection the multiplier applies to
   1072	 * but our field may be in a subcollection of that collection.
   1073	 */
   1074	for (i = 0; i < field->maxusage; i++) {
   1075		usage = &field->usage[i];
   1076
   1077		collection = &hid->collection[usage->collection_index];
   1078		while (collection->parent_idx != -1 &&
   1079		       collection != multiplier_collection)
   1080			collection = &hid->collection[collection->parent_idx];
   1081
   1082		if (collection->parent_idx != -1 ||
   1083		    multiplier_collection == NULL)
   1084			usage->resolution_multiplier = effective_multiplier;
   1085
   1086	}
   1087}
   1088
   1089static void hid_apply_multiplier(struct hid_device *hid,
   1090				 struct hid_field *multiplier)
   1091{
   1092	struct hid_report_enum *rep_enum;
   1093	struct hid_report *rep;
   1094	struct hid_field *field;
   1095	struct hid_collection *multiplier_collection;
   1096	int effective_multiplier;
   1097	int i;
   1098
   1099	/*
   1100	 * "The Resolution Multiplier control must be contained in the same
   1101	 * Logical Collection as the control(s) to which it is to be applied.
   1102	 * If no Resolution Multiplier is defined, then the Resolution
   1103	 * Multiplier defaults to 1.  If more than one control exists in a
   1104	 * Logical Collection, the Resolution Multiplier is associated with
   1105	 * all controls in the collection. If no Logical Collection is
   1106	 * defined, the Resolution Multiplier is associated with all
   1107	 * controls in the report."
   1108	 * HID Usage Table, v1.12, Section 4.3.1, p30
   1109	 *
   1110	 * Thus, search from the current collection upwards until we find a
   1111	 * logical collection. Then search all fields for that same parent
   1112	 * collection. Those are the fields the multiplier applies to.
   1113	 *
   1114	 * If we have more than one multiplier, it will overwrite the
   1115	 * applicable fields later.
   1116	 */
   1117	multiplier_collection = &hid->collection[multiplier->usage->collection_index];
   1118	while (multiplier_collection->parent_idx != -1 &&
   1119	       multiplier_collection->type != HID_COLLECTION_LOGICAL)
   1120		multiplier_collection = &hid->collection[multiplier_collection->parent_idx];
   1121
   1122	effective_multiplier = hid_calculate_multiplier(hid, multiplier);
   1123
   1124	rep_enum = &hid->report_enum[HID_INPUT_REPORT];
   1125	list_for_each_entry(rep, &rep_enum->report_list, list) {
   1126		for (i = 0; i < rep->maxfield; i++) {
   1127			field = rep->field[i];
   1128			hid_apply_multiplier_to_field(hid, field,
   1129						      multiplier_collection,
   1130						      effective_multiplier);
   1131		}
   1132	}
   1133}
   1134
   1135/*
   1136 * hid_setup_resolution_multiplier - set up all resolution multipliers
   1137 *
   1138 * @device: hid device
   1139 *
   1140 * Search for all Resolution Multiplier Feature Reports and apply their
   1141 * value to all matching Input items. This only updates the internal struct
   1142 * fields.
   1143 *
   1144 * The Resolution Multiplier is applied by the hardware. If the multiplier
   1145 * is anything other than 1, the hardware will send pre-multiplied events
   1146 * so that the same physical interaction generates an accumulated
   1147 *	accumulated_value = value * * multiplier
   1148 * This may be achieved by sending
   1149 * - "value * multiplier" for each event, or
   1150 * - "value" but "multiplier" times as frequently, or
   1151 * - a combination of the above
   1152 * The only guarantee is that the same physical interaction always generates
   1153 * an accumulated 'value * multiplier'.
   1154 *
   1155 * This function must be called before any event processing and after
   1156 * any SetRequest to the Resolution Multiplier.
   1157 */
   1158void hid_setup_resolution_multiplier(struct hid_device *hid)
   1159{
   1160	struct hid_report_enum *rep_enum;
   1161	struct hid_report *rep;
   1162	struct hid_usage *usage;
   1163	int i, j;
   1164
   1165	rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
   1166	list_for_each_entry(rep, &rep_enum->report_list, list) {
   1167		for (i = 0; i < rep->maxfield; i++) {
   1168			/* Ignore if report count is out of bounds. */
   1169			if (rep->field[i]->report_count < 1)
   1170				continue;
   1171
   1172			for (j = 0; j < rep->field[i]->maxusage; j++) {
   1173				usage = &rep->field[i]->usage[j];
   1174				if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER)
   1175					hid_apply_multiplier(hid,
   1176							     rep->field[i]);
   1177			}
   1178		}
   1179	}
   1180}
   1181EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier);
   1182
   1183/**
   1184 * hid_open_report - open a driver-specific device report
   1185 *
   1186 * @device: hid device
   1187 *
   1188 * Parse a report description into a hid_device structure. Reports are
   1189 * enumerated, fields are attached to these reports.
   1190 * 0 returned on success, otherwise nonzero error value.
   1191 *
   1192 * This function (or the equivalent hid_parse() macro) should only be
   1193 * called from probe() in drivers, before starting the device.
   1194 */
   1195int hid_open_report(struct hid_device *device)
   1196{
   1197	struct hid_parser *parser;
   1198	struct hid_item item;
   1199	unsigned int size;
   1200	__u8 *start;
   1201	__u8 *buf;
   1202	__u8 *end;
   1203	__u8 *next;
   1204	int ret;
   1205	static int (*dispatch_type[])(struct hid_parser *parser,
   1206				      struct hid_item *item) = {
   1207		hid_parser_main,
   1208		hid_parser_global,
   1209		hid_parser_local,
   1210		hid_parser_reserved
   1211	};
   1212
   1213	if (WARN_ON(device->status & HID_STAT_PARSED))
   1214		return -EBUSY;
   1215
   1216	start = device->dev_rdesc;
   1217	if (WARN_ON(!start))
   1218		return -ENODEV;
   1219	size = device->dev_rsize;
   1220
   1221	buf = kmemdup(start, size, GFP_KERNEL);
   1222	if (buf == NULL)
   1223		return -ENOMEM;
   1224
   1225	if (device->driver->report_fixup)
   1226		start = device->driver->report_fixup(device, buf, &size);
   1227	else
   1228		start = buf;
   1229
   1230	start = kmemdup(start, size, GFP_KERNEL);
   1231	kfree(buf);
   1232	if (start == NULL)
   1233		return -ENOMEM;
   1234
   1235	device->rdesc = start;
   1236	device->rsize = size;
   1237
   1238	parser = vzalloc(sizeof(struct hid_parser));
   1239	if (!parser) {
   1240		ret = -ENOMEM;
   1241		goto alloc_err;
   1242	}
   1243
   1244	parser->device = device;
   1245
   1246	end = start + size;
   1247
   1248	device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
   1249				     sizeof(struct hid_collection), GFP_KERNEL);
   1250	if (!device->collection) {
   1251		ret = -ENOMEM;
   1252		goto err;
   1253	}
   1254	device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
   1255
   1256	ret = -EINVAL;
   1257	while ((next = fetch_item(start, end, &item)) != NULL) {
   1258		start = next;
   1259
   1260		if (item.format != HID_ITEM_FORMAT_SHORT) {
   1261			hid_err(device, "unexpected long global item\n");
   1262			goto err;
   1263		}
   1264
   1265		if (dispatch_type[item.type](parser, &item)) {
   1266			hid_err(device, "item %u %u %u %u parsing failed\n",
   1267				item.format, (unsigned)item.size,
   1268				(unsigned)item.type, (unsigned)item.tag);
   1269			goto err;
   1270		}
   1271
   1272		if (start == end) {
   1273			if (parser->collection_stack_ptr) {
   1274				hid_err(device, "unbalanced collection at end of report description\n");
   1275				goto err;
   1276			}
   1277			if (parser->local.delimiter_depth) {
   1278				hid_err(device, "unbalanced delimiter at end of report description\n");
   1279				goto err;
   1280			}
   1281
   1282			/*
   1283			 * fetch initial values in case the device's
   1284			 * default multiplier isn't the recommended 1
   1285			 */
   1286			hid_setup_resolution_multiplier(device);
   1287
   1288			kfree(parser->collection_stack);
   1289			vfree(parser);
   1290			device->status |= HID_STAT_PARSED;
   1291
   1292			return 0;
   1293		}
   1294	}
   1295
   1296	hid_err(device, "item fetching failed at offset %u/%u\n",
   1297		size - (unsigned int)(end - start), size);
   1298err:
   1299	kfree(parser->collection_stack);
   1300alloc_err:
   1301	vfree(parser);
   1302	hid_close_report(device);
   1303	return ret;
   1304}
   1305EXPORT_SYMBOL_GPL(hid_open_report);
   1306
   1307/*
   1308 * Convert a signed n-bit integer to signed 32-bit integer. Common
   1309 * cases are done through the compiler, the screwed things has to be
   1310 * done by hand.
   1311 */
   1312
   1313static s32 snto32(__u32 value, unsigned n)
   1314{
   1315	if (!value || !n)
   1316		return 0;
   1317
   1318	switch (n) {
   1319	case 8:  return ((__s8)value);
   1320	case 16: return ((__s16)value);
   1321	case 32: return ((__s32)value);
   1322	}
   1323	return value & (1 << (n - 1)) ? value | (~0U << n) : value;
   1324}
   1325
   1326s32 hid_snto32(__u32 value, unsigned n)
   1327{
   1328	return snto32(value, n);
   1329}
   1330EXPORT_SYMBOL_GPL(hid_snto32);
   1331
   1332/*
   1333 * Convert a signed 32-bit integer to a signed n-bit integer.
   1334 */
   1335
   1336static u32 s32ton(__s32 value, unsigned n)
   1337{
   1338	s32 a = value >> (n - 1);
   1339	if (a && a != -1)
   1340		return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
   1341	return value & ((1 << n) - 1);
   1342}
   1343
   1344/*
   1345 * Extract/implement a data field from/to a little endian report (bit array).
   1346 *
   1347 * Code sort-of follows HID spec:
   1348 *     http://www.usb.org/developers/hidpage/HID1_11.pdf
   1349 *
   1350 * While the USB HID spec allows unlimited length bit fields in "report
   1351 * descriptors", most devices never use more than 16 bits.
   1352 * One model of UPS is claimed to report "LINEV" as a 32-bit field.
   1353 * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
   1354 */
   1355
   1356static u32 __extract(u8 *report, unsigned offset, int n)
   1357{
   1358	unsigned int idx = offset / 8;
   1359	unsigned int bit_nr = 0;
   1360	unsigned int bit_shift = offset % 8;
   1361	int bits_to_copy = 8 - bit_shift;
   1362	u32 value = 0;
   1363	u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
   1364
   1365	while (n > 0) {
   1366		value |= ((u32)report[idx] >> bit_shift) << bit_nr;
   1367		n -= bits_to_copy;
   1368		bit_nr += bits_to_copy;
   1369		bits_to_copy = 8;
   1370		bit_shift = 0;
   1371		idx++;
   1372	}
   1373
   1374	return value & mask;
   1375}
   1376
   1377u32 hid_field_extract(const struct hid_device *hid, u8 *report,
   1378			unsigned offset, unsigned n)
   1379{
   1380	if (n > 32) {
   1381		hid_warn_once(hid, "%s() called with n (%d) > 32! (%s)\n",
   1382			      __func__, n, current->comm);
   1383		n = 32;
   1384	}
   1385
   1386	return __extract(report, offset, n);
   1387}
   1388EXPORT_SYMBOL_GPL(hid_field_extract);
   1389
   1390/*
   1391 * "implement" : set bits in a little endian bit stream.
   1392 * Same concepts as "extract" (see comments above).
   1393 * The data mangled in the bit stream remains in little endian
   1394 * order the whole time. It make more sense to talk about
   1395 * endianness of register values by considering a register
   1396 * a "cached" copy of the little endian bit stream.
   1397 */
   1398
   1399static void __implement(u8 *report, unsigned offset, int n, u32 value)
   1400{
   1401	unsigned int idx = offset / 8;
   1402	unsigned int bit_shift = offset % 8;
   1403	int bits_to_set = 8 - bit_shift;
   1404
   1405	while (n - bits_to_set >= 0) {
   1406		report[idx] &= ~(0xff << bit_shift);
   1407		report[idx] |= value << bit_shift;
   1408		value >>= bits_to_set;
   1409		n -= bits_to_set;
   1410		bits_to_set = 8;
   1411		bit_shift = 0;
   1412		idx++;
   1413	}
   1414
   1415	/* last nibble */
   1416	if (n) {
   1417		u8 bit_mask = ((1U << n) - 1);
   1418		report[idx] &= ~(bit_mask << bit_shift);
   1419		report[idx] |= value << bit_shift;
   1420	}
   1421}
   1422
   1423static void implement(const struct hid_device *hid, u8 *report,
   1424		      unsigned offset, unsigned n, u32 value)
   1425{
   1426	if (unlikely(n > 32)) {
   1427		hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
   1428			 __func__, n, current->comm);
   1429		n = 32;
   1430	} else if (n < 32) {
   1431		u32 m = (1U << n) - 1;
   1432
   1433		if (unlikely(value > m)) {
   1434			hid_warn(hid,
   1435				 "%s() called with too large value %d (n: %d)! (%s)\n",
   1436				 __func__, value, n, current->comm);
   1437			WARN_ON(1);
   1438			value &= m;
   1439		}
   1440	}
   1441
   1442	__implement(report, offset, n, value);
   1443}
   1444
   1445/*
   1446 * Search an array for a value.
   1447 */
   1448
   1449static int search(__s32 *array, __s32 value, unsigned n)
   1450{
   1451	while (n--) {
   1452		if (*array++ == value)
   1453			return 0;
   1454	}
   1455	return -1;
   1456}
   1457
   1458/**
   1459 * hid_match_report - check if driver's raw_event should be called
   1460 *
   1461 * @hid: hid device
   1462 * @report: hid report to match against
   1463 *
   1464 * compare hid->driver->report_table->report_type to report->type
   1465 */
   1466static int hid_match_report(struct hid_device *hid, struct hid_report *report)
   1467{
   1468	const struct hid_report_id *id = hid->driver->report_table;
   1469
   1470	if (!id) /* NULL means all */
   1471		return 1;
   1472
   1473	for (; id->report_type != HID_TERMINATOR; id++)
   1474		if (id->report_type == HID_ANY_ID ||
   1475				id->report_type == report->type)
   1476			return 1;
   1477	return 0;
   1478}
   1479
   1480/**
   1481 * hid_match_usage - check if driver's event should be called
   1482 *
   1483 * @hid: hid device
   1484 * @usage: usage to match against
   1485 *
   1486 * compare hid->driver->usage_table->usage_{type,code} to
   1487 * usage->usage_{type,code}
   1488 */
   1489static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
   1490{
   1491	const struct hid_usage_id *id = hid->driver->usage_table;
   1492
   1493	if (!id) /* NULL means all */
   1494		return 1;
   1495
   1496	for (; id->usage_type != HID_ANY_ID - 1; id++)
   1497		if ((id->usage_hid == HID_ANY_ID ||
   1498				id->usage_hid == usage->hid) &&
   1499				(id->usage_type == HID_ANY_ID ||
   1500				id->usage_type == usage->type) &&
   1501				(id->usage_code == HID_ANY_ID ||
   1502				 id->usage_code == usage->code))
   1503			return 1;
   1504	return 0;
   1505}
   1506
   1507static void hid_process_event(struct hid_device *hid, struct hid_field *field,
   1508		struct hid_usage *usage, __s32 value, int interrupt)
   1509{
   1510	struct hid_driver *hdrv = hid->driver;
   1511	int ret;
   1512
   1513	if (!list_empty(&hid->debug_list))
   1514		hid_dump_input(hid, usage, value);
   1515
   1516	if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
   1517		ret = hdrv->event(hid, field, usage, value);
   1518		if (ret != 0) {
   1519			if (ret < 0)
   1520				hid_err(hid, "%s's event failed with %d\n",
   1521						hdrv->name, ret);
   1522			return;
   1523		}
   1524	}
   1525
   1526	if (hid->claimed & HID_CLAIMED_INPUT)
   1527		hidinput_hid_event(hid, field, usage, value);
   1528	if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
   1529		hid->hiddev_hid_event(hid, field, usage, value);
   1530}
   1531
   1532/*
   1533 * Checks if the given value is valid within this field
   1534 */
   1535static inline int hid_array_value_is_valid(struct hid_field *field,
   1536					   __s32 value)
   1537{
   1538	__s32 min = field->logical_minimum;
   1539
   1540	/*
   1541	 * Value needs to be between logical min and max, and
   1542	 * (value - min) is used as an index in the usage array.
   1543	 * This array is of size field->maxusage
   1544	 */
   1545	return value >= min &&
   1546	       value <= field->logical_maximum &&
   1547	       value - min < field->maxusage;
   1548}
   1549
   1550/*
   1551 * Fetch the field from the data. The field content is stored for next
   1552 * report processing (we do differential reporting to the layer).
   1553 */
   1554static void hid_input_fetch_field(struct hid_device *hid,
   1555				  struct hid_field *field,
   1556				  __u8 *data)
   1557{
   1558	unsigned n;
   1559	unsigned count = field->report_count;
   1560	unsigned offset = field->report_offset;
   1561	unsigned size = field->report_size;
   1562	__s32 min = field->logical_minimum;
   1563	__s32 *value;
   1564
   1565	value = field->new_value;
   1566	memset(value, 0, count * sizeof(__s32));
   1567	field->ignored = false;
   1568
   1569	for (n = 0; n < count; n++) {
   1570
   1571		value[n] = min < 0 ?
   1572			snto32(hid_field_extract(hid, data, offset + n * size,
   1573			       size), size) :
   1574			hid_field_extract(hid, data, offset + n * size, size);
   1575
   1576		/* Ignore report if ErrorRollOver */
   1577		if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
   1578		    hid_array_value_is_valid(field, value[n]) &&
   1579		    field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1) {
   1580			field->ignored = true;
   1581			return;
   1582		}
   1583	}
   1584}
   1585
   1586/*
   1587 * Process a received variable field.
   1588 */
   1589
   1590static void hid_input_var_field(struct hid_device *hid,
   1591				struct hid_field *field,
   1592				int interrupt)
   1593{
   1594	unsigned int count = field->report_count;
   1595	__s32 *value = field->new_value;
   1596	unsigned int n;
   1597
   1598	for (n = 0; n < count; n++)
   1599		hid_process_event(hid,
   1600				  field,
   1601				  &field->usage[n],
   1602				  value[n],
   1603				  interrupt);
   1604
   1605	memcpy(field->value, value, count * sizeof(__s32));
   1606}
   1607
   1608/*
   1609 * Process a received array field. The field content is stored for
   1610 * next report processing (we do differential reporting to the layer).
   1611 */
   1612
   1613static void hid_input_array_field(struct hid_device *hid,
   1614				  struct hid_field *field,
   1615				  int interrupt)
   1616{
   1617	unsigned int n;
   1618	unsigned int count = field->report_count;
   1619	__s32 min = field->logical_minimum;
   1620	__s32 *value;
   1621
   1622	value = field->new_value;
   1623
   1624	/* ErrorRollOver */
   1625	if (field->ignored)
   1626		return;
   1627
   1628	for (n = 0; n < count; n++) {
   1629		if (hid_array_value_is_valid(field, field->value[n]) &&
   1630		    search(value, field->value[n], count))
   1631			hid_process_event(hid,
   1632					  field,
   1633					  &field->usage[field->value[n] - min],
   1634					  0,
   1635					  interrupt);
   1636
   1637		if (hid_array_value_is_valid(field, value[n]) &&
   1638		    search(field->value, value[n], count))
   1639			hid_process_event(hid,
   1640					  field,
   1641					  &field->usage[value[n] - min],
   1642					  1,
   1643					  interrupt);
   1644	}
   1645
   1646	memcpy(field->value, value, count * sizeof(__s32));
   1647}
   1648
   1649/*
   1650 * Analyse a received report, and fetch the data from it. The field
   1651 * content is stored for next report processing (we do differential
   1652 * reporting to the layer).
   1653 */
   1654static void hid_process_report(struct hid_device *hid,
   1655			       struct hid_report *report,
   1656			       __u8 *data,
   1657			       int interrupt)
   1658{
   1659	unsigned int a;
   1660	struct hid_field_entry *entry;
   1661	struct hid_field *field;
   1662
   1663	/* first retrieve all incoming values in data */
   1664	for (a = 0; a < report->maxfield; a++)
   1665		hid_input_fetch_field(hid, field = report->field[a], data);
   1666
   1667	if (!list_empty(&report->field_entry_list)) {
   1668		/* INPUT_REPORT, we have a priority list of fields */
   1669		list_for_each_entry(entry,
   1670				    &report->field_entry_list,
   1671				    list) {
   1672			field = entry->field;
   1673
   1674			if (field->flags & HID_MAIN_ITEM_VARIABLE)
   1675				hid_process_event(hid,
   1676						  field,
   1677						  &field->usage[entry->index],
   1678						  field->new_value[entry->index],
   1679						  interrupt);
   1680			else
   1681				hid_input_array_field(hid, field, interrupt);
   1682		}
   1683
   1684		/* we need to do the memcpy at the end for var items */
   1685		for (a = 0; a < report->maxfield; a++) {
   1686			field = report->field[a];
   1687
   1688			if (field->flags & HID_MAIN_ITEM_VARIABLE)
   1689				memcpy(field->value, field->new_value,
   1690				       field->report_count * sizeof(__s32));
   1691		}
   1692	} else {
   1693		/* FEATURE_REPORT, regular processing */
   1694		for (a = 0; a < report->maxfield; a++) {
   1695			field = report->field[a];
   1696
   1697			if (field->flags & HID_MAIN_ITEM_VARIABLE)
   1698				hid_input_var_field(hid, field, interrupt);
   1699			else
   1700				hid_input_array_field(hid, field, interrupt);
   1701		}
   1702	}
   1703}
   1704
   1705/*
   1706 * Insert a given usage_index in a field in the list
   1707 * of processed usages in the report.
   1708 *
   1709 * The elements of lower priority score are processed
   1710 * first.
   1711 */
   1712static void __hid_insert_field_entry(struct hid_device *hid,
   1713				     struct hid_report *report,
   1714				     struct hid_field_entry *entry,
   1715				     struct hid_field *field,
   1716				     unsigned int usage_index)
   1717{
   1718	struct hid_field_entry *next;
   1719
   1720	entry->field = field;
   1721	entry->index = usage_index;
   1722	entry->priority = field->usages_priorities[usage_index];
   1723
   1724	/* insert the element at the correct position */
   1725	list_for_each_entry(next,
   1726			    &report->field_entry_list,
   1727			    list) {
   1728		/*
   1729		 * the priority of our element is strictly higher
   1730		 * than the next one, insert it before
   1731		 */
   1732		if (entry->priority > next->priority) {
   1733			list_add_tail(&entry->list, &next->list);
   1734			return;
   1735		}
   1736	}
   1737
   1738	/* lowest priority score: insert at the end */
   1739	list_add_tail(&entry->list, &report->field_entry_list);
   1740}
   1741
   1742static void hid_report_process_ordering(struct hid_device *hid,
   1743					struct hid_report *report)
   1744{
   1745	struct hid_field *field;
   1746	struct hid_field_entry *entries;
   1747	unsigned int a, u, usages;
   1748	unsigned int count = 0;
   1749
   1750	/* count the number of individual fields in the report */
   1751	for (a = 0; a < report->maxfield; a++) {
   1752		field = report->field[a];
   1753
   1754		if (field->flags & HID_MAIN_ITEM_VARIABLE)
   1755			count += field->report_count;
   1756		else
   1757			count++;
   1758	}
   1759
   1760	/* allocate the memory to process the fields */
   1761	entries = kcalloc(count, sizeof(*entries), GFP_KERNEL);
   1762	if (!entries)
   1763		return;
   1764
   1765	report->field_entries = entries;
   1766
   1767	/*
   1768	 * walk through all fields in the report and
   1769	 * store them by priority order in report->field_entry_list
   1770	 *
   1771	 * - Var elements are individualized (field + usage_index)
   1772	 * - Arrays are taken as one, we can not chose an order for them
   1773	 */
   1774	usages = 0;
   1775	for (a = 0; a < report->maxfield; a++) {
   1776		field = report->field[a];
   1777
   1778		if (field->flags & HID_MAIN_ITEM_VARIABLE) {
   1779			for (u = 0; u < field->report_count; u++) {
   1780				__hid_insert_field_entry(hid, report,
   1781							 &entries[usages],
   1782							 field, u);
   1783				usages++;
   1784			}
   1785		} else {
   1786			__hid_insert_field_entry(hid, report, &entries[usages],
   1787						 field, 0);
   1788			usages++;
   1789		}
   1790	}
   1791}
   1792
   1793static void hid_process_ordering(struct hid_device *hid)
   1794{
   1795	struct hid_report *report;
   1796	struct hid_report_enum *report_enum = &hid->report_enum[HID_INPUT_REPORT];
   1797
   1798	list_for_each_entry(report, &report_enum->report_list, list)
   1799		hid_report_process_ordering(hid, report);
   1800}
   1801
   1802/*
   1803 * Output the field into the report.
   1804 */
   1805
   1806static void hid_output_field(const struct hid_device *hid,
   1807			     struct hid_field *field, __u8 *data)
   1808{
   1809	unsigned count = field->report_count;
   1810	unsigned offset = field->report_offset;
   1811	unsigned size = field->report_size;
   1812	unsigned n;
   1813
   1814	for (n = 0; n < count; n++) {
   1815		if (field->logical_minimum < 0)	/* signed values */
   1816			implement(hid, data, offset + n * size, size,
   1817				  s32ton(field->value[n], size));
   1818		else				/* unsigned values */
   1819			implement(hid, data, offset + n * size, size,
   1820				  field->value[n]);
   1821	}
   1822}
   1823
   1824/*
   1825 * Compute the size of a report.
   1826 */
   1827static size_t hid_compute_report_size(struct hid_report *report)
   1828{
   1829	if (report->size)
   1830		return ((report->size - 1) >> 3) + 1;
   1831
   1832	return 0;
   1833}
   1834
   1835/*
   1836 * Create a report. 'data' has to be allocated using
   1837 * hid_alloc_report_buf() so that it has proper size.
   1838 */
   1839
   1840void hid_output_report(struct hid_report *report, __u8 *data)
   1841{
   1842	unsigned n;
   1843
   1844	if (report->id > 0)
   1845		*data++ = report->id;
   1846
   1847	memset(data, 0, hid_compute_report_size(report));
   1848	for (n = 0; n < report->maxfield; n++)
   1849		hid_output_field(report->device, report->field[n], data);
   1850}
   1851EXPORT_SYMBOL_GPL(hid_output_report);
   1852
   1853/*
   1854 * Allocator for buffer that is going to be passed to hid_output_report()
   1855 */
   1856u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
   1857{
   1858	/*
   1859	 * 7 extra bytes are necessary to achieve proper functionality
   1860	 * of implement() working on 8 byte chunks
   1861	 */
   1862
   1863	u32 len = hid_report_len(report) + 7;
   1864
   1865	return kmalloc(len, flags);
   1866}
   1867EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
   1868
   1869/*
   1870 * Set a field value. The report this field belongs to has to be
   1871 * created and transferred to the device, to set this value in the
   1872 * device.
   1873 */
   1874
   1875int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
   1876{
   1877	unsigned size;
   1878
   1879	if (!field)
   1880		return -1;
   1881
   1882	size = field->report_size;
   1883
   1884	hid_dump_input(field->report->device, field->usage + offset, value);
   1885
   1886	if (offset >= field->report_count) {
   1887		hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
   1888				offset, field->report_count);
   1889		return -1;
   1890	}
   1891	if (field->logical_minimum < 0) {
   1892		if (value != snto32(s32ton(value, size), size)) {
   1893			hid_err(field->report->device, "value %d is out of range\n", value);
   1894			return -1;
   1895		}
   1896	}
   1897	field->value[offset] = value;
   1898	return 0;
   1899}
   1900EXPORT_SYMBOL_GPL(hid_set_field);
   1901
   1902static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
   1903		const u8 *data)
   1904{
   1905	struct hid_report *report;
   1906	unsigned int n = 0;	/* Normally report number is 0 */
   1907
   1908	/* Device uses numbered reports, data[0] is report number */
   1909	if (report_enum->numbered)
   1910		n = *data;
   1911
   1912	report = report_enum->report_id_hash[n];
   1913	if (report == NULL)
   1914		dbg_hid("undefined report_id %u received\n", n);
   1915
   1916	return report;
   1917}
   1918
   1919/*
   1920 * Implement a generic .request() callback, using .raw_request()
   1921 * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
   1922 */
   1923int __hid_request(struct hid_device *hid, struct hid_report *report,
   1924		int reqtype)
   1925{
   1926	char *buf;
   1927	int ret;
   1928	u32 len;
   1929
   1930	buf = hid_alloc_report_buf(report, GFP_KERNEL);
   1931	if (!buf)
   1932		return -ENOMEM;
   1933
   1934	len = hid_report_len(report);
   1935
   1936	if (reqtype == HID_REQ_SET_REPORT)
   1937		hid_output_report(report, buf);
   1938
   1939	ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
   1940					  report->type, reqtype);
   1941	if (ret < 0) {
   1942		dbg_hid("unable to complete request: %d\n", ret);
   1943		goto out;
   1944	}
   1945
   1946	if (reqtype == HID_REQ_GET_REPORT)
   1947		hid_input_report(hid, report->type, buf, ret, 0);
   1948
   1949	ret = 0;
   1950
   1951out:
   1952	kfree(buf);
   1953	return ret;
   1954}
   1955EXPORT_SYMBOL_GPL(__hid_request);
   1956
   1957int hid_report_raw_event(struct hid_device *hid, int type, u8 *data, u32 size,
   1958		int interrupt)
   1959{
   1960	struct hid_report_enum *report_enum = hid->report_enum + type;
   1961	struct hid_report *report;
   1962	struct hid_driver *hdrv;
   1963	u32 rsize, csize = size;
   1964	u8 *cdata = data;
   1965	int ret = 0;
   1966
   1967	report = hid_get_report(report_enum, data);
   1968	if (!report)
   1969		goto out;
   1970
   1971	if (report_enum->numbered) {
   1972		cdata++;
   1973		csize--;
   1974	}
   1975
   1976	rsize = hid_compute_report_size(report);
   1977
   1978	if (report_enum->numbered && rsize >= HID_MAX_BUFFER_SIZE)
   1979		rsize = HID_MAX_BUFFER_SIZE - 1;
   1980	else if (rsize > HID_MAX_BUFFER_SIZE)
   1981		rsize = HID_MAX_BUFFER_SIZE;
   1982
   1983	if (csize < rsize) {
   1984		dbg_hid("report %d is too short, (%d < %d)\n", report->id,
   1985				csize, rsize);
   1986		memset(cdata + csize, 0, rsize - csize);
   1987	}
   1988
   1989	if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
   1990		hid->hiddev_report_event(hid, report);
   1991	if (hid->claimed & HID_CLAIMED_HIDRAW) {
   1992		ret = hidraw_report_event(hid, data, size);
   1993		if (ret)
   1994			goto out;
   1995	}
   1996
   1997	if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
   1998		hid_process_report(hid, report, cdata, interrupt);
   1999		hdrv = hid->driver;
   2000		if (hdrv && hdrv->report)
   2001			hdrv->report(hid, report);
   2002	}
   2003
   2004	if (hid->claimed & HID_CLAIMED_INPUT)
   2005		hidinput_report_event(hid, report);
   2006out:
   2007	return ret;
   2008}
   2009EXPORT_SYMBOL_GPL(hid_report_raw_event);
   2010
   2011/**
   2012 * hid_input_report - report data from lower layer (usb, bt...)
   2013 *
   2014 * @hid: hid device
   2015 * @type: HID report type (HID_*_REPORT)
   2016 * @data: report contents
   2017 * @size: size of data parameter
   2018 * @interrupt: distinguish between interrupt and control transfers
   2019 *
   2020 * This is data entry for lower layers.
   2021 */
   2022int hid_input_report(struct hid_device *hid, int type, u8 *data, u32 size, int interrupt)
   2023{
   2024	struct hid_report_enum *report_enum;
   2025	struct hid_driver *hdrv;
   2026	struct hid_report *report;
   2027	int ret = 0;
   2028
   2029	if (!hid)
   2030		return -ENODEV;
   2031
   2032	if (down_trylock(&hid->driver_input_lock))
   2033		return -EBUSY;
   2034
   2035	if (!hid->driver) {
   2036		ret = -ENODEV;
   2037		goto unlock;
   2038	}
   2039	report_enum = hid->report_enum + type;
   2040	hdrv = hid->driver;
   2041
   2042	if (!size) {
   2043		dbg_hid("empty report\n");
   2044		ret = -1;
   2045		goto unlock;
   2046	}
   2047
   2048	/* Avoid unnecessary overhead if debugfs is disabled */
   2049	if (!list_empty(&hid->debug_list))
   2050		hid_dump_report(hid, type, data, size);
   2051
   2052	report = hid_get_report(report_enum, data);
   2053
   2054	if (!report) {
   2055		ret = -1;
   2056		goto unlock;
   2057	}
   2058
   2059	if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
   2060		ret = hdrv->raw_event(hid, report, data, size);
   2061		if (ret < 0)
   2062			goto unlock;
   2063	}
   2064
   2065	ret = hid_report_raw_event(hid, type, data, size, interrupt);
   2066
   2067unlock:
   2068	up(&hid->driver_input_lock);
   2069	return ret;
   2070}
   2071EXPORT_SYMBOL_GPL(hid_input_report);
   2072
   2073bool hid_match_one_id(const struct hid_device *hdev,
   2074		      const struct hid_device_id *id)
   2075{
   2076	return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
   2077		(id->group == HID_GROUP_ANY || id->group == hdev->group) &&
   2078		(id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
   2079		(id->product == HID_ANY_ID || id->product == hdev->product);
   2080}
   2081
   2082const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
   2083		const struct hid_device_id *id)
   2084{
   2085	for (; id->bus; id++)
   2086		if (hid_match_one_id(hdev, id))
   2087			return id;
   2088
   2089	return NULL;
   2090}
   2091
   2092static const struct hid_device_id hid_hiddev_list[] = {
   2093	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
   2094	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
   2095	{ }
   2096};
   2097
   2098static bool hid_hiddev(struct hid_device *hdev)
   2099{
   2100	return !!hid_match_id(hdev, hid_hiddev_list);
   2101}
   2102
   2103
   2104static ssize_t
   2105read_report_descriptor(struct file *filp, struct kobject *kobj,
   2106		struct bin_attribute *attr,
   2107		char *buf, loff_t off, size_t count)
   2108{
   2109	struct device *dev = kobj_to_dev(kobj);
   2110	struct hid_device *hdev = to_hid_device(dev);
   2111
   2112	if (off >= hdev->rsize)
   2113		return 0;
   2114
   2115	if (off + count > hdev->rsize)
   2116		count = hdev->rsize - off;
   2117
   2118	memcpy(buf, hdev->rdesc + off, count);
   2119
   2120	return count;
   2121}
   2122
   2123static ssize_t
   2124show_country(struct device *dev, struct device_attribute *attr,
   2125		char *buf)
   2126{
   2127	struct hid_device *hdev = to_hid_device(dev);
   2128
   2129	return sprintf(buf, "%02x\n", hdev->country & 0xff);
   2130}
   2131
   2132static struct bin_attribute dev_bin_attr_report_desc = {
   2133	.attr = { .name = "report_descriptor", .mode = 0444 },
   2134	.read = read_report_descriptor,
   2135	.size = HID_MAX_DESCRIPTOR_SIZE,
   2136};
   2137
   2138static const struct device_attribute dev_attr_country = {
   2139	.attr = { .name = "country", .mode = 0444 },
   2140	.show = show_country,
   2141};
   2142
   2143int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
   2144{
   2145	static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
   2146		"Joystick", "Gamepad", "Keyboard", "Keypad",
   2147		"Multi-Axis Controller"
   2148	};
   2149	const char *type, *bus;
   2150	char buf[64] = "";
   2151	unsigned int i;
   2152	int len;
   2153	int ret;
   2154
   2155	if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
   2156		connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
   2157	if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
   2158		connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
   2159	if (hdev->bus != BUS_USB)
   2160		connect_mask &= ~HID_CONNECT_HIDDEV;
   2161	if (hid_hiddev(hdev))
   2162		connect_mask |= HID_CONNECT_HIDDEV_FORCE;
   2163
   2164	if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
   2165				connect_mask & HID_CONNECT_HIDINPUT_FORCE))
   2166		hdev->claimed |= HID_CLAIMED_INPUT;
   2167
   2168	if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
   2169			!hdev->hiddev_connect(hdev,
   2170				connect_mask & HID_CONNECT_HIDDEV_FORCE))
   2171		hdev->claimed |= HID_CLAIMED_HIDDEV;
   2172	if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
   2173		hdev->claimed |= HID_CLAIMED_HIDRAW;
   2174
   2175	if (connect_mask & HID_CONNECT_DRIVER)
   2176		hdev->claimed |= HID_CLAIMED_DRIVER;
   2177
   2178	/* Drivers with the ->raw_event callback set are not required to connect
   2179	 * to any other listener. */
   2180	if (!hdev->claimed && !hdev->driver->raw_event) {
   2181		hid_err(hdev, "device has no listeners, quitting\n");
   2182		return -ENODEV;
   2183	}
   2184
   2185	hid_process_ordering(hdev);
   2186
   2187	if ((hdev->claimed & HID_CLAIMED_INPUT) &&
   2188			(connect_mask & HID_CONNECT_FF) && hdev->ff_init)
   2189		hdev->ff_init(hdev);
   2190
   2191	len = 0;
   2192	if (hdev->claimed & HID_CLAIMED_INPUT)
   2193		len += sprintf(buf + len, "input");
   2194	if (hdev->claimed & HID_CLAIMED_HIDDEV)
   2195		len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
   2196				((struct hiddev *)hdev->hiddev)->minor);
   2197	if (hdev->claimed & HID_CLAIMED_HIDRAW)
   2198		len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
   2199				((struct hidraw *)hdev->hidraw)->minor);
   2200
   2201	type = "Device";
   2202	for (i = 0; i < hdev->maxcollection; i++) {
   2203		struct hid_collection *col = &hdev->collection[i];
   2204		if (col->type == HID_COLLECTION_APPLICATION &&
   2205		   (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
   2206		   (col->usage & 0xffff) < ARRAY_SIZE(types)) {
   2207			type = types[col->usage & 0xffff];
   2208			break;
   2209		}
   2210	}
   2211
   2212	switch (hdev->bus) {
   2213	case BUS_USB:
   2214		bus = "USB";
   2215		break;
   2216	case BUS_BLUETOOTH:
   2217		bus = "BLUETOOTH";
   2218		break;
   2219	case BUS_I2C:
   2220		bus = "I2C";
   2221		break;
   2222	case BUS_VIRTUAL:
   2223		bus = "VIRTUAL";
   2224		break;
   2225	case BUS_INTEL_ISHTP:
   2226	case BUS_AMD_SFH:
   2227		bus = "SENSOR HUB";
   2228		break;
   2229	default:
   2230		bus = "<UNKNOWN>";
   2231	}
   2232
   2233	ret = device_create_file(&hdev->dev, &dev_attr_country);
   2234	if (ret)
   2235		hid_warn(hdev,
   2236			 "can't create sysfs country code attribute err: %d\n", ret);
   2237
   2238	hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
   2239		 buf, bus, hdev->version >> 8, hdev->version & 0xff,
   2240		 type, hdev->name, hdev->phys);
   2241
   2242	return 0;
   2243}
   2244EXPORT_SYMBOL_GPL(hid_connect);
   2245
   2246void hid_disconnect(struct hid_device *hdev)
   2247{
   2248	device_remove_file(&hdev->dev, &dev_attr_country);
   2249	if (hdev->claimed & HID_CLAIMED_INPUT)
   2250		hidinput_disconnect(hdev);
   2251	if (hdev->claimed & HID_CLAIMED_HIDDEV)
   2252		hdev->hiddev_disconnect(hdev);
   2253	if (hdev->claimed & HID_CLAIMED_HIDRAW)
   2254		hidraw_disconnect(hdev);
   2255	hdev->claimed = 0;
   2256}
   2257EXPORT_SYMBOL_GPL(hid_disconnect);
   2258
   2259/**
   2260 * hid_hw_start - start underlying HW
   2261 * @hdev: hid device
   2262 * @connect_mask: which outputs to connect, see HID_CONNECT_*
   2263 *
   2264 * Call this in probe function *after* hid_parse. This will setup HW
   2265 * buffers and start the device (if not defeirred to device open).
   2266 * hid_hw_stop must be called if this was successful.
   2267 */
   2268int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
   2269{
   2270	int error;
   2271
   2272	error = hdev->ll_driver->start(hdev);
   2273	if (error)
   2274		return error;
   2275
   2276	if (connect_mask) {
   2277		error = hid_connect(hdev, connect_mask);
   2278		if (error) {
   2279			hdev->ll_driver->stop(hdev);
   2280			return error;
   2281		}
   2282	}
   2283
   2284	return 0;
   2285}
   2286EXPORT_SYMBOL_GPL(hid_hw_start);
   2287
   2288/**
   2289 * hid_hw_stop - stop underlying HW
   2290 * @hdev: hid device
   2291 *
   2292 * This is usually called from remove function or from probe when something
   2293 * failed and hid_hw_start was called already.
   2294 */
   2295void hid_hw_stop(struct hid_device *hdev)
   2296{
   2297	hid_disconnect(hdev);
   2298	hdev->ll_driver->stop(hdev);
   2299}
   2300EXPORT_SYMBOL_GPL(hid_hw_stop);
   2301
   2302/**
   2303 * hid_hw_open - signal underlying HW to start delivering events
   2304 * @hdev: hid device
   2305 *
   2306 * Tell underlying HW to start delivering events from the device.
   2307 * This function should be called sometime after successful call
   2308 * to hid_hw_start().
   2309 */
   2310int hid_hw_open(struct hid_device *hdev)
   2311{
   2312	int ret;
   2313
   2314	ret = mutex_lock_killable(&hdev->ll_open_lock);
   2315	if (ret)
   2316		return ret;
   2317
   2318	if (!hdev->ll_open_count++) {
   2319		ret = hdev->ll_driver->open(hdev);
   2320		if (ret)
   2321			hdev->ll_open_count--;
   2322	}
   2323
   2324	mutex_unlock(&hdev->ll_open_lock);
   2325	return ret;
   2326}
   2327EXPORT_SYMBOL_GPL(hid_hw_open);
   2328
   2329/**
   2330 * hid_hw_close - signal underlaying HW to stop delivering events
   2331 *
   2332 * @hdev: hid device
   2333 *
   2334 * This function indicates that we are not interested in the events
   2335 * from this device anymore. Delivery of events may or may not stop,
   2336 * depending on the number of users still outstanding.
   2337 */
   2338void hid_hw_close(struct hid_device *hdev)
   2339{
   2340	mutex_lock(&hdev->ll_open_lock);
   2341	if (!--hdev->ll_open_count)
   2342		hdev->ll_driver->close(hdev);
   2343	mutex_unlock(&hdev->ll_open_lock);
   2344}
   2345EXPORT_SYMBOL_GPL(hid_hw_close);
   2346
   2347/**
   2348 * hid_hw_request - send report request to device
   2349 *
   2350 * @hdev: hid device
   2351 * @report: report to send
   2352 * @reqtype: hid request type
   2353 */
   2354void hid_hw_request(struct hid_device *hdev,
   2355		    struct hid_report *report, int reqtype)
   2356{
   2357	if (hdev->ll_driver->request)
   2358		return hdev->ll_driver->request(hdev, report, reqtype);
   2359
   2360	__hid_request(hdev, report, reqtype);
   2361}
   2362EXPORT_SYMBOL_GPL(hid_hw_request);
   2363
   2364/**
   2365 * hid_hw_raw_request - send report request to device
   2366 *
   2367 * @hdev: hid device
   2368 * @reportnum: report ID
   2369 * @buf: in/out data to transfer
   2370 * @len: length of buf
   2371 * @rtype: HID report type
   2372 * @reqtype: HID_REQ_GET_REPORT or HID_REQ_SET_REPORT
   2373 *
   2374 * Return: count of data transferred, negative if error
   2375 *
   2376 * Same behavior as hid_hw_request, but with raw buffers instead.
   2377 */
   2378int hid_hw_raw_request(struct hid_device *hdev,
   2379		       unsigned char reportnum, __u8 *buf,
   2380		       size_t len, unsigned char rtype, int reqtype)
   2381{
   2382	if (len < 1 || len > HID_MAX_BUFFER_SIZE || !buf)
   2383		return -EINVAL;
   2384
   2385	return hdev->ll_driver->raw_request(hdev, reportnum, buf, len,
   2386					    rtype, reqtype);
   2387}
   2388EXPORT_SYMBOL_GPL(hid_hw_raw_request);
   2389
   2390/**
   2391 * hid_hw_output_report - send output report to device
   2392 *
   2393 * @hdev: hid device
   2394 * @buf: raw data to transfer
   2395 * @len: length of buf
   2396 *
   2397 * Return: count of data transferred, negative if error
   2398 */
   2399int hid_hw_output_report(struct hid_device *hdev, __u8 *buf, size_t len)
   2400{
   2401	if (len < 1 || len > HID_MAX_BUFFER_SIZE || !buf)
   2402		return -EINVAL;
   2403
   2404	if (hdev->ll_driver->output_report)
   2405		return hdev->ll_driver->output_report(hdev, buf, len);
   2406
   2407	return -ENOSYS;
   2408}
   2409EXPORT_SYMBOL_GPL(hid_hw_output_report);
   2410
   2411#ifdef CONFIG_PM
   2412int hid_driver_suspend(struct hid_device *hdev, pm_message_t state)
   2413{
   2414	if (hdev->driver && hdev->driver->suspend)
   2415		return hdev->driver->suspend(hdev, state);
   2416
   2417	return 0;
   2418}
   2419EXPORT_SYMBOL_GPL(hid_driver_suspend);
   2420
   2421int hid_driver_reset_resume(struct hid_device *hdev)
   2422{
   2423	if (hdev->driver && hdev->driver->reset_resume)
   2424		return hdev->driver->reset_resume(hdev);
   2425
   2426	return 0;
   2427}
   2428EXPORT_SYMBOL_GPL(hid_driver_reset_resume);
   2429
   2430int hid_driver_resume(struct hid_device *hdev)
   2431{
   2432	if (hdev->driver && hdev->driver->resume)
   2433		return hdev->driver->resume(hdev);
   2434
   2435	return 0;
   2436}
   2437EXPORT_SYMBOL_GPL(hid_driver_resume);
   2438#endif /* CONFIG_PM */
   2439
   2440struct hid_dynid {
   2441	struct list_head list;
   2442	struct hid_device_id id;
   2443};
   2444
   2445/**
   2446 * new_id_store - add a new HID device ID to this driver and re-probe devices
   2447 * @drv: target device driver
   2448 * @buf: buffer for scanning device ID data
   2449 * @count: input size
   2450 *
   2451 * Adds a new dynamic hid device ID to this driver,
   2452 * and causes the driver to probe for all devices again.
   2453 */
   2454static ssize_t new_id_store(struct device_driver *drv, const char *buf,
   2455		size_t count)
   2456{
   2457	struct hid_driver *hdrv = to_hid_driver(drv);
   2458	struct hid_dynid *dynid;
   2459	__u32 bus, vendor, product;
   2460	unsigned long driver_data = 0;
   2461	int ret;
   2462
   2463	ret = sscanf(buf, "%x %x %x %lx",
   2464			&bus, &vendor, &product, &driver_data);
   2465	if (ret < 3)
   2466		return -EINVAL;
   2467
   2468	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
   2469	if (!dynid)
   2470		return -ENOMEM;
   2471
   2472	dynid->id.bus = bus;
   2473	dynid->id.group = HID_GROUP_ANY;
   2474	dynid->id.vendor = vendor;
   2475	dynid->id.product = product;
   2476	dynid->id.driver_data = driver_data;
   2477
   2478	spin_lock(&hdrv->dyn_lock);
   2479	list_add_tail(&dynid->list, &hdrv->dyn_list);
   2480	spin_unlock(&hdrv->dyn_lock);
   2481
   2482	ret = driver_attach(&hdrv->driver);
   2483
   2484	return ret ? : count;
   2485}
   2486static DRIVER_ATTR_WO(new_id);
   2487
   2488static struct attribute *hid_drv_attrs[] = {
   2489	&driver_attr_new_id.attr,
   2490	NULL,
   2491};
   2492ATTRIBUTE_GROUPS(hid_drv);
   2493
   2494static void hid_free_dynids(struct hid_driver *hdrv)
   2495{
   2496	struct hid_dynid *dynid, *n;
   2497
   2498	spin_lock(&hdrv->dyn_lock);
   2499	list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
   2500		list_del(&dynid->list);
   2501		kfree(dynid);
   2502	}
   2503	spin_unlock(&hdrv->dyn_lock);
   2504}
   2505
   2506const struct hid_device_id *hid_match_device(struct hid_device *hdev,
   2507					     struct hid_driver *hdrv)
   2508{
   2509	struct hid_dynid *dynid;
   2510
   2511	spin_lock(&hdrv->dyn_lock);
   2512	list_for_each_entry(dynid, &hdrv->dyn_list, list) {
   2513		if (hid_match_one_id(hdev, &dynid->id)) {
   2514			spin_unlock(&hdrv->dyn_lock);
   2515			return &dynid->id;
   2516		}
   2517	}
   2518	spin_unlock(&hdrv->dyn_lock);
   2519
   2520	return hid_match_id(hdev, hdrv->id_table);
   2521}
   2522EXPORT_SYMBOL_GPL(hid_match_device);
   2523
   2524static int hid_bus_match(struct device *dev, struct device_driver *drv)
   2525{
   2526	struct hid_driver *hdrv = to_hid_driver(drv);
   2527	struct hid_device *hdev = to_hid_device(dev);
   2528
   2529	return hid_match_device(hdev, hdrv) != NULL;
   2530}
   2531
   2532/**
   2533 * hid_compare_device_paths - check if both devices share the same path
   2534 * @hdev_a: hid device
   2535 * @hdev_b: hid device
   2536 * @separator: char to use as separator
   2537 *
   2538 * Check if two devices share the same path up to the last occurrence of
   2539 * the separator char. Both paths must exist (i.e., zero-length paths
   2540 * don't match).
   2541 */
   2542bool hid_compare_device_paths(struct hid_device *hdev_a,
   2543			      struct hid_device *hdev_b, char separator)
   2544{
   2545	int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
   2546	int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
   2547
   2548	if (n1 != n2 || n1 <= 0 || n2 <= 0)
   2549		return false;
   2550
   2551	return !strncmp(hdev_a->phys, hdev_b->phys, n1);
   2552}
   2553EXPORT_SYMBOL_GPL(hid_compare_device_paths);
   2554
   2555static int hid_device_probe(struct device *dev)
   2556{
   2557	struct hid_driver *hdrv = to_hid_driver(dev->driver);
   2558	struct hid_device *hdev = to_hid_device(dev);
   2559	const struct hid_device_id *id;
   2560	int ret = 0;
   2561
   2562	if (down_interruptible(&hdev->driver_input_lock)) {
   2563		ret = -EINTR;
   2564		goto end;
   2565	}
   2566	hdev->io_started = false;
   2567
   2568	clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
   2569
   2570	if (!hdev->driver) {
   2571		id = hid_match_device(hdev, hdrv);
   2572		if (id == NULL) {
   2573			ret = -ENODEV;
   2574			goto unlock;
   2575		}
   2576
   2577		if (hdrv->match) {
   2578			if (!hdrv->match(hdev, hid_ignore_special_drivers)) {
   2579				ret = -ENODEV;
   2580				goto unlock;
   2581			}
   2582		} else {
   2583			/*
   2584			 * hid-generic implements .match(), so if
   2585			 * hid_ignore_special_drivers is set, we can safely
   2586			 * return.
   2587			 */
   2588			if (hid_ignore_special_drivers) {
   2589				ret = -ENODEV;
   2590				goto unlock;
   2591			}
   2592		}
   2593
   2594		/* reset the quirks that has been previously set */
   2595		hdev->quirks = hid_lookup_quirk(hdev);
   2596		hdev->driver = hdrv;
   2597		if (hdrv->probe) {
   2598			ret = hdrv->probe(hdev, id);
   2599		} else { /* default probe */
   2600			ret = hid_open_report(hdev);
   2601			if (!ret)
   2602				ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
   2603		}
   2604		if (ret) {
   2605			hid_close_report(hdev);
   2606			hdev->driver = NULL;
   2607		}
   2608	}
   2609unlock:
   2610	if (!hdev->io_started)
   2611		up(&hdev->driver_input_lock);
   2612end:
   2613	return ret;
   2614}
   2615
   2616static void hid_device_remove(struct device *dev)
   2617{
   2618	struct hid_device *hdev = to_hid_device(dev);
   2619	struct hid_driver *hdrv;
   2620
   2621	down(&hdev->driver_input_lock);
   2622	hdev->io_started = false;
   2623
   2624	hdrv = hdev->driver;
   2625	if (hdrv) {
   2626		if (hdrv->remove)
   2627			hdrv->remove(hdev);
   2628		else /* default remove */
   2629			hid_hw_stop(hdev);
   2630		hid_close_report(hdev);
   2631		hdev->driver = NULL;
   2632	}
   2633
   2634	if (!hdev->io_started)
   2635		up(&hdev->driver_input_lock);
   2636}
   2637
   2638static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
   2639			     char *buf)
   2640{
   2641	struct hid_device *hdev = container_of(dev, struct hid_device, dev);
   2642
   2643	return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
   2644			 hdev->bus, hdev->group, hdev->vendor, hdev->product);
   2645}
   2646static DEVICE_ATTR_RO(modalias);
   2647
   2648static struct attribute *hid_dev_attrs[] = {
   2649	&dev_attr_modalias.attr,
   2650	NULL,
   2651};
   2652static struct bin_attribute *hid_dev_bin_attrs[] = {
   2653	&dev_bin_attr_report_desc,
   2654	NULL
   2655};
   2656static const struct attribute_group hid_dev_group = {
   2657	.attrs = hid_dev_attrs,
   2658	.bin_attrs = hid_dev_bin_attrs,
   2659};
   2660__ATTRIBUTE_GROUPS(hid_dev);
   2661
   2662static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
   2663{
   2664	struct hid_device *hdev = to_hid_device(dev);
   2665
   2666	if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
   2667			hdev->bus, hdev->vendor, hdev->product))
   2668		return -ENOMEM;
   2669
   2670	if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
   2671		return -ENOMEM;
   2672
   2673	if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
   2674		return -ENOMEM;
   2675
   2676	if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
   2677		return -ENOMEM;
   2678
   2679	if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
   2680			   hdev->bus, hdev->group, hdev->vendor, hdev->product))
   2681		return -ENOMEM;
   2682
   2683	return 0;
   2684}
   2685
   2686struct bus_type hid_bus_type = {
   2687	.name		= "hid",
   2688	.dev_groups	= hid_dev_groups,
   2689	.drv_groups	= hid_drv_groups,
   2690	.match		= hid_bus_match,
   2691	.probe		= hid_device_probe,
   2692	.remove		= hid_device_remove,
   2693	.uevent		= hid_uevent,
   2694};
   2695EXPORT_SYMBOL(hid_bus_type);
   2696
   2697int hid_add_device(struct hid_device *hdev)
   2698{
   2699	static atomic_t id = ATOMIC_INIT(0);
   2700	int ret;
   2701
   2702	if (WARN_ON(hdev->status & HID_STAT_ADDED))
   2703		return -EBUSY;
   2704
   2705	hdev->quirks = hid_lookup_quirk(hdev);
   2706
   2707	/* we need to kill them here, otherwise they will stay allocated to
   2708	 * wait for coming driver */
   2709	if (hid_ignore(hdev))
   2710		return -ENODEV;
   2711
   2712	/*
   2713	 * Check for the mandatory transport channel.
   2714	 */
   2715	 if (!hdev->ll_driver->raw_request) {
   2716		hid_err(hdev, "transport driver missing .raw_request()\n");
   2717		return -EINVAL;
   2718	 }
   2719
   2720	/*
   2721	 * Read the device report descriptor once and use as template
   2722	 * for the driver-specific modifications.
   2723	 */
   2724	ret = hdev->ll_driver->parse(hdev);
   2725	if (ret)
   2726		return ret;
   2727	if (!hdev->dev_rdesc)
   2728		return -ENODEV;
   2729
   2730	/*
   2731	 * Scan generic devices for group information
   2732	 */
   2733	if (hid_ignore_special_drivers) {
   2734		hdev->group = HID_GROUP_GENERIC;
   2735	} else if (!hdev->group &&
   2736		   !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
   2737		ret = hid_scan_report(hdev);
   2738		if (ret)
   2739			hid_warn(hdev, "bad device descriptor (%d)\n", ret);
   2740	}
   2741
   2742	/* XXX hack, any other cleaner solution after the driver core
   2743	 * is converted to allow more than 20 bytes as the device name? */
   2744	dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
   2745		     hdev->vendor, hdev->product, atomic_inc_return(&id));
   2746
   2747	hid_debug_register(hdev, dev_name(&hdev->dev));
   2748	ret = device_add(&hdev->dev);
   2749	if (!ret)
   2750		hdev->status |= HID_STAT_ADDED;
   2751	else
   2752		hid_debug_unregister(hdev);
   2753
   2754	return ret;
   2755}
   2756EXPORT_SYMBOL_GPL(hid_add_device);
   2757
   2758/**
   2759 * hid_allocate_device - allocate new hid device descriptor
   2760 *
   2761 * Allocate and initialize hid device, so that hid_destroy_device might be
   2762 * used to free it.
   2763 *
   2764 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
   2765 * error value.
   2766 */
   2767struct hid_device *hid_allocate_device(void)
   2768{
   2769	struct hid_device *hdev;
   2770	int ret = -ENOMEM;
   2771
   2772	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
   2773	if (hdev == NULL)
   2774		return ERR_PTR(ret);
   2775
   2776	device_initialize(&hdev->dev);
   2777	hdev->dev.release = hid_device_release;
   2778	hdev->dev.bus = &hid_bus_type;
   2779	device_enable_async_suspend(&hdev->dev);
   2780
   2781	hid_close_report(hdev);
   2782
   2783	init_waitqueue_head(&hdev->debug_wait);
   2784	INIT_LIST_HEAD(&hdev->debug_list);
   2785	spin_lock_init(&hdev->debug_list_lock);
   2786	sema_init(&hdev->driver_input_lock, 1);
   2787	mutex_init(&hdev->ll_open_lock);
   2788
   2789	return hdev;
   2790}
   2791EXPORT_SYMBOL_GPL(hid_allocate_device);
   2792
   2793static void hid_remove_device(struct hid_device *hdev)
   2794{
   2795	if (hdev->status & HID_STAT_ADDED) {
   2796		device_del(&hdev->dev);
   2797		hid_debug_unregister(hdev);
   2798		hdev->status &= ~HID_STAT_ADDED;
   2799	}
   2800	kfree(hdev->dev_rdesc);
   2801	hdev->dev_rdesc = NULL;
   2802	hdev->dev_rsize = 0;
   2803}
   2804
   2805/**
   2806 * hid_destroy_device - free previously allocated device
   2807 *
   2808 * @hdev: hid device
   2809 *
   2810 * If you allocate hid_device through hid_allocate_device, you should ever
   2811 * free by this function.
   2812 */
   2813void hid_destroy_device(struct hid_device *hdev)
   2814{
   2815	hid_remove_device(hdev);
   2816	put_device(&hdev->dev);
   2817}
   2818EXPORT_SYMBOL_GPL(hid_destroy_device);
   2819
   2820
   2821static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
   2822{
   2823	struct hid_driver *hdrv = data;
   2824	struct hid_device *hdev = to_hid_device(dev);
   2825
   2826	if (hdev->driver == hdrv &&
   2827	    !hdrv->match(hdev, hid_ignore_special_drivers) &&
   2828	    !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
   2829		return device_reprobe(dev);
   2830
   2831	return 0;
   2832}
   2833
   2834static int __hid_bus_driver_added(struct device_driver *drv, void *data)
   2835{
   2836	struct hid_driver *hdrv = to_hid_driver(drv);
   2837
   2838	if (hdrv->match) {
   2839		bus_for_each_dev(&hid_bus_type, NULL, hdrv,
   2840				 __hid_bus_reprobe_drivers);
   2841	}
   2842
   2843	return 0;
   2844}
   2845
   2846static int __bus_removed_driver(struct device_driver *drv, void *data)
   2847{
   2848	return bus_rescan_devices(&hid_bus_type);
   2849}
   2850
   2851int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
   2852		const char *mod_name)
   2853{
   2854	int ret;
   2855
   2856	hdrv->driver.name = hdrv->name;
   2857	hdrv->driver.bus = &hid_bus_type;
   2858	hdrv->driver.owner = owner;
   2859	hdrv->driver.mod_name = mod_name;
   2860
   2861	INIT_LIST_HEAD(&hdrv->dyn_list);
   2862	spin_lock_init(&hdrv->dyn_lock);
   2863
   2864	ret = driver_register(&hdrv->driver);
   2865
   2866	if (ret == 0)
   2867		bus_for_each_drv(&hid_bus_type, NULL, NULL,
   2868				 __hid_bus_driver_added);
   2869
   2870	return ret;
   2871}
   2872EXPORT_SYMBOL_GPL(__hid_register_driver);
   2873
   2874void hid_unregister_driver(struct hid_driver *hdrv)
   2875{
   2876	driver_unregister(&hdrv->driver);
   2877	hid_free_dynids(hdrv);
   2878
   2879	bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
   2880}
   2881EXPORT_SYMBOL_GPL(hid_unregister_driver);
   2882
   2883int hid_check_keys_pressed(struct hid_device *hid)
   2884{
   2885	struct hid_input *hidinput;
   2886	int i;
   2887
   2888	if (!(hid->claimed & HID_CLAIMED_INPUT))
   2889		return 0;
   2890
   2891	list_for_each_entry(hidinput, &hid->inputs, list) {
   2892		for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
   2893			if (hidinput->input->key[i])
   2894				return 1;
   2895	}
   2896
   2897	return 0;
   2898}
   2899EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
   2900
   2901static int __init hid_init(void)
   2902{
   2903	int ret;
   2904
   2905	if (hid_debug)
   2906		pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
   2907			"debugfs is now used for inspecting the device (report descriptor, reports)\n");
   2908
   2909	ret = bus_register(&hid_bus_type);
   2910	if (ret) {
   2911		pr_err("can't register hid bus\n");
   2912		goto err;
   2913	}
   2914
   2915	ret = hidraw_init();
   2916	if (ret)
   2917		goto err_bus;
   2918
   2919	hid_debug_init();
   2920
   2921	return 0;
   2922err_bus:
   2923	bus_unregister(&hid_bus_type);
   2924err:
   2925	return ret;
   2926}
   2927
   2928static void __exit hid_exit(void)
   2929{
   2930	hid_debug_exit();
   2931	hidraw_exit();
   2932	bus_unregister(&hid_bus_type);
   2933	hid_quirks_exit(HID_BUS_ANY);
   2934}
   2935
   2936module_init(hid_init);
   2937module_exit(hid_exit);
   2938
   2939MODULE_AUTHOR("Andreas Gal");
   2940MODULE_AUTHOR("Vojtech Pavlik");
   2941MODULE_AUTHOR("Jiri Kosina");
   2942MODULE_LICENSE("GPL");