cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

ring_buffer.c (19730B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 *
      4 * Copyright (c) 2009, Microsoft Corporation.
      5 *
      6 * Authors:
      7 *   Haiyang Zhang <haiyangz@microsoft.com>
      8 *   Hank Janssen  <hjanssen@microsoft.com>
      9 *   K. Y. Srinivasan <kys@microsoft.com>
     10 */
     11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
     12
     13#include <linux/kernel.h>
     14#include <linux/mm.h>
     15#include <linux/hyperv.h>
     16#include <linux/uio.h>
     17#include <linux/vmalloc.h>
     18#include <linux/slab.h>
     19#include <linux/prefetch.h>
     20#include <linux/io.h>
     21#include <asm/mshyperv.h>
     22
     23#include "hyperv_vmbus.h"
     24
     25#define VMBUS_PKT_TRAILER	8
     26
     27/*
     28 * When we write to the ring buffer, check if the host needs to
     29 * be signaled. Here is the details of this protocol:
     30 *
     31 *	1. The host guarantees that while it is draining the
     32 *	   ring buffer, it will set the interrupt_mask to
     33 *	   indicate it does not need to be interrupted when
     34 *	   new data is placed.
     35 *
     36 *	2. The host guarantees that it will completely drain
     37 *	   the ring buffer before exiting the read loop. Further,
     38 *	   once the ring buffer is empty, it will clear the
     39 *	   interrupt_mask and re-check to see if new data has
     40 *	   arrived.
     41 *
     42 * KYS: Oct. 30, 2016:
     43 * It looks like Windows hosts have logic to deal with DOS attacks that
     44 * can be triggered if it receives interrupts when it is not expecting
     45 * the interrupt. The host expects interrupts only when the ring
     46 * transitions from empty to non-empty (or full to non full on the guest
     47 * to host ring).
     48 * So, base the signaling decision solely on the ring state until the
     49 * host logic is fixed.
     50 */
     51
     52static void hv_signal_on_write(u32 old_write, struct vmbus_channel *channel)
     53{
     54	struct hv_ring_buffer_info *rbi = &channel->outbound;
     55
     56	virt_mb();
     57	if (READ_ONCE(rbi->ring_buffer->interrupt_mask))
     58		return;
     59
     60	/* check interrupt_mask before read_index */
     61	virt_rmb();
     62	/*
     63	 * This is the only case we need to signal when the
     64	 * ring transitions from being empty to non-empty.
     65	 */
     66	if (old_write == READ_ONCE(rbi->ring_buffer->read_index)) {
     67		++channel->intr_out_empty;
     68		vmbus_setevent(channel);
     69	}
     70}
     71
     72/* Get the next write location for the specified ring buffer. */
     73static inline u32
     74hv_get_next_write_location(struct hv_ring_buffer_info *ring_info)
     75{
     76	u32 next = ring_info->ring_buffer->write_index;
     77
     78	return next;
     79}
     80
     81/* Set the next write location for the specified ring buffer. */
     82static inline void
     83hv_set_next_write_location(struct hv_ring_buffer_info *ring_info,
     84		     u32 next_write_location)
     85{
     86	ring_info->ring_buffer->write_index = next_write_location;
     87}
     88
     89/* Get the size of the ring buffer. */
     90static inline u32
     91hv_get_ring_buffersize(const struct hv_ring_buffer_info *ring_info)
     92{
     93	return ring_info->ring_datasize;
     94}
     95
     96/* Get the read and write indices as u64 of the specified ring buffer. */
     97static inline u64
     98hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info)
     99{
    100	return (u64)ring_info->ring_buffer->write_index << 32;
    101}
    102
    103/*
    104 * Helper routine to copy from source to ring buffer.
    105 * Assume there is enough room. Handles wrap-around in dest case only!!
    106 */
    107static u32 hv_copyto_ringbuffer(
    108	struct hv_ring_buffer_info	*ring_info,
    109	u32				start_write_offset,
    110	const void			*src,
    111	u32				srclen)
    112{
    113	void *ring_buffer = hv_get_ring_buffer(ring_info);
    114	u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
    115
    116	memcpy(ring_buffer + start_write_offset, src, srclen);
    117
    118	start_write_offset += srclen;
    119	if (start_write_offset >= ring_buffer_size)
    120		start_write_offset -= ring_buffer_size;
    121
    122	return start_write_offset;
    123}
    124
    125/*
    126 *
    127 * hv_get_ringbuffer_availbytes()
    128 *
    129 * Get number of bytes available to read and to write to
    130 * for the specified ring buffer
    131 */
    132static void
    133hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info *rbi,
    134			     u32 *read, u32 *write)
    135{
    136	u32 read_loc, write_loc, dsize;
    137
    138	/* Capture the read/write indices before they changed */
    139	read_loc = READ_ONCE(rbi->ring_buffer->read_index);
    140	write_loc = READ_ONCE(rbi->ring_buffer->write_index);
    141	dsize = rbi->ring_datasize;
    142
    143	*write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
    144		read_loc - write_loc;
    145	*read = dsize - *write;
    146}
    147
    148/* Get various debug metrics for the specified ring buffer. */
    149int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
    150				struct hv_ring_buffer_debug_info *debug_info)
    151{
    152	u32 bytes_avail_towrite;
    153	u32 bytes_avail_toread;
    154
    155	mutex_lock(&ring_info->ring_buffer_mutex);
    156
    157	if (!ring_info->ring_buffer) {
    158		mutex_unlock(&ring_info->ring_buffer_mutex);
    159		return -EINVAL;
    160	}
    161
    162	hv_get_ringbuffer_availbytes(ring_info,
    163				     &bytes_avail_toread,
    164				     &bytes_avail_towrite);
    165	debug_info->bytes_avail_toread = bytes_avail_toread;
    166	debug_info->bytes_avail_towrite = bytes_avail_towrite;
    167	debug_info->current_read_index = ring_info->ring_buffer->read_index;
    168	debug_info->current_write_index = ring_info->ring_buffer->write_index;
    169	debug_info->current_interrupt_mask
    170		= ring_info->ring_buffer->interrupt_mask;
    171	mutex_unlock(&ring_info->ring_buffer_mutex);
    172
    173	return 0;
    174}
    175EXPORT_SYMBOL_GPL(hv_ringbuffer_get_debuginfo);
    176
    177/* Initialize a channel's ring buffer info mutex locks */
    178void hv_ringbuffer_pre_init(struct vmbus_channel *channel)
    179{
    180	mutex_init(&channel->inbound.ring_buffer_mutex);
    181	mutex_init(&channel->outbound.ring_buffer_mutex);
    182}
    183
    184/* Initialize the ring buffer. */
    185int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info,
    186		       struct page *pages, u32 page_cnt, u32 max_pkt_size)
    187{
    188	struct page **pages_wraparound;
    189	unsigned long *pfns_wraparound;
    190	u64 pfn;
    191	int i;
    192
    193	BUILD_BUG_ON((sizeof(struct hv_ring_buffer) != PAGE_SIZE));
    194
    195	/*
    196	 * First page holds struct hv_ring_buffer, do wraparound mapping for
    197	 * the rest.
    198	 */
    199	if (hv_isolation_type_snp()) {
    200		pfn = page_to_pfn(pages) +
    201			PFN_DOWN(ms_hyperv.shared_gpa_boundary);
    202
    203		pfns_wraparound = kcalloc(page_cnt * 2 - 1,
    204			sizeof(unsigned long), GFP_KERNEL);
    205		if (!pfns_wraparound)
    206			return -ENOMEM;
    207
    208		pfns_wraparound[0] = pfn;
    209		for (i = 0; i < 2 * (page_cnt - 1); i++)
    210			pfns_wraparound[i + 1] = pfn + i % (page_cnt - 1) + 1;
    211
    212		ring_info->ring_buffer = (struct hv_ring_buffer *)
    213			vmap_pfn(pfns_wraparound, page_cnt * 2 - 1,
    214				 PAGE_KERNEL);
    215		kfree(pfns_wraparound);
    216
    217		if (!ring_info->ring_buffer)
    218			return -ENOMEM;
    219
    220		/* Zero ring buffer after setting memory host visibility. */
    221		memset(ring_info->ring_buffer, 0x00, PAGE_SIZE * page_cnt);
    222	} else {
    223		pages_wraparound = kcalloc(page_cnt * 2 - 1,
    224					   sizeof(struct page *),
    225					   GFP_KERNEL);
    226		if (!pages_wraparound)
    227			return -ENOMEM;
    228
    229		pages_wraparound[0] = pages;
    230		for (i = 0; i < 2 * (page_cnt - 1); i++)
    231			pages_wraparound[i + 1] =
    232				&pages[i % (page_cnt - 1) + 1];
    233
    234		ring_info->ring_buffer = (struct hv_ring_buffer *)
    235			vmap(pages_wraparound, page_cnt * 2 - 1, VM_MAP,
    236				PAGE_KERNEL);
    237
    238		kfree(pages_wraparound);
    239		if (!ring_info->ring_buffer)
    240			return -ENOMEM;
    241	}
    242
    243
    244	ring_info->ring_buffer->read_index =
    245		ring_info->ring_buffer->write_index = 0;
    246
    247	/* Set the feature bit for enabling flow control. */
    248	ring_info->ring_buffer->feature_bits.value = 1;
    249
    250	ring_info->ring_size = page_cnt << PAGE_SHIFT;
    251	ring_info->ring_size_div10_reciprocal =
    252		reciprocal_value(ring_info->ring_size / 10);
    253	ring_info->ring_datasize = ring_info->ring_size -
    254		sizeof(struct hv_ring_buffer);
    255	ring_info->priv_read_index = 0;
    256
    257	/* Initialize buffer that holds copies of incoming packets */
    258	if (max_pkt_size) {
    259		ring_info->pkt_buffer = kzalloc(max_pkt_size, GFP_KERNEL);
    260		if (!ring_info->pkt_buffer)
    261			return -ENOMEM;
    262		ring_info->pkt_buffer_size = max_pkt_size;
    263	}
    264
    265	spin_lock_init(&ring_info->ring_lock);
    266
    267	return 0;
    268}
    269
    270/* Cleanup the ring buffer. */
    271void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info)
    272{
    273	mutex_lock(&ring_info->ring_buffer_mutex);
    274	vunmap(ring_info->ring_buffer);
    275	ring_info->ring_buffer = NULL;
    276	mutex_unlock(&ring_info->ring_buffer_mutex);
    277
    278	kfree(ring_info->pkt_buffer);
    279	ring_info->pkt_buffer = NULL;
    280	ring_info->pkt_buffer_size = 0;
    281}
    282
    283/* Write to the ring buffer. */
    284int hv_ringbuffer_write(struct vmbus_channel *channel,
    285			const struct kvec *kv_list, u32 kv_count,
    286			u64 requestid, u64 *trans_id)
    287{
    288	int i;
    289	u32 bytes_avail_towrite;
    290	u32 totalbytes_towrite = sizeof(u64);
    291	u32 next_write_location;
    292	u32 old_write;
    293	u64 prev_indices;
    294	unsigned long flags;
    295	struct hv_ring_buffer_info *outring_info = &channel->outbound;
    296	struct vmpacket_descriptor *desc = kv_list[0].iov_base;
    297	u64 __trans_id, rqst_id = VMBUS_NO_RQSTOR;
    298
    299	if (channel->rescind)
    300		return -ENODEV;
    301
    302	for (i = 0; i < kv_count; i++)
    303		totalbytes_towrite += kv_list[i].iov_len;
    304
    305	spin_lock_irqsave(&outring_info->ring_lock, flags);
    306
    307	bytes_avail_towrite = hv_get_bytes_to_write(outring_info);
    308
    309	/*
    310	 * If there is only room for the packet, assume it is full.
    311	 * Otherwise, the next time around, we think the ring buffer
    312	 * is empty since the read index == write index.
    313	 */
    314	if (bytes_avail_towrite <= totalbytes_towrite) {
    315		++channel->out_full_total;
    316
    317		if (!channel->out_full_flag) {
    318			++channel->out_full_first;
    319			channel->out_full_flag = true;
    320		}
    321
    322		spin_unlock_irqrestore(&outring_info->ring_lock, flags);
    323		return -EAGAIN;
    324	}
    325
    326	channel->out_full_flag = false;
    327
    328	/* Write to the ring buffer */
    329	next_write_location = hv_get_next_write_location(outring_info);
    330
    331	old_write = next_write_location;
    332
    333	for (i = 0; i < kv_count; i++) {
    334		next_write_location = hv_copyto_ringbuffer(outring_info,
    335						     next_write_location,
    336						     kv_list[i].iov_base,
    337						     kv_list[i].iov_len);
    338	}
    339
    340	/*
    341	 * Allocate the request ID after the data has been copied into the
    342	 * ring buffer.  Once this request ID is allocated, the completion
    343	 * path could find the data and free it.
    344	 */
    345
    346	if (desc->flags == VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED) {
    347		if (channel->next_request_id_callback != NULL) {
    348			rqst_id = channel->next_request_id_callback(channel, requestid);
    349			if (rqst_id == VMBUS_RQST_ERROR) {
    350				spin_unlock_irqrestore(&outring_info->ring_lock, flags);
    351				return -EAGAIN;
    352			}
    353		}
    354	}
    355	desc = hv_get_ring_buffer(outring_info) + old_write;
    356	__trans_id = (rqst_id == VMBUS_NO_RQSTOR) ? requestid : rqst_id;
    357	/*
    358	 * Ensure the compiler doesn't generate code that reads the value of
    359	 * the transaction ID from the ring buffer, which is shared with the
    360	 * Hyper-V host and subject to being changed at any time.
    361	 */
    362	WRITE_ONCE(desc->trans_id, __trans_id);
    363	if (trans_id)
    364		*trans_id = __trans_id;
    365
    366	/* Set previous packet start */
    367	prev_indices = hv_get_ring_bufferindices(outring_info);
    368
    369	next_write_location = hv_copyto_ringbuffer(outring_info,
    370					     next_write_location,
    371					     &prev_indices,
    372					     sizeof(u64));
    373
    374	/* Issue a full memory barrier before updating the write index */
    375	virt_mb();
    376
    377	/* Now, update the write location */
    378	hv_set_next_write_location(outring_info, next_write_location);
    379
    380
    381	spin_unlock_irqrestore(&outring_info->ring_lock, flags);
    382
    383	hv_signal_on_write(old_write, channel);
    384
    385	if (channel->rescind) {
    386		if (rqst_id != VMBUS_NO_RQSTOR) {
    387			/* Reclaim request ID to avoid leak of IDs */
    388			if (channel->request_addr_callback != NULL)
    389				channel->request_addr_callback(channel, rqst_id);
    390		}
    391		return -ENODEV;
    392	}
    393
    394	return 0;
    395}
    396
    397int hv_ringbuffer_read(struct vmbus_channel *channel,
    398		       void *buffer, u32 buflen, u32 *buffer_actual_len,
    399		       u64 *requestid, bool raw)
    400{
    401	struct vmpacket_descriptor *desc;
    402	u32 packetlen, offset;
    403
    404	if (unlikely(buflen == 0))
    405		return -EINVAL;
    406
    407	*buffer_actual_len = 0;
    408	*requestid = 0;
    409
    410	/* Make sure there is something to read */
    411	desc = hv_pkt_iter_first(channel);
    412	if (desc == NULL) {
    413		/*
    414		 * No error is set when there is even no header, drivers are
    415		 * supposed to analyze buffer_actual_len.
    416		 */
    417		return 0;
    418	}
    419
    420	offset = raw ? 0 : (desc->offset8 << 3);
    421	packetlen = (desc->len8 << 3) - offset;
    422	*buffer_actual_len = packetlen;
    423	*requestid = desc->trans_id;
    424
    425	if (unlikely(packetlen > buflen))
    426		return -ENOBUFS;
    427
    428	/* since ring is double mapped, only one copy is necessary */
    429	memcpy(buffer, (const char *)desc + offset, packetlen);
    430
    431	/* Advance ring index to next packet descriptor */
    432	__hv_pkt_iter_next(channel, desc);
    433
    434	/* Notify host of update */
    435	hv_pkt_iter_close(channel);
    436
    437	return 0;
    438}
    439
    440/*
    441 * Determine number of bytes available in ring buffer after
    442 * the current iterator (priv_read_index) location.
    443 *
    444 * This is similar to hv_get_bytes_to_read but with private
    445 * read index instead.
    446 */
    447static u32 hv_pkt_iter_avail(const struct hv_ring_buffer_info *rbi)
    448{
    449	u32 priv_read_loc = rbi->priv_read_index;
    450	u32 write_loc;
    451
    452	/*
    453	 * The Hyper-V host writes the packet data, then uses
    454	 * store_release() to update the write_index.  Use load_acquire()
    455	 * here to prevent loads of the packet data from being re-ordered
    456	 * before the read of the write_index and potentially getting
    457	 * stale data.
    458	 */
    459	write_loc = virt_load_acquire(&rbi->ring_buffer->write_index);
    460
    461	if (write_loc >= priv_read_loc)
    462		return write_loc - priv_read_loc;
    463	else
    464		return (rbi->ring_datasize - priv_read_loc) + write_loc;
    465}
    466
    467/*
    468 * Get first vmbus packet from ring buffer after read_index
    469 *
    470 * If ring buffer is empty, returns NULL and no other action needed.
    471 */
    472struct vmpacket_descriptor *hv_pkt_iter_first(struct vmbus_channel *channel)
    473{
    474	struct hv_ring_buffer_info *rbi = &channel->inbound;
    475	struct vmpacket_descriptor *desc, *desc_copy;
    476	u32 bytes_avail, pkt_len, pkt_offset;
    477
    478	hv_debug_delay_test(channel, MESSAGE_DELAY);
    479
    480	bytes_avail = hv_pkt_iter_avail(rbi);
    481	if (bytes_avail < sizeof(struct vmpacket_descriptor))
    482		return NULL;
    483	bytes_avail = min(rbi->pkt_buffer_size, bytes_avail);
    484
    485	desc = (struct vmpacket_descriptor *)(hv_get_ring_buffer(rbi) + rbi->priv_read_index);
    486
    487	/*
    488	 * Ensure the compiler does not use references to incoming Hyper-V values (which
    489	 * could change at any moment) when reading local variables later in the code
    490	 */
    491	pkt_len = READ_ONCE(desc->len8) << 3;
    492	pkt_offset = READ_ONCE(desc->offset8) << 3;
    493
    494	/*
    495	 * If pkt_len is invalid, set it to the smaller of hv_pkt_iter_avail() and
    496	 * rbi->pkt_buffer_size
    497	 */
    498	if (pkt_len < sizeof(struct vmpacket_descriptor) || pkt_len > bytes_avail)
    499		pkt_len = bytes_avail;
    500
    501	/*
    502	 * If pkt_offset is invalid, arbitrarily set it to
    503	 * the size of vmpacket_descriptor
    504	 */
    505	if (pkt_offset < sizeof(struct vmpacket_descriptor) || pkt_offset > pkt_len)
    506		pkt_offset = sizeof(struct vmpacket_descriptor);
    507
    508	/* Copy the Hyper-V packet out of the ring buffer */
    509	desc_copy = (struct vmpacket_descriptor *)rbi->pkt_buffer;
    510	memcpy(desc_copy, desc, pkt_len);
    511
    512	/*
    513	 * Hyper-V could still change len8 and offset8 after the earlier read.
    514	 * Ensure that desc_copy has legal values for len8 and offset8 that
    515	 * are consistent with the copy we just made
    516	 */
    517	desc_copy->len8 = pkt_len >> 3;
    518	desc_copy->offset8 = pkt_offset >> 3;
    519
    520	return desc_copy;
    521}
    522EXPORT_SYMBOL_GPL(hv_pkt_iter_first);
    523
    524/*
    525 * Get next vmbus packet from ring buffer.
    526 *
    527 * Advances the current location (priv_read_index) and checks for more
    528 * data. If the end of the ring buffer is reached, then return NULL.
    529 */
    530struct vmpacket_descriptor *
    531__hv_pkt_iter_next(struct vmbus_channel *channel,
    532		   const struct vmpacket_descriptor *desc)
    533{
    534	struct hv_ring_buffer_info *rbi = &channel->inbound;
    535	u32 packetlen = desc->len8 << 3;
    536	u32 dsize = rbi->ring_datasize;
    537
    538	hv_debug_delay_test(channel, MESSAGE_DELAY);
    539	/* bump offset to next potential packet */
    540	rbi->priv_read_index += packetlen + VMBUS_PKT_TRAILER;
    541	if (rbi->priv_read_index >= dsize)
    542		rbi->priv_read_index -= dsize;
    543
    544	/* more data? */
    545	return hv_pkt_iter_first(channel);
    546}
    547EXPORT_SYMBOL_GPL(__hv_pkt_iter_next);
    548
    549/* How many bytes were read in this iterator cycle */
    550static u32 hv_pkt_iter_bytes_read(const struct hv_ring_buffer_info *rbi,
    551					u32 start_read_index)
    552{
    553	if (rbi->priv_read_index >= start_read_index)
    554		return rbi->priv_read_index - start_read_index;
    555	else
    556		return rbi->ring_datasize - start_read_index +
    557			rbi->priv_read_index;
    558}
    559
    560/*
    561 * Update host ring buffer after iterating over packets. If the host has
    562 * stopped queuing new entries because it found the ring buffer full, and
    563 * sufficient space is being freed up, signal the host. But be careful to
    564 * only signal the host when necessary, both for performance reasons and
    565 * because Hyper-V protects itself by throttling guests that signal
    566 * inappropriately.
    567 *
    568 * Determining when to signal is tricky. There are three key data inputs
    569 * that must be handled in this order to avoid race conditions:
    570 *
    571 * 1. Update the read_index
    572 * 2. Read the pending_send_sz
    573 * 3. Read the current write_index
    574 *
    575 * The interrupt_mask is not used to determine when to signal. The
    576 * interrupt_mask is used only on the guest->host ring buffer when
    577 * sending requests to the host. The host does not use it on the host->
    578 * guest ring buffer to indicate whether it should be signaled.
    579 */
    580void hv_pkt_iter_close(struct vmbus_channel *channel)
    581{
    582	struct hv_ring_buffer_info *rbi = &channel->inbound;
    583	u32 curr_write_sz, pending_sz, bytes_read, start_read_index;
    584
    585	/*
    586	 * Make sure all reads are done before we update the read index since
    587	 * the writer may start writing to the read area once the read index
    588	 * is updated.
    589	 */
    590	virt_rmb();
    591	start_read_index = rbi->ring_buffer->read_index;
    592	rbi->ring_buffer->read_index = rbi->priv_read_index;
    593
    594	/*
    595	 * Older versions of Hyper-V (before WS2102 and Win8) do not
    596	 * implement pending_send_sz and simply poll if the host->guest
    597	 * ring buffer is full.  No signaling is needed or expected.
    598	 */
    599	if (!rbi->ring_buffer->feature_bits.feat_pending_send_sz)
    600		return;
    601
    602	/*
    603	 * Issue a full memory barrier before making the signaling decision.
    604	 * If reading pending_send_sz were to be reordered and happen
    605	 * before we commit the new read_index, a race could occur.  If the
    606	 * host were to set the pending_send_sz after we have sampled
    607	 * pending_send_sz, and the ring buffer blocks before we commit the
    608	 * read index, we could miss sending the interrupt. Issue a full
    609	 * memory barrier to address this.
    610	 */
    611	virt_mb();
    612
    613	/*
    614	 * If the pending_send_sz is zero, then the ring buffer is not
    615	 * blocked and there is no need to signal.  This is far by the
    616	 * most common case, so exit quickly for best performance.
    617	 */
    618	pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz);
    619	if (!pending_sz)
    620		return;
    621
    622	/*
    623	 * Ensure the read of write_index in hv_get_bytes_to_write()
    624	 * happens after the read of pending_send_sz.
    625	 */
    626	virt_rmb();
    627	curr_write_sz = hv_get_bytes_to_write(rbi);
    628	bytes_read = hv_pkt_iter_bytes_read(rbi, start_read_index);
    629
    630	/*
    631	 * We want to signal the host only if we're transitioning
    632	 * from a "not enough free space" state to a "enough free
    633	 * space" state.  For example, it's possible that this function
    634	 * could run and free up enough space to signal the host, and then
    635	 * run again and free up additional space before the host has a
    636	 * chance to clear the pending_send_sz.  The 2nd invocation would
    637	 * be a null transition from "enough free space" to "enough free
    638	 * space", which doesn't warrant a signal.
    639	 *
    640	 * Exactly filling the ring buffer is treated as "not enough
    641	 * space". The ring buffer always must have at least one byte
    642	 * empty so the empty and full conditions are distinguishable.
    643	 * hv_get_bytes_to_write() doesn't fully tell the truth in
    644	 * this regard.
    645	 *
    646	 * So first check if we were in the "enough free space" state
    647	 * before we began the iteration. If so, the host was not
    648	 * blocked, and there's no need to signal.
    649	 */
    650	if (curr_write_sz - bytes_read > pending_sz)
    651		return;
    652
    653	/*
    654	 * Similarly, if the new state is "not enough space", then
    655	 * there's no need to signal.
    656	 */
    657	if (curr_write_sz <= pending_sz)
    658		return;
    659
    660	++channel->intr_in_full;
    661	vmbus_setevent(channel);
    662}
    663EXPORT_SYMBOL_GPL(hv_pkt_iter_close);