cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

vmbus_drv.c (74374B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Copyright (c) 2009, Microsoft Corporation.
      4 *
      5 * Authors:
      6 *   Haiyang Zhang <haiyangz@microsoft.com>
      7 *   Hank Janssen  <hjanssen@microsoft.com>
      8 *   K. Y. Srinivasan <kys@microsoft.com>
      9 */
     10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
     11
     12#include <linux/init.h>
     13#include <linux/module.h>
     14#include <linux/device.h>
     15#include <linux/interrupt.h>
     16#include <linux/sysctl.h>
     17#include <linux/slab.h>
     18#include <linux/acpi.h>
     19#include <linux/completion.h>
     20#include <linux/hyperv.h>
     21#include <linux/kernel_stat.h>
     22#include <linux/clockchips.h>
     23#include <linux/cpu.h>
     24#include <linux/sched/isolation.h>
     25#include <linux/sched/task_stack.h>
     26
     27#include <linux/delay.h>
     28#include <linux/notifier.h>
     29#include <linux/panic_notifier.h>
     30#include <linux/ptrace.h>
     31#include <linux/screen_info.h>
     32#include <linux/kdebug.h>
     33#include <linux/efi.h>
     34#include <linux/random.h>
     35#include <linux/kernel.h>
     36#include <linux/syscore_ops.h>
     37#include <linux/dma-map-ops.h>
     38#include <clocksource/hyperv_timer.h>
     39#include "hyperv_vmbus.h"
     40
     41struct vmbus_dynid {
     42	struct list_head node;
     43	struct hv_vmbus_device_id id;
     44};
     45
     46static struct acpi_device  *hv_acpi_dev;
     47
     48static struct completion probe_event;
     49
     50static int hyperv_cpuhp_online;
     51
     52static void *hv_panic_page;
     53
     54static long __percpu *vmbus_evt;
     55
     56/* Values parsed from ACPI DSDT */
     57int vmbus_irq;
     58int vmbus_interrupt;
     59
     60/*
     61 * Boolean to control whether to report panic messages over Hyper-V.
     62 *
     63 * It can be set via /proc/sys/kernel/hyperv_record_panic_msg
     64 */
     65static int sysctl_record_panic_msg = 1;
     66
     67static int hyperv_report_reg(void)
     68{
     69	return !sysctl_record_panic_msg || !hv_panic_page;
     70}
     71
     72static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
     73			      void *args)
     74{
     75	struct pt_regs *regs;
     76
     77	vmbus_initiate_unload(true);
     78
     79	/*
     80	 * Hyper-V should be notified only once about a panic.  If we will be
     81	 * doing hv_kmsg_dump() with kmsg data later, don't do the notification
     82	 * here.
     83	 */
     84	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE
     85	    && hyperv_report_reg()) {
     86		regs = current_pt_regs();
     87		hyperv_report_panic(regs, val, false);
     88	}
     89	return NOTIFY_DONE;
     90}
     91
     92static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
     93			    void *args)
     94{
     95	struct die_args *die = args;
     96	struct pt_regs *regs = die->regs;
     97
     98	/* Don't notify Hyper-V if the die event is other than oops */
     99	if (val != DIE_OOPS)
    100		return NOTIFY_DONE;
    101
    102	/*
    103	 * Hyper-V should be notified only once about a panic.  If we will be
    104	 * doing hv_kmsg_dump() with kmsg data later, don't do the notification
    105	 * here.
    106	 */
    107	if (hyperv_report_reg())
    108		hyperv_report_panic(regs, val, true);
    109	return NOTIFY_DONE;
    110}
    111
    112static struct notifier_block hyperv_die_block = {
    113	.notifier_call = hyperv_die_event,
    114};
    115static struct notifier_block hyperv_panic_block = {
    116	.notifier_call = hyperv_panic_event,
    117};
    118
    119static const char *fb_mmio_name = "fb_range";
    120static struct resource *fb_mmio;
    121static struct resource *hyperv_mmio;
    122static DEFINE_MUTEX(hyperv_mmio_lock);
    123
    124static int vmbus_exists(void)
    125{
    126	if (hv_acpi_dev == NULL)
    127		return -ENODEV;
    128
    129	return 0;
    130}
    131
    132static u8 channel_monitor_group(const struct vmbus_channel *channel)
    133{
    134	return (u8)channel->offermsg.monitorid / 32;
    135}
    136
    137static u8 channel_monitor_offset(const struct vmbus_channel *channel)
    138{
    139	return (u8)channel->offermsg.monitorid % 32;
    140}
    141
    142static u32 channel_pending(const struct vmbus_channel *channel,
    143			   const struct hv_monitor_page *monitor_page)
    144{
    145	u8 monitor_group = channel_monitor_group(channel);
    146
    147	return monitor_page->trigger_group[monitor_group].pending;
    148}
    149
    150static u32 channel_latency(const struct vmbus_channel *channel,
    151			   const struct hv_monitor_page *monitor_page)
    152{
    153	u8 monitor_group = channel_monitor_group(channel);
    154	u8 monitor_offset = channel_monitor_offset(channel);
    155
    156	return monitor_page->latency[monitor_group][monitor_offset];
    157}
    158
    159static u32 channel_conn_id(struct vmbus_channel *channel,
    160			   struct hv_monitor_page *monitor_page)
    161{
    162	u8 monitor_group = channel_monitor_group(channel);
    163	u8 monitor_offset = channel_monitor_offset(channel);
    164
    165	return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
    166}
    167
    168static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
    169		       char *buf)
    170{
    171	struct hv_device *hv_dev = device_to_hv_device(dev);
    172
    173	if (!hv_dev->channel)
    174		return -ENODEV;
    175	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
    176}
    177static DEVICE_ATTR_RO(id);
    178
    179static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
    180			  char *buf)
    181{
    182	struct hv_device *hv_dev = device_to_hv_device(dev);
    183
    184	if (!hv_dev->channel)
    185		return -ENODEV;
    186	return sprintf(buf, "%d\n", hv_dev->channel->state);
    187}
    188static DEVICE_ATTR_RO(state);
    189
    190static ssize_t monitor_id_show(struct device *dev,
    191			       struct device_attribute *dev_attr, char *buf)
    192{
    193	struct hv_device *hv_dev = device_to_hv_device(dev);
    194
    195	if (!hv_dev->channel)
    196		return -ENODEV;
    197	return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
    198}
    199static DEVICE_ATTR_RO(monitor_id);
    200
    201static ssize_t class_id_show(struct device *dev,
    202			       struct device_attribute *dev_attr, char *buf)
    203{
    204	struct hv_device *hv_dev = device_to_hv_device(dev);
    205
    206	if (!hv_dev->channel)
    207		return -ENODEV;
    208	return sprintf(buf, "{%pUl}\n",
    209		       &hv_dev->channel->offermsg.offer.if_type);
    210}
    211static DEVICE_ATTR_RO(class_id);
    212
    213static ssize_t device_id_show(struct device *dev,
    214			      struct device_attribute *dev_attr, char *buf)
    215{
    216	struct hv_device *hv_dev = device_to_hv_device(dev);
    217
    218	if (!hv_dev->channel)
    219		return -ENODEV;
    220	return sprintf(buf, "{%pUl}\n",
    221		       &hv_dev->channel->offermsg.offer.if_instance);
    222}
    223static DEVICE_ATTR_RO(device_id);
    224
    225static ssize_t modalias_show(struct device *dev,
    226			     struct device_attribute *dev_attr, char *buf)
    227{
    228	struct hv_device *hv_dev = device_to_hv_device(dev);
    229
    230	return sprintf(buf, "vmbus:%*phN\n", UUID_SIZE, &hv_dev->dev_type);
    231}
    232static DEVICE_ATTR_RO(modalias);
    233
    234#ifdef CONFIG_NUMA
    235static ssize_t numa_node_show(struct device *dev,
    236			      struct device_attribute *attr, char *buf)
    237{
    238	struct hv_device *hv_dev = device_to_hv_device(dev);
    239
    240	if (!hv_dev->channel)
    241		return -ENODEV;
    242
    243	return sprintf(buf, "%d\n", cpu_to_node(hv_dev->channel->target_cpu));
    244}
    245static DEVICE_ATTR_RO(numa_node);
    246#endif
    247
    248static ssize_t server_monitor_pending_show(struct device *dev,
    249					   struct device_attribute *dev_attr,
    250					   char *buf)
    251{
    252	struct hv_device *hv_dev = device_to_hv_device(dev);
    253
    254	if (!hv_dev->channel)
    255		return -ENODEV;
    256	return sprintf(buf, "%d\n",
    257		       channel_pending(hv_dev->channel,
    258				       vmbus_connection.monitor_pages[0]));
    259}
    260static DEVICE_ATTR_RO(server_monitor_pending);
    261
    262static ssize_t client_monitor_pending_show(struct device *dev,
    263					   struct device_attribute *dev_attr,
    264					   char *buf)
    265{
    266	struct hv_device *hv_dev = device_to_hv_device(dev);
    267
    268	if (!hv_dev->channel)
    269		return -ENODEV;
    270	return sprintf(buf, "%d\n",
    271		       channel_pending(hv_dev->channel,
    272				       vmbus_connection.monitor_pages[1]));
    273}
    274static DEVICE_ATTR_RO(client_monitor_pending);
    275
    276static ssize_t server_monitor_latency_show(struct device *dev,
    277					   struct device_attribute *dev_attr,
    278					   char *buf)
    279{
    280	struct hv_device *hv_dev = device_to_hv_device(dev);
    281
    282	if (!hv_dev->channel)
    283		return -ENODEV;
    284	return sprintf(buf, "%d\n",
    285		       channel_latency(hv_dev->channel,
    286				       vmbus_connection.monitor_pages[0]));
    287}
    288static DEVICE_ATTR_RO(server_monitor_latency);
    289
    290static ssize_t client_monitor_latency_show(struct device *dev,
    291					   struct device_attribute *dev_attr,
    292					   char *buf)
    293{
    294	struct hv_device *hv_dev = device_to_hv_device(dev);
    295
    296	if (!hv_dev->channel)
    297		return -ENODEV;
    298	return sprintf(buf, "%d\n",
    299		       channel_latency(hv_dev->channel,
    300				       vmbus_connection.monitor_pages[1]));
    301}
    302static DEVICE_ATTR_RO(client_monitor_latency);
    303
    304static ssize_t server_monitor_conn_id_show(struct device *dev,
    305					   struct device_attribute *dev_attr,
    306					   char *buf)
    307{
    308	struct hv_device *hv_dev = device_to_hv_device(dev);
    309
    310	if (!hv_dev->channel)
    311		return -ENODEV;
    312	return sprintf(buf, "%d\n",
    313		       channel_conn_id(hv_dev->channel,
    314				       vmbus_connection.monitor_pages[0]));
    315}
    316static DEVICE_ATTR_RO(server_monitor_conn_id);
    317
    318static ssize_t client_monitor_conn_id_show(struct device *dev,
    319					   struct device_attribute *dev_attr,
    320					   char *buf)
    321{
    322	struct hv_device *hv_dev = device_to_hv_device(dev);
    323
    324	if (!hv_dev->channel)
    325		return -ENODEV;
    326	return sprintf(buf, "%d\n",
    327		       channel_conn_id(hv_dev->channel,
    328				       vmbus_connection.monitor_pages[1]));
    329}
    330static DEVICE_ATTR_RO(client_monitor_conn_id);
    331
    332static ssize_t out_intr_mask_show(struct device *dev,
    333				  struct device_attribute *dev_attr, char *buf)
    334{
    335	struct hv_device *hv_dev = device_to_hv_device(dev);
    336	struct hv_ring_buffer_debug_info outbound;
    337	int ret;
    338
    339	if (!hv_dev->channel)
    340		return -ENODEV;
    341
    342	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
    343					  &outbound);
    344	if (ret < 0)
    345		return ret;
    346
    347	return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
    348}
    349static DEVICE_ATTR_RO(out_intr_mask);
    350
    351static ssize_t out_read_index_show(struct device *dev,
    352				   struct device_attribute *dev_attr, char *buf)
    353{
    354	struct hv_device *hv_dev = device_to_hv_device(dev);
    355	struct hv_ring_buffer_debug_info outbound;
    356	int ret;
    357
    358	if (!hv_dev->channel)
    359		return -ENODEV;
    360
    361	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
    362					  &outbound);
    363	if (ret < 0)
    364		return ret;
    365	return sprintf(buf, "%d\n", outbound.current_read_index);
    366}
    367static DEVICE_ATTR_RO(out_read_index);
    368
    369static ssize_t out_write_index_show(struct device *dev,
    370				    struct device_attribute *dev_attr,
    371				    char *buf)
    372{
    373	struct hv_device *hv_dev = device_to_hv_device(dev);
    374	struct hv_ring_buffer_debug_info outbound;
    375	int ret;
    376
    377	if (!hv_dev->channel)
    378		return -ENODEV;
    379
    380	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
    381					  &outbound);
    382	if (ret < 0)
    383		return ret;
    384	return sprintf(buf, "%d\n", outbound.current_write_index);
    385}
    386static DEVICE_ATTR_RO(out_write_index);
    387
    388static ssize_t out_read_bytes_avail_show(struct device *dev,
    389					 struct device_attribute *dev_attr,
    390					 char *buf)
    391{
    392	struct hv_device *hv_dev = device_to_hv_device(dev);
    393	struct hv_ring_buffer_debug_info outbound;
    394	int ret;
    395
    396	if (!hv_dev->channel)
    397		return -ENODEV;
    398
    399	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
    400					  &outbound);
    401	if (ret < 0)
    402		return ret;
    403	return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
    404}
    405static DEVICE_ATTR_RO(out_read_bytes_avail);
    406
    407static ssize_t out_write_bytes_avail_show(struct device *dev,
    408					  struct device_attribute *dev_attr,
    409					  char *buf)
    410{
    411	struct hv_device *hv_dev = device_to_hv_device(dev);
    412	struct hv_ring_buffer_debug_info outbound;
    413	int ret;
    414
    415	if (!hv_dev->channel)
    416		return -ENODEV;
    417
    418	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
    419					  &outbound);
    420	if (ret < 0)
    421		return ret;
    422	return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
    423}
    424static DEVICE_ATTR_RO(out_write_bytes_avail);
    425
    426static ssize_t in_intr_mask_show(struct device *dev,
    427				 struct device_attribute *dev_attr, char *buf)
    428{
    429	struct hv_device *hv_dev = device_to_hv_device(dev);
    430	struct hv_ring_buffer_debug_info inbound;
    431	int ret;
    432
    433	if (!hv_dev->channel)
    434		return -ENODEV;
    435
    436	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
    437	if (ret < 0)
    438		return ret;
    439
    440	return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
    441}
    442static DEVICE_ATTR_RO(in_intr_mask);
    443
    444static ssize_t in_read_index_show(struct device *dev,
    445				  struct device_attribute *dev_attr, char *buf)
    446{
    447	struct hv_device *hv_dev = device_to_hv_device(dev);
    448	struct hv_ring_buffer_debug_info inbound;
    449	int ret;
    450
    451	if (!hv_dev->channel)
    452		return -ENODEV;
    453
    454	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
    455	if (ret < 0)
    456		return ret;
    457
    458	return sprintf(buf, "%d\n", inbound.current_read_index);
    459}
    460static DEVICE_ATTR_RO(in_read_index);
    461
    462static ssize_t in_write_index_show(struct device *dev,
    463				   struct device_attribute *dev_attr, char *buf)
    464{
    465	struct hv_device *hv_dev = device_to_hv_device(dev);
    466	struct hv_ring_buffer_debug_info inbound;
    467	int ret;
    468
    469	if (!hv_dev->channel)
    470		return -ENODEV;
    471
    472	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
    473	if (ret < 0)
    474		return ret;
    475
    476	return sprintf(buf, "%d\n", inbound.current_write_index);
    477}
    478static DEVICE_ATTR_RO(in_write_index);
    479
    480static ssize_t in_read_bytes_avail_show(struct device *dev,
    481					struct device_attribute *dev_attr,
    482					char *buf)
    483{
    484	struct hv_device *hv_dev = device_to_hv_device(dev);
    485	struct hv_ring_buffer_debug_info inbound;
    486	int ret;
    487
    488	if (!hv_dev->channel)
    489		return -ENODEV;
    490
    491	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
    492	if (ret < 0)
    493		return ret;
    494
    495	return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
    496}
    497static DEVICE_ATTR_RO(in_read_bytes_avail);
    498
    499static ssize_t in_write_bytes_avail_show(struct device *dev,
    500					 struct device_attribute *dev_attr,
    501					 char *buf)
    502{
    503	struct hv_device *hv_dev = device_to_hv_device(dev);
    504	struct hv_ring_buffer_debug_info inbound;
    505	int ret;
    506
    507	if (!hv_dev->channel)
    508		return -ENODEV;
    509
    510	ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
    511	if (ret < 0)
    512		return ret;
    513
    514	return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
    515}
    516static DEVICE_ATTR_RO(in_write_bytes_avail);
    517
    518static ssize_t channel_vp_mapping_show(struct device *dev,
    519				       struct device_attribute *dev_attr,
    520				       char *buf)
    521{
    522	struct hv_device *hv_dev = device_to_hv_device(dev);
    523	struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
    524	int buf_size = PAGE_SIZE, n_written, tot_written;
    525	struct list_head *cur;
    526
    527	if (!channel)
    528		return -ENODEV;
    529
    530	mutex_lock(&vmbus_connection.channel_mutex);
    531
    532	tot_written = snprintf(buf, buf_size, "%u:%u\n",
    533		channel->offermsg.child_relid, channel->target_cpu);
    534
    535	list_for_each(cur, &channel->sc_list) {
    536		if (tot_written >= buf_size - 1)
    537			break;
    538
    539		cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
    540		n_written = scnprintf(buf + tot_written,
    541				     buf_size - tot_written,
    542				     "%u:%u\n",
    543				     cur_sc->offermsg.child_relid,
    544				     cur_sc->target_cpu);
    545		tot_written += n_written;
    546	}
    547
    548	mutex_unlock(&vmbus_connection.channel_mutex);
    549
    550	return tot_written;
    551}
    552static DEVICE_ATTR_RO(channel_vp_mapping);
    553
    554static ssize_t vendor_show(struct device *dev,
    555			   struct device_attribute *dev_attr,
    556			   char *buf)
    557{
    558	struct hv_device *hv_dev = device_to_hv_device(dev);
    559
    560	return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
    561}
    562static DEVICE_ATTR_RO(vendor);
    563
    564static ssize_t device_show(struct device *dev,
    565			   struct device_attribute *dev_attr,
    566			   char *buf)
    567{
    568	struct hv_device *hv_dev = device_to_hv_device(dev);
    569
    570	return sprintf(buf, "0x%x\n", hv_dev->device_id);
    571}
    572static DEVICE_ATTR_RO(device);
    573
    574static ssize_t driver_override_store(struct device *dev,
    575				     struct device_attribute *attr,
    576				     const char *buf, size_t count)
    577{
    578	struct hv_device *hv_dev = device_to_hv_device(dev);
    579	int ret;
    580
    581	ret = driver_set_override(dev, &hv_dev->driver_override, buf, count);
    582	if (ret)
    583		return ret;
    584
    585	return count;
    586}
    587
    588static ssize_t driver_override_show(struct device *dev,
    589				    struct device_attribute *attr, char *buf)
    590{
    591	struct hv_device *hv_dev = device_to_hv_device(dev);
    592	ssize_t len;
    593
    594	device_lock(dev);
    595	len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override);
    596	device_unlock(dev);
    597
    598	return len;
    599}
    600static DEVICE_ATTR_RW(driver_override);
    601
    602/* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
    603static struct attribute *vmbus_dev_attrs[] = {
    604	&dev_attr_id.attr,
    605	&dev_attr_state.attr,
    606	&dev_attr_monitor_id.attr,
    607	&dev_attr_class_id.attr,
    608	&dev_attr_device_id.attr,
    609	&dev_attr_modalias.attr,
    610#ifdef CONFIG_NUMA
    611	&dev_attr_numa_node.attr,
    612#endif
    613	&dev_attr_server_monitor_pending.attr,
    614	&dev_attr_client_monitor_pending.attr,
    615	&dev_attr_server_monitor_latency.attr,
    616	&dev_attr_client_monitor_latency.attr,
    617	&dev_attr_server_monitor_conn_id.attr,
    618	&dev_attr_client_monitor_conn_id.attr,
    619	&dev_attr_out_intr_mask.attr,
    620	&dev_attr_out_read_index.attr,
    621	&dev_attr_out_write_index.attr,
    622	&dev_attr_out_read_bytes_avail.attr,
    623	&dev_attr_out_write_bytes_avail.attr,
    624	&dev_attr_in_intr_mask.attr,
    625	&dev_attr_in_read_index.attr,
    626	&dev_attr_in_write_index.attr,
    627	&dev_attr_in_read_bytes_avail.attr,
    628	&dev_attr_in_write_bytes_avail.attr,
    629	&dev_attr_channel_vp_mapping.attr,
    630	&dev_attr_vendor.attr,
    631	&dev_attr_device.attr,
    632	&dev_attr_driver_override.attr,
    633	NULL,
    634};
    635
    636/*
    637 * Device-level attribute_group callback function. Returns the permission for
    638 * each attribute, and returns 0 if an attribute is not visible.
    639 */
    640static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj,
    641					 struct attribute *attr, int idx)
    642{
    643	struct device *dev = kobj_to_dev(kobj);
    644	const struct hv_device *hv_dev = device_to_hv_device(dev);
    645
    646	/* Hide the monitor attributes if the monitor mechanism is not used. */
    647	if (!hv_dev->channel->offermsg.monitor_allocated &&
    648	    (attr == &dev_attr_monitor_id.attr ||
    649	     attr == &dev_attr_server_monitor_pending.attr ||
    650	     attr == &dev_attr_client_monitor_pending.attr ||
    651	     attr == &dev_attr_server_monitor_latency.attr ||
    652	     attr == &dev_attr_client_monitor_latency.attr ||
    653	     attr == &dev_attr_server_monitor_conn_id.attr ||
    654	     attr == &dev_attr_client_monitor_conn_id.attr))
    655		return 0;
    656
    657	return attr->mode;
    658}
    659
    660static const struct attribute_group vmbus_dev_group = {
    661	.attrs = vmbus_dev_attrs,
    662	.is_visible = vmbus_dev_attr_is_visible
    663};
    664__ATTRIBUTE_GROUPS(vmbus_dev);
    665
    666/* Set up the attribute for /sys/bus/vmbus/hibernation */
    667static ssize_t hibernation_show(struct bus_type *bus, char *buf)
    668{
    669	return sprintf(buf, "%d\n", !!hv_is_hibernation_supported());
    670}
    671
    672static BUS_ATTR_RO(hibernation);
    673
    674static struct attribute *vmbus_bus_attrs[] = {
    675	&bus_attr_hibernation.attr,
    676	NULL,
    677};
    678static const struct attribute_group vmbus_bus_group = {
    679	.attrs = vmbus_bus_attrs,
    680};
    681__ATTRIBUTE_GROUPS(vmbus_bus);
    682
    683/*
    684 * vmbus_uevent - add uevent for our device
    685 *
    686 * This routine is invoked when a device is added or removed on the vmbus to
    687 * generate a uevent to udev in the userspace. The udev will then look at its
    688 * rule and the uevent generated here to load the appropriate driver
    689 *
    690 * The alias string will be of the form vmbus:guid where guid is the string
    691 * representation of the device guid (each byte of the guid will be
    692 * represented with two hex characters.
    693 */
    694static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
    695{
    696	struct hv_device *dev = device_to_hv_device(device);
    697	const char *format = "MODALIAS=vmbus:%*phN";
    698
    699	return add_uevent_var(env, format, UUID_SIZE, &dev->dev_type);
    700}
    701
    702static const struct hv_vmbus_device_id *
    703hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid)
    704{
    705	if (id == NULL)
    706		return NULL; /* empty device table */
    707
    708	for (; !guid_is_null(&id->guid); id++)
    709		if (guid_equal(&id->guid, guid))
    710			return id;
    711
    712	return NULL;
    713}
    714
    715static const struct hv_vmbus_device_id *
    716hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid)
    717{
    718	const struct hv_vmbus_device_id *id = NULL;
    719	struct vmbus_dynid *dynid;
    720
    721	spin_lock(&drv->dynids.lock);
    722	list_for_each_entry(dynid, &drv->dynids.list, node) {
    723		if (guid_equal(&dynid->id.guid, guid)) {
    724			id = &dynid->id;
    725			break;
    726		}
    727	}
    728	spin_unlock(&drv->dynids.lock);
    729
    730	return id;
    731}
    732
    733static const struct hv_vmbus_device_id vmbus_device_null;
    734
    735/*
    736 * Return a matching hv_vmbus_device_id pointer.
    737 * If there is no match, return NULL.
    738 */
    739static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
    740							struct hv_device *dev)
    741{
    742	const guid_t *guid = &dev->dev_type;
    743	const struct hv_vmbus_device_id *id;
    744
    745	/* When driver_override is set, only bind to the matching driver */
    746	if (dev->driver_override && strcmp(dev->driver_override, drv->name))
    747		return NULL;
    748
    749	/* Look at the dynamic ids first, before the static ones */
    750	id = hv_vmbus_dynid_match(drv, guid);
    751	if (!id)
    752		id = hv_vmbus_dev_match(drv->id_table, guid);
    753
    754	/* driver_override will always match, send a dummy id */
    755	if (!id && dev->driver_override)
    756		id = &vmbus_device_null;
    757
    758	return id;
    759}
    760
    761/* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
    762static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid)
    763{
    764	struct vmbus_dynid *dynid;
    765
    766	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
    767	if (!dynid)
    768		return -ENOMEM;
    769
    770	dynid->id.guid = *guid;
    771
    772	spin_lock(&drv->dynids.lock);
    773	list_add_tail(&dynid->node, &drv->dynids.list);
    774	spin_unlock(&drv->dynids.lock);
    775
    776	return driver_attach(&drv->driver);
    777}
    778
    779static void vmbus_free_dynids(struct hv_driver *drv)
    780{
    781	struct vmbus_dynid *dynid, *n;
    782
    783	spin_lock(&drv->dynids.lock);
    784	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
    785		list_del(&dynid->node);
    786		kfree(dynid);
    787	}
    788	spin_unlock(&drv->dynids.lock);
    789}
    790
    791/*
    792 * store_new_id - sysfs frontend to vmbus_add_dynid()
    793 *
    794 * Allow GUIDs to be added to an existing driver via sysfs.
    795 */
    796static ssize_t new_id_store(struct device_driver *driver, const char *buf,
    797			    size_t count)
    798{
    799	struct hv_driver *drv = drv_to_hv_drv(driver);
    800	guid_t guid;
    801	ssize_t retval;
    802
    803	retval = guid_parse(buf, &guid);
    804	if (retval)
    805		return retval;
    806
    807	if (hv_vmbus_dynid_match(drv, &guid))
    808		return -EEXIST;
    809
    810	retval = vmbus_add_dynid(drv, &guid);
    811	if (retval)
    812		return retval;
    813	return count;
    814}
    815static DRIVER_ATTR_WO(new_id);
    816
    817/*
    818 * store_remove_id - remove a PCI device ID from this driver
    819 *
    820 * Removes a dynamic pci device ID to this driver.
    821 */
    822static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
    823			       size_t count)
    824{
    825	struct hv_driver *drv = drv_to_hv_drv(driver);
    826	struct vmbus_dynid *dynid, *n;
    827	guid_t guid;
    828	ssize_t retval;
    829
    830	retval = guid_parse(buf, &guid);
    831	if (retval)
    832		return retval;
    833
    834	retval = -ENODEV;
    835	spin_lock(&drv->dynids.lock);
    836	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
    837		struct hv_vmbus_device_id *id = &dynid->id;
    838
    839		if (guid_equal(&id->guid, &guid)) {
    840			list_del(&dynid->node);
    841			kfree(dynid);
    842			retval = count;
    843			break;
    844		}
    845	}
    846	spin_unlock(&drv->dynids.lock);
    847
    848	return retval;
    849}
    850static DRIVER_ATTR_WO(remove_id);
    851
    852static struct attribute *vmbus_drv_attrs[] = {
    853	&driver_attr_new_id.attr,
    854	&driver_attr_remove_id.attr,
    855	NULL,
    856};
    857ATTRIBUTE_GROUPS(vmbus_drv);
    858
    859
    860/*
    861 * vmbus_match - Attempt to match the specified device to the specified driver
    862 */
    863static int vmbus_match(struct device *device, struct device_driver *driver)
    864{
    865	struct hv_driver *drv = drv_to_hv_drv(driver);
    866	struct hv_device *hv_dev = device_to_hv_device(device);
    867
    868	/* The hv_sock driver handles all hv_sock offers. */
    869	if (is_hvsock_channel(hv_dev->channel))
    870		return drv->hvsock;
    871
    872	if (hv_vmbus_get_id(drv, hv_dev))
    873		return 1;
    874
    875	return 0;
    876}
    877
    878/*
    879 * vmbus_probe - Add the new vmbus's child device
    880 */
    881static int vmbus_probe(struct device *child_device)
    882{
    883	int ret = 0;
    884	struct hv_driver *drv =
    885			drv_to_hv_drv(child_device->driver);
    886	struct hv_device *dev = device_to_hv_device(child_device);
    887	const struct hv_vmbus_device_id *dev_id;
    888
    889	dev_id = hv_vmbus_get_id(drv, dev);
    890	if (drv->probe) {
    891		ret = drv->probe(dev, dev_id);
    892		if (ret != 0)
    893			pr_err("probe failed for device %s (%d)\n",
    894			       dev_name(child_device), ret);
    895
    896	} else {
    897		pr_err("probe not set for driver %s\n",
    898		       dev_name(child_device));
    899		ret = -ENODEV;
    900	}
    901	return ret;
    902}
    903
    904/*
    905 * vmbus_dma_configure -- Configure DMA coherence for VMbus device
    906 */
    907static int vmbus_dma_configure(struct device *child_device)
    908{
    909	/*
    910	 * On ARM64, propagate the DMA coherence setting from the top level
    911	 * VMbus ACPI device to the child VMbus device being added here.
    912	 * On x86/x64 coherence is assumed and these calls have no effect.
    913	 */
    914	hv_setup_dma_ops(child_device,
    915		device_get_dma_attr(&hv_acpi_dev->dev) == DEV_DMA_COHERENT);
    916	return 0;
    917}
    918
    919/*
    920 * vmbus_remove - Remove a vmbus device
    921 */
    922static void vmbus_remove(struct device *child_device)
    923{
    924	struct hv_driver *drv;
    925	struct hv_device *dev = device_to_hv_device(child_device);
    926
    927	if (child_device->driver) {
    928		drv = drv_to_hv_drv(child_device->driver);
    929		if (drv->remove)
    930			drv->remove(dev);
    931	}
    932}
    933
    934/*
    935 * vmbus_shutdown - Shutdown a vmbus device
    936 */
    937static void vmbus_shutdown(struct device *child_device)
    938{
    939	struct hv_driver *drv;
    940	struct hv_device *dev = device_to_hv_device(child_device);
    941
    942
    943	/* The device may not be attached yet */
    944	if (!child_device->driver)
    945		return;
    946
    947	drv = drv_to_hv_drv(child_device->driver);
    948
    949	if (drv->shutdown)
    950		drv->shutdown(dev);
    951}
    952
    953#ifdef CONFIG_PM_SLEEP
    954/*
    955 * vmbus_suspend - Suspend a vmbus device
    956 */
    957static int vmbus_suspend(struct device *child_device)
    958{
    959	struct hv_driver *drv;
    960	struct hv_device *dev = device_to_hv_device(child_device);
    961
    962	/* The device may not be attached yet */
    963	if (!child_device->driver)
    964		return 0;
    965
    966	drv = drv_to_hv_drv(child_device->driver);
    967	if (!drv->suspend)
    968		return -EOPNOTSUPP;
    969
    970	return drv->suspend(dev);
    971}
    972
    973/*
    974 * vmbus_resume - Resume a vmbus device
    975 */
    976static int vmbus_resume(struct device *child_device)
    977{
    978	struct hv_driver *drv;
    979	struct hv_device *dev = device_to_hv_device(child_device);
    980
    981	/* The device may not be attached yet */
    982	if (!child_device->driver)
    983		return 0;
    984
    985	drv = drv_to_hv_drv(child_device->driver);
    986	if (!drv->resume)
    987		return -EOPNOTSUPP;
    988
    989	return drv->resume(dev);
    990}
    991#else
    992#define vmbus_suspend NULL
    993#define vmbus_resume NULL
    994#endif /* CONFIG_PM_SLEEP */
    995
    996/*
    997 * vmbus_device_release - Final callback release of the vmbus child device
    998 */
    999static void vmbus_device_release(struct device *device)
   1000{
   1001	struct hv_device *hv_dev = device_to_hv_device(device);
   1002	struct vmbus_channel *channel = hv_dev->channel;
   1003
   1004	hv_debug_rm_dev_dir(hv_dev);
   1005
   1006	mutex_lock(&vmbus_connection.channel_mutex);
   1007	hv_process_channel_removal(channel);
   1008	mutex_unlock(&vmbus_connection.channel_mutex);
   1009	kfree(hv_dev);
   1010}
   1011
   1012/*
   1013 * Note: we must use the "noirq" ops: see the comment before vmbus_bus_pm.
   1014 *
   1015 * suspend_noirq/resume_noirq are set to NULL to support Suspend-to-Idle: we
   1016 * shouldn't suspend the vmbus devices upon Suspend-to-Idle, otherwise there
   1017 * is no way to wake up a Generation-2 VM.
   1018 *
   1019 * The other 4 ops are for hibernation.
   1020 */
   1021
   1022static const struct dev_pm_ops vmbus_pm = {
   1023	.suspend_noirq	= NULL,
   1024	.resume_noirq	= NULL,
   1025	.freeze_noirq	= vmbus_suspend,
   1026	.thaw_noirq	= vmbus_resume,
   1027	.poweroff_noirq	= vmbus_suspend,
   1028	.restore_noirq	= vmbus_resume,
   1029};
   1030
   1031/* The one and only one */
   1032static struct bus_type  hv_bus = {
   1033	.name =		"vmbus",
   1034	.match =		vmbus_match,
   1035	.shutdown =		vmbus_shutdown,
   1036	.remove =		vmbus_remove,
   1037	.probe =		vmbus_probe,
   1038	.uevent =		vmbus_uevent,
   1039	.dma_configure =	vmbus_dma_configure,
   1040	.dev_groups =		vmbus_dev_groups,
   1041	.drv_groups =		vmbus_drv_groups,
   1042	.bus_groups =		vmbus_bus_groups,
   1043	.pm =			&vmbus_pm,
   1044};
   1045
   1046struct onmessage_work_context {
   1047	struct work_struct work;
   1048	struct {
   1049		struct hv_message_header header;
   1050		u8 payload[];
   1051	} msg;
   1052};
   1053
   1054static void vmbus_onmessage_work(struct work_struct *work)
   1055{
   1056	struct onmessage_work_context *ctx;
   1057
   1058	/* Do not process messages if we're in DISCONNECTED state */
   1059	if (vmbus_connection.conn_state == DISCONNECTED)
   1060		return;
   1061
   1062	ctx = container_of(work, struct onmessage_work_context,
   1063			   work);
   1064	vmbus_onmessage((struct vmbus_channel_message_header *)
   1065			&ctx->msg.payload);
   1066	kfree(ctx);
   1067}
   1068
   1069void vmbus_on_msg_dpc(unsigned long data)
   1070{
   1071	struct hv_per_cpu_context *hv_cpu = (void *)data;
   1072	void *page_addr = hv_cpu->synic_message_page;
   1073	struct hv_message msg_copy, *msg = (struct hv_message *)page_addr +
   1074				  VMBUS_MESSAGE_SINT;
   1075	struct vmbus_channel_message_header *hdr;
   1076	enum vmbus_channel_message_type msgtype;
   1077	const struct vmbus_channel_message_table_entry *entry;
   1078	struct onmessage_work_context *ctx;
   1079	__u8 payload_size;
   1080	u32 message_type;
   1081
   1082	/*
   1083	 * 'enum vmbus_channel_message_type' is supposed to always be 'u32' as
   1084	 * it is being used in 'struct vmbus_channel_message_header' definition
   1085	 * which is supposed to match hypervisor ABI.
   1086	 */
   1087	BUILD_BUG_ON(sizeof(enum vmbus_channel_message_type) != sizeof(u32));
   1088
   1089	/*
   1090	 * Since the message is in memory shared with the host, an erroneous or
   1091	 * malicious Hyper-V could modify the message while vmbus_on_msg_dpc()
   1092	 * or individual message handlers are executing; to prevent this, copy
   1093	 * the message into private memory.
   1094	 */
   1095	memcpy(&msg_copy, msg, sizeof(struct hv_message));
   1096
   1097	message_type = msg_copy.header.message_type;
   1098	if (message_type == HVMSG_NONE)
   1099		/* no msg */
   1100		return;
   1101
   1102	hdr = (struct vmbus_channel_message_header *)msg_copy.u.payload;
   1103	msgtype = hdr->msgtype;
   1104
   1105	trace_vmbus_on_msg_dpc(hdr);
   1106
   1107	if (msgtype >= CHANNELMSG_COUNT) {
   1108		WARN_ONCE(1, "unknown msgtype=%d\n", msgtype);
   1109		goto msg_handled;
   1110	}
   1111
   1112	payload_size = msg_copy.header.payload_size;
   1113	if (payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT) {
   1114		WARN_ONCE(1, "payload size is too large (%d)\n", payload_size);
   1115		goto msg_handled;
   1116	}
   1117
   1118	entry = &channel_message_table[msgtype];
   1119
   1120	if (!entry->message_handler)
   1121		goto msg_handled;
   1122
   1123	if (payload_size < entry->min_payload_len) {
   1124		WARN_ONCE(1, "message too short: msgtype=%d len=%d\n", msgtype, payload_size);
   1125		goto msg_handled;
   1126	}
   1127
   1128	if (entry->handler_type	== VMHT_BLOCKING) {
   1129		ctx = kmalloc(struct_size(ctx, msg.payload, payload_size), GFP_ATOMIC);
   1130		if (ctx == NULL)
   1131			return;
   1132
   1133		INIT_WORK(&ctx->work, vmbus_onmessage_work);
   1134		memcpy(&ctx->msg, &msg_copy, sizeof(msg->header) + payload_size);
   1135
   1136		/*
   1137		 * The host can generate a rescind message while we
   1138		 * may still be handling the original offer. We deal with
   1139		 * this condition by relying on the synchronization provided
   1140		 * by offer_in_progress and by channel_mutex.  See also the
   1141		 * inline comments in vmbus_onoffer_rescind().
   1142		 */
   1143		switch (msgtype) {
   1144		case CHANNELMSG_RESCIND_CHANNELOFFER:
   1145			/*
   1146			 * If we are handling the rescind message;
   1147			 * schedule the work on the global work queue.
   1148			 *
   1149			 * The OFFER message and the RESCIND message should
   1150			 * not be handled by the same serialized work queue,
   1151			 * because the OFFER handler may call vmbus_open(),
   1152			 * which tries to open the channel by sending an
   1153			 * OPEN_CHANNEL message to the host and waits for
   1154			 * the host's response; however, if the host has
   1155			 * rescinded the channel before it receives the
   1156			 * OPEN_CHANNEL message, the host just silently
   1157			 * ignores the OPEN_CHANNEL message; as a result,
   1158			 * the guest's OFFER handler hangs for ever, if we
   1159			 * handle the RESCIND message in the same serialized
   1160			 * work queue: the RESCIND handler can not start to
   1161			 * run before the OFFER handler finishes.
   1162			 */
   1163			schedule_work(&ctx->work);
   1164			break;
   1165
   1166		case CHANNELMSG_OFFERCHANNEL:
   1167			/*
   1168			 * The host sends the offer message of a given channel
   1169			 * before sending the rescind message of the same
   1170			 * channel.  These messages are sent to the guest's
   1171			 * connect CPU; the guest then starts processing them
   1172			 * in the tasklet handler on this CPU:
   1173			 *
   1174			 * VMBUS_CONNECT_CPU
   1175			 *
   1176			 * [vmbus_on_msg_dpc()]
   1177			 * atomic_inc()  // CHANNELMSG_OFFERCHANNEL
   1178			 * queue_work()
   1179			 * ...
   1180			 * [vmbus_on_msg_dpc()]
   1181			 * schedule_work()  // CHANNELMSG_RESCIND_CHANNELOFFER
   1182			 *
   1183			 * We rely on the memory-ordering properties of the
   1184			 * queue_work() and schedule_work() primitives, which
   1185			 * guarantee that the atomic increment will be visible
   1186			 * to the CPUs which will execute the offer & rescind
   1187			 * works by the time these works will start execution.
   1188			 */
   1189			atomic_inc(&vmbus_connection.offer_in_progress);
   1190			fallthrough;
   1191
   1192		default:
   1193			queue_work(vmbus_connection.work_queue, &ctx->work);
   1194		}
   1195	} else
   1196		entry->message_handler(hdr);
   1197
   1198msg_handled:
   1199	vmbus_signal_eom(msg, message_type);
   1200}
   1201
   1202#ifdef CONFIG_PM_SLEEP
   1203/*
   1204 * Fake RESCIND_CHANNEL messages to clean up hv_sock channels by force for
   1205 * hibernation, because hv_sock connections can not persist across hibernation.
   1206 */
   1207static void vmbus_force_channel_rescinded(struct vmbus_channel *channel)
   1208{
   1209	struct onmessage_work_context *ctx;
   1210	struct vmbus_channel_rescind_offer *rescind;
   1211
   1212	WARN_ON(!is_hvsock_channel(channel));
   1213
   1214	/*
   1215	 * Allocation size is small and the allocation should really not fail,
   1216	 * otherwise the state of the hv_sock connections ends up in limbo.
   1217	 */
   1218	ctx = kzalloc(sizeof(*ctx) + sizeof(*rescind),
   1219		      GFP_KERNEL | __GFP_NOFAIL);
   1220
   1221	/*
   1222	 * So far, these are not really used by Linux. Just set them to the
   1223	 * reasonable values conforming to the definitions of the fields.
   1224	 */
   1225	ctx->msg.header.message_type = 1;
   1226	ctx->msg.header.payload_size = sizeof(*rescind);
   1227
   1228	/* These values are actually used by Linux. */
   1229	rescind = (struct vmbus_channel_rescind_offer *)ctx->msg.payload;
   1230	rescind->header.msgtype = CHANNELMSG_RESCIND_CHANNELOFFER;
   1231	rescind->child_relid = channel->offermsg.child_relid;
   1232
   1233	INIT_WORK(&ctx->work, vmbus_onmessage_work);
   1234
   1235	queue_work(vmbus_connection.work_queue, &ctx->work);
   1236}
   1237#endif /* CONFIG_PM_SLEEP */
   1238
   1239/*
   1240 * Schedule all channels with events pending
   1241 */
   1242static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
   1243{
   1244	unsigned long *recv_int_page;
   1245	u32 maxbits, relid;
   1246
   1247	/*
   1248	 * The event page can be directly checked to get the id of
   1249	 * the channel that has the interrupt pending.
   1250	 */
   1251	void *page_addr = hv_cpu->synic_event_page;
   1252	union hv_synic_event_flags *event
   1253		= (union hv_synic_event_flags *)page_addr +
   1254					 VMBUS_MESSAGE_SINT;
   1255
   1256	maxbits = HV_EVENT_FLAGS_COUNT;
   1257	recv_int_page = event->flags;
   1258
   1259	if (unlikely(!recv_int_page))
   1260		return;
   1261
   1262	for_each_set_bit(relid, recv_int_page, maxbits) {
   1263		void (*callback_fn)(void *context);
   1264		struct vmbus_channel *channel;
   1265
   1266		if (!sync_test_and_clear_bit(relid, recv_int_page))
   1267			continue;
   1268
   1269		/* Special case - vmbus channel protocol msg */
   1270		if (relid == 0)
   1271			continue;
   1272
   1273		/*
   1274		 * Pairs with the kfree_rcu() in vmbus_chan_release().
   1275		 * Guarantees that the channel data structure doesn't
   1276		 * get freed while the channel pointer below is being
   1277		 * dereferenced.
   1278		 */
   1279		rcu_read_lock();
   1280
   1281		/* Find channel based on relid */
   1282		channel = relid2channel(relid);
   1283		if (channel == NULL)
   1284			goto sched_unlock_rcu;
   1285
   1286		if (channel->rescind)
   1287			goto sched_unlock_rcu;
   1288
   1289		/*
   1290		 * Make sure that the ring buffer data structure doesn't get
   1291		 * freed while we dereference the ring buffer pointer.  Test
   1292		 * for the channel's onchannel_callback being NULL within a
   1293		 * sched_lock critical section.  See also the inline comments
   1294		 * in vmbus_reset_channel_cb().
   1295		 */
   1296		spin_lock(&channel->sched_lock);
   1297
   1298		callback_fn = channel->onchannel_callback;
   1299		if (unlikely(callback_fn == NULL))
   1300			goto sched_unlock;
   1301
   1302		trace_vmbus_chan_sched(channel);
   1303
   1304		++channel->interrupts;
   1305
   1306		switch (channel->callback_mode) {
   1307		case HV_CALL_ISR:
   1308			(*callback_fn)(channel->channel_callback_context);
   1309			break;
   1310
   1311		case HV_CALL_BATCHED:
   1312			hv_begin_read(&channel->inbound);
   1313			fallthrough;
   1314		case HV_CALL_DIRECT:
   1315			tasklet_schedule(&channel->callback_event);
   1316		}
   1317
   1318sched_unlock:
   1319		spin_unlock(&channel->sched_lock);
   1320sched_unlock_rcu:
   1321		rcu_read_unlock();
   1322	}
   1323}
   1324
   1325static void vmbus_isr(void)
   1326{
   1327	struct hv_per_cpu_context *hv_cpu
   1328		= this_cpu_ptr(hv_context.cpu_context);
   1329	void *page_addr;
   1330	struct hv_message *msg;
   1331
   1332	vmbus_chan_sched(hv_cpu);
   1333
   1334	page_addr = hv_cpu->synic_message_page;
   1335	msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
   1336
   1337	/* Check if there are actual msgs to be processed */
   1338	if (msg->header.message_type != HVMSG_NONE) {
   1339		if (msg->header.message_type == HVMSG_TIMER_EXPIRED) {
   1340			hv_stimer0_isr();
   1341			vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
   1342		} else
   1343			tasklet_schedule(&hv_cpu->msg_dpc);
   1344	}
   1345
   1346	add_interrupt_randomness(vmbus_interrupt);
   1347}
   1348
   1349static irqreturn_t vmbus_percpu_isr(int irq, void *dev_id)
   1350{
   1351	vmbus_isr();
   1352	return IRQ_HANDLED;
   1353}
   1354
   1355/*
   1356 * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
   1357 * buffer and call into Hyper-V to transfer the data.
   1358 */
   1359static void hv_kmsg_dump(struct kmsg_dumper *dumper,
   1360			 enum kmsg_dump_reason reason)
   1361{
   1362	struct kmsg_dump_iter iter;
   1363	size_t bytes_written;
   1364
   1365	/* We are only interested in panics. */
   1366	if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg))
   1367		return;
   1368
   1369	/*
   1370	 * Write dump contents to the page. No need to synchronize; panic should
   1371	 * be single-threaded.
   1372	 */
   1373	kmsg_dump_rewind(&iter);
   1374	kmsg_dump_get_buffer(&iter, false, hv_panic_page, HV_HYP_PAGE_SIZE,
   1375			     &bytes_written);
   1376	if (!bytes_written)
   1377		return;
   1378	/*
   1379	 * P3 to contain the physical address of the panic page & P4 to
   1380	 * contain the size of the panic data in that page. Rest of the
   1381	 * registers are no-op when the NOTIFY_MSG flag is set.
   1382	 */
   1383	hv_set_register(HV_REGISTER_CRASH_P0, 0);
   1384	hv_set_register(HV_REGISTER_CRASH_P1, 0);
   1385	hv_set_register(HV_REGISTER_CRASH_P2, 0);
   1386	hv_set_register(HV_REGISTER_CRASH_P3, virt_to_phys(hv_panic_page));
   1387	hv_set_register(HV_REGISTER_CRASH_P4, bytes_written);
   1388
   1389	/*
   1390	 * Let Hyper-V know there is crash data available along with
   1391	 * the panic message.
   1392	 */
   1393	hv_set_register(HV_REGISTER_CRASH_CTL,
   1394	       (HV_CRASH_CTL_CRASH_NOTIFY | HV_CRASH_CTL_CRASH_NOTIFY_MSG));
   1395}
   1396
   1397static struct kmsg_dumper hv_kmsg_dumper = {
   1398	.dump = hv_kmsg_dump,
   1399};
   1400
   1401static void hv_kmsg_dump_register(void)
   1402{
   1403	int ret;
   1404
   1405	hv_panic_page = hv_alloc_hyperv_zeroed_page();
   1406	if (!hv_panic_page) {
   1407		pr_err("Hyper-V: panic message page memory allocation failed\n");
   1408		return;
   1409	}
   1410
   1411	ret = kmsg_dump_register(&hv_kmsg_dumper);
   1412	if (ret) {
   1413		pr_err("Hyper-V: kmsg dump register error 0x%x\n", ret);
   1414		hv_free_hyperv_page((unsigned long)hv_panic_page);
   1415		hv_panic_page = NULL;
   1416	}
   1417}
   1418
   1419static struct ctl_table_header *hv_ctl_table_hdr;
   1420
   1421/*
   1422 * sysctl option to allow the user to control whether kmsg data should be
   1423 * reported to Hyper-V on panic.
   1424 */
   1425static struct ctl_table hv_ctl_table[] = {
   1426	{
   1427		.procname       = "hyperv_record_panic_msg",
   1428		.data           = &sysctl_record_panic_msg,
   1429		.maxlen         = sizeof(int),
   1430		.mode           = 0644,
   1431		.proc_handler   = proc_dointvec_minmax,
   1432		.extra1		= SYSCTL_ZERO,
   1433		.extra2		= SYSCTL_ONE
   1434	},
   1435	{}
   1436};
   1437
   1438static struct ctl_table hv_root_table[] = {
   1439	{
   1440		.procname	= "kernel",
   1441		.mode		= 0555,
   1442		.child		= hv_ctl_table
   1443	},
   1444	{}
   1445};
   1446
   1447/*
   1448 * vmbus_bus_init -Main vmbus driver initialization routine.
   1449 *
   1450 * Here, we
   1451 *	- initialize the vmbus driver context
   1452 *	- invoke the vmbus hv main init routine
   1453 *	- retrieve the channel offers
   1454 */
   1455static int vmbus_bus_init(void)
   1456{
   1457	int ret;
   1458
   1459	ret = hv_init();
   1460	if (ret != 0) {
   1461		pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
   1462		return ret;
   1463	}
   1464
   1465	ret = bus_register(&hv_bus);
   1466	if (ret)
   1467		return ret;
   1468
   1469	/*
   1470	 * VMbus interrupts are best modeled as per-cpu interrupts. If
   1471	 * on an architecture with support for per-cpu IRQs (e.g. ARM64),
   1472	 * allocate a per-cpu IRQ using standard Linux kernel functionality.
   1473	 * If not on such an architecture (e.g., x86/x64), then rely on
   1474	 * code in the arch-specific portion of the code tree to connect
   1475	 * the VMbus interrupt handler.
   1476	 */
   1477
   1478	if (vmbus_irq == -1) {
   1479		hv_setup_vmbus_handler(vmbus_isr);
   1480	} else {
   1481		vmbus_evt = alloc_percpu(long);
   1482		ret = request_percpu_irq(vmbus_irq, vmbus_percpu_isr,
   1483				"Hyper-V VMbus", vmbus_evt);
   1484		if (ret) {
   1485			pr_err("Can't request Hyper-V VMbus IRQ %d, Err %d",
   1486					vmbus_irq, ret);
   1487			free_percpu(vmbus_evt);
   1488			goto err_setup;
   1489		}
   1490	}
   1491
   1492	ret = hv_synic_alloc();
   1493	if (ret)
   1494		goto err_alloc;
   1495
   1496	/*
   1497	 * Initialize the per-cpu interrupt state and stimer state.
   1498	 * Then connect to the host.
   1499	 */
   1500	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
   1501				hv_synic_init, hv_synic_cleanup);
   1502	if (ret < 0)
   1503		goto err_cpuhp;
   1504	hyperv_cpuhp_online = ret;
   1505
   1506	ret = vmbus_connect();
   1507	if (ret)
   1508		goto err_connect;
   1509
   1510	if (hv_is_isolation_supported())
   1511		sysctl_record_panic_msg = 0;
   1512
   1513	/*
   1514	 * Only register if the crash MSRs are available
   1515	 */
   1516	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
   1517		u64 hyperv_crash_ctl;
   1518		/*
   1519		 * Panic message recording (sysctl_record_panic_msg)
   1520		 * is enabled by default in non-isolated guests and
   1521		 * disabled by default in isolated guests; the panic
   1522		 * message recording won't be available in isolated
   1523		 * guests should the following registration fail.
   1524		 */
   1525		hv_ctl_table_hdr = register_sysctl_table(hv_root_table);
   1526		if (!hv_ctl_table_hdr)
   1527			pr_err("Hyper-V: sysctl table register error");
   1528
   1529		/*
   1530		 * Register for panic kmsg callback only if the right
   1531		 * capability is supported by the hypervisor.
   1532		 */
   1533		hyperv_crash_ctl = hv_get_register(HV_REGISTER_CRASH_CTL);
   1534		if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG)
   1535			hv_kmsg_dump_register();
   1536
   1537		register_die_notifier(&hyperv_die_block);
   1538	}
   1539
   1540	/*
   1541	 * Always register the panic notifier because we need to unload
   1542	 * the VMbus channel connection to prevent any VMbus
   1543	 * activity after the VM panics.
   1544	 */
   1545	atomic_notifier_chain_register(&panic_notifier_list,
   1546			       &hyperv_panic_block);
   1547
   1548	vmbus_request_offers();
   1549
   1550	return 0;
   1551
   1552err_connect:
   1553	cpuhp_remove_state(hyperv_cpuhp_online);
   1554err_cpuhp:
   1555	hv_synic_free();
   1556err_alloc:
   1557	if (vmbus_irq == -1) {
   1558		hv_remove_vmbus_handler();
   1559	} else {
   1560		free_percpu_irq(vmbus_irq, vmbus_evt);
   1561		free_percpu(vmbus_evt);
   1562	}
   1563err_setup:
   1564	bus_unregister(&hv_bus);
   1565	unregister_sysctl_table(hv_ctl_table_hdr);
   1566	hv_ctl_table_hdr = NULL;
   1567	return ret;
   1568}
   1569
   1570/**
   1571 * __vmbus_child_driver_register() - Register a vmbus's driver
   1572 * @hv_driver: Pointer to driver structure you want to register
   1573 * @owner: owner module of the drv
   1574 * @mod_name: module name string
   1575 *
   1576 * Registers the given driver with Linux through the 'driver_register()' call
   1577 * and sets up the hyper-v vmbus handling for this driver.
   1578 * It will return the state of the 'driver_register()' call.
   1579 *
   1580 */
   1581int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
   1582{
   1583	int ret;
   1584
   1585	pr_info("registering driver %s\n", hv_driver->name);
   1586
   1587	ret = vmbus_exists();
   1588	if (ret < 0)
   1589		return ret;
   1590
   1591	hv_driver->driver.name = hv_driver->name;
   1592	hv_driver->driver.owner = owner;
   1593	hv_driver->driver.mod_name = mod_name;
   1594	hv_driver->driver.bus = &hv_bus;
   1595
   1596	spin_lock_init(&hv_driver->dynids.lock);
   1597	INIT_LIST_HEAD(&hv_driver->dynids.list);
   1598
   1599	ret = driver_register(&hv_driver->driver);
   1600
   1601	return ret;
   1602}
   1603EXPORT_SYMBOL_GPL(__vmbus_driver_register);
   1604
   1605/**
   1606 * vmbus_driver_unregister() - Unregister a vmbus's driver
   1607 * @hv_driver: Pointer to driver structure you want to
   1608 *             un-register
   1609 *
   1610 * Un-register the given driver that was previous registered with a call to
   1611 * vmbus_driver_register()
   1612 */
   1613void vmbus_driver_unregister(struct hv_driver *hv_driver)
   1614{
   1615	pr_info("unregistering driver %s\n", hv_driver->name);
   1616
   1617	if (!vmbus_exists()) {
   1618		driver_unregister(&hv_driver->driver);
   1619		vmbus_free_dynids(hv_driver);
   1620	}
   1621}
   1622EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
   1623
   1624
   1625/*
   1626 * Called when last reference to channel is gone.
   1627 */
   1628static void vmbus_chan_release(struct kobject *kobj)
   1629{
   1630	struct vmbus_channel *channel
   1631		= container_of(kobj, struct vmbus_channel, kobj);
   1632
   1633	kfree_rcu(channel, rcu);
   1634}
   1635
   1636struct vmbus_chan_attribute {
   1637	struct attribute attr;
   1638	ssize_t (*show)(struct vmbus_channel *chan, char *buf);
   1639	ssize_t (*store)(struct vmbus_channel *chan,
   1640			 const char *buf, size_t count);
   1641};
   1642#define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
   1643	struct vmbus_chan_attribute chan_attr_##_name \
   1644		= __ATTR(_name, _mode, _show, _store)
   1645#define VMBUS_CHAN_ATTR_RW(_name) \
   1646	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
   1647#define VMBUS_CHAN_ATTR_RO(_name) \
   1648	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
   1649#define VMBUS_CHAN_ATTR_WO(_name) \
   1650	struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
   1651
   1652static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
   1653				    struct attribute *attr, char *buf)
   1654{
   1655	const struct vmbus_chan_attribute *attribute
   1656		= container_of(attr, struct vmbus_chan_attribute, attr);
   1657	struct vmbus_channel *chan
   1658		= container_of(kobj, struct vmbus_channel, kobj);
   1659
   1660	if (!attribute->show)
   1661		return -EIO;
   1662
   1663	return attribute->show(chan, buf);
   1664}
   1665
   1666static ssize_t vmbus_chan_attr_store(struct kobject *kobj,
   1667				     struct attribute *attr, const char *buf,
   1668				     size_t count)
   1669{
   1670	const struct vmbus_chan_attribute *attribute
   1671		= container_of(attr, struct vmbus_chan_attribute, attr);
   1672	struct vmbus_channel *chan
   1673		= container_of(kobj, struct vmbus_channel, kobj);
   1674
   1675	if (!attribute->store)
   1676		return -EIO;
   1677
   1678	return attribute->store(chan, buf, count);
   1679}
   1680
   1681static const struct sysfs_ops vmbus_chan_sysfs_ops = {
   1682	.show = vmbus_chan_attr_show,
   1683	.store = vmbus_chan_attr_store,
   1684};
   1685
   1686static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf)
   1687{
   1688	struct hv_ring_buffer_info *rbi = &channel->outbound;
   1689	ssize_t ret;
   1690
   1691	mutex_lock(&rbi->ring_buffer_mutex);
   1692	if (!rbi->ring_buffer) {
   1693		mutex_unlock(&rbi->ring_buffer_mutex);
   1694		return -EINVAL;
   1695	}
   1696
   1697	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
   1698	mutex_unlock(&rbi->ring_buffer_mutex);
   1699	return ret;
   1700}
   1701static VMBUS_CHAN_ATTR_RO(out_mask);
   1702
   1703static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf)
   1704{
   1705	struct hv_ring_buffer_info *rbi = &channel->inbound;
   1706	ssize_t ret;
   1707
   1708	mutex_lock(&rbi->ring_buffer_mutex);
   1709	if (!rbi->ring_buffer) {
   1710		mutex_unlock(&rbi->ring_buffer_mutex);
   1711		return -EINVAL;
   1712	}
   1713
   1714	ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
   1715	mutex_unlock(&rbi->ring_buffer_mutex);
   1716	return ret;
   1717}
   1718static VMBUS_CHAN_ATTR_RO(in_mask);
   1719
   1720static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf)
   1721{
   1722	struct hv_ring_buffer_info *rbi = &channel->inbound;
   1723	ssize_t ret;
   1724
   1725	mutex_lock(&rbi->ring_buffer_mutex);
   1726	if (!rbi->ring_buffer) {
   1727		mutex_unlock(&rbi->ring_buffer_mutex);
   1728		return -EINVAL;
   1729	}
   1730
   1731	ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
   1732	mutex_unlock(&rbi->ring_buffer_mutex);
   1733	return ret;
   1734}
   1735static VMBUS_CHAN_ATTR_RO(read_avail);
   1736
   1737static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf)
   1738{
   1739	struct hv_ring_buffer_info *rbi = &channel->outbound;
   1740	ssize_t ret;
   1741
   1742	mutex_lock(&rbi->ring_buffer_mutex);
   1743	if (!rbi->ring_buffer) {
   1744		mutex_unlock(&rbi->ring_buffer_mutex);
   1745		return -EINVAL;
   1746	}
   1747
   1748	ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
   1749	mutex_unlock(&rbi->ring_buffer_mutex);
   1750	return ret;
   1751}
   1752static VMBUS_CHAN_ATTR_RO(write_avail);
   1753
   1754static ssize_t target_cpu_show(struct vmbus_channel *channel, char *buf)
   1755{
   1756	return sprintf(buf, "%u\n", channel->target_cpu);
   1757}
   1758static ssize_t target_cpu_store(struct vmbus_channel *channel,
   1759				const char *buf, size_t count)
   1760{
   1761	u32 target_cpu, origin_cpu;
   1762	ssize_t ret = count;
   1763
   1764	if (vmbus_proto_version < VERSION_WIN10_V4_1)
   1765		return -EIO;
   1766
   1767	if (sscanf(buf, "%uu", &target_cpu) != 1)
   1768		return -EIO;
   1769
   1770	/* Validate target_cpu for the cpumask_test_cpu() operation below. */
   1771	if (target_cpu >= nr_cpumask_bits)
   1772		return -EINVAL;
   1773
   1774	if (!cpumask_test_cpu(target_cpu, housekeeping_cpumask(HK_TYPE_MANAGED_IRQ)))
   1775		return -EINVAL;
   1776
   1777	/* No CPUs should come up or down during this. */
   1778	cpus_read_lock();
   1779
   1780	if (!cpu_online(target_cpu)) {
   1781		cpus_read_unlock();
   1782		return -EINVAL;
   1783	}
   1784
   1785	/*
   1786	 * Synchronizes target_cpu_store() and channel closure:
   1787	 *
   1788	 * { Initially: state = CHANNEL_OPENED }
   1789	 *
   1790	 * CPU1				CPU2
   1791	 *
   1792	 * [target_cpu_store()]		[vmbus_disconnect_ring()]
   1793	 *
   1794	 * LOCK channel_mutex		LOCK channel_mutex
   1795	 * LOAD r1 = state		LOAD r2 = state
   1796	 * IF (r1 == CHANNEL_OPENED)	IF (r2 == CHANNEL_OPENED)
   1797	 *   SEND MODIFYCHANNEL		  STORE state = CHANNEL_OPEN
   1798	 *   [...]			  SEND CLOSECHANNEL
   1799	 * UNLOCK channel_mutex		UNLOCK channel_mutex
   1800	 *
   1801	 * Forbids: r1 == r2 == CHANNEL_OPENED (i.e., CPU1's LOCK precedes
   1802	 * 		CPU2's LOCK) && CPU2's SEND precedes CPU1's SEND
   1803	 *
   1804	 * Note.  The host processes the channel messages "sequentially", in
   1805	 * the order in which they are received on a per-partition basis.
   1806	 */
   1807	mutex_lock(&vmbus_connection.channel_mutex);
   1808
   1809	/*
   1810	 * Hyper-V will ignore MODIFYCHANNEL messages for "non-open" channels;
   1811	 * avoid sending the message and fail here for such channels.
   1812	 */
   1813	if (channel->state != CHANNEL_OPENED_STATE) {
   1814		ret = -EIO;
   1815		goto cpu_store_unlock;
   1816	}
   1817
   1818	origin_cpu = channel->target_cpu;
   1819	if (target_cpu == origin_cpu)
   1820		goto cpu_store_unlock;
   1821
   1822	if (vmbus_send_modifychannel(channel,
   1823				     hv_cpu_number_to_vp_number(target_cpu))) {
   1824		ret = -EIO;
   1825		goto cpu_store_unlock;
   1826	}
   1827
   1828	/*
   1829	 * For version before VERSION_WIN10_V5_3, the following warning holds:
   1830	 *
   1831	 * Warning.  At this point, there is *no* guarantee that the host will
   1832	 * have successfully processed the vmbus_send_modifychannel() request.
   1833	 * See the header comment of vmbus_send_modifychannel() for more info.
   1834	 *
   1835	 * Lags in the processing of the above vmbus_send_modifychannel() can
   1836	 * result in missed interrupts if the "old" target CPU is taken offline
   1837	 * before Hyper-V starts sending interrupts to the "new" target CPU.
   1838	 * But apart from this offlining scenario, the code tolerates such
   1839	 * lags.  It will function correctly even if a channel interrupt comes
   1840	 * in on a CPU that is different from the channel target_cpu value.
   1841	 */
   1842
   1843	channel->target_cpu = target_cpu;
   1844
   1845	/* See init_vp_index(). */
   1846	if (hv_is_perf_channel(channel))
   1847		hv_update_allocated_cpus(origin_cpu, target_cpu);
   1848
   1849	/* Currently set only for storvsc channels. */
   1850	if (channel->change_target_cpu_callback) {
   1851		(*channel->change_target_cpu_callback)(channel,
   1852				origin_cpu, target_cpu);
   1853	}
   1854
   1855cpu_store_unlock:
   1856	mutex_unlock(&vmbus_connection.channel_mutex);
   1857	cpus_read_unlock();
   1858	return ret;
   1859}
   1860static VMBUS_CHAN_ATTR(cpu, 0644, target_cpu_show, target_cpu_store);
   1861
   1862static ssize_t channel_pending_show(struct vmbus_channel *channel,
   1863				    char *buf)
   1864{
   1865	return sprintf(buf, "%d\n",
   1866		       channel_pending(channel,
   1867				       vmbus_connection.monitor_pages[1]));
   1868}
   1869static VMBUS_CHAN_ATTR(pending, 0444, channel_pending_show, NULL);
   1870
   1871static ssize_t channel_latency_show(struct vmbus_channel *channel,
   1872				    char *buf)
   1873{
   1874	return sprintf(buf, "%d\n",
   1875		       channel_latency(channel,
   1876				       vmbus_connection.monitor_pages[1]));
   1877}
   1878static VMBUS_CHAN_ATTR(latency, 0444, channel_latency_show, NULL);
   1879
   1880static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf)
   1881{
   1882	return sprintf(buf, "%llu\n", channel->interrupts);
   1883}
   1884static VMBUS_CHAN_ATTR(interrupts, 0444, channel_interrupts_show, NULL);
   1885
   1886static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf)
   1887{
   1888	return sprintf(buf, "%llu\n", channel->sig_events);
   1889}
   1890static VMBUS_CHAN_ATTR(events, 0444, channel_events_show, NULL);
   1891
   1892static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel,
   1893					 char *buf)
   1894{
   1895	return sprintf(buf, "%llu\n",
   1896		       (unsigned long long)channel->intr_in_full);
   1897}
   1898static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL);
   1899
   1900static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel,
   1901					   char *buf)
   1902{
   1903	return sprintf(buf, "%llu\n",
   1904		       (unsigned long long)channel->intr_out_empty);
   1905}
   1906static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL);
   1907
   1908static ssize_t channel_out_full_first_show(struct vmbus_channel *channel,
   1909					   char *buf)
   1910{
   1911	return sprintf(buf, "%llu\n",
   1912		       (unsigned long long)channel->out_full_first);
   1913}
   1914static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL);
   1915
   1916static ssize_t channel_out_full_total_show(struct vmbus_channel *channel,
   1917					   char *buf)
   1918{
   1919	return sprintf(buf, "%llu\n",
   1920		       (unsigned long long)channel->out_full_total);
   1921}
   1922static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL);
   1923
   1924static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel,
   1925					  char *buf)
   1926{
   1927	return sprintf(buf, "%u\n", channel->offermsg.monitorid);
   1928}
   1929static VMBUS_CHAN_ATTR(monitor_id, 0444, subchannel_monitor_id_show, NULL);
   1930
   1931static ssize_t subchannel_id_show(struct vmbus_channel *channel,
   1932				  char *buf)
   1933{
   1934	return sprintf(buf, "%u\n",
   1935		       channel->offermsg.offer.sub_channel_index);
   1936}
   1937static VMBUS_CHAN_ATTR_RO(subchannel_id);
   1938
   1939static struct attribute *vmbus_chan_attrs[] = {
   1940	&chan_attr_out_mask.attr,
   1941	&chan_attr_in_mask.attr,
   1942	&chan_attr_read_avail.attr,
   1943	&chan_attr_write_avail.attr,
   1944	&chan_attr_cpu.attr,
   1945	&chan_attr_pending.attr,
   1946	&chan_attr_latency.attr,
   1947	&chan_attr_interrupts.attr,
   1948	&chan_attr_events.attr,
   1949	&chan_attr_intr_in_full.attr,
   1950	&chan_attr_intr_out_empty.attr,
   1951	&chan_attr_out_full_first.attr,
   1952	&chan_attr_out_full_total.attr,
   1953	&chan_attr_monitor_id.attr,
   1954	&chan_attr_subchannel_id.attr,
   1955	NULL
   1956};
   1957
   1958/*
   1959 * Channel-level attribute_group callback function. Returns the permission for
   1960 * each attribute, and returns 0 if an attribute is not visible.
   1961 */
   1962static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj,
   1963					  struct attribute *attr, int idx)
   1964{
   1965	const struct vmbus_channel *channel =
   1966		container_of(kobj, struct vmbus_channel, kobj);
   1967
   1968	/* Hide the monitor attributes if the monitor mechanism is not used. */
   1969	if (!channel->offermsg.monitor_allocated &&
   1970	    (attr == &chan_attr_pending.attr ||
   1971	     attr == &chan_attr_latency.attr ||
   1972	     attr == &chan_attr_monitor_id.attr))
   1973		return 0;
   1974
   1975	return attr->mode;
   1976}
   1977
   1978static struct attribute_group vmbus_chan_group = {
   1979	.attrs = vmbus_chan_attrs,
   1980	.is_visible = vmbus_chan_attr_is_visible
   1981};
   1982
   1983static struct kobj_type vmbus_chan_ktype = {
   1984	.sysfs_ops = &vmbus_chan_sysfs_ops,
   1985	.release = vmbus_chan_release,
   1986};
   1987
   1988/*
   1989 * vmbus_add_channel_kobj - setup a sub-directory under device/channels
   1990 */
   1991int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
   1992{
   1993	const struct device *device = &dev->device;
   1994	struct kobject *kobj = &channel->kobj;
   1995	u32 relid = channel->offermsg.child_relid;
   1996	int ret;
   1997
   1998	kobj->kset = dev->channels_kset;
   1999	ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
   2000				   "%u", relid);
   2001	if (ret) {
   2002		kobject_put(kobj);
   2003		return ret;
   2004	}
   2005
   2006	ret = sysfs_create_group(kobj, &vmbus_chan_group);
   2007
   2008	if (ret) {
   2009		/*
   2010		 * The calling functions' error handling paths will cleanup the
   2011		 * empty channel directory.
   2012		 */
   2013		kobject_put(kobj);
   2014		dev_err(device, "Unable to set up channel sysfs files\n");
   2015		return ret;
   2016	}
   2017
   2018	kobject_uevent(kobj, KOBJ_ADD);
   2019
   2020	return 0;
   2021}
   2022
   2023/*
   2024 * vmbus_remove_channel_attr_group - remove the channel's attribute group
   2025 */
   2026void vmbus_remove_channel_attr_group(struct vmbus_channel *channel)
   2027{
   2028	sysfs_remove_group(&channel->kobj, &vmbus_chan_group);
   2029}
   2030
   2031/*
   2032 * vmbus_device_create - Creates and registers a new child device
   2033 * on the vmbus.
   2034 */
   2035struct hv_device *vmbus_device_create(const guid_t *type,
   2036				      const guid_t *instance,
   2037				      struct vmbus_channel *channel)
   2038{
   2039	struct hv_device *child_device_obj;
   2040
   2041	child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
   2042	if (!child_device_obj) {
   2043		pr_err("Unable to allocate device object for child device\n");
   2044		return NULL;
   2045	}
   2046
   2047	child_device_obj->channel = channel;
   2048	guid_copy(&child_device_obj->dev_type, type);
   2049	guid_copy(&child_device_obj->dev_instance, instance);
   2050	child_device_obj->vendor_id = 0x1414; /* MSFT vendor ID */
   2051
   2052	return child_device_obj;
   2053}
   2054
   2055/*
   2056 * vmbus_device_register - Register the child device
   2057 */
   2058int vmbus_device_register(struct hv_device *child_device_obj)
   2059{
   2060	struct kobject *kobj = &child_device_obj->device.kobj;
   2061	int ret;
   2062
   2063	dev_set_name(&child_device_obj->device, "%pUl",
   2064		     &child_device_obj->channel->offermsg.offer.if_instance);
   2065
   2066	child_device_obj->device.bus = &hv_bus;
   2067	child_device_obj->device.parent = &hv_acpi_dev->dev;
   2068	child_device_obj->device.release = vmbus_device_release;
   2069
   2070	child_device_obj->device.dma_parms = &child_device_obj->dma_parms;
   2071	child_device_obj->device.dma_mask = &child_device_obj->dma_mask;
   2072	dma_set_mask(&child_device_obj->device, DMA_BIT_MASK(64));
   2073
   2074	/*
   2075	 * Register with the LDM. This will kick off the driver/device
   2076	 * binding...which will eventually call vmbus_match() and vmbus_probe()
   2077	 */
   2078	ret = device_register(&child_device_obj->device);
   2079	if (ret) {
   2080		pr_err("Unable to register child device\n");
   2081		return ret;
   2082	}
   2083
   2084	child_device_obj->channels_kset = kset_create_and_add("channels",
   2085							      NULL, kobj);
   2086	if (!child_device_obj->channels_kset) {
   2087		ret = -ENOMEM;
   2088		goto err_dev_unregister;
   2089	}
   2090
   2091	ret = vmbus_add_channel_kobj(child_device_obj,
   2092				     child_device_obj->channel);
   2093	if (ret) {
   2094		pr_err("Unable to register primary channeln");
   2095		goto err_kset_unregister;
   2096	}
   2097	hv_debug_add_dev_dir(child_device_obj);
   2098
   2099	return 0;
   2100
   2101err_kset_unregister:
   2102	kset_unregister(child_device_obj->channels_kset);
   2103
   2104err_dev_unregister:
   2105	device_unregister(&child_device_obj->device);
   2106	return ret;
   2107}
   2108
   2109/*
   2110 * vmbus_device_unregister - Remove the specified child device
   2111 * from the vmbus.
   2112 */
   2113void vmbus_device_unregister(struct hv_device *device_obj)
   2114{
   2115	pr_debug("child device %s unregistered\n",
   2116		dev_name(&device_obj->device));
   2117
   2118	kset_unregister(device_obj->channels_kset);
   2119
   2120	/*
   2121	 * Kick off the process of unregistering the device.
   2122	 * This will call vmbus_remove() and eventually vmbus_device_release()
   2123	 */
   2124	device_unregister(&device_obj->device);
   2125}
   2126
   2127
   2128/*
   2129 * VMBUS is an acpi enumerated device. Get the information we
   2130 * need from DSDT.
   2131 */
   2132#define VTPM_BASE_ADDRESS 0xfed40000
   2133static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
   2134{
   2135	resource_size_t start = 0;
   2136	resource_size_t end = 0;
   2137	struct resource *new_res;
   2138	struct resource **old_res = &hyperv_mmio;
   2139	struct resource **prev_res = NULL;
   2140	struct resource r;
   2141
   2142	switch (res->type) {
   2143
   2144	/*
   2145	 * "Address" descriptors are for bus windows. Ignore
   2146	 * "memory" descriptors, which are for registers on
   2147	 * devices.
   2148	 */
   2149	case ACPI_RESOURCE_TYPE_ADDRESS32:
   2150		start = res->data.address32.address.minimum;
   2151		end = res->data.address32.address.maximum;
   2152		break;
   2153
   2154	case ACPI_RESOURCE_TYPE_ADDRESS64:
   2155		start = res->data.address64.address.minimum;
   2156		end = res->data.address64.address.maximum;
   2157		break;
   2158
   2159	/*
   2160	 * The IRQ information is needed only on ARM64, which Hyper-V
   2161	 * sets up in the extended format. IRQ information is present
   2162	 * on x86/x64 in the non-extended format but it is not used by
   2163	 * Linux. So don't bother checking for the non-extended format.
   2164	 */
   2165	case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
   2166		if (!acpi_dev_resource_interrupt(res, 0, &r)) {
   2167			pr_err("Unable to parse Hyper-V ACPI interrupt\n");
   2168			return AE_ERROR;
   2169		}
   2170		/* ARM64 INTID for VMbus */
   2171		vmbus_interrupt = res->data.extended_irq.interrupts[0];
   2172		/* Linux IRQ number */
   2173		vmbus_irq = r.start;
   2174		return AE_OK;
   2175
   2176	default:
   2177		/* Unused resource type */
   2178		return AE_OK;
   2179
   2180	}
   2181	/*
   2182	 * Ignore ranges that are below 1MB, as they're not
   2183	 * necessary or useful here.
   2184	 */
   2185	if (end < 0x100000)
   2186		return AE_OK;
   2187
   2188	new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
   2189	if (!new_res)
   2190		return AE_NO_MEMORY;
   2191
   2192	/* If this range overlaps the virtual TPM, truncate it. */
   2193	if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
   2194		end = VTPM_BASE_ADDRESS;
   2195
   2196	new_res->name = "hyperv mmio";
   2197	new_res->flags = IORESOURCE_MEM;
   2198	new_res->start = start;
   2199	new_res->end = end;
   2200
   2201	/*
   2202	 * If two ranges are adjacent, merge them.
   2203	 */
   2204	do {
   2205		if (!*old_res) {
   2206			*old_res = new_res;
   2207			break;
   2208		}
   2209
   2210		if (((*old_res)->end + 1) == new_res->start) {
   2211			(*old_res)->end = new_res->end;
   2212			kfree(new_res);
   2213			break;
   2214		}
   2215
   2216		if ((*old_res)->start == new_res->end + 1) {
   2217			(*old_res)->start = new_res->start;
   2218			kfree(new_res);
   2219			break;
   2220		}
   2221
   2222		if ((*old_res)->start > new_res->end) {
   2223			new_res->sibling = *old_res;
   2224			if (prev_res)
   2225				(*prev_res)->sibling = new_res;
   2226			*old_res = new_res;
   2227			break;
   2228		}
   2229
   2230		prev_res = old_res;
   2231		old_res = &(*old_res)->sibling;
   2232
   2233	} while (1);
   2234
   2235	return AE_OK;
   2236}
   2237
   2238static int vmbus_acpi_remove(struct acpi_device *device)
   2239{
   2240	struct resource *cur_res;
   2241	struct resource *next_res;
   2242
   2243	if (hyperv_mmio) {
   2244		if (fb_mmio) {
   2245			__release_region(hyperv_mmio, fb_mmio->start,
   2246					 resource_size(fb_mmio));
   2247			fb_mmio = NULL;
   2248		}
   2249
   2250		for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
   2251			next_res = cur_res->sibling;
   2252			kfree(cur_res);
   2253		}
   2254	}
   2255
   2256	return 0;
   2257}
   2258
   2259static void vmbus_reserve_fb(void)
   2260{
   2261	int size;
   2262	/*
   2263	 * Make a claim for the frame buffer in the resource tree under the
   2264	 * first node, which will be the one below 4GB.  The length seems to
   2265	 * be underreported, particularly in a Generation 1 VM.  So start out
   2266	 * reserving a larger area and make it smaller until it succeeds.
   2267	 */
   2268
   2269	if (screen_info.lfb_base) {
   2270		if (efi_enabled(EFI_BOOT))
   2271			size = max_t(__u32, screen_info.lfb_size, 0x800000);
   2272		else
   2273			size = max_t(__u32, screen_info.lfb_size, 0x4000000);
   2274
   2275		for (; !fb_mmio && (size >= 0x100000); size >>= 1) {
   2276			fb_mmio = __request_region(hyperv_mmio,
   2277						   screen_info.lfb_base, size,
   2278						   fb_mmio_name, 0);
   2279		}
   2280	}
   2281}
   2282
   2283/**
   2284 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
   2285 * @new:		If successful, supplied a pointer to the
   2286 *			allocated MMIO space.
   2287 * @device_obj:		Identifies the caller
   2288 * @min:		Minimum guest physical address of the
   2289 *			allocation
   2290 * @max:		Maximum guest physical address
   2291 * @size:		Size of the range to be allocated
   2292 * @align:		Alignment of the range to be allocated
   2293 * @fb_overlap_ok:	Whether this allocation can be allowed
   2294 *			to overlap the video frame buffer.
   2295 *
   2296 * This function walks the resources granted to VMBus by the
   2297 * _CRS object in the ACPI namespace underneath the parent
   2298 * "bridge" whether that's a root PCI bus in the Generation 1
   2299 * case or a Module Device in the Generation 2 case.  It then
   2300 * attempts to allocate from the global MMIO pool in a way that
   2301 * matches the constraints supplied in these parameters and by
   2302 * that _CRS.
   2303 *
   2304 * Return: 0 on success, -errno on failure
   2305 */
   2306int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
   2307			resource_size_t min, resource_size_t max,
   2308			resource_size_t size, resource_size_t align,
   2309			bool fb_overlap_ok)
   2310{
   2311	struct resource *iter, *shadow;
   2312	resource_size_t range_min, range_max, start;
   2313	const char *dev_n = dev_name(&device_obj->device);
   2314	int retval;
   2315
   2316	retval = -ENXIO;
   2317	mutex_lock(&hyperv_mmio_lock);
   2318
   2319	/*
   2320	 * If overlaps with frame buffers are allowed, then first attempt to
   2321	 * make the allocation from within the reserved region.  Because it
   2322	 * is already reserved, no shadow allocation is necessary.
   2323	 */
   2324	if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
   2325	    !(max < fb_mmio->start)) {
   2326
   2327		range_min = fb_mmio->start;
   2328		range_max = fb_mmio->end;
   2329		start = (range_min + align - 1) & ~(align - 1);
   2330		for (; start + size - 1 <= range_max; start += align) {
   2331			*new = request_mem_region_exclusive(start, size, dev_n);
   2332			if (*new) {
   2333				retval = 0;
   2334				goto exit;
   2335			}
   2336		}
   2337	}
   2338
   2339	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
   2340		if ((iter->start >= max) || (iter->end <= min))
   2341			continue;
   2342
   2343		range_min = iter->start;
   2344		range_max = iter->end;
   2345		start = (range_min + align - 1) & ~(align - 1);
   2346		for (; start + size - 1 <= range_max; start += align) {
   2347			shadow = __request_region(iter, start, size, NULL,
   2348						  IORESOURCE_BUSY);
   2349			if (!shadow)
   2350				continue;
   2351
   2352			*new = request_mem_region_exclusive(start, size, dev_n);
   2353			if (*new) {
   2354				shadow->name = (char *)*new;
   2355				retval = 0;
   2356				goto exit;
   2357			}
   2358
   2359			__release_region(iter, start, size);
   2360		}
   2361	}
   2362
   2363exit:
   2364	mutex_unlock(&hyperv_mmio_lock);
   2365	return retval;
   2366}
   2367EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
   2368
   2369/**
   2370 * vmbus_free_mmio() - Free a memory-mapped I/O range.
   2371 * @start:		Base address of region to release.
   2372 * @size:		Size of the range to be allocated
   2373 *
   2374 * This function releases anything requested by
   2375 * vmbus_mmio_allocate().
   2376 */
   2377void vmbus_free_mmio(resource_size_t start, resource_size_t size)
   2378{
   2379	struct resource *iter;
   2380
   2381	mutex_lock(&hyperv_mmio_lock);
   2382	for (iter = hyperv_mmio; iter; iter = iter->sibling) {
   2383		if ((iter->start >= start + size) || (iter->end <= start))
   2384			continue;
   2385
   2386		__release_region(iter, start, size);
   2387	}
   2388	release_mem_region(start, size);
   2389	mutex_unlock(&hyperv_mmio_lock);
   2390
   2391}
   2392EXPORT_SYMBOL_GPL(vmbus_free_mmio);
   2393
   2394static int vmbus_acpi_add(struct acpi_device *device)
   2395{
   2396	acpi_status result;
   2397	int ret_val = -ENODEV;
   2398	struct acpi_device *ancestor;
   2399
   2400	hv_acpi_dev = device;
   2401
   2402	/*
   2403	 * Older versions of Hyper-V for ARM64 fail to include the _CCA
   2404	 * method on the top level VMbus device in the DSDT. But devices
   2405	 * are hardware coherent in all current Hyper-V use cases, so fix
   2406	 * up the ACPI device to behave as if _CCA is present and indicates
   2407	 * hardware coherence.
   2408	 */
   2409	ACPI_COMPANION_SET(&device->dev, device);
   2410	if (IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED) &&
   2411	    device_get_dma_attr(&device->dev) == DEV_DMA_NOT_SUPPORTED) {
   2412		pr_info("No ACPI _CCA found; assuming coherent device I/O\n");
   2413		device->flags.cca_seen = true;
   2414		device->flags.coherent_dma = true;
   2415	}
   2416
   2417	result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
   2418					vmbus_walk_resources, NULL);
   2419
   2420	if (ACPI_FAILURE(result))
   2421		goto acpi_walk_err;
   2422	/*
   2423	 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
   2424	 * firmware) is the VMOD that has the mmio ranges. Get that.
   2425	 */
   2426	for (ancestor = device->parent; ancestor; ancestor = ancestor->parent) {
   2427		result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
   2428					     vmbus_walk_resources, NULL);
   2429
   2430		if (ACPI_FAILURE(result))
   2431			continue;
   2432		if (hyperv_mmio) {
   2433			vmbus_reserve_fb();
   2434			break;
   2435		}
   2436	}
   2437	ret_val = 0;
   2438
   2439acpi_walk_err:
   2440	complete(&probe_event);
   2441	if (ret_val)
   2442		vmbus_acpi_remove(device);
   2443	return ret_val;
   2444}
   2445
   2446#ifdef CONFIG_PM_SLEEP
   2447static int vmbus_bus_suspend(struct device *dev)
   2448{
   2449	struct vmbus_channel *channel, *sc;
   2450
   2451	while (atomic_read(&vmbus_connection.offer_in_progress) != 0) {
   2452		/*
   2453		 * We wait here until the completion of any channel
   2454		 * offers that are currently in progress.
   2455		 */
   2456		usleep_range(1000, 2000);
   2457	}
   2458
   2459	mutex_lock(&vmbus_connection.channel_mutex);
   2460	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
   2461		if (!is_hvsock_channel(channel))
   2462			continue;
   2463
   2464		vmbus_force_channel_rescinded(channel);
   2465	}
   2466	mutex_unlock(&vmbus_connection.channel_mutex);
   2467
   2468	/*
   2469	 * Wait until all the sub-channels and hv_sock channels have been
   2470	 * cleaned up. Sub-channels should be destroyed upon suspend, otherwise
   2471	 * they would conflict with the new sub-channels that will be created
   2472	 * in the resume path. hv_sock channels should also be destroyed, but
   2473	 * a hv_sock channel of an established hv_sock connection can not be
   2474	 * really destroyed since it may still be referenced by the userspace
   2475	 * application, so we just force the hv_sock channel to be rescinded
   2476	 * by vmbus_force_channel_rescinded(), and the userspace application
   2477	 * will thoroughly destroy the channel after hibernation.
   2478	 *
   2479	 * Note: the counter nr_chan_close_on_suspend may never go above 0 if
   2480	 * the VM has no sub-channel and hv_sock channel, e.g. a 1-vCPU VM.
   2481	 */
   2482	if (atomic_read(&vmbus_connection.nr_chan_close_on_suspend) > 0)
   2483		wait_for_completion(&vmbus_connection.ready_for_suspend_event);
   2484
   2485	if (atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) != 0) {
   2486		pr_err("Can not suspend due to a previous failed resuming\n");
   2487		return -EBUSY;
   2488	}
   2489
   2490	mutex_lock(&vmbus_connection.channel_mutex);
   2491
   2492	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
   2493		/*
   2494		 * Remove the channel from the array of channels and invalidate
   2495		 * the channel's relid.  Upon resume, vmbus_onoffer() will fix
   2496		 * up the relid (and other fields, if necessary) and add the
   2497		 * channel back to the array.
   2498		 */
   2499		vmbus_channel_unmap_relid(channel);
   2500		channel->offermsg.child_relid = INVALID_RELID;
   2501
   2502		if (is_hvsock_channel(channel)) {
   2503			if (!channel->rescind) {
   2504				pr_err("hv_sock channel not rescinded!\n");
   2505				WARN_ON_ONCE(1);
   2506			}
   2507			continue;
   2508		}
   2509
   2510		list_for_each_entry(sc, &channel->sc_list, sc_list) {
   2511			pr_err("Sub-channel not deleted!\n");
   2512			WARN_ON_ONCE(1);
   2513		}
   2514
   2515		atomic_inc(&vmbus_connection.nr_chan_fixup_on_resume);
   2516	}
   2517
   2518	mutex_unlock(&vmbus_connection.channel_mutex);
   2519
   2520	vmbus_initiate_unload(false);
   2521
   2522	/* Reset the event for the next resume. */
   2523	reinit_completion(&vmbus_connection.ready_for_resume_event);
   2524
   2525	return 0;
   2526}
   2527
   2528static int vmbus_bus_resume(struct device *dev)
   2529{
   2530	struct vmbus_channel_msginfo *msginfo;
   2531	size_t msgsize;
   2532	int ret;
   2533
   2534	/*
   2535	 * We only use the 'vmbus_proto_version', which was in use before
   2536	 * hibernation, to re-negotiate with the host.
   2537	 */
   2538	if (!vmbus_proto_version) {
   2539		pr_err("Invalid proto version = 0x%x\n", vmbus_proto_version);
   2540		return -EINVAL;
   2541	}
   2542
   2543	msgsize = sizeof(*msginfo) +
   2544		  sizeof(struct vmbus_channel_initiate_contact);
   2545
   2546	msginfo = kzalloc(msgsize, GFP_KERNEL);
   2547
   2548	if (msginfo == NULL)
   2549		return -ENOMEM;
   2550
   2551	ret = vmbus_negotiate_version(msginfo, vmbus_proto_version);
   2552
   2553	kfree(msginfo);
   2554
   2555	if (ret != 0)
   2556		return ret;
   2557
   2558	WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) == 0);
   2559
   2560	vmbus_request_offers();
   2561
   2562	if (wait_for_completion_timeout(
   2563		&vmbus_connection.ready_for_resume_event, 10 * HZ) == 0)
   2564		pr_err("Some vmbus device is missing after suspending?\n");
   2565
   2566	/* Reset the event for the next suspend. */
   2567	reinit_completion(&vmbus_connection.ready_for_suspend_event);
   2568
   2569	return 0;
   2570}
   2571#else
   2572#define vmbus_bus_suspend NULL
   2573#define vmbus_bus_resume NULL
   2574#endif /* CONFIG_PM_SLEEP */
   2575
   2576static const struct acpi_device_id vmbus_acpi_device_ids[] = {
   2577	{"VMBUS", 0},
   2578	{"VMBus", 0},
   2579	{"", 0},
   2580};
   2581MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
   2582
   2583/*
   2584 * Note: we must use the "no_irq" ops, otherwise hibernation can not work with
   2585 * PCI device assignment, because "pci_dev_pm_ops" uses the "noirq" ops: in
   2586 * the resume path, the pci "noirq" restore op runs before "non-noirq" op (see
   2587 * resume_target_kernel() -> dpm_resume_start(), and hibernation_restore() ->
   2588 * dpm_resume_end()). This means vmbus_bus_resume() and the pci-hyperv's
   2589 * resume callback must also run via the "noirq" ops.
   2590 *
   2591 * Set suspend_noirq/resume_noirq to NULL for Suspend-to-Idle: see the comment
   2592 * earlier in this file before vmbus_pm.
   2593 */
   2594
   2595static const struct dev_pm_ops vmbus_bus_pm = {
   2596	.suspend_noirq	= NULL,
   2597	.resume_noirq	= NULL,
   2598	.freeze_noirq	= vmbus_bus_suspend,
   2599	.thaw_noirq	= vmbus_bus_resume,
   2600	.poweroff_noirq	= vmbus_bus_suspend,
   2601	.restore_noirq	= vmbus_bus_resume
   2602};
   2603
   2604static struct acpi_driver vmbus_acpi_driver = {
   2605	.name = "vmbus",
   2606	.ids = vmbus_acpi_device_ids,
   2607	.ops = {
   2608		.add = vmbus_acpi_add,
   2609		.remove = vmbus_acpi_remove,
   2610	},
   2611	.drv.pm = &vmbus_bus_pm,
   2612};
   2613
   2614static void hv_kexec_handler(void)
   2615{
   2616	hv_stimer_global_cleanup();
   2617	vmbus_initiate_unload(false);
   2618	/* Make sure conn_state is set as hv_synic_cleanup checks for it */
   2619	mb();
   2620	cpuhp_remove_state(hyperv_cpuhp_online);
   2621};
   2622
   2623static void hv_crash_handler(struct pt_regs *regs)
   2624{
   2625	int cpu;
   2626
   2627	vmbus_initiate_unload(true);
   2628	/*
   2629	 * In crash handler we can't schedule synic cleanup for all CPUs,
   2630	 * doing the cleanup for current CPU only. This should be sufficient
   2631	 * for kdump.
   2632	 */
   2633	cpu = smp_processor_id();
   2634	hv_stimer_cleanup(cpu);
   2635	hv_synic_disable_regs(cpu);
   2636};
   2637
   2638static int hv_synic_suspend(void)
   2639{
   2640	/*
   2641	 * When we reach here, all the non-boot CPUs have been offlined.
   2642	 * If we're in a legacy configuration where stimer Direct Mode is
   2643	 * not enabled, the stimers on the non-boot CPUs have been unbound
   2644	 * in hv_synic_cleanup() -> hv_stimer_legacy_cleanup() ->
   2645	 * hv_stimer_cleanup() -> clockevents_unbind_device().
   2646	 *
   2647	 * hv_synic_suspend() only runs on CPU0 with interrupts disabled.
   2648	 * Here we do not call hv_stimer_legacy_cleanup() on CPU0 because:
   2649	 * 1) it's unnecessary as interrupts remain disabled between
   2650	 * syscore_suspend() and syscore_resume(): see create_image() and
   2651	 * resume_target_kernel()
   2652	 * 2) the stimer on CPU0 is automatically disabled later by
   2653	 * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ...
   2654	 * -> clockevents_shutdown() -> ... -> hv_ce_shutdown()
   2655	 * 3) a warning would be triggered if we call
   2656	 * clockevents_unbind_device(), which may sleep, in an
   2657	 * interrupts-disabled context.
   2658	 */
   2659
   2660	hv_synic_disable_regs(0);
   2661
   2662	return 0;
   2663}
   2664
   2665static void hv_synic_resume(void)
   2666{
   2667	hv_synic_enable_regs(0);
   2668
   2669	/*
   2670	 * Note: we don't need to call hv_stimer_init(0), because the timer
   2671	 * on CPU0 is not unbound in hv_synic_suspend(), and the timer is
   2672	 * automatically re-enabled in timekeeping_resume().
   2673	 */
   2674}
   2675
   2676/* The callbacks run only on CPU0, with irqs_disabled. */
   2677static struct syscore_ops hv_synic_syscore_ops = {
   2678	.suspend = hv_synic_suspend,
   2679	.resume = hv_synic_resume,
   2680};
   2681
   2682static int __init hv_acpi_init(void)
   2683{
   2684	int ret, t;
   2685
   2686	if (!hv_is_hyperv_initialized())
   2687		return -ENODEV;
   2688
   2689	if (hv_root_partition)
   2690		return 0;
   2691
   2692	init_completion(&probe_event);
   2693
   2694	/*
   2695	 * Get ACPI resources first.
   2696	 */
   2697	ret = acpi_bus_register_driver(&vmbus_acpi_driver);
   2698
   2699	if (ret)
   2700		return ret;
   2701
   2702	t = wait_for_completion_timeout(&probe_event, 5*HZ);
   2703	if (t == 0) {
   2704		ret = -ETIMEDOUT;
   2705		goto cleanup;
   2706	}
   2707
   2708	/*
   2709	 * If we're on an architecture with a hardcoded hypervisor
   2710	 * vector (i.e. x86/x64), override the VMbus interrupt found
   2711	 * in the ACPI tables. Ensure vmbus_irq is not set since the
   2712	 * normal Linux IRQ mechanism is not used in this case.
   2713	 */
   2714#ifdef HYPERVISOR_CALLBACK_VECTOR
   2715	vmbus_interrupt = HYPERVISOR_CALLBACK_VECTOR;
   2716	vmbus_irq = -1;
   2717#endif
   2718
   2719	hv_debug_init();
   2720
   2721	ret = vmbus_bus_init();
   2722	if (ret)
   2723		goto cleanup;
   2724
   2725	hv_setup_kexec_handler(hv_kexec_handler);
   2726	hv_setup_crash_handler(hv_crash_handler);
   2727
   2728	register_syscore_ops(&hv_synic_syscore_ops);
   2729
   2730	return 0;
   2731
   2732cleanup:
   2733	acpi_bus_unregister_driver(&vmbus_acpi_driver);
   2734	hv_acpi_dev = NULL;
   2735	return ret;
   2736}
   2737
   2738static void __exit vmbus_exit(void)
   2739{
   2740	int cpu;
   2741
   2742	unregister_syscore_ops(&hv_synic_syscore_ops);
   2743
   2744	hv_remove_kexec_handler();
   2745	hv_remove_crash_handler();
   2746	vmbus_connection.conn_state = DISCONNECTED;
   2747	hv_stimer_global_cleanup();
   2748	vmbus_disconnect();
   2749	if (vmbus_irq == -1) {
   2750		hv_remove_vmbus_handler();
   2751	} else {
   2752		free_percpu_irq(vmbus_irq, vmbus_evt);
   2753		free_percpu(vmbus_evt);
   2754	}
   2755	for_each_online_cpu(cpu) {
   2756		struct hv_per_cpu_context *hv_cpu
   2757			= per_cpu_ptr(hv_context.cpu_context, cpu);
   2758
   2759		tasklet_kill(&hv_cpu->msg_dpc);
   2760	}
   2761	hv_debug_rm_all_dir();
   2762
   2763	vmbus_free_channels();
   2764	kfree(vmbus_connection.channels);
   2765
   2766	if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
   2767		kmsg_dump_unregister(&hv_kmsg_dumper);
   2768		unregister_die_notifier(&hyperv_die_block);
   2769	}
   2770
   2771	/*
   2772	 * The panic notifier is always registered, hence we should
   2773	 * also unconditionally unregister it here as well.
   2774	 */
   2775	atomic_notifier_chain_unregister(&panic_notifier_list,
   2776					 &hyperv_panic_block);
   2777
   2778	free_page((unsigned long)hv_panic_page);
   2779	unregister_sysctl_table(hv_ctl_table_hdr);
   2780	hv_ctl_table_hdr = NULL;
   2781	bus_unregister(&hv_bus);
   2782
   2783	cpuhp_remove_state(hyperv_cpuhp_online);
   2784	hv_synic_free();
   2785	acpi_bus_unregister_driver(&vmbus_acpi_driver);
   2786}
   2787
   2788
   2789MODULE_LICENSE("GPL");
   2790MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver");
   2791
   2792subsys_initcall(hv_acpi_init);
   2793module_exit(vmbus_exit);