cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

abituguru.c (53139B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * abituguru.c Copyright (c) 2005-2006 Hans de Goede <hdegoede@redhat.com>
      4 */
      5/*
      6 * This driver supports the sensor part of the first and second revision of
      7 * the custom Abit uGuru chip found on Abit uGuru motherboards. Note: because
      8 * of lack of specs the CPU/RAM voltage & frequency control is not supported!
      9 */
     10
     11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
     12
     13#include <linux/module.h>
     14#include <linux/sched.h>
     15#include <linux/init.h>
     16#include <linux/slab.h>
     17#include <linux/jiffies.h>
     18#include <linux/mutex.h>
     19#include <linux/err.h>
     20#include <linux/delay.h>
     21#include <linux/platform_device.h>
     22#include <linux/hwmon.h>
     23#include <linux/hwmon-sysfs.h>
     24#include <linux/dmi.h>
     25#include <linux/io.h>
     26
     27/* Banks */
     28#define ABIT_UGURU_ALARM_BANK			0x20 /* 1x 3 bytes */
     29#define ABIT_UGURU_SENSOR_BANK1			0x21 /* 16x volt and temp */
     30#define ABIT_UGURU_FAN_PWM			0x24 /* 3x 5 bytes */
     31#define ABIT_UGURU_SENSOR_BANK2			0x26 /* fans */
     32/* max nr of sensors in bank1, a bank1 sensor can be in, temp or nc */
     33#define ABIT_UGURU_MAX_BANK1_SENSORS		16
     34/*
     35 * Warning if you increase one of the 2 MAX defines below to 10 or higher you
     36 * should adjust the belonging _NAMES_LENGTH macro for the 2 digit number!
     37 */
     38/* max nr of sensors in bank2, currently mb's with max 6 fans are known */
     39#define ABIT_UGURU_MAX_BANK2_SENSORS		6
     40/* max nr of pwm outputs, currently mb's with max 5 pwm outputs are known */
     41#define ABIT_UGURU_MAX_PWMS			5
     42/* uGuru sensor bank 1 flags */			     /* Alarm if: */
     43#define ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE	0x01 /*  temp over warn */
     44#define ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE	0x02 /*  volt over max */
     45#define ABIT_UGURU_VOLT_LOW_ALARM_ENABLE	0x04 /*  volt under min */
     46#define ABIT_UGURU_TEMP_HIGH_ALARM_FLAG		0x10 /* temp is over warn */
     47#define ABIT_UGURU_VOLT_HIGH_ALARM_FLAG		0x20 /* volt is over max */
     48#define ABIT_UGURU_VOLT_LOW_ALARM_FLAG		0x40 /* volt is under min */
     49/* uGuru sensor bank 2 flags */			     /* Alarm if: */
     50#define ABIT_UGURU_FAN_LOW_ALARM_ENABLE		0x01 /*   fan under min */
     51/* uGuru sensor bank common flags */
     52#define ABIT_UGURU_BEEP_ENABLE			0x08 /* beep if alarm */
     53#define ABIT_UGURU_SHUTDOWN_ENABLE		0x80 /* shutdown if alarm */
     54/* uGuru fan PWM (speed control) flags */
     55#define ABIT_UGURU_FAN_PWM_ENABLE		0x80 /* enable speed control */
     56/* Values used for conversion */
     57#define ABIT_UGURU_FAN_MAX			15300 /* RPM */
     58/* Bank1 sensor types */
     59#define ABIT_UGURU_IN_SENSOR			0
     60#define ABIT_UGURU_TEMP_SENSOR			1
     61#define ABIT_UGURU_NC				2
     62/*
     63 * In many cases we need to wait for the uGuru to reach a certain status, most
     64 * of the time it will reach this status within 30 - 90 ISA reads, and thus we
     65 * can best busy wait. This define gives the total amount of reads to try.
     66 */
     67#define ABIT_UGURU_WAIT_TIMEOUT			125
     68/*
     69 * However sometimes older versions of the uGuru seem to be distracted and they
     70 * do not respond for a long time. To handle this we sleep before each of the
     71 * last ABIT_UGURU_WAIT_TIMEOUT_SLEEP tries.
     72 */
     73#define ABIT_UGURU_WAIT_TIMEOUT_SLEEP		5
     74/*
     75 * Normally all expected status in abituguru_ready, are reported after the
     76 * first read, but sometimes not and we need to poll.
     77 */
     78#define ABIT_UGURU_READY_TIMEOUT		5
     79/* Maximum 3 retries on timedout reads/writes, delay 200 ms before retrying */
     80#define ABIT_UGURU_MAX_RETRIES			3
     81#define ABIT_UGURU_RETRY_DELAY			(HZ/5)
     82/* Maximum 2 timeouts in abituguru_update_device, iow 3 in a row is an error */
     83#define ABIT_UGURU_MAX_TIMEOUTS			2
     84/* utility macros */
     85#define ABIT_UGURU_NAME				"abituguru"
     86#define ABIT_UGURU_DEBUG(level, format, arg...)		\
     87	do {						\
     88		if (level <= verbose)			\
     89			pr_debug(format , ## arg);	\
     90	} while (0)
     91
     92/* Macros to help calculate the sysfs_names array length */
     93/*
     94 * sum of strlen of: in??_input\0, in??_{min,max}\0, in??_{min,max}_alarm\0,
     95 * in??_{min,max}_alarm_enable\0, in??_beep\0, in??_shutdown\0
     96 */
     97#define ABITUGURU_IN_NAMES_LENGTH	(11 + 2 * 9 + 2 * 15 + 2 * 22 + 10 + 14)
     98/*
     99 * sum of strlen of: temp??_input\0, temp??_max\0, temp??_crit\0,
    100 * temp??_alarm\0, temp??_alarm_enable\0, temp??_beep\0, temp??_shutdown\0
    101 */
    102#define ABITUGURU_TEMP_NAMES_LENGTH	(13 + 11 + 12 + 13 + 20 + 12 + 16)
    103/*
    104 * sum of strlen of: fan?_input\0, fan?_min\0, fan?_alarm\0,
    105 * fan?_alarm_enable\0, fan?_beep\0, fan?_shutdown\0
    106 */
    107#define ABITUGURU_FAN_NAMES_LENGTH	(11 + 9 + 11 + 18 + 10 + 14)
    108/*
    109 * sum of strlen of: pwm?_enable\0, pwm?_auto_channels_temp\0,
    110 * pwm?_auto_point{1,2}_pwm\0, pwm?_auto_point{1,2}_temp\0
    111 */
    112#define ABITUGURU_PWM_NAMES_LENGTH	(12 + 24 + 2 * 21 + 2 * 22)
    113/* IN_NAMES_LENGTH > TEMP_NAMES_LENGTH so assume all bank1 sensors are in */
    114#define ABITUGURU_SYSFS_NAMES_LENGTH	( \
    115	ABIT_UGURU_MAX_BANK1_SENSORS * ABITUGURU_IN_NAMES_LENGTH + \
    116	ABIT_UGURU_MAX_BANK2_SENSORS * ABITUGURU_FAN_NAMES_LENGTH + \
    117	ABIT_UGURU_MAX_PWMS * ABITUGURU_PWM_NAMES_LENGTH)
    118
    119/*
    120 * All the macros below are named identical to the oguru and oguru2 programs
    121 * reverse engineered by Olle Sandberg, hence the names might not be 100%
    122 * logical. I could come up with better names, but I prefer keeping the names
    123 * identical so that this driver can be compared with his work more easily.
    124 */
    125/* Two i/o-ports are used by uGuru */
    126#define ABIT_UGURU_BASE				0x00E0
    127/* Used to tell uGuru what to read and to read the actual data */
    128#define ABIT_UGURU_CMD				0x00
    129/* Mostly used to check if uGuru is busy */
    130#define ABIT_UGURU_DATA				0x04
    131#define ABIT_UGURU_REGION_LENGTH		5
    132/* uGuru status' */
    133#define ABIT_UGURU_STATUS_WRITE			0x00 /* Ready to be written */
    134#define ABIT_UGURU_STATUS_READ			0x01 /* Ready to be read */
    135#define ABIT_UGURU_STATUS_INPUT			0x08 /* More input */
    136#define ABIT_UGURU_STATUS_READY			0x09 /* Ready to be written */
    137
    138/* Constants */
    139/* in (Volt) sensors go up to 3494 mV, temp to 255000 millidegrees Celsius */
    140static const int abituguru_bank1_max_value[2] = { 3494, 255000 };
    141/*
    142 * Min / Max allowed values for sensor2 (fan) alarm threshold, these values
    143 * correspond to 300-3000 RPM
    144 */
    145static const u8 abituguru_bank2_min_threshold = 5;
    146static const u8 abituguru_bank2_max_threshold = 50;
    147/*
    148 * Register 0 is a bitfield, 1 and 2 are pwm settings (255 = 100%), 3 and 4
    149 * are temperature trip points.
    150 */
    151static const int abituguru_pwm_settings_multiplier[5] = { 0, 1, 1, 1000, 1000 };
    152/*
    153 * Min / Max allowed values for pwm_settings. Note: pwm1 (CPU fan) is a
    154 * special case the minimum allowed pwm% setting for this is 30% (77) on
    155 * some MB's this special case is handled in the code!
    156 */
    157static const u8 abituguru_pwm_min[5] = { 0, 170, 170, 25, 25 };
    158static const u8 abituguru_pwm_max[5] = { 0, 255, 255, 75, 75 };
    159
    160
    161/* Insmod parameters */
    162static bool force;
    163module_param(force, bool, 0);
    164MODULE_PARM_DESC(force, "Set to one to force detection.");
    165static int bank1_types[ABIT_UGURU_MAX_BANK1_SENSORS] = { -1, -1, -1, -1, -1,
    166	-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 };
    167module_param_array(bank1_types, int, NULL, 0);
    168MODULE_PARM_DESC(bank1_types, "Bank1 sensortype autodetection override:\n"
    169	"   -1 autodetect\n"
    170	"    0 volt sensor\n"
    171	"    1 temp sensor\n"
    172	"    2 not connected");
    173static int fan_sensors;
    174module_param(fan_sensors, int, 0);
    175MODULE_PARM_DESC(fan_sensors, "Number of fan sensors on the uGuru "
    176	"(0 = autodetect)");
    177static int pwms;
    178module_param(pwms, int, 0);
    179MODULE_PARM_DESC(pwms, "Number of PWMs on the uGuru "
    180	"(0 = autodetect)");
    181
    182/* Default verbose is 2, since this driver is still in the testing phase */
    183static int verbose = 2;
    184module_param(verbose, int, 0644);
    185MODULE_PARM_DESC(verbose, "How verbose should the driver be? (0-3):\n"
    186	"   0 normal output\n"
    187	"   1 + verbose error reporting\n"
    188	"   2 + sensors type probing info\n"
    189	"   3 + retryable error reporting");
    190
    191
    192/*
    193 * For the Abit uGuru, we need to keep some data in memory.
    194 * The structure is dynamically allocated, at the same time when a new
    195 * abituguru device is allocated.
    196 */
    197struct abituguru_data {
    198	struct device *hwmon_dev;	/* hwmon registered device */
    199	struct mutex update_lock;	/* protect access to data and uGuru */
    200	unsigned long last_updated;	/* In jiffies */
    201	unsigned short addr;		/* uguru base address */
    202	char uguru_ready;		/* is the uguru in ready state? */
    203	unsigned char update_timeouts;	/*
    204					 * number of update timeouts since last
    205					 * successful update
    206					 */
    207
    208	/*
    209	 * The sysfs attr and their names are generated automatically, for bank1
    210	 * we cannot use a predefined array because we don't know beforehand
    211	 * of a sensor is a volt or a temp sensor, for bank2 and the pwms its
    212	 * easier todo things the same way.  For in sensors we have 9 (temp 7)
    213	 * sysfs entries per sensor, for bank2 and pwms 6.
    214	 */
    215	struct sensor_device_attribute_2 sysfs_attr[
    216		ABIT_UGURU_MAX_BANK1_SENSORS * 9 +
    217		ABIT_UGURU_MAX_BANK2_SENSORS * 6 + ABIT_UGURU_MAX_PWMS * 6];
    218	/* Buffer to store the dynamically generated sysfs names */
    219	char sysfs_names[ABITUGURU_SYSFS_NAMES_LENGTH];
    220
    221	/* Bank 1 data */
    222	/* number of and addresses of [0] in, [1] temp sensors */
    223	u8 bank1_sensors[2];
    224	u8 bank1_address[2][ABIT_UGURU_MAX_BANK1_SENSORS];
    225	u8 bank1_value[ABIT_UGURU_MAX_BANK1_SENSORS];
    226	/*
    227	 * This array holds 3 entries per sensor for the bank 1 sensor settings
    228	 * (flags, min, max for voltage / flags, warn, shutdown for temp).
    229	 */
    230	u8 bank1_settings[ABIT_UGURU_MAX_BANK1_SENSORS][3];
    231	/*
    232	 * Maximum value for each sensor used for scaling in mV/millidegrees
    233	 * Celsius.
    234	 */
    235	int bank1_max_value[ABIT_UGURU_MAX_BANK1_SENSORS];
    236
    237	/* Bank 2 data, ABIT_UGURU_MAX_BANK2_SENSORS entries for bank2 */
    238	u8 bank2_sensors; /* actual number of bank2 sensors found */
    239	u8 bank2_value[ABIT_UGURU_MAX_BANK2_SENSORS];
    240	u8 bank2_settings[ABIT_UGURU_MAX_BANK2_SENSORS][2]; /* flags, min */
    241
    242	/* Alarms 2 bytes for bank1, 1 byte for bank2 */
    243	u8 alarms[3];
    244
    245	/* Fan PWM (speed control) 5 bytes per PWM */
    246	u8 pwms; /* actual number of pwms found */
    247	u8 pwm_settings[ABIT_UGURU_MAX_PWMS][5];
    248};
    249
    250static const char *never_happen = "This should never happen.";
    251static const char *report_this =
    252	"Please report this to the abituguru maintainer (see MAINTAINERS)";
    253
    254/* wait till the uguru is in the specified state */
    255static int abituguru_wait(struct abituguru_data *data, u8 state)
    256{
    257	int timeout = ABIT_UGURU_WAIT_TIMEOUT;
    258
    259	while (inb_p(data->addr + ABIT_UGURU_DATA) != state) {
    260		timeout--;
    261		if (timeout == 0)
    262			return -EBUSY;
    263		/*
    264		 * sleep a bit before our last few tries, see the comment on
    265		 * this where ABIT_UGURU_WAIT_TIMEOUT_SLEEP is defined.
    266		 */
    267		if (timeout <= ABIT_UGURU_WAIT_TIMEOUT_SLEEP)
    268			msleep(0);
    269	}
    270	return 0;
    271}
    272
    273/* Put the uguru in ready for input state */
    274static int abituguru_ready(struct abituguru_data *data)
    275{
    276	int timeout = ABIT_UGURU_READY_TIMEOUT;
    277
    278	if (data->uguru_ready)
    279		return 0;
    280
    281	/* Reset? / Prepare for next read/write cycle */
    282	outb(0x00, data->addr + ABIT_UGURU_DATA);
    283
    284	/* Wait till the uguru is ready */
    285	if (abituguru_wait(data, ABIT_UGURU_STATUS_READY)) {
    286		ABIT_UGURU_DEBUG(1,
    287			"timeout exceeded waiting for ready state\n");
    288		return -EIO;
    289	}
    290
    291	/* Cmd port MUST be read now and should contain 0xAC */
    292	while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
    293		timeout--;
    294		if (timeout == 0) {
    295			ABIT_UGURU_DEBUG(1,
    296			   "CMD reg does not hold 0xAC after ready command\n");
    297			return -EIO;
    298		}
    299		msleep(0);
    300	}
    301
    302	/*
    303	 * After this the ABIT_UGURU_DATA port should contain
    304	 * ABIT_UGURU_STATUS_INPUT
    305	 */
    306	timeout = ABIT_UGURU_READY_TIMEOUT;
    307	while (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT) {
    308		timeout--;
    309		if (timeout == 0) {
    310			ABIT_UGURU_DEBUG(1,
    311				"state != more input after ready command\n");
    312			return -EIO;
    313		}
    314		msleep(0);
    315	}
    316
    317	data->uguru_ready = 1;
    318	return 0;
    319}
    320
    321/*
    322 * Send the bank and then sensor address to the uGuru for the next read/write
    323 * cycle. This function gets called as the first part of a read/write by
    324 * abituguru_read and abituguru_write. This function should never be
    325 * called by any other function.
    326 */
    327static int abituguru_send_address(struct abituguru_data *data,
    328	u8 bank_addr, u8 sensor_addr, int retries)
    329{
    330	/*
    331	 * assume the caller does error handling itself if it has not requested
    332	 * any retries, and thus be quiet.
    333	 */
    334	int report_errors = retries;
    335
    336	for (;;) {
    337		/*
    338		 * Make sure the uguru is ready and then send the bank address,
    339		 * after this the uguru is no longer "ready".
    340		 */
    341		if (abituguru_ready(data) != 0)
    342			return -EIO;
    343		outb(bank_addr, data->addr + ABIT_UGURU_DATA);
    344		data->uguru_ready = 0;
    345
    346		/*
    347		 * Wait till the uguru is ABIT_UGURU_STATUS_INPUT state again
    348		 * and send the sensor addr
    349		 */
    350		if (abituguru_wait(data, ABIT_UGURU_STATUS_INPUT)) {
    351			if (retries) {
    352				ABIT_UGURU_DEBUG(3, "timeout exceeded "
    353					"waiting for more input state, %d "
    354					"tries remaining\n", retries);
    355				set_current_state(TASK_UNINTERRUPTIBLE);
    356				schedule_timeout(ABIT_UGURU_RETRY_DELAY);
    357				retries--;
    358				continue;
    359			}
    360			if (report_errors)
    361				ABIT_UGURU_DEBUG(1, "timeout exceeded "
    362					"waiting for more input state "
    363					"(bank: %d)\n", (int)bank_addr);
    364			return -EBUSY;
    365		}
    366		outb(sensor_addr, data->addr + ABIT_UGURU_CMD);
    367		return 0;
    368	}
    369}
    370
    371/*
    372 * Read count bytes from sensor sensor_addr in bank bank_addr and store the
    373 * result in buf, retry the send address part of the read retries times.
    374 */
    375static int abituguru_read(struct abituguru_data *data,
    376	u8 bank_addr, u8 sensor_addr, u8 *buf, int count, int retries)
    377{
    378	int i;
    379
    380	/* Send the address */
    381	i = abituguru_send_address(data, bank_addr, sensor_addr, retries);
    382	if (i)
    383		return i;
    384
    385	/* And read the data */
    386	for (i = 0; i < count; i++) {
    387		if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
    388			ABIT_UGURU_DEBUG(retries ? 1 : 3,
    389				"timeout exceeded waiting for "
    390				"read state (bank: %d, sensor: %d)\n",
    391				(int)bank_addr, (int)sensor_addr);
    392			break;
    393		}
    394		buf[i] = inb(data->addr + ABIT_UGURU_CMD);
    395	}
    396
    397	/* Last put the chip back in ready state */
    398	abituguru_ready(data);
    399
    400	return i;
    401}
    402
    403/*
    404 * Write count bytes from buf to sensor sensor_addr in bank bank_addr, the send
    405 * address part of the write is always retried ABIT_UGURU_MAX_RETRIES times.
    406 */
    407static int abituguru_write(struct abituguru_data *data,
    408	u8 bank_addr, u8 sensor_addr, u8 *buf, int count)
    409{
    410	/*
    411	 * We use the ready timeout as we have to wait for 0xAC just like the
    412	 * ready function
    413	 */
    414	int i, timeout = ABIT_UGURU_READY_TIMEOUT;
    415
    416	/* Send the address */
    417	i = abituguru_send_address(data, bank_addr, sensor_addr,
    418		ABIT_UGURU_MAX_RETRIES);
    419	if (i)
    420		return i;
    421
    422	/* And write the data */
    423	for (i = 0; i < count; i++) {
    424		if (abituguru_wait(data, ABIT_UGURU_STATUS_WRITE)) {
    425			ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for "
    426				"write state (bank: %d, sensor: %d)\n",
    427				(int)bank_addr, (int)sensor_addr);
    428			break;
    429		}
    430		outb(buf[i], data->addr + ABIT_UGURU_CMD);
    431	}
    432
    433	/*
    434	 * Now we need to wait till the chip is ready to be read again,
    435	 * so that we can read 0xAC as confirmation that our write has
    436	 * succeeded.
    437	 */
    438	if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
    439		ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for read state "
    440			"after write (bank: %d, sensor: %d)\n", (int)bank_addr,
    441			(int)sensor_addr);
    442		return -EIO;
    443	}
    444
    445	/* Cmd port MUST be read now and should contain 0xAC */
    446	while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
    447		timeout--;
    448		if (timeout == 0) {
    449			ABIT_UGURU_DEBUG(1, "CMD reg does not hold 0xAC after "
    450				"write (bank: %d, sensor: %d)\n",
    451				(int)bank_addr, (int)sensor_addr);
    452			return -EIO;
    453		}
    454		msleep(0);
    455	}
    456
    457	/* Last put the chip back in ready state */
    458	abituguru_ready(data);
    459
    460	return i;
    461}
    462
    463/*
    464 * Detect sensor type. Temp and Volt sensors are enabled with
    465 * different masks and will ignore enable masks not meant for them.
    466 * This enables us to test what kind of sensor we're dealing with.
    467 * By setting the alarm thresholds so that we will always get an
    468 * alarm for sensor type X and then enabling the sensor as sensor type
    469 * X, if we then get an alarm it is a sensor of type X.
    470 */
    471static int
    472abituguru_detect_bank1_sensor_type(struct abituguru_data *data,
    473				   u8 sensor_addr)
    474{
    475	u8 val, test_flag, buf[3];
    476	int i, ret = -ENODEV; /* error is the most common used retval :| */
    477
    478	/* If overriden by the user return the user selected type */
    479	if (bank1_types[sensor_addr] >= ABIT_UGURU_IN_SENSOR &&
    480			bank1_types[sensor_addr] <= ABIT_UGURU_NC) {
    481		ABIT_UGURU_DEBUG(2, "assuming sensor type %d for bank1 sensor "
    482			"%d because of \"bank1_types\" module param\n",
    483			bank1_types[sensor_addr], (int)sensor_addr);
    484		return bank1_types[sensor_addr];
    485	}
    486
    487	/* First read the sensor and the current settings */
    488	if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, sensor_addr, &val,
    489			1, ABIT_UGURU_MAX_RETRIES) != 1)
    490		return -ENODEV;
    491
    492	/* Test val is sane / usable for sensor type detection. */
    493	if ((val < 10u) || (val > 250u)) {
    494		pr_warn("bank1-sensor: %d reading (%d) too close to limits, "
    495			"unable to determine sensor type, skipping sensor\n",
    496			(int)sensor_addr, (int)val);
    497		/*
    498		 * assume no sensor is there for sensors for which we can't
    499		 * determine the sensor type because their reading is too close
    500		 * to their limits, this usually means no sensor is there.
    501		 */
    502		return ABIT_UGURU_NC;
    503	}
    504
    505	ABIT_UGURU_DEBUG(2, "testing bank1 sensor %d\n", (int)sensor_addr);
    506	/*
    507	 * Volt sensor test, enable volt low alarm, set min value ridiculously
    508	 * high, or vica versa if the reading is very high. If its a volt
    509	 * sensor this should always give us an alarm.
    510	 */
    511	if (val <= 240u) {
    512		buf[0] = ABIT_UGURU_VOLT_LOW_ALARM_ENABLE;
    513		buf[1] = 245;
    514		buf[2] = 250;
    515		test_flag = ABIT_UGURU_VOLT_LOW_ALARM_FLAG;
    516	} else {
    517		buf[0] = ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE;
    518		buf[1] = 5;
    519		buf[2] = 10;
    520		test_flag = ABIT_UGURU_VOLT_HIGH_ALARM_FLAG;
    521	}
    522
    523	if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
    524			buf, 3) != 3)
    525		goto abituguru_detect_bank1_sensor_type_exit;
    526	/*
    527	 * Now we need 20 ms to give the uguru time to read the sensors
    528	 * and raise a voltage alarm
    529	 */
    530	set_current_state(TASK_UNINTERRUPTIBLE);
    531	schedule_timeout(HZ/50);
    532	/* Check for alarm and check the alarm is a volt low alarm. */
    533	if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
    534			ABIT_UGURU_MAX_RETRIES) != 3)
    535		goto abituguru_detect_bank1_sensor_type_exit;
    536	if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
    537		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
    538				sensor_addr, buf, 3,
    539				ABIT_UGURU_MAX_RETRIES) != 3)
    540			goto abituguru_detect_bank1_sensor_type_exit;
    541		if (buf[0] & test_flag) {
    542			ABIT_UGURU_DEBUG(2, "  found volt sensor\n");
    543			ret = ABIT_UGURU_IN_SENSOR;
    544			goto abituguru_detect_bank1_sensor_type_exit;
    545		} else
    546			ABIT_UGURU_DEBUG(2, "  alarm raised during volt "
    547				"sensor test, but volt range flag not set\n");
    548	} else
    549		ABIT_UGURU_DEBUG(2, "  alarm not raised during volt sensor "
    550			"test\n");
    551
    552	/*
    553	 * Temp sensor test, enable sensor as a temp sensor, set beep value
    554	 * ridiculously low (but not too low, otherwise uguru ignores it).
    555	 * If its a temp sensor this should always give us an alarm.
    556	 */
    557	buf[0] = ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE;
    558	buf[1] = 5;
    559	buf[2] = 10;
    560	if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
    561			buf, 3) != 3)
    562		goto abituguru_detect_bank1_sensor_type_exit;
    563	/*
    564	 * Now we need 50 ms to give the uguru time to read the sensors
    565	 * and raise a temp alarm
    566	 */
    567	set_current_state(TASK_UNINTERRUPTIBLE);
    568	schedule_timeout(HZ/20);
    569	/* Check for alarm and check the alarm is a temp high alarm. */
    570	if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
    571			ABIT_UGURU_MAX_RETRIES) != 3)
    572		goto abituguru_detect_bank1_sensor_type_exit;
    573	if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
    574		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
    575				sensor_addr, buf, 3,
    576				ABIT_UGURU_MAX_RETRIES) != 3)
    577			goto abituguru_detect_bank1_sensor_type_exit;
    578		if (buf[0] & ABIT_UGURU_TEMP_HIGH_ALARM_FLAG) {
    579			ABIT_UGURU_DEBUG(2, "  found temp sensor\n");
    580			ret = ABIT_UGURU_TEMP_SENSOR;
    581			goto abituguru_detect_bank1_sensor_type_exit;
    582		} else
    583			ABIT_UGURU_DEBUG(2, "  alarm raised during temp "
    584				"sensor test, but temp high flag not set\n");
    585	} else
    586		ABIT_UGURU_DEBUG(2, "  alarm not raised during temp sensor "
    587			"test\n");
    588
    589	ret = ABIT_UGURU_NC;
    590abituguru_detect_bank1_sensor_type_exit:
    591	/*
    592	 * Restore original settings, failing here is really BAD, it has been
    593	 * reported that some BIOS-es hang when entering the uGuru menu with
    594	 * invalid settings present in the uGuru, so we try this 3 times.
    595	 */
    596	for (i = 0; i < 3; i++)
    597		if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
    598				sensor_addr, data->bank1_settings[sensor_addr],
    599				3) == 3)
    600			break;
    601	if (i == 3) {
    602		pr_err("Fatal error could not restore original settings. %s %s\n",
    603		       never_happen, report_this);
    604		return -ENODEV;
    605	}
    606	return ret;
    607}
    608
    609/*
    610 * These functions try to find out how many sensors there are in bank2 and how
    611 * many pwms there are. The purpose of this is to make sure that we don't give
    612 * the user the possibility to change settings for non-existent sensors / pwm.
    613 * The uGuru will happily read / write whatever memory happens to be after the
    614 * memory storing the PWM settings when reading/writing to a PWM which is not
    615 * there. Notice even if we detect a PWM which doesn't exist we normally won't
    616 * write to it, unless the user tries to change the settings.
    617 *
    618 * Although the uGuru allows reading (settings) from non existing bank2
    619 * sensors, my version of the uGuru does seem to stop writing to them, the
    620 * write function above aborts in this case with:
    621 * "CMD reg does not hold 0xAC after write"
    622 *
    623 * Notice these 2 tests are non destructive iow read-only tests, otherwise
    624 * they would defeat their purpose. Although for the bank2_sensors detection a
    625 * read/write test would be feasible because of the reaction above, I've
    626 * however opted to stay on the safe side.
    627 */
    628static void
    629abituguru_detect_no_bank2_sensors(struct abituguru_data *data)
    630{
    631	int i;
    632
    633	if (fan_sensors > 0 && fan_sensors <= ABIT_UGURU_MAX_BANK2_SENSORS) {
    634		data->bank2_sensors = fan_sensors;
    635		ABIT_UGURU_DEBUG(2, "assuming %d fan sensors because of "
    636			"\"fan_sensors\" module param\n",
    637			(int)data->bank2_sensors);
    638		return;
    639	}
    640
    641	ABIT_UGURU_DEBUG(2, "detecting number of fan sensors\n");
    642	for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
    643		/*
    644		 * 0x89 are the known used bits:
    645		 * -0x80 enable shutdown
    646		 * -0x08 enable beep
    647		 * -0x01 enable alarm
    648		 * All other bits should be 0, but on some motherboards
    649		 * 0x40 (bit 6) is also high for some of the fans??
    650		 */
    651		if (data->bank2_settings[i][0] & ~0xC9) {
    652			ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
    653				"to be a fan sensor: settings[0] = %02X\n",
    654				i, (unsigned int)data->bank2_settings[i][0]);
    655			break;
    656		}
    657
    658		/* check if the threshold is within the allowed range */
    659		if (data->bank2_settings[i][1] <
    660				abituguru_bank2_min_threshold) {
    661			ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
    662				"to be a fan sensor: the threshold (%d) is "
    663				"below the minimum (%d)\n", i,
    664				(int)data->bank2_settings[i][1],
    665				(int)abituguru_bank2_min_threshold);
    666			break;
    667		}
    668		if (data->bank2_settings[i][1] >
    669				abituguru_bank2_max_threshold) {
    670			ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
    671				"to be a fan sensor: the threshold (%d) is "
    672				"above the maximum (%d)\n", i,
    673				(int)data->bank2_settings[i][1],
    674				(int)abituguru_bank2_max_threshold);
    675			break;
    676		}
    677	}
    678
    679	data->bank2_sensors = i;
    680	ABIT_UGURU_DEBUG(2, " found: %d fan sensors\n",
    681		(int)data->bank2_sensors);
    682}
    683
    684static void
    685abituguru_detect_no_pwms(struct abituguru_data *data)
    686{
    687	int i, j;
    688
    689	if (pwms > 0 && pwms <= ABIT_UGURU_MAX_PWMS) {
    690		data->pwms = pwms;
    691		ABIT_UGURU_DEBUG(2, "assuming %d PWM outputs because of "
    692			"\"pwms\" module param\n", (int)data->pwms);
    693		return;
    694	}
    695
    696	ABIT_UGURU_DEBUG(2, "detecting number of PWM outputs\n");
    697	for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
    698		/*
    699		 * 0x80 is the enable bit and the low
    700		 * nibble is which temp sensor to use,
    701		 * the other bits should be 0
    702		 */
    703		if (data->pwm_settings[i][0] & ~0x8F) {
    704			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
    705				"to be a pwm channel: settings[0] = %02X\n",
    706				i, (unsigned int)data->pwm_settings[i][0]);
    707			break;
    708		}
    709
    710		/*
    711		 * the low nibble must correspond to one of the temp sensors
    712		 * we've found
    713		 */
    714		for (j = 0; j < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR];
    715				j++) {
    716			if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][j] ==
    717					(data->pwm_settings[i][0] & 0x0F))
    718				break;
    719		}
    720		if (j == data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) {
    721			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
    722				"to be a pwm channel: %d is not a valid temp "
    723				"sensor address\n", i,
    724				data->pwm_settings[i][0] & 0x0F);
    725			break;
    726		}
    727
    728		/* check if all other settings are within the allowed range */
    729		for (j = 1; j < 5; j++) {
    730			u8 min;
    731			/* special case pwm1 min pwm% */
    732			if ((i == 0) && ((j == 1) || (j == 2)))
    733				min = 77;
    734			else
    735				min = abituguru_pwm_min[j];
    736			if (data->pwm_settings[i][j] < min) {
    737				ABIT_UGURU_DEBUG(2, "  pwm channel %d does "
    738					"not seem to be a pwm channel: "
    739					"setting %d (%d) is below the minimum "
    740					"value (%d)\n", i, j,
    741					(int)data->pwm_settings[i][j],
    742					(int)min);
    743				goto abituguru_detect_no_pwms_exit;
    744			}
    745			if (data->pwm_settings[i][j] > abituguru_pwm_max[j]) {
    746				ABIT_UGURU_DEBUG(2, "  pwm channel %d does "
    747					"not seem to be a pwm channel: "
    748					"setting %d (%d) is above the maximum "
    749					"value (%d)\n", i, j,
    750					(int)data->pwm_settings[i][j],
    751					(int)abituguru_pwm_max[j]);
    752				goto abituguru_detect_no_pwms_exit;
    753			}
    754		}
    755
    756		/* check that min temp < max temp and min pwm < max pwm */
    757		if (data->pwm_settings[i][1] >= data->pwm_settings[i][2]) {
    758			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
    759				"to be a pwm channel: min pwm (%d) >= "
    760				"max pwm (%d)\n", i,
    761				(int)data->pwm_settings[i][1],
    762				(int)data->pwm_settings[i][2]);
    763			break;
    764		}
    765		if (data->pwm_settings[i][3] >= data->pwm_settings[i][4]) {
    766			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
    767				"to be a pwm channel: min temp (%d) >= "
    768				"max temp (%d)\n", i,
    769				(int)data->pwm_settings[i][3],
    770				(int)data->pwm_settings[i][4]);
    771			break;
    772		}
    773	}
    774
    775abituguru_detect_no_pwms_exit:
    776	data->pwms = i;
    777	ABIT_UGURU_DEBUG(2, " found: %d PWM outputs\n", (int)data->pwms);
    778}
    779
    780/*
    781 * Following are the sysfs callback functions. These functions expect:
    782 * sensor_device_attribute_2->index:   sensor address/offset in the bank
    783 * sensor_device_attribute_2->nr:      register offset, bitmask or NA.
    784 */
    785static struct abituguru_data *abituguru_update_device(struct device *dev);
    786
    787static ssize_t show_bank1_value(struct device *dev,
    788	struct device_attribute *devattr, char *buf)
    789{
    790	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
    791	struct abituguru_data *data = abituguru_update_device(dev);
    792	if (!data)
    793		return -EIO;
    794	return sprintf(buf, "%d\n", (data->bank1_value[attr->index] *
    795		data->bank1_max_value[attr->index] + 128) / 255);
    796}
    797
    798static ssize_t show_bank1_setting(struct device *dev,
    799	struct device_attribute *devattr, char *buf)
    800{
    801	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
    802	struct abituguru_data *data = dev_get_drvdata(dev);
    803	return sprintf(buf, "%d\n",
    804		(data->bank1_settings[attr->index][attr->nr] *
    805		data->bank1_max_value[attr->index] + 128) / 255);
    806}
    807
    808static ssize_t show_bank2_value(struct device *dev,
    809	struct device_attribute *devattr, char *buf)
    810{
    811	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
    812	struct abituguru_data *data = abituguru_update_device(dev);
    813	if (!data)
    814		return -EIO;
    815	return sprintf(buf, "%d\n", (data->bank2_value[attr->index] *
    816		ABIT_UGURU_FAN_MAX + 128) / 255);
    817}
    818
    819static ssize_t show_bank2_setting(struct device *dev,
    820	struct device_attribute *devattr, char *buf)
    821{
    822	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
    823	struct abituguru_data *data = dev_get_drvdata(dev);
    824	return sprintf(buf, "%d\n",
    825		(data->bank2_settings[attr->index][attr->nr] *
    826		ABIT_UGURU_FAN_MAX + 128) / 255);
    827}
    828
    829static ssize_t store_bank1_setting(struct device *dev, struct device_attribute
    830	*devattr, const char *buf, size_t count)
    831{
    832	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
    833	struct abituguru_data *data = dev_get_drvdata(dev);
    834	unsigned long val;
    835	ssize_t ret;
    836
    837	ret = kstrtoul(buf, 10, &val);
    838	if (ret)
    839		return ret;
    840
    841	ret = count;
    842	val = (val * 255 + data->bank1_max_value[attr->index] / 2) /
    843		data->bank1_max_value[attr->index];
    844	if (val > 255)
    845		return -EINVAL;
    846
    847	mutex_lock(&data->update_lock);
    848	if (data->bank1_settings[attr->index][attr->nr] != val) {
    849		u8 orig_val = data->bank1_settings[attr->index][attr->nr];
    850		data->bank1_settings[attr->index][attr->nr] = val;
    851		if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
    852				attr->index, data->bank1_settings[attr->index],
    853				3) <= attr->nr) {
    854			data->bank1_settings[attr->index][attr->nr] = orig_val;
    855			ret = -EIO;
    856		}
    857	}
    858	mutex_unlock(&data->update_lock);
    859	return ret;
    860}
    861
    862static ssize_t store_bank2_setting(struct device *dev, struct device_attribute
    863	*devattr, const char *buf, size_t count)
    864{
    865	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
    866	struct abituguru_data *data = dev_get_drvdata(dev);
    867	unsigned long val;
    868	ssize_t ret;
    869
    870	ret = kstrtoul(buf, 10, &val);
    871	if (ret)
    872		return ret;
    873
    874	ret = count;
    875	val = (val * 255 + ABIT_UGURU_FAN_MAX / 2) / ABIT_UGURU_FAN_MAX;
    876
    877	/* this check can be done before taking the lock */
    878	if (val < abituguru_bank2_min_threshold ||
    879			val > abituguru_bank2_max_threshold)
    880		return -EINVAL;
    881
    882	mutex_lock(&data->update_lock);
    883	if (data->bank2_settings[attr->index][attr->nr] != val) {
    884		u8 orig_val = data->bank2_settings[attr->index][attr->nr];
    885		data->bank2_settings[attr->index][attr->nr] = val;
    886		if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK2 + 2,
    887				attr->index, data->bank2_settings[attr->index],
    888				2) <= attr->nr) {
    889			data->bank2_settings[attr->index][attr->nr] = orig_val;
    890			ret = -EIO;
    891		}
    892	}
    893	mutex_unlock(&data->update_lock);
    894	return ret;
    895}
    896
    897static ssize_t show_bank1_alarm(struct device *dev,
    898	struct device_attribute *devattr, char *buf)
    899{
    900	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
    901	struct abituguru_data *data = abituguru_update_device(dev);
    902	if (!data)
    903		return -EIO;
    904	/*
    905	 * See if the alarm bit for this sensor is set, and if the
    906	 * alarm matches the type of alarm we're looking for (for volt
    907	 * it can be either low or high). The type is stored in a few
    908	 * readonly bits in the settings part of the relevant sensor.
    909	 * The bitmask of the type is passed to us in attr->nr.
    910	 */
    911	if ((data->alarms[attr->index / 8] & (0x01 << (attr->index % 8))) &&
    912			(data->bank1_settings[attr->index][0] & attr->nr))
    913		return sprintf(buf, "1\n");
    914	else
    915		return sprintf(buf, "0\n");
    916}
    917
    918static ssize_t show_bank2_alarm(struct device *dev,
    919	struct device_attribute *devattr, char *buf)
    920{
    921	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
    922	struct abituguru_data *data = abituguru_update_device(dev);
    923	if (!data)
    924		return -EIO;
    925	if (data->alarms[2] & (0x01 << attr->index))
    926		return sprintf(buf, "1\n");
    927	else
    928		return sprintf(buf, "0\n");
    929}
    930
    931static ssize_t show_bank1_mask(struct device *dev,
    932	struct device_attribute *devattr, char *buf)
    933{
    934	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
    935	struct abituguru_data *data = dev_get_drvdata(dev);
    936	if (data->bank1_settings[attr->index][0] & attr->nr)
    937		return sprintf(buf, "1\n");
    938	else
    939		return sprintf(buf, "0\n");
    940}
    941
    942static ssize_t show_bank2_mask(struct device *dev,
    943	struct device_attribute *devattr, char *buf)
    944{
    945	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
    946	struct abituguru_data *data = dev_get_drvdata(dev);
    947	if (data->bank2_settings[attr->index][0] & attr->nr)
    948		return sprintf(buf, "1\n");
    949	else
    950		return sprintf(buf, "0\n");
    951}
    952
    953static ssize_t store_bank1_mask(struct device *dev,
    954	struct device_attribute *devattr, const char *buf, size_t count)
    955{
    956	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
    957	struct abituguru_data *data = dev_get_drvdata(dev);
    958	ssize_t ret;
    959	u8 orig_val;
    960	unsigned long mask;
    961
    962	ret = kstrtoul(buf, 10, &mask);
    963	if (ret)
    964		return ret;
    965
    966	ret = count;
    967	mutex_lock(&data->update_lock);
    968	orig_val = data->bank1_settings[attr->index][0];
    969
    970	if (mask)
    971		data->bank1_settings[attr->index][0] |= attr->nr;
    972	else
    973		data->bank1_settings[attr->index][0] &= ~attr->nr;
    974
    975	if ((data->bank1_settings[attr->index][0] != orig_val) &&
    976			(abituguru_write(data,
    977			ABIT_UGURU_SENSOR_BANK1 + 2, attr->index,
    978			data->bank1_settings[attr->index], 3) < 1)) {
    979		data->bank1_settings[attr->index][0] = orig_val;
    980		ret = -EIO;
    981	}
    982	mutex_unlock(&data->update_lock);
    983	return ret;
    984}
    985
    986static ssize_t store_bank2_mask(struct device *dev,
    987	struct device_attribute *devattr, const char *buf, size_t count)
    988{
    989	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
    990	struct abituguru_data *data = dev_get_drvdata(dev);
    991	ssize_t ret;
    992	u8 orig_val;
    993	unsigned long mask;
    994
    995	ret = kstrtoul(buf, 10, &mask);
    996	if (ret)
    997		return ret;
    998
    999	ret = count;
   1000	mutex_lock(&data->update_lock);
   1001	orig_val = data->bank2_settings[attr->index][0];
   1002
   1003	if (mask)
   1004		data->bank2_settings[attr->index][0] |= attr->nr;
   1005	else
   1006		data->bank2_settings[attr->index][0] &= ~attr->nr;
   1007
   1008	if ((data->bank2_settings[attr->index][0] != orig_val) &&
   1009			(abituguru_write(data,
   1010			ABIT_UGURU_SENSOR_BANK2 + 2, attr->index,
   1011			data->bank2_settings[attr->index], 2) < 1)) {
   1012		data->bank2_settings[attr->index][0] = orig_val;
   1013		ret = -EIO;
   1014	}
   1015	mutex_unlock(&data->update_lock);
   1016	return ret;
   1017}
   1018
   1019/* Fan PWM (speed control) */
   1020static ssize_t show_pwm_setting(struct device *dev,
   1021	struct device_attribute *devattr, char *buf)
   1022{
   1023	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
   1024	struct abituguru_data *data = dev_get_drvdata(dev);
   1025	return sprintf(buf, "%d\n", data->pwm_settings[attr->index][attr->nr] *
   1026		abituguru_pwm_settings_multiplier[attr->nr]);
   1027}
   1028
   1029static ssize_t store_pwm_setting(struct device *dev, struct device_attribute
   1030	*devattr, const char *buf, size_t count)
   1031{
   1032	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
   1033	struct abituguru_data *data = dev_get_drvdata(dev);
   1034	u8 min;
   1035	unsigned long val;
   1036	ssize_t ret;
   1037
   1038	ret = kstrtoul(buf, 10, &val);
   1039	if (ret)
   1040		return ret;
   1041
   1042	ret = count;
   1043	val = (val + abituguru_pwm_settings_multiplier[attr->nr] / 2) /
   1044				abituguru_pwm_settings_multiplier[attr->nr];
   1045
   1046	/* special case pwm1 min pwm% */
   1047	if ((attr->index == 0) && ((attr->nr == 1) || (attr->nr == 2)))
   1048		min = 77;
   1049	else
   1050		min = abituguru_pwm_min[attr->nr];
   1051
   1052	/* this check can be done before taking the lock */
   1053	if (val < min || val > abituguru_pwm_max[attr->nr])
   1054		return -EINVAL;
   1055
   1056	mutex_lock(&data->update_lock);
   1057	/* this check needs to be done after taking the lock */
   1058	if ((attr->nr & 1) &&
   1059			(val >= data->pwm_settings[attr->index][attr->nr + 1]))
   1060		ret = -EINVAL;
   1061	else if (!(attr->nr & 1) &&
   1062			(val <= data->pwm_settings[attr->index][attr->nr - 1]))
   1063		ret = -EINVAL;
   1064	else if (data->pwm_settings[attr->index][attr->nr] != val) {
   1065		u8 orig_val = data->pwm_settings[attr->index][attr->nr];
   1066		data->pwm_settings[attr->index][attr->nr] = val;
   1067		if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
   1068				attr->index, data->pwm_settings[attr->index],
   1069				5) <= attr->nr) {
   1070			data->pwm_settings[attr->index][attr->nr] =
   1071				orig_val;
   1072			ret = -EIO;
   1073		}
   1074	}
   1075	mutex_unlock(&data->update_lock);
   1076	return ret;
   1077}
   1078
   1079static ssize_t show_pwm_sensor(struct device *dev,
   1080	struct device_attribute *devattr, char *buf)
   1081{
   1082	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
   1083	struct abituguru_data *data = dev_get_drvdata(dev);
   1084	int i;
   1085	/*
   1086	 * We need to walk to the temp sensor addresses to find what
   1087	 * the userspace id of the configured temp sensor is.
   1088	 */
   1089	for (i = 0; i < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; i++)
   1090		if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][i] ==
   1091				(data->pwm_settings[attr->index][0] & 0x0F))
   1092			return sprintf(buf, "%d\n", i+1);
   1093
   1094	return -ENXIO;
   1095}
   1096
   1097static ssize_t store_pwm_sensor(struct device *dev, struct device_attribute
   1098	*devattr, const char *buf, size_t count)
   1099{
   1100	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
   1101	struct abituguru_data *data = dev_get_drvdata(dev);
   1102	ssize_t ret;
   1103	unsigned long val;
   1104	u8 orig_val;
   1105	u8 address;
   1106
   1107	ret = kstrtoul(buf, 10, &val);
   1108	if (ret)
   1109		return ret;
   1110
   1111	if (val == 0 || val > data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR])
   1112		return -EINVAL;
   1113
   1114	val -= 1;
   1115	ret = count;
   1116	mutex_lock(&data->update_lock);
   1117	orig_val = data->pwm_settings[attr->index][0];
   1118	address = data->bank1_address[ABIT_UGURU_TEMP_SENSOR][val];
   1119	data->pwm_settings[attr->index][0] &= 0xF0;
   1120	data->pwm_settings[attr->index][0] |= address;
   1121	if (data->pwm_settings[attr->index][0] != orig_val) {
   1122		if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, attr->index,
   1123				    data->pwm_settings[attr->index], 5) < 1) {
   1124			data->pwm_settings[attr->index][0] = orig_val;
   1125			ret = -EIO;
   1126		}
   1127	}
   1128	mutex_unlock(&data->update_lock);
   1129	return ret;
   1130}
   1131
   1132static ssize_t show_pwm_enable(struct device *dev,
   1133	struct device_attribute *devattr, char *buf)
   1134{
   1135	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
   1136	struct abituguru_data *data = dev_get_drvdata(dev);
   1137	int res = 0;
   1138	if (data->pwm_settings[attr->index][0] & ABIT_UGURU_FAN_PWM_ENABLE)
   1139		res = 2;
   1140	return sprintf(buf, "%d\n", res);
   1141}
   1142
   1143static ssize_t store_pwm_enable(struct device *dev, struct device_attribute
   1144	*devattr, const char *buf, size_t count)
   1145{
   1146	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
   1147	struct abituguru_data *data = dev_get_drvdata(dev);
   1148	u8 orig_val;
   1149	ssize_t ret;
   1150	unsigned long user_val;
   1151
   1152	ret = kstrtoul(buf, 10, &user_val);
   1153	if (ret)
   1154		return ret;
   1155
   1156	ret = count;
   1157	mutex_lock(&data->update_lock);
   1158	orig_val = data->pwm_settings[attr->index][0];
   1159	switch (user_val) {
   1160	case 0:
   1161		data->pwm_settings[attr->index][0] &=
   1162			~ABIT_UGURU_FAN_PWM_ENABLE;
   1163		break;
   1164	case 2:
   1165		data->pwm_settings[attr->index][0] |= ABIT_UGURU_FAN_PWM_ENABLE;
   1166		break;
   1167	default:
   1168		ret = -EINVAL;
   1169	}
   1170	if ((data->pwm_settings[attr->index][0] != orig_val) &&
   1171			(abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
   1172			attr->index, data->pwm_settings[attr->index],
   1173			5) < 1)) {
   1174		data->pwm_settings[attr->index][0] = orig_val;
   1175		ret = -EIO;
   1176	}
   1177	mutex_unlock(&data->update_lock);
   1178	return ret;
   1179}
   1180
   1181static ssize_t show_name(struct device *dev,
   1182	struct device_attribute *devattr, char *buf)
   1183{
   1184	return sprintf(buf, "%s\n", ABIT_UGURU_NAME);
   1185}
   1186
   1187/* Sysfs attr templates, the real entries are generated automatically. */
   1188static const
   1189struct sensor_device_attribute_2 abituguru_sysfs_bank1_templ[2][9] = {
   1190	{
   1191	SENSOR_ATTR_2(in%d_input, 0444, show_bank1_value, NULL, 0, 0),
   1192	SENSOR_ATTR_2(in%d_min, 0644, show_bank1_setting,
   1193		store_bank1_setting, 1, 0),
   1194	SENSOR_ATTR_2(in%d_min_alarm, 0444, show_bank1_alarm, NULL,
   1195		ABIT_UGURU_VOLT_LOW_ALARM_FLAG, 0),
   1196	SENSOR_ATTR_2(in%d_max, 0644, show_bank1_setting,
   1197		store_bank1_setting, 2, 0),
   1198	SENSOR_ATTR_2(in%d_max_alarm, 0444, show_bank1_alarm, NULL,
   1199		ABIT_UGURU_VOLT_HIGH_ALARM_FLAG, 0),
   1200	SENSOR_ATTR_2(in%d_beep, 0644, show_bank1_mask,
   1201		store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
   1202	SENSOR_ATTR_2(in%d_shutdown, 0644, show_bank1_mask,
   1203		store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
   1204	SENSOR_ATTR_2(in%d_min_alarm_enable, 0644, show_bank1_mask,
   1205		store_bank1_mask, ABIT_UGURU_VOLT_LOW_ALARM_ENABLE, 0),
   1206	SENSOR_ATTR_2(in%d_max_alarm_enable, 0644, show_bank1_mask,
   1207		store_bank1_mask, ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE, 0),
   1208	}, {
   1209	SENSOR_ATTR_2(temp%d_input, 0444, show_bank1_value, NULL, 0, 0),
   1210	SENSOR_ATTR_2(temp%d_alarm, 0444, show_bank1_alarm, NULL,
   1211		ABIT_UGURU_TEMP_HIGH_ALARM_FLAG, 0),
   1212	SENSOR_ATTR_2(temp%d_max, 0644, show_bank1_setting,
   1213		store_bank1_setting, 1, 0),
   1214	SENSOR_ATTR_2(temp%d_crit, 0644, show_bank1_setting,
   1215		store_bank1_setting, 2, 0),
   1216	SENSOR_ATTR_2(temp%d_beep, 0644, show_bank1_mask,
   1217		store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
   1218	SENSOR_ATTR_2(temp%d_shutdown, 0644, show_bank1_mask,
   1219		store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
   1220	SENSOR_ATTR_2(temp%d_alarm_enable, 0644, show_bank1_mask,
   1221		store_bank1_mask, ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE, 0),
   1222	}
   1223};
   1224
   1225static const struct sensor_device_attribute_2 abituguru_sysfs_fan_templ[6] = {
   1226	SENSOR_ATTR_2(fan%d_input, 0444, show_bank2_value, NULL, 0, 0),
   1227	SENSOR_ATTR_2(fan%d_alarm, 0444, show_bank2_alarm, NULL, 0, 0),
   1228	SENSOR_ATTR_2(fan%d_min, 0644, show_bank2_setting,
   1229		store_bank2_setting, 1, 0),
   1230	SENSOR_ATTR_2(fan%d_beep, 0644, show_bank2_mask,
   1231		store_bank2_mask, ABIT_UGURU_BEEP_ENABLE, 0),
   1232	SENSOR_ATTR_2(fan%d_shutdown, 0644, show_bank2_mask,
   1233		store_bank2_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
   1234	SENSOR_ATTR_2(fan%d_alarm_enable, 0644, show_bank2_mask,
   1235		store_bank2_mask, ABIT_UGURU_FAN_LOW_ALARM_ENABLE, 0),
   1236};
   1237
   1238static const struct sensor_device_attribute_2 abituguru_sysfs_pwm_templ[6] = {
   1239	SENSOR_ATTR_2(pwm%d_enable, 0644, show_pwm_enable,
   1240		store_pwm_enable, 0, 0),
   1241	SENSOR_ATTR_2(pwm%d_auto_channels_temp, 0644, show_pwm_sensor,
   1242		store_pwm_sensor, 0, 0),
   1243	SENSOR_ATTR_2(pwm%d_auto_point1_pwm, 0644, show_pwm_setting,
   1244		store_pwm_setting, 1, 0),
   1245	SENSOR_ATTR_2(pwm%d_auto_point2_pwm, 0644, show_pwm_setting,
   1246		store_pwm_setting, 2, 0),
   1247	SENSOR_ATTR_2(pwm%d_auto_point1_temp, 0644, show_pwm_setting,
   1248		store_pwm_setting, 3, 0),
   1249	SENSOR_ATTR_2(pwm%d_auto_point2_temp, 0644, show_pwm_setting,
   1250		store_pwm_setting, 4, 0),
   1251};
   1252
   1253static struct sensor_device_attribute_2 abituguru_sysfs_attr[] = {
   1254	SENSOR_ATTR_2(name, 0444, show_name, NULL, 0, 0),
   1255};
   1256
   1257static int abituguru_probe(struct platform_device *pdev)
   1258{
   1259	struct abituguru_data *data;
   1260	int i, j, used, sysfs_names_free, sysfs_attr_i, res = -ENODEV;
   1261	char *sysfs_filename;
   1262
   1263	/*
   1264	 * El weirdo probe order, to keep the sysfs order identical to the
   1265	 * BIOS and window-appliction listing order.
   1266	 */
   1267	static const u8 probe_order[ABIT_UGURU_MAX_BANK1_SENSORS] = {
   1268		0x00, 0x01, 0x03, 0x04, 0x0A, 0x08, 0x0E, 0x02,
   1269		0x09, 0x06, 0x05, 0x0B, 0x0F, 0x0D, 0x07, 0x0C };
   1270
   1271	data = devm_kzalloc(&pdev->dev, sizeof(struct abituguru_data),
   1272			    GFP_KERNEL);
   1273	if (!data)
   1274		return -ENOMEM;
   1275
   1276	data->addr = platform_get_resource(pdev, IORESOURCE_IO, 0)->start;
   1277	mutex_init(&data->update_lock);
   1278	platform_set_drvdata(pdev, data);
   1279
   1280	/* See if the uGuru is ready */
   1281	if (inb_p(data->addr + ABIT_UGURU_DATA) == ABIT_UGURU_STATUS_INPUT)
   1282		data->uguru_ready = 1;
   1283
   1284	/*
   1285	 * Completely read the uGuru this has 2 purposes:
   1286	 * - testread / see if one really is there.
   1287	 * - make an in memory copy of all the uguru settings for future use.
   1288	 */
   1289	if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
   1290			data->alarms, 3, ABIT_UGURU_MAX_RETRIES) != 3)
   1291		goto abituguru_probe_error;
   1292
   1293	for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
   1294		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, i,
   1295				&data->bank1_value[i], 1,
   1296				ABIT_UGURU_MAX_RETRIES) != 1)
   1297			goto abituguru_probe_error;
   1298		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1+1, i,
   1299				data->bank1_settings[i], 3,
   1300				ABIT_UGURU_MAX_RETRIES) != 3)
   1301			goto abituguru_probe_error;
   1302	}
   1303	/*
   1304	 * Note: We don't know how many bank2 sensors / pwms there really are,
   1305	 * but in order to "detect" this we need to read the maximum amount
   1306	 * anyways. If we read sensors/pwms not there we'll just read crap
   1307	 * this can't hurt. We need the detection because we don't want
   1308	 * unwanted writes, which will hurt!
   1309	 */
   1310	for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
   1311		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
   1312				&data->bank2_value[i], 1,
   1313				ABIT_UGURU_MAX_RETRIES) != 1)
   1314			goto abituguru_probe_error;
   1315		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2+1, i,
   1316				data->bank2_settings[i], 2,
   1317				ABIT_UGURU_MAX_RETRIES) != 2)
   1318			goto abituguru_probe_error;
   1319	}
   1320	for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
   1321		if (abituguru_read(data, ABIT_UGURU_FAN_PWM, i,
   1322				data->pwm_settings[i], 5,
   1323				ABIT_UGURU_MAX_RETRIES) != 5)
   1324			goto abituguru_probe_error;
   1325	}
   1326	data->last_updated = jiffies;
   1327
   1328	/* Detect sensor types and fill the sysfs attr for bank1 */
   1329	sysfs_attr_i = 0;
   1330	sysfs_filename = data->sysfs_names;
   1331	sysfs_names_free = ABITUGURU_SYSFS_NAMES_LENGTH;
   1332	for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
   1333		res = abituguru_detect_bank1_sensor_type(data, probe_order[i]);
   1334		if (res < 0)
   1335			goto abituguru_probe_error;
   1336		if (res == ABIT_UGURU_NC)
   1337			continue;
   1338
   1339		/* res 1 (temp) sensors have 7 sysfs entries, 0 (in) 9 */
   1340		for (j = 0; j < (res ? 7 : 9); j++) {
   1341			used = snprintf(sysfs_filename, sysfs_names_free,
   1342				abituguru_sysfs_bank1_templ[res][j].dev_attr.
   1343				attr.name, data->bank1_sensors[res] + res)
   1344				+ 1;
   1345			data->sysfs_attr[sysfs_attr_i] =
   1346				abituguru_sysfs_bank1_templ[res][j];
   1347			data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
   1348				sysfs_filename;
   1349			data->sysfs_attr[sysfs_attr_i].index = probe_order[i];
   1350			sysfs_filename += used;
   1351			sysfs_names_free -= used;
   1352			sysfs_attr_i++;
   1353		}
   1354		data->bank1_max_value[probe_order[i]] =
   1355			abituguru_bank1_max_value[res];
   1356		data->bank1_address[res][data->bank1_sensors[res]] =
   1357			probe_order[i];
   1358		data->bank1_sensors[res]++;
   1359	}
   1360	/* Detect number of sensors and fill the sysfs attr for bank2 (fans) */
   1361	abituguru_detect_no_bank2_sensors(data);
   1362	for (i = 0; i < data->bank2_sensors; i++) {
   1363		for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_fan_templ); j++) {
   1364			used = snprintf(sysfs_filename, sysfs_names_free,
   1365				abituguru_sysfs_fan_templ[j].dev_attr.attr.name,
   1366				i + 1) + 1;
   1367			data->sysfs_attr[sysfs_attr_i] =
   1368				abituguru_sysfs_fan_templ[j];
   1369			data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
   1370				sysfs_filename;
   1371			data->sysfs_attr[sysfs_attr_i].index = i;
   1372			sysfs_filename += used;
   1373			sysfs_names_free -= used;
   1374			sysfs_attr_i++;
   1375		}
   1376	}
   1377	/* Detect number of sensors and fill the sysfs attr for pwms */
   1378	abituguru_detect_no_pwms(data);
   1379	for (i = 0; i < data->pwms; i++) {
   1380		for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_pwm_templ); j++) {
   1381			used = snprintf(sysfs_filename, sysfs_names_free,
   1382				abituguru_sysfs_pwm_templ[j].dev_attr.attr.name,
   1383				i + 1) + 1;
   1384			data->sysfs_attr[sysfs_attr_i] =
   1385				abituguru_sysfs_pwm_templ[j];
   1386			data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
   1387				sysfs_filename;
   1388			data->sysfs_attr[sysfs_attr_i].index = i;
   1389			sysfs_filename += used;
   1390			sysfs_names_free -= used;
   1391			sysfs_attr_i++;
   1392		}
   1393	}
   1394	/* Fail safe check, this should never happen! */
   1395	if (sysfs_names_free < 0) {
   1396		pr_err("Fatal error ran out of space for sysfs attr names. %s %s",
   1397		       never_happen, report_this);
   1398		res = -ENAMETOOLONG;
   1399		goto abituguru_probe_error;
   1400	}
   1401	pr_info("found Abit uGuru\n");
   1402
   1403	/* Register sysfs hooks */
   1404	for (i = 0; i < sysfs_attr_i; i++) {
   1405		res = device_create_file(&pdev->dev,
   1406					 &data->sysfs_attr[i].dev_attr);
   1407		if (res)
   1408			goto abituguru_probe_error;
   1409	}
   1410	for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++) {
   1411		res = device_create_file(&pdev->dev,
   1412					 &abituguru_sysfs_attr[i].dev_attr);
   1413		if (res)
   1414			goto abituguru_probe_error;
   1415	}
   1416
   1417	data->hwmon_dev = hwmon_device_register(&pdev->dev);
   1418	if (!IS_ERR(data->hwmon_dev))
   1419		return 0; /* success */
   1420
   1421	res = PTR_ERR(data->hwmon_dev);
   1422abituguru_probe_error:
   1423	for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++)
   1424		device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
   1425	for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
   1426		device_remove_file(&pdev->dev,
   1427			&abituguru_sysfs_attr[i].dev_attr);
   1428	return res;
   1429}
   1430
   1431static int abituguru_remove(struct platform_device *pdev)
   1432{
   1433	int i;
   1434	struct abituguru_data *data = platform_get_drvdata(pdev);
   1435
   1436	hwmon_device_unregister(data->hwmon_dev);
   1437	for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++)
   1438		device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
   1439	for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
   1440		device_remove_file(&pdev->dev,
   1441			&abituguru_sysfs_attr[i].dev_attr);
   1442
   1443	return 0;
   1444}
   1445
   1446static struct abituguru_data *abituguru_update_device(struct device *dev)
   1447{
   1448	int i, err;
   1449	struct abituguru_data *data = dev_get_drvdata(dev);
   1450	/* fake a complete successful read if no update necessary. */
   1451	char success = 1;
   1452
   1453	mutex_lock(&data->update_lock);
   1454	if (time_after(jiffies, data->last_updated + HZ)) {
   1455		success = 0;
   1456		err = abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
   1457				     data->alarms, 3, 0);
   1458		if (err != 3)
   1459			goto LEAVE_UPDATE;
   1460		for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
   1461			err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1,
   1462					     i, &data->bank1_value[i], 1, 0);
   1463			if (err != 1)
   1464				goto LEAVE_UPDATE;
   1465			err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
   1466					     i, data->bank1_settings[i], 3, 0);
   1467			if (err != 3)
   1468				goto LEAVE_UPDATE;
   1469		}
   1470		for (i = 0; i < data->bank2_sensors; i++) {
   1471			err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
   1472					     &data->bank2_value[i], 1, 0);
   1473			if (err != 1)
   1474				goto LEAVE_UPDATE;
   1475		}
   1476		/* success! */
   1477		success = 1;
   1478		data->update_timeouts = 0;
   1479LEAVE_UPDATE:
   1480		/* handle timeout condition */
   1481		if (!success && (err == -EBUSY || err >= 0)) {
   1482			/* No overflow please */
   1483			if (data->update_timeouts < 255u)
   1484				data->update_timeouts++;
   1485			if (data->update_timeouts <= ABIT_UGURU_MAX_TIMEOUTS) {
   1486				ABIT_UGURU_DEBUG(3, "timeout exceeded, will "
   1487					"try again next update\n");
   1488				/* Just a timeout, fake a successful read */
   1489				success = 1;
   1490			} else
   1491				ABIT_UGURU_DEBUG(1, "timeout exceeded %d "
   1492					"times waiting for more input state\n",
   1493					(int)data->update_timeouts);
   1494		}
   1495		/* On success set last_updated */
   1496		if (success)
   1497			data->last_updated = jiffies;
   1498	}
   1499	mutex_unlock(&data->update_lock);
   1500
   1501	if (success)
   1502		return data;
   1503	else
   1504		return NULL;
   1505}
   1506
   1507#ifdef CONFIG_PM_SLEEP
   1508static int abituguru_suspend(struct device *dev)
   1509{
   1510	struct abituguru_data *data = dev_get_drvdata(dev);
   1511	/*
   1512	 * make sure all communications with the uguru are done and no new
   1513	 * ones are started
   1514	 */
   1515	mutex_lock(&data->update_lock);
   1516	return 0;
   1517}
   1518
   1519static int abituguru_resume(struct device *dev)
   1520{
   1521	struct abituguru_data *data = dev_get_drvdata(dev);
   1522	/* See if the uGuru is still ready */
   1523	if (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT)
   1524		data->uguru_ready = 0;
   1525	mutex_unlock(&data->update_lock);
   1526	return 0;
   1527}
   1528
   1529static SIMPLE_DEV_PM_OPS(abituguru_pm, abituguru_suspend, abituguru_resume);
   1530#define ABIT_UGURU_PM	(&abituguru_pm)
   1531#else
   1532#define ABIT_UGURU_PM	NULL
   1533#endif /* CONFIG_PM */
   1534
   1535static struct platform_driver abituguru_driver = {
   1536	.driver = {
   1537		.name	= ABIT_UGURU_NAME,
   1538		.pm	= ABIT_UGURU_PM,
   1539	},
   1540	.probe		= abituguru_probe,
   1541	.remove		= abituguru_remove,
   1542};
   1543
   1544static int __init abituguru_detect(void)
   1545{
   1546	/*
   1547	 * See if there is an uguru there. After a reboot uGuru will hold 0x00
   1548	 * at DATA and 0xAC, when this driver has already been loaded once
   1549	 * DATA will hold 0x08. For most uGuru's CMD will hold 0xAC in either
   1550	 * scenario but some will hold 0x00.
   1551	 * Some uGuru's initially hold 0x09 at DATA and will only hold 0x08
   1552	 * after reading CMD first, so CMD must be read first!
   1553	 */
   1554	u8 cmd_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_CMD);
   1555	u8 data_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_DATA);
   1556	if (((data_val == 0x00) || (data_val == 0x08)) &&
   1557	    ((cmd_val == 0x00) || (cmd_val == 0xAC)))
   1558		return ABIT_UGURU_BASE;
   1559
   1560	ABIT_UGURU_DEBUG(2, "no Abit uGuru found, data = 0x%02X, cmd = "
   1561		"0x%02X\n", (unsigned int)data_val, (unsigned int)cmd_val);
   1562
   1563	if (force) {
   1564		pr_info("Assuming Abit uGuru is present because of \"force\" parameter\n");
   1565		return ABIT_UGURU_BASE;
   1566	}
   1567
   1568	/* No uGuru found */
   1569	return -ENODEV;
   1570}
   1571
   1572static struct platform_device *abituguru_pdev;
   1573
   1574static int __init abituguru_init(void)
   1575{
   1576	int address, err;
   1577	struct resource res = { .flags = IORESOURCE_IO };
   1578	const char *board_vendor = dmi_get_system_info(DMI_BOARD_VENDOR);
   1579
   1580	/* safety check, refuse to load on non Abit motherboards */
   1581	if (!force && (!board_vendor ||
   1582			strcmp(board_vendor, "http://www.abit.com.tw/")))
   1583		return -ENODEV;
   1584
   1585	address = abituguru_detect();
   1586	if (address < 0)
   1587		return address;
   1588
   1589	err = platform_driver_register(&abituguru_driver);
   1590	if (err)
   1591		goto exit;
   1592
   1593	abituguru_pdev = platform_device_alloc(ABIT_UGURU_NAME, address);
   1594	if (!abituguru_pdev) {
   1595		pr_err("Device allocation failed\n");
   1596		err = -ENOMEM;
   1597		goto exit_driver_unregister;
   1598	}
   1599
   1600	res.start = address;
   1601	res.end = address + ABIT_UGURU_REGION_LENGTH - 1;
   1602	res.name = ABIT_UGURU_NAME;
   1603
   1604	err = platform_device_add_resources(abituguru_pdev, &res, 1);
   1605	if (err) {
   1606		pr_err("Device resource addition failed (%d)\n", err);
   1607		goto exit_device_put;
   1608	}
   1609
   1610	err = platform_device_add(abituguru_pdev);
   1611	if (err) {
   1612		pr_err("Device addition failed (%d)\n", err);
   1613		goto exit_device_put;
   1614	}
   1615
   1616	return 0;
   1617
   1618exit_device_put:
   1619	platform_device_put(abituguru_pdev);
   1620exit_driver_unregister:
   1621	platform_driver_unregister(&abituguru_driver);
   1622exit:
   1623	return err;
   1624}
   1625
   1626static void __exit abituguru_exit(void)
   1627{
   1628	platform_device_unregister(abituguru_pdev);
   1629	platform_driver_unregister(&abituguru_driver);
   1630}
   1631
   1632MODULE_AUTHOR("Hans de Goede <hdegoede@redhat.com>");
   1633MODULE_DESCRIPTION("Abit uGuru Sensor device");
   1634MODULE_LICENSE("GPL");
   1635
   1636module_init(abituguru_init);
   1637module_exit(abituguru_exit);