abituguru.c (53139B)
1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 * abituguru.c Copyright (c) 2005-2006 Hans de Goede <hdegoede@redhat.com> 4 */ 5/* 6 * This driver supports the sensor part of the first and second revision of 7 * the custom Abit uGuru chip found on Abit uGuru motherboards. Note: because 8 * of lack of specs the CPU/RAM voltage & frequency control is not supported! 9 */ 10 11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13#include <linux/module.h> 14#include <linux/sched.h> 15#include <linux/init.h> 16#include <linux/slab.h> 17#include <linux/jiffies.h> 18#include <linux/mutex.h> 19#include <linux/err.h> 20#include <linux/delay.h> 21#include <linux/platform_device.h> 22#include <linux/hwmon.h> 23#include <linux/hwmon-sysfs.h> 24#include <linux/dmi.h> 25#include <linux/io.h> 26 27/* Banks */ 28#define ABIT_UGURU_ALARM_BANK 0x20 /* 1x 3 bytes */ 29#define ABIT_UGURU_SENSOR_BANK1 0x21 /* 16x volt and temp */ 30#define ABIT_UGURU_FAN_PWM 0x24 /* 3x 5 bytes */ 31#define ABIT_UGURU_SENSOR_BANK2 0x26 /* fans */ 32/* max nr of sensors in bank1, a bank1 sensor can be in, temp or nc */ 33#define ABIT_UGURU_MAX_BANK1_SENSORS 16 34/* 35 * Warning if you increase one of the 2 MAX defines below to 10 or higher you 36 * should adjust the belonging _NAMES_LENGTH macro for the 2 digit number! 37 */ 38/* max nr of sensors in bank2, currently mb's with max 6 fans are known */ 39#define ABIT_UGURU_MAX_BANK2_SENSORS 6 40/* max nr of pwm outputs, currently mb's with max 5 pwm outputs are known */ 41#define ABIT_UGURU_MAX_PWMS 5 42/* uGuru sensor bank 1 flags */ /* Alarm if: */ 43#define ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE 0x01 /* temp over warn */ 44#define ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE 0x02 /* volt over max */ 45#define ABIT_UGURU_VOLT_LOW_ALARM_ENABLE 0x04 /* volt under min */ 46#define ABIT_UGURU_TEMP_HIGH_ALARM_FLAG 0x10 /* temp is over warn */ 47#define ABIT_UGURU_VOLT_HIGH_ALARM_FLAG 0x20 /* volt is over max */ 48#define ABIT_UGURU_VOLT_LOW_ALARM_FLAG 0x40 /* volt is under min */ 49/* uGuru sensor bank 2 flags */ /* Alarm if: */ 50#define ABIT_UGURU_FAN_LOW_ALARM_ENABLE 0x01 /* fan under min */ 51/* uGuru sensor bank common flags */ 52#define ABIT_UGURU_BEEP_ENABLE 0x08 /* beep if alarm */ 53#define ABIT_UGURU_SHUTDOWN_ENABLE 0x80 /* shutdown if alarm */ 54/* uGuru fan PWM (speed control) flags */ 55#define ABIT_UGURU_FAN_PWM_ENABLE 0x80 /* enable speed control */ 56/* Values used for conversion */ 57#define ABIT_UGURU_FAN_MAX 15300 /* RPM */ 58/* Bank1 sensor types */ 59#define ABIT_UGURU_IN_SENSOR 0 60#define ABIT_UGURU_TEMP_SENSOR 1 61#define ABIT_UGURU_NC 2 62/* 63 * In many cases we need to wait for the uGuru to reach a certain status, most 64 * of the time it will reach this status within 30 - 90 ISA reads, and thus we 65 * can best busy wait. This define gives the total amount of reads to try. 66 */ 67#define ABIT_UGURU_WAIT_TIMEOUT 125 68/* 69 * However sometimes older versions of the uGuru seem to be distracted and they 70 * do not respond for a long time. To handle this we sleep before each of the 71 * last ABIT_UGURU_WAIT_TIMEOUT_SLEEP tries. 72 */ 73#define ABIT_UGURU_WAIT_TIMEOUT_SLEEP 5 74/* 75 * Normally all expected status in abituguru_ready, are reported after the 76 * first read, but sometimes not and we need to poll. 77 */ 78#define ABIT_UGURU_READY_TIMEOUT 5 79/* Maximum 3 retries on timedout reads/writes, delay 200 ms before retrying */ 80#define ABIT_UGURU_MAX_RETRIES 3 81#define ABIT_UGURU_RETRY_DELAY (HZ/5) 82/* Maximum 2 timeouts in abituguru_update_device, iow 3 in a row is an error */ 83#define ABIT_UGURU_MAX_TIMEOUTS 2 84/* utility macros */ 85#define ABIT_UGURU_NAME "abituguru" 86#define ABIT_UGURU_DEBUG(level, format, arg...) \ 87 do { \ 88 if (level <= verbose) \ 89 pr_debug(format , ## arg); \ 90 } while (0) 91 92/* Macros to help calculate the sysfs_names array length */ 93/* 94 * sum of strlen of: in??_input\0, in??_{min,max}\0, in??_{min,max}_alarm\0, 95 * in??_{min,max}_alarm_enable\0, in??_beep\0, in??_shutdown\0 96 */ 97#define ABITUGURU_IN_NAMES_LENGTH (11 + 2 * 9 + 2 * 15 + 2 * 22 + 10 + 14) 98/* 99 * sum of strlen of: temp??_input\0, temp??_max\0, temp??_crit\0, 100 * temp??_alarm\0, temp??_alarm_enable\0, temp??_beep\0, temp??_shutdown\0 101 */ 102#define ABITUGURU_TEMP_NAMES_LENGTH (13 + 11 + 12 + 13 + 20 + 12 + 16) 103/* 104 * sum of strlen of: fan?_input\0, fan?_min\0, fan?_alarm\0, 105 * fan?_alarm_enable\0, fan?_beep\0, fan?_shutdown\0 106 */ 107#define ABITUGURU_FAN_NAMES_LENGTH (11 + 9 + 11 + 18 + 10 + 14) 108/* 109 * sum of strlen of: pwm?_enable\0, pwm?_auto_channels_temp\0, 110 * pwm?_auto_point{1,2}_pwm\0, pwm?_auto_point{1,2}_temp\0 111 */ 112#define ABITUGURU_PWM_NAMES_LENGTH (12 + 24 + 2 * 21 + 2 * 22) 113/* IN_NAMES_LENGTH > TEMP_NAMES_LENGTH so assume all bank1 sensors are in */ 114#define ABITUGURU_SYSFS_NAMES_LENGTH ( \ 115 ABIT_UGURU_MAX_BANK1_SENSORS * ABITUGURU_IN_NAMES_LENGTH + \ 116 ABIT_UGURU_MAX_BANK2_SENSORS * ABITUGURU_FAN_NAMES_LENGTH + \ 117 ABIT_UGURU_MAX_PWMS * ABITUGURU_PWM_NAMES_LENGTH) 118 119/* 120 * All the macros below are named identical to the oguru and oguru2 programs 121 * reverse engineered by Olle Sandberg, hence the names might not be 100% 122 * logical. I could come up with better names, but I prefer keeping the names 123 * identical so that this driver can be compared with his work more easily. 124 */ 125/* Two i/o-ports are used by uGuru */ 126#define ABIT_UGURU_BASE 0x00E0 127/* Used to tell uGuru what to read and to read the actual data */ 128#define ABIT_UGURU_CMD 0x00 129/* Mostly used to check if uGuru is busy */ 130#define ABIT_UGURU_DATA 0x04 131#define ABIT_UGURU_REGION_LENGTH 5 132/* uGuru status' */ 133#define ABIT_UGURU_STATUS_WRITE 0x00 /* Ready to be written */ 134#define ABIT_UGURU_STATUS_READ 0x01 /* Ready to be read */ 135#define ABIT_UGURU_STATUS_INPUT 0x08 /* More input */ 136#define ABIT_UGURU_STATUS_READY 0x09 /* Ready to be written */ 137 138/* Constants */ 139/* in (Volt) sensors go up to 3494 mV, temp to 255000 millidegrees Celsius */ 140static const int abituguru_bank1_max_value[2] = { 3494, 255000 }; 141/* 142 * Min / Max allowed values for sensor2 (fan) alarm threshold, these values 143 * correspond to 300-3000 RPM 144 */ 145static const u8 abituguru_bank2_min_threshold = 5; 146static const u8 abituguru_bank2_max_threshold = 50; 147/* 148 * Register 0 is a bitfield, 1 and 2 are pwm settings (255 = 100%), 3 and 4 149 * are temperature trip points. 150 */ 151static const int abituguru_pwm_settings_multiplier[5] = { 0, 1, 1, 1000, 1000 }; 152/* 153 * Min / Max allowed values for pwm_settings. Note: pwm1 (CPU fan) is a 154 * special case the minimum allowed pwm% setting for this is 30% (77) on 155 * some MB's this special case is handled in the code! 156 */ 157static const u8 abituguru_pwm_min[5] = { 0, 170, 170, 25, 25 }; 158static const u8 abituguru_pwm_max[5] = { 0, 255, 255, 75, 75 }; 159 160 161/* Insmod parameters */ 162static bool force; 163module_param(force, bool, 0); 164MODULE_PARM_DESC(force, "Set to one to force detection."); 165static int bank1_types[ABIT_UGURU_MAX_BANK1_SENSORS] = { -1, -1, -1, -1, -1, 166 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }; 167module_param_array(bank1_types, int, NULL, 0); 168MODULE_PARM_DESC(bank1_types, "Bank1 sensortype autodetection override:\n" 169 " -1 autodetect\n" 170 " 0 volt sensor\n" 171 " 1 temp sensor\n" 172 " 2 not connected"); 173static int fan_sensors; 174module_param(fan_sensors, int, 0); 175MODULE_PARM_DESC(fan_sensors, "Number of fan sensors on the uGuru " 176 "(0 = autodetect)"); 177static int pwms; 178module_param(pwms, int, 0); 179MODULE_PARM_DESC(pwms, "Number of PWMs on the uGuru " 180 "(0 = autodetect)"); 181 182/* Default verbose is 2, since this driver is still in the testing phase */ 183static int verbose = 2; 184module_param(verbose, int, 0644); 185MODULE_PARM_DESC(verbose, "How verbose should the driver be? (0-3):\n" 186 " 0 normal output\n" 187 " 1 + verbose error reporting\n" 188 " 2 + sensors type probing info\n" 189 " 3 + retryable error reporting"); 190 191 192/* 193 * For the Abit uGuru, we need to keep some data in memory. 194 * The structure is dynamically allocated, at the same time when a new 195 * abituguru device is allocated. 196 */ 197struct abituguru_data { 198 struct device *hwmon_dev; /* hwmon registered device */ 199 struct mutex update_lock; /* protect access to data and uGuru */ 200 unsigned long last_updated; /* In jiffies */ 201 unsigned short addr; /* uguru base address */ 202 char uguru_ready; /* is the uguru in ready state? */ 203 unsigned char update_timeouts; /* 204 * number of update timeouts since last 205 * successful update 206 */ 207 208 /* 209 * The sysfs attr and their names are generated automatically, for bank1 210 * we cannot use a predefined array because we don't know beforehand 211 * of a sensor is a volt or a temp sensor, for bank2 and the pwms its 212 * easier todo things the same way. For in sensors we have 9 (temp 7) 213 * sysfs entries per sensor, for bank2 and pwms 6. 214 */ 215 struct sensor_device_attribute_2 sysfs_attr[ 216 ABIT_UGURU_MAX_BANK1_SENSORS * 9 + 217 ABIT_UGURU_MAX_BANK2_SENSORS * 6 + ABIT_UGURU_MAX_PWMS * 6]; 218 /* Buffer to store the dynamically generated sysfs names */ 219 char sysfs_names[ABITUGURU_SYSFS_NAMES_LENGTH]; 220 221 /* Bank 1 data */ 222 /* number of and addresses of [0] in, [1] temp sensors */ 223 u8 bank1_sensors[2]; 224 u8 bank1_address[2][ABIT_UGURU_MAX_BANK1_SENSORS]; 225 u8 bank1_value[ABIT_UGURU_MAX_BANK1_SENSORS]; 226 /* 227 * This array holds 3 entries per sensor for the bank 1 sensor settings 228 * (flags, min, max for voltage / flags, warn, shutdown for temp). 229 */ 230 u8 bank1_settings[ABIT_UGURU_MAX_BANK1_SENSORS][3]; 231 /* 232 * Maximum value for each sensor used for scaling in mV/millidegrees 233 * Celsius. 234 */ 235 int bank1_max_value[ABIT_UGURU_MAX_BANK1_SENSORS]; 236 237 /* Bank 2 data, ABIT_UGURU_MAX_BANK2_SENSORS entries for bank2 */ 238 u8 bank2_sensors; /* actual number of bank2 sensors found */ 239 u8 bank2_value[ABIT_UGURU_MAX_BANK2_SENSORS]; 240 u8 bank2_settings[ABIT_UGURU_MAX_BANK2_SENSORS][2]; /* flags, min */ 241 242 /* Alarms 2 bytes for bank1, 1 byte for bank2 */ 243 u8 alarms[3]; 244 245 /* Fan PWM (speed control) 5 bytes per PWM */ 246 u8 pwms; /* actual number of pwms found */ 247 u8 pwm_settings[ABIT_UGURU_MAX_PWMS][5]; 248}; 249 250static const char *never_happen = "This should never happen."; 251static const char *report_this = 252 "Please report this to the abituguru maintainer (see MAINTAINERS)"; 253 254/* wait till the uguru is in the specified state */ 255static int abituguru_wait(struct abituguru_data *data, u8 state) 256{ 257 int timeout = ABIT_UGURU_WAIT_TIMEOUT; 258 259 while (inb_p(data->addr + ABIT_UGURU_DATA) != state) { 260 timeout--; 261 if (timeout == 0) 262 return -EBUSY; 263 /* 264 * sleep a bit before our last few tries, see the comment on 265 * this where ABIT_UGURU_WAIT_TIMEOUT_SLEEP is defined. 266 */ 267 if (timeout <= ABIT_UGURU_WAIT_TIMEOUT_SLEEP) 268 msleep(0); 269 } 270 return 0; 271} 272 273/* Put the uguru in ready for input state */ 274static int abituguru_ready(struct abituguru_data *data) 275{ 276 int timeout = ABIT_UGURU_READY_TIMEOUT; 277 278 if (data->uguru_ready) 279 return 0; 280 281 /* Reset? / Prepare for next read/write cycle */ 282 outb(0x00, data->addr + ABIT_UGURU_DATA); 283 284 /* Wait till the uguru is ready */ 285 if (abituguru_wait(data, ABIT_UGURU_STATUS_READY)) { 286 ABIT_UGURU_DEBUG(1, 287 "timeout exceeded waiting for ready state\n"); 288 return -EIO; 289 } 290 291 /* Cmd port MUST be read now and should contain 0xAC */ 292 while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) { 293 timeout--; 294 if (timeout == 0) { 295 ABIT_UGURU_DEBUG(1, 296 "CMD reg does not hold 0xAC after ready command\n"); 297 return -EIO; 298 } 299 msleep(0); 300 } 301 302 /* 303 * After this the ABIT_UGURU_DATA port should contain 304 * ABIT_UGURU_STATUS_INPUT 305 */ 306 timeout = ABIT_UGURU_READY_TIMEOUT; 307 while (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT) { 308 timeout--; 309 if (timeout == 0) { 310 ABIT_UGURU_DEBUG(1, 311 "state != more input after ready command\n"); 312 return -EIO; 313 } 314 msleep(0); 315 } 316 317 data->uguru_ready = 1; 318 return 0; 319} 320 321/* 322 * Send the bank and then sensor address to the uGuru for the next read/write 323 * cycle. This function gets called as the first part of a read/write by 324 * abituguru_read and abituguru_write. This function should never be 325 * called by any other function. 326 */ 327static int abituguru_send_address(struct abituguru_data *data, 328 u8 bank_addr, u8 sensor_addr, int retries) 329{ 330 /* 331 * assume the caller does error handling itself if it has not requested 332 * any retries, and thus be quiet. 333 */ 334 int report_errors = retries; 335 336 for (;;) { 337 /* 338 * Make sure the uguru is ready and then send the bank address, 339 * after this the uguru is no longer "ready". 340 */ 341 if (abituguru_ready(data) != 0) 342 return -EIO; 343 outb(bank_addr, data->addr + ABIT_UGURU_DATA); 344 data->uguru_ready = 0; 345 346 /* 347 * Wait till the uguru is ABIT_UGURU_STATUS_INPUT state again 348 * and send the sensor addr 349 */ 350 if (abituguru_wait(data, ABIT_UGURU_STATUS_INPUT)) { 351 if (retries) { 352 ABIT_UGURU_DEBUG(3, "timeout exceeded " 353 "waiting for more input state, %d " 354 "tries remaining\n", retries); 355 set_current_state(TASK_UNINTERRUPTIBLE); 356 schedule_timeout(ABIT_UGURU_RETRY_DELAY); 357 retries--; 358 continue; 359 } 360 if (report_errors) 361 ABIT_UGURU_DEBUG(1, "timeout exceeded " 362 "waiting for more input state " 363 "(bank: %d)\n", (int)bank_addr); 364 return -EBUSY; 365 } 366 outb(sensor_addr, data->addr + ABIT_UGURU_CMD); 367 return 0; 368 } 369} 370 371/* 372 * Read count bytes from sensor sensor_addr in bank bank_addr and store the 373 * result in buf, retry the send address part of the read retries times. 374 */ 375static int abituguru_read(struct abituguru_data *data, 376 u8 bank_addr, u8 sensor_addr, u8 *buf, int count, int retries) 377{ 378 int i; 379 380 /* Send the address */ 381 i = abituguru_send_address(data, bank_addr, sensor_addr, retries); 382 if (i) 383 return i; 384 385 /* And read the data */ 386 for (i = 0; i < count; i++) { 387 if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) { 388 ABIT_UGURU_DEBUG(retries ? 1 : 3, 389 "timeout exceeded waiting for " 390 "read state (bank: %d, sensor: %d)\n", 391 (int)bank_addr, (int)sensor_addr); 392 break; 393 } 394 buf[i] = inb(data->addr + ABIT_UGURU_CMD); 395 } 396 397 /* Last put the chip back in ready state */ 398 abituguru_ready(data); 399 400 return i; 401} 402 403/* 404 * Write count bytes from buf to sensor sensor_addr in bank bank_addr, the send 405 * address part of the write is always retried ABIT_UGURU_MAX_RETRIES times. 406 */ 407static int abituguru_write(struct abituguru_data *data, 408 u8 bank_addr, u8 sensor_addr, u8 *buf, int count) 409{ 410 /* 411 * We use the ready timeout as we have to wait for 0xAC just like the 412 * ready function 413 */ 414 int i, timeout = ABIT_UGURU_READY_TIMEOUT; 415 416 /* Send the address */ 417 i = abituguru_send_address(data, bank_addr, sensor_addr, 418 ABIT_UGURU_MAX_RETRIES); 419 if (i) 420 return i; 421 422 /* And write the data */ 423 for (i = 0; i < count; i++) { 424 if (abituguru_wait(data, ABIT_UGURU_STATUS_WRITE)) { 425 ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for " 426 "write state (bank: %d, sensor: %d)\n", 427 (int)bank_addr, (int)sensor_addr); 428 break; 429 } 430 outb(buf[i], data->addr + ABIT_UGURU_CMD); 431 } 432 433 /* 434 * Now we need to wait till the chip is ready to be read again, 435 * so that we can read 0xAC as confirmation that our write has 436 * succeeded. 437 */ 438 if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) { 439 ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for read state " 440 "after write (bank: %d, sensor: %d)\n", (int)bank_addr, 441 (int)sensor_addr); 442 return -EIO; 443 } 444 445 /* Cmd port MUST be read now and should contain 0xAC */ 446 while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) { 447 timeout--; 448 if (timeout == 0) { 449 ABIT_UGURU_DEBUG(1, "CMD reg does not hold 0xAC after " 450 "write (bank: %d, sensor: %d)\n", 451 (int)bank_addr, (int)sensor_addr); 452 return -EIO; 453 } 454 msleep(0); 455 } 456 457 /* Last put the chip back in ready state */ 458 abituguru_ready(data); 459 460 return i; 461} 462 463/* 464 * Detect sensor type. Temp and Volt sensors are enabled with 465 * different masks and will ignore enable masks not meant for them. 466 * This enables us to test what kind of sensor we're dealing with. 467 * By setting the alarm thresholds so that we will always get an 468 * alarm for sensor type X and then enabling the sensor as sensor type 469 * X, if we then get an alarm it is a sensor of type X. 470 */ 471static int 472abituguru_detect_bank1_sensor_type(struct abituguru_data *data, 473 u8 sensor_addr) 474{ 475 u8 val, test_flag, buf[3]; 476 int i, ret = -ENODEV; /* error is the most common used retval :| */ 477 478 /* If overriden by the user return the user selected type */ 479 if (bank1_types[sensor_addr] >= ABIT_UGURU_IN_SENSOR && 480 bank1_types[sensor_addr] <= ABIT_UGURU_NC) { 481 ABIT_UGURU_DEBUG(2, "assuming sensor type %d for bank1 sensor " 482 "%d because of \"bank1_types\" module param\n", 483 bank1_types[sensor_addr], (int)sensor_addr); 484 return bank1_types[sensor_addr]; 485 } 486 487 /* First read the sensor and the current settings */ 488 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, sensor_addr, &val, 489 1, ABIT_UGURU_MAX_RETRIES) != 1) 490 return -ENODEV; 491 492 /* Test val is sane / usable for sensor type detection. */ 493 if ((val < 10u) || (val > 250u)) { 494 pr_warn("bank1-sensor: %d reading (%d) too close to limits, " 495 "unable to determine sensor type, skipping sensor\n", 496 (int)sensor_addr, (int)val); 497 /* 498 * assume no sensor is there for sensors for which we can't 499 * determine the sensor type because their reading is too close 500 * to their limits, this usually means no sensor is there. 501 */ 502 return ABIT_UGURU_NC; 503 } 504 505 ABIT_UGURU_DEBUG(2, "testing bank1 sensor %d\n", (int)sensor_addr); 506 /* 507 * Volt sensor test, enable volt low alarm, set min value ridiculously 508 * high, or vica versa if the reading is very high. If its a volt 509 * sensor this should always give us an alarm. 510 */ 511 if (val <= 240u) { 512 buf[0] = ABIT_UGURU_VOLT_LOW_ALARM_ENABLE; 513 buf[1] = 245; 514 buf[2] = 250; 515 test_flag = ABIT_UGURU_VOLT_LOW_ALARM_FLAG; 516 } else { 517 buf[0] = ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE; 518 buf[1] = 5; 519 buf[2] = 10; 520 test_flag = ABIT_UGURU_VOLT_HIGH_ALARM_FLAG; 521 } 522 523 if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr, 524 buf, 3) != 3) 525 goto abituguru_detect_bank1_sensor_type_exit; 526 /* 527 * Now we need 20 ms to give the uguru time to read the sensors 528 * and raise a voltage alarm 529 */ 530 set_current_state(TASK_UNINTERRUPTIBLE); 531 schedule_timeout(HZ/50); 532 /* Check for alarm and check the alarm is a volt low alarm. */ 533 if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3, 534 ABIT_UGURU_MAX_RETRIES) != 3) 535 goto abituguru_detect_bank1_sensor_type_exit; 536 if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) { 537 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1, 538 sensor_addr, buf, 3, 539 ABIT_UGURU_MAX_RETRIES) != 3) 540 goto abituguru_detect_bank1_sensor_type_exit; 541 if (buf[0] & test_flag) { 542 ABIT_UGURU_DEBUG(2, " found volt sensor\n"); 543 ret = ABIT_UGURU_IN_SENSOR; 544 goto abituguru_detect_bank1_sensor_type_exit; 545 } else 546 ABIT_UGURU_DEBUG(2, " alarm raised during volt " 547 "sensor test, but volt range flag not set\n"); 548 } else 549 ABIT_UGURU_DEBUG(2, " alarm not raised during volt sensor " 550 "test\n"); 551 552 /* 553 * Temp sensor test, enable sensor as a temp sensor, set beep value 554 * ridiculously low (but not too low, otherwise uguru ignores it). 555 * If its a temp sensor this should always give us an alarm. 556 */ 557 buf[0] = ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE; 558 buf[1] = 5; 559 buf[2] = 10; 560 if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr, 561 buf, 3) != 3) 562 goto abituguru_detect_bank1_sensor_type_exit; 563 /* 564 * Now we need 50 ms to give the uguru time to read the sensors 565 * and raise a temp alarm 566 */ 567 set_current_state(TASK_UNINTERRUPTIBLE); 568 schedule_timeout(HZ/20); 569 /* Check for alarm and check the alarm is a temp high alarm. */ 570 if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3, 571 ABIT_UGURU_MAX_RETRIES) != 3) 572 goto abituguru_detect_bank1_sensor_type_exit; 573 if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) { 574 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1, 575 sensor_addr, buf, 3, 576 ABIT_UGURU_MAX_RETRIES) != 3) 577 goto abituguru_detect_bank1_sensor_type_exit; 578 if (buf[0] & ABIT_UGURU_TEMP_HIGH_ALARM_FLAG) { 579 ABIT_UGURU_DEBUG(2, " found temp sensor\n"); 580 ret = ABIT_UGURU_TEMP_SENSOR; 581 goto abituguru_detect_bank1_sensor_type_exit; 582 } else 583 ABIT_UGURU_DEBUG(2, " alarm raised during temp " 584 "sensor test, but temp high flag not set\n"); 585 } else 586 ABIT_UGURU_DEBUG(2, " alarm not raised during temp sensor " 587 "test\n"); 588 589 ret = ABIT_UGURU_NC; 590abituguru_detect_bank1_sensor_type_exit: 591 /* 592 * Restore original settings, failing here is really BAD, it has been 593 * reported that some BIOS-es hang when entering the uGuru menu with 594 * invalid settings present in the uGuru, so we try this 3 times. 595 */ 596 for (i = 0; i < 3; i++) 597 if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, 598 sensor_addr, data->bank1_settings[sensor_addr], 599 3) == 3) 600 break; 601 if (i == 3) { 602 pr_err("Fatal error could not restore original settings. %s %s\n", 603 never_happen, report_this); 604 return -ENODEV; 605 } 606 return ret; 607} 608 609/* 610 * These functions try to find out how many sensors there are in bank2 and how 611 * many pwms there are. The purpose of this is to make sure that we don't give 612 * the user the possibility to change settings for non-existent sensors / pwm. 613 * The uGuru will happily read / write whatever memory happens to be after the 614 * memory storing the PWM settings when reading/writing to a PWM which is not 615 * there. Notice even if we detect a PWM which doesn't exist we normally won't 616 * write to it, unless the user tries to change the settings. 617 * 618 * Although the uGuru allows reading (settings) from non existing bank2 619 * sensors, my version of the uGuru does seem to stop writing to them, the 620 * write function above aborts in this case with: 621 * "CMD reg does not hold 0xAC after write" 622 * 623 * Notice these 2 tests are non destructive iow read-only tests, otherwise 624 * they would defeat their purpose. Although for the bank2_sensors detection a 625 * read/write test would be feasible because of the reaction above, I've 626 * however opted to stay on the safe side. 627 */ 628static void 629abituguru_detect_no_bank2_sensors(struct abituguru_data *data) 630{ 631 int i; 632 633 if (fan_sensors > 0 && fan_sensors <= ABIT_UGURU_MAX_BANK2_SENSORS) { 634 data->bank2_sensors = fan_sensors; 635 ABIT_UGURU_DEBUG(2, "assuming %d fan sensors because of " 636 "\"fan_sensors\" module param\n", 637 (int)data->bank2_sensors); 638 return; 639 } 640 641 ABIT_UGURU_DEBUG(2, "detecting number of fan sensors\n"); 642 for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) { 643 /* 644 * 0x89 are the known used bits: 645 * -0x80 enable shutdown 646 * -0x08 enable beep 647 * -0x01 enable alarm 648 * All other bits should be 0, but on some motherboards 649 * 0x40 (bit 6) is also high for some of the fans?? 650 */ 651 if (data->bank2_settings[i][0] & ~0xC9) { 652 ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem " 653 "to be a fan sensor: settings[0] = %02X\n", 654 i, (unsigned int)data->bank2_settings[i][0]); 655 break; 656 } 657 658 /* check if the threshold is within the allowed range */ 659 if (data->bank2_settings[i][1] < 660 abituguru_bank2_min_threshold) { 661 ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem " 662 "to be a fan sensor: the threshold (%d) is " 663 "below the minimum (%d)\n", i, 664 (int)data->bank2_settings[i][1], 665 (int)abituguru_bank2_min_threshold); 666 break; 667 } 668 if (data->bank2_settings[i][1] > 669 abituguru_bank2_max_threshold) { 670 ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem " 671 "to be a fan sensor: the threshold (%d) is " 672 "above the maximum (%d)\n", i, 673 (int)data->bank2_settings[i][1], 674 (int)abituguru_bank2_max_threshold); 675 break; 676 } 677 } 678 679 data->bank2_sensors = i; 680 ABIT_UGURU_DEBUG(2, " found: %d fan sensors\n", 681 (int)data->bank2_sensors); 682} 683 684static void 685abituguru_detect_no_pwms(struct abituguru_data *data) 686{ 687 int i, j; 688 689 if (pwms > 0 && pwms <= ABIT_UGURU_MAX_PWMS) { 690 data->pwms = pwms; 691 ABIT_UGURU_DEBUG(2, "assuming %d PWM outputs because of " 692 "\"pwms\" module param\n", (int)data->pwms); 693 return; 694 } 695 696 ABIT_UGURU_DEBUG(2, "detecting number of PWM outputs\n"); 697 for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) { 698 /* 699 * 0x80 is the enable bit and the low 700 * nibble is which temp sensor to use, 701 * the other bits should be 0 702 */ 703 if (data->pwm_settings[i][0] & ~0x8F) { 704 ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem " 705 "to be a pwm channel: settings[0] = %02X\n", 706 i, (unsigned int)data->pwm_settings[i][0]); 707 break; 708 } 709 710 /* 711 * the low nibble must correspond to one of the temp sensors 712 * we've found 713 */ 714 for (j = 0; j < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; 715 j++) { 716 if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][j] == 717 (data->pwm_settings[i][0] & 0x0F)) 718 break; 719 } 720 if (j == data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) { 721 ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem " 722 "to be a pwm channel: %d is not a valid temp " 723 "sensor address\n", i, 724 data->pwm_settings[i][0] & 0x0F); 725 break; 726 } 727 728 /* check if all other settings are within the allowed range */ 729 for (j = 1; j < 5; j++) { 730 u8 min; 731 /* special case pwm1 min pwm% */ 732 if ((i == 0) && ((j == 1) || (j == 2))) 733 min = 77; 734 else 735 min = abituguru_pwm_min[j]; 736 if (data->pwm_settings[i][j] < min) { 737 ABIT_UGURU_DEBUG(2, " pwm channel %d does " 738 "not seem to be a pwm channel: " 739 "setting %d (%d) is below the minimum " 740 "value (%d)\n", i, j, 741 (int)data->pwm_settings[i][j], 742 (int)min); 743 goto abituguru_detect_no_pwms_exit; 744 } 745 if (data->pwm_settings[i][j] > abituguru_pwm_max[j]) { 746 ABIT_UGURU_DEBUG(2, " pwm channel %d does " 747 "not seem to be a pwm channel: " 748 "setting %d (%d) is above the maximum " 749 "value (%d)\n", i, j, 750 (int)data->pwm_settings[i][j], 751 (int)abituguru_pwm_max[j]); 752 goto abituguru_detect_no_pwms_exit; 753 } 754 } 755 756 /* check that min temp < max temp and min pwm < max pwm */ 757 if (data->pwm_settings[i][1] >= data->pwm_settings[i][2]) { 758 ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem " 759 "to be a pwm channel: min pwm (%d) >= " 760 "max pwm (%d)\n", i, 761 (int)data->pwm_settings[i][1], 762 (int)data->pwm_settings[i][2]); 763 break; 764 } 765 if (data->pwm_settings[i][3] >= data->pwm_settings[i][4]) { 766 ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem " 767 "to be a pwm channel: min temp (%d) >= " 768 "max temp (%d)\n", i, 769 (int)data->pwm_settings[i][3], 770 (int)data->pwm_settings[i][4]); 771 break; 772 } 773 } 774 775abituguru_detect_no_pwms_exit: 776 data->pwms = i; 777 ABIT_UGURU_DEBUG(2, " found: %d PWM outputs\n", (int)data->pwms); 778} 779 780/* 781 * Following are the sysfs callback functions. These functions expect: 782 * sensor_device_attribute_2->index: sensor address/offset in the bank 783 * sensor_device_attribute_2->nr: register offset, bitmask or NA. 784 */ 785static struct abituguru_data *abituguru_update_device(struct device *dev); 786 787static ssize_t show_bank1_value(struct device *dev, 788 struct device_attribute *devattr, char *buf) 789{ 790 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 791 struct abituguru_data *data = abituguru_update_device(dev); 792 if (!data) 793 return -EIO; 794 return sprintf(buf, "%d\n", (data->bank1_value[attr->index] * 795 data->bank1_max_value[attr->index] + 128) / 255); 796} 797 798static ssize_t show_bank1_setting(struct device *dev, 799 struct device_attribute *devattr, char *buf) 800{ 801 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 802 struct abituguru_data *data = dev_get_drvdata(dev); 803 return sprintf(buf, "%d\n", 804 (data->bank1_settings[attr->index][attr->nr] * 805 data->bank1_max_value[attr->index] + 128) / 255); 806} 807 808static ssize_t show_bank2_value(struct device *dev, 809 struct device_attribute *devattr, char *buf) 810{ 811 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 812 struct abituguru_data *data = abituguru_update_device(dev); 813 if (!data) 814 return -EIO; 815 return sprintf(buf, "%d\n", (data->bank2_value[attr->index] * 816 ABIT_UGURU_FAN_MAX + 128) / 255); 817} 818 819static ssize_t show_bank2_setting(struct device *dev, 820 struct device_attribute *devattr, char *buf) 821{ 822 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 823 struct abituguru_data *data = dev_get_drvdata(dev); 824 return sprintf(buf, "%d\n", 825 (data->bank2_settings[attr->index][attr->nr] * 826 ABIT_UGURU_FAN_MAX + 128) / 255); 827} 828 829static ssize_t store_bank1_setting(struct device *dev, struct device_attribute 830 *devattr, const char *buf, size_t count) 831{ 832 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 833 struct abituguru_data *data = dev_get_drvdata(dev); 834 unsigned long val; 835 ssize_t ret; 836 837 ret = kstrtoul(buf, 10, &val); 838 if (ret) 839 return ret; 840 841 ret = count; 842 val = (val * 255 + data->bank1_max_value[attr->index] / 2) / 843 data->bank1_max_value[attr->index]; 844 if (val > 255) 845 return -EINVAL; 846 847 mutex_lock(&data->update_lock); 848 if (data->bank1_settings[attr->index][attr->nr] != val) { 849 u8 orig_val = data->bank1_settings[attr->index][attr->nr]; 850 data->bank1_settings[attr->index][attr->nr] = val; 851 if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, 852 attr->index, data->bank1_settings[attr->index], 853 3) <= attr->nr) { 854 data->bank1_settings[attr->index][attr->nr] = orig_val; 855 ret = -EIO; 856 } 857 } 858 mutex_unlock(&data->update_lock); 859 return ret; 860} 861 862static ssize_t store_bank2_setting(struct device *dev, struct device_attribute 863 *devattr, const char *buf, size_t count) 864{ 865 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 866 struct abituguru_data *data = dev_get_drvdata(dev); 867 unsigned long val; 868 ssize_t ret; 869 870 ret = kstrtoul(buf, 10, &val); 871 if (ret) 872 return ret; 873 874 ret = count; 875 val = (val * 255 + ABIT_UGURU_FAN_MAX / 2) / ABIT_UGURU_FAN_MAX; 876 877 /* this check can be done before taking the lock */ 878 if (val < abituguru_bank2_min_threshold || 879 val > abituguru_bank2_max_threshold) 880 return -EINVAL; 881 882 mutex_lock(&data->update_lock); 883 if (data->bank2_settings[attr->index][attr->nr] != val) { 884 u8 orig_val = data->bank2_settings[attr->index][attr->nr]; 885 data->bank2_settings[attr->index][attr->nr] = val; 886 if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK2 + 2, 887 attr->index, data->bank2_settings[attr->index], 888 2) <= attr->nr) { 889 data->bank2_settings[attr->index][attr->nr] = orig_val; 890 ret = -EIO; 891 } 892 } 893 mutex_unlock(&data->update_lock); 894 return ret; 895} 896 897static ssize_t show_bank1_alarm(struct device *dev, 898 struct device_attribute *devattr, char *buf) 899{ 900 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 901 struct abituguru_data *data = abituguru_update_device(dev); 902 if (!data) 903 return -EIO; 904 /* 905 * See if the alarm bit for this sensor is set, and if the 906 * alarm matches the type of alarm we're looking for (for volt 907 * it can be either low or high). The type is stored in a few 908 * readonly bits in the settings part of the relevant sensor. 909 * The bitmask of the type is passed to us in attr->nr. 910 */ 911 if ((data->alarms[attr->index / 8] & (0x01 << (attr->index % 8))) && 912 (data->bank1_settings[attr->index][0] & attr->nr)) 913 return sprintf(buf, "1\n"); 914 else 915 return sprintf(buf, "0\n"); 916} 917 918static ssize_t show_bank2_alarm(struct device *dev, 919 struct device_attribute *devattr, char *buf) 920{ 921 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 922 struct abituguru_data *data = abituguru_update_device(dev); 923 if (!data) 924 return -EIO; 925 if (data->alarms[2] & (0x01 << attr->index)) 926 return sprintf(buf, "1\n"); 927 else 928 return sprintf(buf, "0\n"); 929} 930 931static ssize_t show_bank1_mask(struct device *dev, 932 struct device_attribute *devattr, char *buf) 933{ 934 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 935 struct abituguru_data *data = dev_get_drvdata(dev); 936 if (data->bank1_settings[attr->index][0] & attr->nr) 937 return sprintf(buf, "1\n"); 938 else 939 return sprintf(buf, "0\n"); 940} 941 942static ssize_t show_bank2_mask(struct device *dev, 943 struct device_attribute *devattr, char *buf) 944{ 945 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 946 struct abituguru_data *data = dev_get_drvdata(dev); 947 if (data->bank2_settings[attr->index][0] & attr->nr) 948 return sprintf(buf, "1\n"); 949 else 950 return sprintf(buf, "0\n"); 951} 952 953static ssize_t store_bank1_mask(struct device *dev, 954 struct device_attribute *devattr, const char *buf, size_t count) 955{ 956 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 957 struct abituguru_data *data = dev_get_drvdata(dev); 958 ssize_t ret; 959 u8 orig_val; 960 unsigned long mask; 961 962 ret = kstrtoul(buf, 10, &mask); 963 if (ret) 964 return ret; 965 966 ret = count; 967 mutex_lock(&data->update_lock); 968 orig_val = data->bank1_settings[attr->index][0]; 969 970 if (mask) 971 data->bank1_settings[attr->index][0] |= attr->nr; 972 else 973 data->bank1_settings[attr->index][0] &= ~attr->nr; 974 975 if ((data->bank1_settings[attr->index][0] != orig_val) && 976 (abituguru_write(data, 977 ABIT_UGURU_SENSOR_BANK1 + 2, attr->index, 978 data->bank1_settings[attr->index], 3) < 1)) { 979 data->bank1_settings[attr->index][0] = orig_val; 980 ret = -EIO; 981 } 982 mutex_unlock(&data->update_lock); 983 return ret; 984} 985 986static ssize_t store_bank2_mask(struct device *dev, 987 struct device_attribute *devattr, const char *buf, size_t count) 988{ 989 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 990 struct abituguru_data *data = dev_get_drvdata(dev); 991 ssize_t ret; 992 u8 orig_val; 993 unsigned long mask; 994 995 ret = kstrtoul(buf, 10, &mask); 996 if (ret) 997 return ret; 998 999 ret = count; 1000 mutex_lock(&data->update_lock); 1001 orig_val = data->bank2_settings[attr->index][0]; 1002 1003 if (mask) 1004 data->bank2_settings[attr->index][0] |= attr->nr; 1005 else 1006 data->bank2_settings[attr->index][0] &= ~attr->nr; 1007 1008 if ((data->bank2_settings[attr->index][0] != orig_val) && 1009 (abituguru_write(data, 1010 ABIT_UGURU_SENSOR_BANK2 + 2, attr->index, 1011 data->bank2_settings[attr->index], 2) < 1)) { 1012 data->bank2_settings[attr->index][0] = orig_val; 1013 ret = -EIO; 1014 } 1015 mutex_unlock(&data->update_lock); 1016 return ret; 1017} 1018 1019/* Fan PWM (speed control) */ 1020static ssize_t show_pwm_setting(struct device *dev, 1021 struct device_attribute *devattr, char *buf) 1022{ 1023 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 1024 struct abituguru_data *data = dev_get_drvdata(dev); 1025 return sprintf(buf, "%d\n", data->pwm_settings[attr->index][attr->nr] * 1026 abituguru_pwm_settings_multiplier[attr->nr]); 1027} 1028 1029static ssize_t store_pwm_setting(struct device *dev, struct device_attribute 1030 *devattr, const char *buf, size_t count) 1031{ 1032 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 1033 struct abituguru_data *data = dev_get_drvdata(dev); 1034 u8 min; 1035 unsigned long val; 1036 ssize_t ret; 1037 1038 ret = kstrtoul(buf, 10, &val); 1039 if (ret) 1040 return ret; 1041 1042 ret = count; 1043 val = (val + abituguru_pwm_settings_multiplier[attr->nr] / 2) / 1044 abituguru_pwm_settings_multiplier[attr->nr]; 1045 1046 /* special case pwm1 min pwm% */ 1047 if ((attr->index == 0) && ((attr->nr == 1) || (attr->nr == 2))) 1048 min = 77; 1049 else 1050 min = abituguru_pwm_min[attr->nr]; 1051 1052 /* this check can be done before taking the lock */ 1053 if (val < min || val > abituguru_pwm_max[attr->nr]) 1054 return -EINVAL; 1055 1056 mutex_lock(&data->update_lock); 1057 /* this check needs to be done after taking the lock */ 1058 if ((attr->nr & 1) && 1059 (val >= data->pwm_settings[attr->index][attr->nr + 1])) 1060 ret = -EINVAL; 1061 else if (!(attr->nr & 1) && 1062 (val <= data->pwm_settings[attr->index][attr->nr - 1])) 1063 ret = -EINVAL; 1064 else if (data->pwm_settings[attr->index][attr->nr] != val) { 1065 u8 orig_val = data->pwm_settings[attr->index][attr->nr]; 1066 data->pwm_settings[attr->index][attr->nr] = val; 1067 if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, 1068 attr->index, data->pwm_settings[attr->index], 1069 5) <= attr->nr) { 1070 data->pwm_settings[attr->index][attr->nr] = 1071 orig_val; 1072 ret = -EIO; 1073 } 1074 } 1075 mutex_unlock(&data->update_lock); 1076 return ret; 1077} 1078 1079static ssize_t show_pwm_sensor(struct device *dev, 1080 struct device_attribute *devattr, char *buf) 1081{ 1082 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 1083 struct abituguru_data *data = dev_get_drvdata(dev); 1084 int i; 1085 /* 1086 * We need to walk to the temp sensor addresses to find what 1087 * the userspace id of the configured temp sensor is. 1088 */ 1089 for (i = 0; i < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; i++) 1090 if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][i] == 1091 (data->pwm_settings[attr->index][0] & 0x0F)) 1092 return sprintf(buf, "%d\n", i+1); 1093 1094 return -ENXIO; 1095} 1096 1097static ssize_t store_pwm_sensor(struct device *dev, struct device_attribute 1098 *devattr, const char *buf, size_t count) 1099{ 1100 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 1101 struct abituguru_data *data = dev_get_drvdata(dev); 1102 ssize_t ret; 1103 unsigned long val; 1104 u8 orig_val; 1105 u8 address; 1106 1107 ret = kstrtoul(buf, 10, &val); 1108 if (ret) 1109 return ret; 1110 1111 if (val == 0 || val > data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) 1112 return -EINVAL; 1113 1114 val -= 1; 1115 ret = count; 1116 mutex_lock(&data->update_lock); 1117 orig_val = data->pwm_settings[attr->index][0]; 1118 address = data->bank1_address[ABIT_UGURU_TEMP_SENSOR][val]; 1119 data->pwm_settings[attr->index][0] &= 0xF0; 1120 data->pwm_settings[attr->index][0] |= address; 1121 if (data->pwm_settings[attr->index][0] != orig_val) { 1122 if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, attr->index, 1123 data->pwm_settings[attr->index], 5) < 1) { 1124 data->pwm_settings[attr->index][0] = orig_val; 1125 ret = -EIO; 1126 } 1127 } 1128 mutex_unlock(&data->update_lock); 1129 return ret; 1130} 1131 1132static ssize_t show_pwm_enable(struct device *dev, 1133 struct device_attribute *devattr, char *buf) 1134{ 1135 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 1136 struct abituguru_data *data = dev_get_drvdata(dev); 1137 int res = 0; 1138 if (data->pwm_settings[attr->index][0] & ABIT_UGURU_FAN_PWM_ENABLE) 1139 res = 2; 1140 return sprintf(buf, "%d\n", res); 1141} 1142 1143static ssize_t store_pwm_enable(struct device *dev, struct device_attribute 1144 *devattr, const char *buf, size_t count) 1145{ 1146 struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); 1147 struct abituguru_data *data = dev_get_drvdata(dev); 1148 u8 orig_val; 1149 ssize_t ret; 1150 unsigned long user_val; 1151 1152 ret = kstrtoul(buf, 10, &user_val); 1153 if (ret) 1154 return ret; 1155 1156 ret = count; 1157 mutex_lock(&data->update_lock); 1158 orig_val = data->pwm_settings[attr->index][0]; 1159 switch (user_val) { 1160 case 0: 1161 data->pwm_settings[attr->index][0] &= 1162 ~ABIT_UGURU_FAN_PWM_ENABLE; 1163 break; 1164 case 2: 1165 data->pwm_settings[attr->index][0] |= ABIT_UGURU_FAN_PWM_ENABLE; 1166 break; 1167 default: 1168 ret = -EINVAL; 1169 } 1170 if ((data->pwm_settings[attr->index][0] != orig_val) && 1171 (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, 1172 attr->index, data->pwm_settings[attr->index], 1173 5) < 1)) { 1174 data->pwm_settings[attr->index][0] = orig_val; 1175 ret = -EIO; 1176 } 1177 mutex_unlock(&data->update_lock); 1178 return ret; 1179} 1180 1181static ssize_t show_name(struct device *dev, 1182 struct device_attribute *devattr, char *buf) 1183{ 1184 return sprintf(buf, "%s\n", ABIT_UGURU_NAME); 1185} 1186 1187/* Sysfs attr templates, the real entries are generated automatically. */ 1188static const 1189struct sensor_device_attribute_2 abituguru_sysfs_bank1_templ[2][9] = { 1190 { 1191 SENSOR_ATTR_2(in%d_input, 0444, show_bank1_value, NULL, 0, 0), 1192 SENSOR_ATTR_2(in%d_min, 0644, show_bank1_setting, 1193 store_bank1_setting, 1, 0), 1194 SENSOR_ATTR_2(in%d_min_alarm, 0444, show_bank1_alarm, NULL, 1195 ABIT_UGURU_VOLT_LOW_ALARM_FLAG, 0), 1196 SENSOR_ATTR_2(in%d_max, 0644, show_bank1_setting, 1197 store_bank1_setting, 2, 0), 1198 SENSOR_ATTR_2(in%d_max_alarm, 0444, show_bank1_alarm, NULL, 1199 ABIT_UGURU_VOLT_HIGH_ALARM_FLAG, 0), 1200 SENSOR_ATTR_2(in%d_beep, 0644, show_bank1_mask, 1201 store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0), 1202 SENSOR_ATTR_2(in%d_shutdown, 0644, show_bank1_mask, 1203 store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0), 1204 SENSOR_ATTR_2(in%d_min_alarm_enable, 0644, show_bank1_mask, 1205 store_bank1_mask, ABIT_UGURU_VOLT_LOW_ALARM_ENABLE, 0), 1206 SENSOR_ATTR_2(in%d_max_alarm_enable, 0644, show_bank1_mask, 1207 store_bank1_mask, ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE, 0), 1208 }, { 1209 SENSOR_ATTR_2(temp%d_input, 0444, show_bank1_value, NULL, 0, 0), 1210 SENSOR_ATTR_2(temp%d_alarm, 0444, show_bank1_alarm, NULL, 1211 ABIT_UGURU_TEMP_HIGH_ALARM_FLAG, 0), 1212 SENSOR_ATTR_2(temp%d_max, 0644, show_bank1_setting, 1213 store_bank1_setting, 1, 0), 1214 SENSOR_ATTR_2(temp%d_crit, 0644, show_bank1_setting, 1215 store_bank1_setting, 2, 0), 1216 SENSOR_ATTR_2(temp%d_beep, 0644, show_bank1_mask, 1217 store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0), 1218 SENSOR_ATTR_2(temp%d_shutdown, 0644, show_bank1_mask, 1219 store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0), 1220 SENSOR_ATTR_2(temp%d_alarm_enable, 0644, show_bank1_mask, 1221 store_bank1_mask, ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE, 0), 1222 } 1223}; 1224 1225static const struct sensor_device_attribute_2 abituguru_sysfs_fan_templ[6] = { 1226 SENSOR_ATTR_2(fan%d_input, 0444, show_bank2_value, NULL, 0, 0), 1227 SENSOR_ATTR_2(fan%d_alarm, 0444, show_bank2_alarm, NULL, 0, 0), 1228 SENSOR_ATTR_2(fan%d_min, 0644, show_bank2_setting, 1229 store_bank2_setting, 1, 0), 1230 SENSOR_ATTR_2(fan%d_beep, 0644, show_bank2_mask, 1231 store_bank2_mask, ABIT_UGURU_BEEP_ENABLE, 0), 1232 SENSOR_ATTR_2(fan%d_shutdown, 0644, show_bank2_mask, 1233 store_bank2_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0), 1234 SENSOR_ATTR_2(fan%d_alarm_enable, 0644, show_bank2_mask, 1235 store_bank2_mask, ABIT_UGURU_FAN_LOW_ALARM_ENABLE, 0), 1236}; 1237 1238static const struct sensor_device_attribute_2 abituguru_sysfs_pwm_templ[6] = { 1239 SENSOR_ATTR_2(pwm%d_enable, 0644, show_pwm_enable, 1240 store_pwm_enable, 0, 0), 1241 SENSOR_ATTR_2(pwm%d_auto_channels_temp, 0644, show_pwm_sensor, 1242 store_pwm_sensor, 0, 0), 1243 SENSOR_ATTR_2(pwm%d_auto_point1_pwm, 0644, show_pwm_setting, 1244 store_pwm_setting, 1, 0), 1245 SENSOR_ATTR_2(pwm%d_auto_point2_pwm, 0644, show_pwm_setting, 1246 store_pwm_setting, 2, 0), 1247 SENSOR_ATTR_2(pwm%d_auto_point1_temp, 0644, show_pwm_setting, 1248 store_pwm_setting, 3, 0), 1249 SENSOR_ATTR_2(pwm%d_auto_point2_temp, 0644, show_pwm_setting, 1250 store_pwm_setting, 4, 0), 1251}; 1252 1253static struct sensor_device_attribute_2 abituguru_sysfs_attr[] = { 1254 SENSOR_ATTR_2(name, 0444, show_name, NULL, 0, 0), 1255}; 1256 1257static int abituguru_probe(struct platform_device *pdev) 1258{ 1259 struct abituguru_data *data; 1260 int i, j, used, sysfs_names_free, sysfs_attr_i, res = -ENODEV; 1261 char *sysfs_filename; 1262 1263 /* 1264 * El weirdo probe order, to keep the sysfs order identical to the 1265 * BIOS and window-appliction listing order. 1266 */ 1267 static const u8 probe_order[ABIT_UGURU_MAX_BANK1_SENSORS] = { 1268 0x00, 0x01, 0x03, 0x04, 0x0A, 0x08, 0x0E, 0x02, 1269 0x09, 0x06, 0x05, 0x0B, 0x0F, 0x0D, 0x07, 0x0C }; 1270 1271 data = devm_kzalloc(&pdev->dev, sizeof(struct abituguru_data), 1272 GFP_KERNEL); 1273 if (!data) 1274 return -ENOMEM; 1275 1276 data->addr = platform_get_resource(pdev, IORESOURCE_IO, 0)->start; 1277 mutex_init(&data->update_lock); 1278 platform_set_drvdata(pdev, data); 1279 1280 /* See if the uGuru is ready */ 1281 if (inb_p(data->addr + ABIT_UGURU_DATA) == ABIT_UGURU_STATUS_INPUT) 1282 data->uguru_ready = 1; 1283 1284 /* 1285 * Completely read the uGuru this has 2 purposes: 1286 * - testread / see if one really is there. 1287 * - make an in memory copy of all the uguru settings for future use. 1288 */ 1289 if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, 1290 data->alarms, 3, ABIT_UGURU_MAX_RETRIES) != 3) 1291 goto abituguru_probe_error; 1292 1293 for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) { 1294 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, i, 1295 &data->bank1_value[i], 1, 1296 ABIT_UGURU_MAX_RETRIES) != 1) 1297 goto abituguru_probe_error; 1298 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1+1, i, 1299 data->bank1_settings[i], 3, 1300 ABIT_UGURU_MAX_RETRIES) != 3) 1301 goto abituguru_probe_error; 1302 } 1303 /* 1304 * Note: We don't know how many bank2 sensors / pwms there really are, 1305 * but in order to "detect" this we need to read the maximum amount 1306 * anyways. If we read sensors/pwms not there we'll just read crap 1307 * this can't hurt. We need the detection because we don't want 1308 * unwanted writes, which will hurt! 1309 */ 1310 for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) { 1311 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i, 1312 &data->bank2_value[i], 1, 1313 ABIT_UGURU_MAX_RETRIES) != 1) 1314 goto abituguru_probe_error; 1315 if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2+1, i, 1316 data->bank2_settings[i], 2, 1317 ABIT_UGURU_MAX_RETRIES) != 2) 1318 goto abituguru_probe_error; 1319 } 1320 for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) { 1321 if (abituguru_read(data, ABIT_UGURU_FAN_PWM, i, 1322 data->pwm_settings[i], 5, 1323 ABIT_UGURU_MAX_RETRIES) != 5) 1324 goto abituguru_probe_error; 1325 } 1326 data->last_updated = jiffies; 1327 1328 /* Detect sensor types and fill the sysfs attr for bank1 */ 1329 sysfs_attr_i = 0; 1330 sysfs_filename = data->sysfs_names; 1331 sysfs_names_free = ABITUGURU_SYSFS_NAMES_LENGTH; 1332 for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) { 1333 res = abituguru_detect_bank1_sensor_type(data, probe_order[i]); 1334 if (res < 0) 1335 goto abituguru_probe_error; 1336 if (res == ABIT_UGURU_NC) 1337 continue; 1338 1339 /* res 1 (temp) sensors have 7 sysfs entries, 0 (in) 9 */ 1340 for (j = 0; j < (res ? 7 : 9); j++) { 1341 used = snprintf(sysfs_filename, sysfs_names_free, 1342 abituguru_sysfs_bank1_templ[res][j].dev_attr. 1343 attr.name, data->bank1_sensors[res] + res) 1344 + 1; 1345 data->sysfs_attr[sysfs_attr_i] = 1346 abituguru_sysfs_bank1_templ[res][j]; 1347 data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name = 1348 sysfs_filename; 1349 data->sysfs_attr[sysfs_attr_i].index = probe_order[i]; 1350 sysfs_filename += used; 1351 sysfs_names_free -= used; 1352 sysfs_attr_i++; 1353 } 1354 data->bank1_max_value[probe_order[i]] = 1355 abituguru_bank1_max_value[res]; 1356 data->bank1_address[res][data->bank1_sensors[res]] = 1357 probe_order[i]; 1358 data->bank1_sensors[res]++; 1359 } 1360 /* Detect number of sensors and fill the sysfs attr for bank2 (fans) */ 1361 abituguru_detect_no_bank2_sensors(data); 1362 for (i = 0; i < data->bank2_sensors; i++) { 1363 for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_fan_templ); j++) { 1364 used = snprintf(sysfs_filename, sysfs_names_free, 1365 abituguru_sysfs_fan_templ[j].dev_attr.attr.name, 1366 i + 1) + 1; 1367 data->sysfs_attr[sysfs_attr_i] = 1368 abituguru_sysfs_fan_templ[j]; 1369 data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name = 1370 sysfs_filename; 1371 data->sysfs_attr[sysfs_attr_i].index = i; 1372 sysfs_filename += used; 1373 sysfs_names_free -= used; 1374 sysfs_attr_i++; 1375 } 1376 } 1377 /* Detect number of sensors and fill the sysfs attr for pwms */ 1378 abituguru_detect_no_pwms(data); 1379 for (i = 0; i < data->pwms; i++) { 1380 for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_pwm_templ); j++) { 1381 used = snprintf(sysfs_filename, sysfs_names_free, 1382 abituguru_sysfs_pwm_templ[j].dev_attr.attr.name, 1383 i + 1) + 1; 1384 data->sysfs_attr[sysfs_attr_i] = 1385 abituguru_sysfs_pwm_templ[j]; 1386 data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name = 1387 sysfs_filename; 1388 data->sysfs_attr[sysfs_attr_i].index = i; 1389 sysfs_filename += used; 1390 sysfs_names_free -= used; 1391 sysfs_attr_i++; 1392 } 1393 } 1394 /* Fail safe check, this should never happen! */ 1395 if (sysfs_names_free < 0) { 1396 pr_err("Fatal error ran out of space for sysfs attr names. %s %s", 1397 never_happen, report_this); 1398 res = -ENAMETOOLONG; 1399 goto abituguru_probe_error; 1400 } 1401 pr_info("found Abit uGuru\n"); 1402 1403 /* Register sysfs hooks */ 1404 for (i = 0; i < sysfs_attr_i; i++) { 1405 res = device_create_file(&pdev->dev, 1406 &data->sysfs_attr[i].dev_attr); 1407 if (res) 1408 goto abituguru_probe_error; 1409 } 1410 for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++) { 1411 res = device_create_file(&pdev->dev, 1412 &abituguru_sysfs_attr[i].dev_attr); 1413 if (res) 1414 goto abituguru_probe_error; 1415 } 1416 1417 data->hwmon_dev = hwmon_device_register(&pdev->dev); 1418 if (!IS_ERR(data->hwmon_dev)) 1419 return 0; /* success */ 1420 1421 res = PTR_ERR(data->hwmon_dev); 1422abituguru_probe_error: 1423 for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++) 1424 device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr); 1425 for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++) 1426 device_remove_file(&pdev->dev, 1427 &abituguru_sysfs_attr[i].dev_attr); 1428 return res; 1429} 1430 1431static int abituguru_remove(struct platform_device *pdev) 1432{ 1433 int i; 1434 struct abituguru_data *data = platform_get_drvdata(pdev); 1435 1436 hwmon_device_unregister(data->hwmon_dev); 1437 for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++) 1438 device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr); 1439 for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++) 1440 device_remove_file(&pdev->dev, 1441 &abituguru_sysfs_attr[i].dev_attr); 1442 1443 return 0; 1444} 1445 1446static struct abituguru_data *abituguru_update_device(struct device *dev) 1447{ 1448 int i, err; 1449 struct abituguru_data *data = dev_get_drvdata(dev); 1450 /* fake a complete successful read if no update necessary. */ 1451 char success = 1; 1452 1453 mutex_lock(&data->update_lock); 1454 if (time_after(jiffies, data->last_updated + HZ)) { 1455 success = 0; 1456 err = abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, 1457 data->alarms, 3, 0); 1458 if (err != 3) 1459 goto LEAVE_UPDATE; 1460 for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) { 1461 err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, 1462 i, &data->bank1_value[i], 1, 0); 1463 if (err != 1) 1464 goto LEAVE_UPDATE; 1465 err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1, 1466 i, data->bank1_settings[i], 3, 0); 1467 if (err != 3) 1468 goto LEAVE_UPDATE; 1469 } 1470 for (i = 0; i < data->bank2_sensors; i++) { 1471 err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i, 1472 &data->bank2_value[i], 1, 0); 1473 if (err != 1) 1474 goto LEAVE_UPDATE; 1475 } 1476 /* success! */ 1477 success = 1; 1478 data->update_timeouts = 0; 1479LEAVE_UPDATE: 1480 /* handle timeout condition */ 1481 if (!success && (err == -EBUSY || err >= 0)) { 1482 /* No overflow please */ 1483 if (data->update_timeouts < 255u) 1484 data->update_timeouts++; 1485 if (data->update_timeouts <= ABIT_UGURU_MAX_TIMEOUTS) { 1486 ABIT_UGURU_DEBUG(3, "timeout exceeded, will " 1487 "try again next update\n"); 1488 /* Just a timeout, fake a successful read */ 1489 success = 1; 1490 } else 1491 ABIT_UGURU_DEBUG(1, "timeout exceeded %d " 1492 "times waiting for more input state\n", 1493 (int)data->update_timeouts); 1494 } 1495 /* On success set last_updated */ 1496 if (success) 1497 data->last_updated = jiffies; 1498 } 1499 mutex_unlock(&data->update_lock); 1500 1501 if (success) 1502 return data; 1503 else 1504 return NULL; 1505} 1506 1507#ifdef CONFIG_PM_SLEEP 1508static int abituguru_suspend(struct device *dev) 1509{ 1510 struct abituguru_data *data = dev_get_drvdata(dev); 1511 /* 1512 * make sure all communications with the uguru are done and no new 1513 * ones are started 1514 */ 1515 mutex_lock(&data->update_lock); 1516 return 0; 1517} 1518 1519static int abituguru_resume(struct device *dev) 1520{ 1521 struct abituguru_data *data = dev_get_drvdata(dev); 1522 /* See if the uGuru is still ready */ 1523 if (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT) 1524 data->uguru_ready = 0; 1525 mutex_unlock(&data->update_lock); 1526 return 0; 1527} 1528 1529static SIMPLE_DEV_PM_OPS(abituguru_pm, abituguru_suspend, abituguru_resume); 1530#define ABIT_UGURU_PM (&abituguru_pm) 1531#else 1532#define ABIT_UGURU_PM NULL 1533#endif /* CONFIG_PM */ 1534 1535static struct platform_driver abituguru_driver = { 1536 .driver = { 1537 .name = ABIT_UGURU_NAME, 1538 .pm = ABIT_UGURU_PM, 1539 }, 1540 .probe = abituguru_probe, 1541 .remove = abituguru_remove, 1542}; 1543 1544static int __init abituguru_detect(void) 1545{ 1546 /* 1547 * See if there is an uguru there. After a reboot uGuru will hold 0x00 1548 * at DATA and 0xAC, when this driver has already been loaded once 1549 * DATA will hold 0x08. For most uGuru's CMD will hold 0xAC in either 1550 * scenario but some will hold 0x00. 1551 * Some uGuru's initially hold 0x09 at DATA and will only hold 0x08 1552 * after reading CMD first, so CMD must be read first! 1553 */ 1554 u8 cmd_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_CMD); 1555 u8 data_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_DATA); 1556 if (((data_val == 0x00) || (data_val == 0x08)) && 1557 ((cmd_val == 0x00) || (cmd_val == 0xAC))) 1558 return ABIT_UGURU_BASE; 1559 1560 ABIT_UGURU_DEBUG(2, "no Abit uGuru found, data = 0x%02X, cmd = " 1561 "0x%02X\n", (unsigned int)data_val, (unsigned int)cmd_val); 1562 1563 if (force) { 1564 pr_info("Assuming Abit uGuru is present because of \"force\" parameter\n"); 1565 return ABIT_UGURU_BASE; 1566 } 1567 1568 /* No uGuru found */ 1569 return -ENODEV; 1570} 1571 1572static struct platform_device *abituguru_pdev; 1573 1574static int __init abituguru_init(void) 1575{ 1576 int address, err; 1577 struct resource res = { .flags = IORESOURCE_IO }; 1578 const char *board_vendor = dmi_get_system_info(DMI_BOARD_VENDOR); 1579 1580 /* safety check, refuse to load on non Abit motherboards */ 1581 if (!force && (!board_vendor || 1582 strcmp(board_vendor, "http://www.abit.com.tw/"))) 1583 return -ENODEV; 1584 1585 address = abituguru_detect(); 1586 if (address < 0) 1587 return address; 1588 1589 err = platform_driver_register(&abituguru_driver); 1590 if (err) 1591 goto exit; 1592 1593 abituguru_pdev = platform_device_alloc(ABIT_UGURU_NAME, address); 1594 if (!abituguru_pdev) { 1595 pr_err("Device allocation failed\n"); 1596 err = -ENOMEM; 1597 goto exit_driver_unregister; 1598 } 1599 1600 res.start = address; 1601 res.end = address + ABIT_UGURU_REGION_LENGTH - 1; 1602 res.name = ABIT_UGURU_NAME; 1603 1604 err = platform_device_add_resources(abituguru_pdev, &res, 1); 1605 if (err) { 1606 pr_err("Device resource addition failed (%d)\n", err); 1607 goto exit_device_put; 1608 } 1609 1610 err = platform_device_add(abituguru_pdev); 1611 if (err) { 1612 pr_err("Device addition failed (%d)\n", err); 1613 goto exit_device_put; 1614 } 1615 1616 return 0; 1617 1618exit_device_put: 1619 platform_device_put(abituguru_pdev); 1620exit_driver_unregister: 1621 platform_driver_unregister(&abituguru_driver); 1622exit: 1623 return err; 1624} 1625 1626static void __exit abituguru_exit(void) 1627{ 1628 platform_device_unregister(abituguru_pdev); 1629 platform_driver_unregister(&abituguru_driver); 1630} 1631 1632MODULE_AUTHOR("Hans de Goede <hdegoede@redhat.com>"); 1633MODULE_DESCRIPTION("Abit uGuru Sensor device"); 1634MODULE_LICENSE("GPL"); 1635 1636module_init(abituguru_init); 1637module_exit(abituguru_exit);