cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

emc1403.c (14021B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * emc1403.c - SMSC Thermal Driver
      4 *
      5 * Copyright (C) 2008 Intel Corp
      6 *
      7 *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
      8 *
      9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
     10 */
     11
     12#include <linux/module.h>
     13#include <linux/init.h>
     14#include <linux/slab.h>
     15#include <linux/i2c.h>
     16#include <linux/hwmon.h>
     17#include <linux/hwmon-sysfs.h>
     18#include <linux/err.h>
     19#include <linux/sysfs.h>
     20#include <linux/mutex.h>
     21#include <linux/regmap.h>
     22
     23#define THERMAL_PID_REG		0xfd
     24#define THERMAL_SMSC_ID_REG	0xfe
     25#define THERMAL_REVISION_REG	0xff
     26
     27enum emc1403_chip { emc1402, emc1403, emc1404 };
     28
     29struct thermal_data {
     30	struct regmap *regmap;
     31	struct mutex mutex;
     32	const struct attribute_group *groups[4];
     33};
     34
     35static ssize_t temp_show(struct device *dev, struct device_attribute *attr,
     36			 char *buf)
     37{
     38	struct sensor_device_attribute *sda = to_sensor_dev_attr(attr);
     39	struct thermal_data *data = dev_get_drvdata(dev);
     40	unsigned int val;
     41	int retval;
     42
     43	retval = regmap_read(data->regmap, sda->index, &val);
     44	if (retval < 0)
     45		return retval;
     46	return sprintf(buf, "%d000\n", val);
     47}
     48
     49static ssize_t bit_show(struct device *dev, struct device_attribute *attr,
     50			char *buf)
     51{
     52	struct sensor_device_attribute_2 *sda = to_sensor_dev_attr_2(attr);
     53	struct thermal_data *data = dev_get_drvdata(dev);
     54	unsigned int val;
     55	int retval;
     56
     57	retval = regmap_read(data->regmap, sda->nr, &val);
     58	if (retval < 0)
     59		return retval;
     60	return sprintf(buf, "%d\n", !!(val & sda->index));
     61}
     62
     63static ssize_t temp_store(struct device *dev, struct device_attribute *attr,
     64			  const char *buf, size_t count)
     65{
     66	struct sensor_device_attribute *sda = to_sensor_dev_attr(attr);
     67	struct thermal_data *data = dev_get_drvdata(dev);
     68	unsigned long val;
     69	int retval;
     70
     71	if (kstrtoul(buf, 10, &val))
     72		return -EINVAL;
     73	retval = regmap_write(data->regmap, sda->index,
     74			      DIV_ROUND_CLOSEST(val, 1000));
     75	if (retval < 0)
     76		return retval;
     77	return count;
     78}
     79
     80static ssize_t bit_store(struct device *dev, struct device_attribute *attr,
     81			 const char *buf, size_t count)
     82{
     83	struct sensor_device_attribute_2 *sda = to_sensor_dev_attr_2(attr);
     84	struct thermal_data *data = dev_get_drvdata(dev);
     85	unsigned long val;
     86	int retval;
     87
     88	if (kstrtoul(buf, 10, &val))
     89		return -EINVAL;
     90
     91	retval = regmap_update_bits(data->regmap, sda->nr, sda->index,
     92				    val ? sda->index : 0);
     93	if (retval < 0)
     94		return retval;
     95	return count;
     96}
     97
     98static ssize_t show_hyst_common(struct device *dev,
     99				struct device_attribute *attr, char *buf,
    100				bool is_min)
    101{
    102	struct sensor_device_attribute *sda = to_sensor_dev_attr(attr);
    103	struct thermal_data *data = dev_get_drvdata(dev);
    104	struct regmap *regmap = data->regmap;
    105	unsigned int limit;
    106	unsigned int hyst;
    107	int retval;
    108
    109	retval = regmap_read(regmap, sda->index, &limit);
    110	if (retval < 0)
    111		return retval;
    112
    113	retval = regmap_read(regmap, 0x21, &hyst);
    114	if (retval < 0)
    115		return retval;
    116
    117	return sprintf(buf, "%d000\n", is_min ? limit + hyst : limit - hyst);
    118}
    119
    120static ssize_t hyst_show(struct device *dev, struct device_attribute *attr,
    121			 char *buf)
    122{
    123	return show_hyst_common(dev, attr, buf, false);
    124}
    125
    126static ssize_t min_hyst_show(struct device *dev,
    127			     struct device_attribute *attr, char *buf)
    128{
    129	return show_hyst_common(dev, attr, buf, true);
    130}
    131
    132static ssize_t hyst_store(struct device *dev, struct device_attribute *attr,
    133			  const char *buf, size_t count)
    134{
    135	struct sensor_device_attribute *sda = to_sensor_dev_attr(attr);
    136	struct thermal_data *data = dev_get_drvdata(dev);
    137	struct regmap *regmap = data->regmap;
    138	unsigned int limit;
    139	int retval;
    140	int hyst;
    141	unsigned long val;
    142
    143	if (kstrtoul(buf, 10, &val))
    144		return -EINVAL;
    145
    146	mutex_lock(&data->mutex);
    147	retval = regmap_read(regmap, sda->index, &limit);
    148	if (retval < 0)
    149		goto fail;
    150
    151	hyst = limit * 1000 - val;
    152	hyst = clamp_val(DIV_ROUND_CLOSEST(hyst, 1000), 0, 255);
    153	retval = regmap_write(regmap, 0x21, hyst);
    154	if (retval == 0)
    155		retval = count;
    156fail:
    157	mutex_unlock(&data->mutex);
    158	return retval;
    159}
    160
    161/*
    162 *	Sensors. We pass the actual i2c register to the methods.
    163 */
    164
    165static SENSOR_DEVICE_ATTR_RW(temp1_min, temp, 0x06);
    166static SENSOR_DEVICE_ATTR_RW(temp1_max, temp, 0x05);
    167static SENSOR_DEVICE_ATTR_RW(temp1_crit, temp, 0x20);
    168static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0x00);
    169static SENSOR_DEVICE_ATTR_2_RO(temp1_min_alarm, bit, 0x36, 0x01);
    170static SENSOR_DEVICE_ATTR_2_RO(temp1_max_alarm, bit, 0x35, 0x01);
    171static SENSOR_DEVICE_ATTR_2_RO(temp1_crit_alarm, bit, 0x37, 0x01);
    172static SENSOR_DEVICE_ATTR_RO(temp1_min_hyst, min_hyst, 0x06);
    173static SENSOR_DEVICE_ATTR_RO(temp1_max_hyst, hyst, 0x05);
    174static SENSOR_DEVICE_ATTR_RW(temp1_crit_hyst, hyst, 0x20);
    175
    176static SENSOR_DEVICE_ATTR_RW(temp2_min, temp, 0x08);
    177static SENSOR_DEVICE_ATTR_RW(temp2_max, temp, 0x07);
    178static SENSOR_DEVICE_ATTR_RW(temp2_crit, temp, 0x19);
    179static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 0x01);
    180static SENSOR_DEVICE_ATTR_2_RO(temp2_fault, bit, 0x1b, 0x02);
    181static SENSOR_DEVICE_ATTR_2_RO(temp2_min_alarm, bit, 0x36, 0x02);
    182static SENSOR_DEVICE_ATTR_2_RO(temp2_max_alarm, bit, 0x35, 0x02);
    183static SENSOR_DEVICE_ATTR_2_RO(temp2_crit_alarm, bit, 0x37, 0x02);
    184static SENSOR_DEVICE_ATTR_RO(temp2_min_hyst, min_hyst, 0x08);
    185static SENSOR_DEVICE_ATTR_RO(temp2_max_hyst, hyst, 0x07);
    186static SENSOR_DEVICE_ATTR_RO(temp2_crit_hyst, hyst, 0x19);
    187
    188static SENSOR_DEVICE_ATTR_RW(temp3_min, temp, 0x16);
    189static SENSOR_DEVICE_ATTR_RW(temp3_max, temp, 0x15);
    190static SENSOR_DEVICE_ATTR_RW(temp3_crit, temp, 0x1A);
    191static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 0x23);
    192static SENSOR_DEVICE_ATTR_2_RO(temp3_fault, bit, 0x1b, 0x04);
    193static SENSOR_DEVICE_ATTR_2_RO(temp3_min_alarm, bit, 0x36, 0x04);
    194static SENSOR_DEVICE_ATTR_2_RO(temp3_max_alarm, bit, 0x35, 0x04);
    195static SENSOR_DEVICE_ATTR_2_RO(temp3_crit_alarm, bit, 0x37, 0x04);
    196static SENSOR_DEVICE_ATTR_RO(temp3_min_hyst, min_hyst, 0x16);
    197static SENSOR_DEVICE_ATTR_RO(temp3_max_hyst, hyst, 0x15);
    198static SENSOR_DEVICE_ATTR_RO(temp3_crit_hyst, hyst, 0x1A);
    199
    200static SENSOR_DEVICE_ATTR_RW(temp4_min, temp, 0x2D);
    201static SENSOR_DEVICE_ATTR_RW(temp4_max, temp, 0x2C);
    202static SENSOR_DEVICE_ATTR_RW(temp4_crit, temp, 0x30);
    203static SENSOR_DEVICE_ATTR_RO(temp4_input, temp, 0x2A);
    204static SENSOR_DEVICE_ATTR_2_RO(temp4_fault, bit, 0x1b, 0x08);
    205static SENSOR_DEVICE_ATTR_2_RO(temp4_min_alarm, bit, 0x36, 0x08);
    206static SENSOR_DEVICE_ATTR_2_RO(temp4_max_alarm, bit, 0x35, 0x08);
    207static SENSOR_DEVICE_ATTR_2_RO(temp4_crit_alarm, bit, 0x37, 0x08);
    208static SENSOR_DEVICE_ATTR_RO(temp4_min_hyst, min_hyst, 0x2D);
    209static SENSOR_DEVICE_ATTR_RO(temp4_max_hyst, hyst, 0x2C);
    210static SENSOR_DEVICE_ATTR_RO(temp4_crit_hyst, hyst, 0x30);
    211
    212static SENSOR_DEVICE_ATTR_2_RW(power_state, bit, 0x03, 0x40);
    213
    214static struct attribute *emc1402_attrs[] = {
    215	&sensor_dev_attr_temp1_min.dev_attr.attr,
    216	&sensor_dev_attr_temp1_max.dev_attr.attr,
    217	&sensor_dev_attr_temp1_crit.dev_attr.attr,
    218	&sensor_dev_attr_temp1_input.dev_attr.attr,
    219	&sensor_dev_attr_temp1_min_hyst.dev_attr.attr,
    220	&sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
    221	&sensor_dev_attr_temp1_crit_hyst.dev_attr.attr,
    222
    223	&sensor_dev_attr_temp2_min.dev_attr.attr,
    224	&sensor_dev_attr_temp2_max.dev_attr.attr,
    225	&sensor_dev_attr_temp2_crit.dev_attr.attr,
    226	&sensor_dev_attr_temp2_input.dev_attr.attr,
    227	&sensor_dev_attr_temp2_min_hyst.dev_attr.attr,
    228	&sensor_dev_attr_temp2_max_hyst.dev_attr.attr,
    229	&sensor_dev_attr_temp2_crit_hyst.dev_attr.attr,
    230
    231	&sensor_dev_attr_power_state.dev_attr.attr,
    232	NULL
    233};
    234
    235static const struct attribute_group emc1402_group = {
    236		.attrs = emc1402_attrs,
    237};
    238
    239static struct attribute *emc1403_attrs[] = {
    240	&sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
    241	&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
    242	&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
    243
    244	&sensor_dev_attr_temp2_fault.dev_attr.attr,
    245	&sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
    246	&sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
    247	&sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
    248
    249	&sensor_dev_attr_temp3_min.dev_attr.attr,
    250	&sensor_dev_attr_temp3_max.dev_attr.attr,
    251	&sensor_dev_attr_temp3_crit.dev_attr.attr,
    252	&sensor_dev_attr_temp3_input.dev_attr.attr,
    253	&sensor_dev_attr_temp3_fault.dev_attr.attr,
    254	&sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
    255	&sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
    256	&sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
    257	&sensor_dev_attr_temp3_min_hyst.dev_attr.attr,
    258	&sensor_dev_attr_temp3_max_hyst.dev_attr.attr,
    259	&sensor_dev_attr_temp3_crit_hyst.dev_attr.attr,
    260	NULL
    261};
    262
    263static const struct attribute_group emc1403_group = {
    264	.attrs = emc1403_attrs,
    265};
    266
    267static struct attribute *emc1404_attrs[] = {
    268	&sensor_dev_attr_temp4_min.dev_attr.attr,
    269	&sensor_dev_attr_temp4_max.dev_attr.attr,
    270	&sensor_dev_attr_temp4_crit.dev_attr.attr,
    271	&sensor_dev_attr_temp4_input.dev_attr.attr,
    272	&sensor_dev_attr_temp4_fault.dev_attr.attr,
    273	&sensor_dev_attr_temp4_min_alarm.dev_attr.attr,
    274	&sensor_dev_attr_temp4_max_alarm.dev_attr.attr,
    275	&sensor_dev_attr_temp4_crit_alarm.dev_attr.attr,
    276	&sensor_dev_attr_temp4_min_hyst.dev_attr.attr,
    277	&sensor_dev_attr_temp4_max_hyst.dev_attr.attr,
    278	&sensor_dev_attr_temp4_crit_hyst.dev_attr.attr,
    279	NULL
    280};
    281
    282static const struct attribute_group emc1404_group = {
    283	.attrs = emc1404_attrs,
    284};
    285
    286/*
    287 * EMC14x2 uses a different register and different bits to report alarm and
    288 * fault status. For simplicity, provide a separate attribute group for this
    289 * chip series.
    290 * Since we can not re-use the same attribute names, create a separate attribute
    291 * array.
    292 */
    293static struct sensor_device_attribute_2 emc1402_alarms[] = {
    294	SENSOR_ATTR_2_RO(temp1_min_alarm, bit, 0x02, 0x20),
    295	SENSOR_ATTR_2_RO(temp1_max_alarm, bit, 0x02, 0x40),
    296	SENSOR_ATTR_2_RO(temp1_crit_alarm, bit, 0x02, 0x01),
    297
    298	SENSOR_ATTR_2_RO(temp2_fault, bit, 0x02, 0x04),
    299	SENSOR_ATTR_2_RO(temp2_min_alarm, bit, 0x02, 0x08),
    300	SENSOR_ATTR_2_RO(temp2_max_alarm, bit, 0x02, 0x10),
    301	SENSOR_ATTR_2_RO(temp2_crit_alarm, bit, 0x02, 0x02),
    302};
    303
    304static struct attribute *emc1402_alarm_attrs[] = {
    305	&emc1402_alarms[0].dev_attr.attr,
    306	&emc1402_alarms[1].dev_attr.attr,
    307	&emc1402_alarms[2].dev_attr.attr,
    308	&emc1402_alarms[3].dev_attr.attr,
    309	&emc1402_alarms[4].dev_attr.attr,
    310	&emc1402_alarms[5].dev_attr.attr,
    311	&emc1402_alarms[6].dev_attr.attr,
    312	NULL,
    313};
    314
    315static const struct attribute_group emc1402_alarm_group = {
    316	.attrs = emc1402_alarm_attrs,
    317};
    318
    319static int emc1403_detect(struct i2c_client *client,
    320			struct i2c_board_info *info)
    321{
    322	int id;
    323	/* Check if thermal chip is SMSC and EMC1403 or EMC1423 */
    324
    325	id = i2c_smbus_read_byte_data(client, THERMAL_SMSC_ID_REG);
    326	if (id != 0x5d)
    327		return -ENODEV;
    328
    329	id = i2c_smbus_read_byte_data(client, THERMAL_PID_REG);
    330	switch (id) {
    331	case 0x20:
    332		strlcpy(info->type, "emc1402", I2C_NAME_SIZE);
    333		break;
    334	case 0x21:
    335		strlcpy(info->type, "emc1403", I2C_NAME_SIZE);
    336		break;
    337	case 0x22:
    338		strlcpy(info->type, "emc1422", I2C_NAME_SIZE);
    339		break;
    340	case 0x23:
    341		strlcpy(info->type, "emc1423", I2C_NAME_SIZE);
    342		break;
    343	case 0x25:
    344		strlcpy(info->type, "emc1404", I2C_NAME_SIZE);
    345		break;
    346	case 0x27:
    347		strlcpy(info->type, "emc1424", I2C_NAME_SIZE);
    348		break;
    349	default:
    350		return -ENODEV;
    351	}
    352
    353	id = i2c_smbus_read_byte_data(client, THERMAL_REVISION_REG);
    354	if (id < 0x01 || id > 0x04)
    355		return -ENODEV;
    356
    357	return 0;
    358}
    359
    360static bool emc1403_regmap_is_volatile(struct device *dev, unsigned int reg)
    361{
    362	switch (reg) {
    363	case 0x00:	/* internal diode high byte */
    364	case 0x01:	/* external diode 1 high byte */
    365	case 0x02:	/* status */
    366	case 0x10:	/* external diode 1 low byte */
    367	case 0x1b:	/* external diode fault */
    368	case 0x23:	/* external diode 2 high byte */
    369	case 0x24:	/* external diode 2 low byte */
    370	case 0x29:	/* internal diode low byte */
    371	case 0x2a:	/* externl diode 3 high byte */
    372	case 0x2b:	/* external diode 3 low byte */
    373	case 0x35:	/* high limit status */
    374	case 0x36:	/* low limit status */
    375	case 0x37:	/* therm limit status */
    376		return true;
    377	default:
    378		return false;
    379	}
    380}
    381
    382static const struct regmap_config emc1403_regmap_config = {
    383	.reg_bits = 8,
    384	.val_bits = 8,
    385	.cache_type = REGCACHE_RBTREE,
    386	.volatile_reg = emc1403_regmap_is_volatile,
    387};
    388
    389static const struct i2c_device_id emc1403_idtable[];
    390
    391static int emc1403_probe(struct i2c_client *client)
    392{
    393	struct thermal_data *data;
    394	struct device *hwmon_dev;
    395	const struct i2c_device_id *id = i2c_match_id(emc1403_idtable, client);
    396
    397	data = devm_kzalloc(&client->dev, sizeof(struct thermal_data),
    398			    GFP_KERNEL);
    399	if (data == NULL)
    400		return -ENOMEM;
    401
    402	data->regmap = devm_regmap_init_i2c(client, &emc1403_regmap_config);
    403	if (IS_ERR(data->regmap))
    404		return PTR_ERR(data->regmap);
    405
    406	mutex_init(&data->mutex);
    407
    408	switch (id->driver_data) {
    409	case emc1404:
    410		data->groups[2] = &emc1404_group;
    411		fallthrough;
    412	case emc1403:
    413		data->groups[1] = &emc1403_group;
    414		fallthrough;
    415	case emc1402:
    416		data->groups[0] = &emc1402_group;
    417	}
    418
    419	if (id->driver_data == emc1402)
    420		data->groups[1] = &emc1402_alarm_group;
    421
    422	hwmon_dev = devm_hwmon_device_register_with_groups(&client->dev,
    423							   client->name, data,
    424							   data->groups);
    425	if (IS_ERR(hwmon_dev))
    426		return PTR_ERR(hwmon_dev);
    427
    428	dev_info(&client->dev, "%s Thermal chip found\n", id->name);
    429	return 0;
    430}
    431
    432static const unsigned short emc1403_address_list[] = {
    433	0x18, 0x1c, 0x29, 0x4c, 0x4d, 0x5c, I2C_CLIENT_END
    434};
    435
    436/* Last digit of chip name indicates number of channels */
    437static const struct i2c_device_id emc1403_idtable[] = {
    438	{ "emc1402", emc1402 },
    439	{ "emc1403", emc1403 },
    440	{ "emc1404", emc1404 },
    441	{ "emc1412", emc1402 },
    442	{ "emc1413", emc1403 },
    443	{ "emc1414", emc1404 },
    444	{ "emc1422", emc1402 },
    445	{ "emc1423", emc1403 },
    446	{ "emc1424", emc1404 },
    447	{ }
    448};
    449MODULE_DEVICE_TABLE(i2c, emc1403_idtable);
    450
    451static struct i2c_driver sensor_emc1403 = {
    452	.class = I2C_CLASS_HWMON,
    453	.driver = {
    454		.name = "emc1403",
    455	},
    456	.detect = emc1403_detect,
    457	.probe_new = emc1403_probe,
    458	.id_table = emc1403_idtable,
    459	.address_list = emc1403_address_list,
    460};
    461
    462module_i2c_driver(sensor_emc1403);
    463
    464MODULE_AUTHOR("Kalhan Trisal <kalhan.trisal@intel.com");
    465MODULE_DESCRIPTION("emc1403 Thermal Driver");
    466MODULE_LICENSE("GPL v2");