cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

lineage-pem.c (14187B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * Driver for Lineage Compact Power Line series of power entry modules.
      4 *
      5 * Copyright (C) 2010, 2011 Ericsson AB.
      6 *
      7 * Documentation:
      8 *  http://www.lineagepower.com/oem/pdf/CPLI2C.pdf
      9 */
     10
     11#include <linux/kernel.h>
     12#include <linux/module.h>
     13#include <linux/init.h>
     14#include <linux/err.h>
     15#include <linux/slab.h>
     16#include <linux/i2c.h>
     17#include <linux/hwmon.h>
     18#include <linux/hwmon-sysfs.h>
     19#include <linux/jiffies.h>
     20
     21/*
     22 * This driver supports various Lineage Compact Power Line DC/DC and AC/DC
     23 * converters such as CP1800, CP2000AC, CP2000DC, CP2100DC, and others.
     24 *
     25 * The devices are nominally PMBus compliant. However, most standard PMBus
     26 * commands are not supported. Specifically, all hardware monitoring and
     27 * status reporting commands are non-standard. For this reason, a standard
     28 * PMBus driver can not be used.
     29 *
     30 * All Lineage CPL devices have a built-in I2C bus master selector (PCA9541).
     31 * To ensure device access, this driver should only be used as client driver
     32 * to the pca9541 I2C master selector driver.
     33 */
     34
     35/* Command codes */
     36#define PEM_OPERATION		0x01
     37#define PEM_CLEAR_INFO_FLAGS	0x03
     38#define PEM_VOUT_COMMAND	0x21
     39#define PEM_VOUT_OV_FAULT_LIMIT	0x40
     40#define PEM_READ_DATA_STRING	0xd0
     41#define PEM_READ_INPUT_STRING	0xdc
     42#define PEM_READ_FIRMWARE_REV	0xdd
     43#define PEM_READ_RUN_TIMER	0xde
     44#define PEM_FAN_HI_SPEED	0xdf
     45#define PEM_FAN_NORMAL_SPEED	0xe0
     46#define PEM_READ_FAN_SPEED	0xe1
     47
     48/* offsets in data string */
     49#define PEM_DATA_STATUS_2	0
     50#define PEM_DATA_STATUS_1	1
     51#define PEM_DATA_ALARM_2	2
     52#define PEM_DATA_ALARM_1	3
     53#define PEM_DATA_VOUT_LSB	4
     54#define PEM_DATA_VOUT_MSB	5
     55#define PEM_DATA_CURRENT	6
     56#define PEM_DATA_TEMP		7
     57
     58/* Virtual entries, to report constants */
     59#define PEM_DATA_TEMP_MAX	10
     60#define PEM_DATA_TEMP_CRIT	11
     61
     62/* offsets in input string */
     63#define PEM_INPUT_VOLTAGE	0
     64#define PEM_INPUT_POWER_LSB	1
     65#define PEM_INPUT_POWER_MSB	2
     66
     67/* offsets in fan data */
     68#define PEM_FAN_ADJUSTMENT	0
     69#define PEM_FAN_FAN1		1
     70#define PEM_FAN_FAN2		2
     71#define PEM_FAN_FAN3		3
     72
     73/* Status register bits */
     74#define STS1_OUTPUT_ON		(1 << 0)
     75#define STS1_LEDS_FLASHING	(1 << 1)
     76#define STS1_EXT_FAULT		(1 << 2)
     77#define STS1_SERVICE_LED_ON	(1 << 3)
     78#define STS1_SHUTDOWN_OCCURRED	(1 << 4)
     79#define STS1_INT_FAULT		(1 << 5)
     80#define STS1_ISOLATION_TEST_OK	(1 << 6)
     81
     82#define STS2_ENABLE_PIN_HI	(1 << 0)
     83#define STS2_DATA_OUT_RANGE	(1 << 1)
     84#define STS2_RESTARTED_OK	(1 << 1)
     85#define STS2_ISOLATION_TEST_FAIL (1 << 3)
     86#define STS2_HIGH_POWER_CAP	(1 << 4)
     87#define STS2_INVALID_INSTR	(1 << 5)
     88#define STS2_WILL_RESTART	(1 << 6)
     89#define STS2_PEC_ERR		(1 << 7)
     90
     91/* Alarm register bits */
     92#define ALRM1_VIN_OUT_LIMIT	(1 << 0)
     93#define ALRM1_VOUT_OUT_LIMIT	(1 << 1)
     94#define ALRM1_OV_VOLT_SHUTDOWN	(1 << 2)
     95#define ALRM1_VIN_OVERCURRENT	(1 << 3)
     96#define ALRM1_TEMP_WARNING	(1 << 4)
     97#define ALRM1_TEMP_SHUTDOWN	(1 << 5)
     98#define ALRM1_PRIMARY_FAULT	(1 << 6)
     99#define ALRM1_POWER_LIMIT	(1 << 7)
    100
    101#define ALRM2_5V_OUT_LIMIT	(1 << 1)
    102#define ALRM2_TEMP_FAULT	(1 << 2)
    103#define ALRM2_OV_LOW		(1 << 3)
    104#define ALRM2_DCDC_TEMP_HIGH	(1 << 4)
    105#define ALRM2_PRI_TEMP_HIGH	(1 << 5)
    106#define ALRM2_NO_PRIMARY	(1 << 6)
    107#define ALRM2_FAN_FAULT		(1 << 7)
    108
    109#define FIRMWARE_REV_LEN	4
    110#define DATA_STRING_LEN		9
    111#define INPUT_STRING_LEN	5	/* 4 for most devices	*/
    112#define FAN_SPEED_LEN		5
    113
    114struct pem_data {
    115	struct i2c_client *client;
    116	const struct attribute_group *groups[4];
    117
    118	struct mutex update_lock;
    119	bool valid;
    120	bool fans_supported;
    121	int input_length;
    122	unsigned long last_updated;	/* in jiffies */
    123
    124	u8 firmware_rev[FIRMWARE_REV_LEN];
    125	u8 data_string[DATA_STRING_LEN];
    126	u8 input_string[INPUT_STRING_LEN];
    127	u8 fan_speed[FAN_SPEED_LEN];
    128};
    129
    130static int pem_read_block(struct i2c_client *client, u8 command, u8 *data,
    131			  int data_len)
    132{
    133	u8 block_buffer[I2C_SMBUS_BLOCK_MAX];
    134	int result;
    135
    136	result = i2c_smbus_read_block_data(client, command, block_buffer);
    137	if (unlikely(result < 0))
    138		goto abort;
    139	if (unlikely(result == 0xff || result != data_len)) {
    140		result = -EIO;
    141		goto abort;
    142	}
    143	memcpy(data, block_buffer, data_len);
    144	result = 0;
    145abort:
    146	return result;
    147}
    148
    149static struct pem_data *pem_update_device(struct device *dev)
    150{
    151	struct pem_data *data = dev_get_drvdata(dev);
    152	struct i2c_client *client = data->client;
    153	struct pem_data *ret = data;
    154
    155	mutex_lock(&data->update_lock);
    156
    157	if (time_after(jiffies, data->last_updated + HZ) || !data->valid) {
    158		int result;
    159
    160		/* Read data string */
    161		result = pem_read_block(client, PEM_READ_DATA_STRING,
    162					data->data_string,
    163					sizeof(data->data_string));
    164		if (unlikely(result < 0)) {
    165			ret = ERR_PTR(result);
    166			goto abort;
    167		}
    168
    169		/* Read input string */
    170		if (data->input_length) {
    171			result = pem_read_block(client, PEM_READ_INPUT_STRING,
    172						data->input_string,
    173						data->input_length);
    174			if (unlikely(result < 0)) {
    175				ret = ERR_PTR(result);
    176				goto abort;
    177			}
    178		}
    179
    180		/* Read fan speeds */
    181		if (data->fans_supported) {
    182			result = pem_read_block(client, PEM_READ_FAN_SPEED,
    183						data->fan_speed,
    184						sizeof(data->fan_speed));
    185			if (unlikely(result < 0)) {
    186				ret = ERR_PTR(result);
    187				goto abort;
    188			}
    189		}
    190
    191		i2c_smbus_write_byte(client, PEM_CLEAR_INFO_FLAGS);
    192
    193		data->last_updated = jiffies;
    194		data->valid = true;
    195	}
    196abort:
    197	mutex_unlock(&data->update_lock);
    198	return ret;
    199}
    200
    201static long pem_get_data(u8 *data, int len, int index)
    202{
    203	long val;
    204
    205	switch (index) {
    206	case PEM_DATA_VOUT_LSB:
    207		val = (data[index] + (data[index+1] << 8)) * 5 / 2;
    208		break;
    209	case PEM_DATA_CURRENT:
    210		val = data[index] * 200;
    211		break;
    212	case PEM_DATA_TEMP:
    213		val = data[index] * 1000;
    214		break;
    215	case PEM_DATA_TEMP_MAX:
    216		val = 97 * 1000;	/* 97 degrees C per datasheet */
    217		break;
    218	case PEM_DATA_TEMP_CRIT:
    219		val = 107 * 1000;	/* 107 degrees C per datasheet */
    220		break;
    221	default:
    222		WARN_ON_ONCE(1);
    223		val = 0;
    224	}
    225	return val;
    226}
    227
    228static long pem_get_input(u8 *data, int len, int index)
    229{
    230	long val;
    231
    232	switch (index) {
    233	case PEM_INPUT_VOLTAGE:
    234		if (len == INPUT_STRING_LEN)
    235			val = (data[index] + (data[index+1] << 8) - 75) * 1000;
    236		else
    237			val = (data[index] - 75) * 1000;
    238		break;
    239	case PEM_INPUT_POWER_LSB:
    240		if (len == INPUT_STRING_LEN)
    241			index++;
    242		val = (data[index] + (data[index+1] << 8)) * 1000000L;
    243		break;
    244	default:
    245		WARN_ON_ONCE(1);
    246		val = 0;
    247	}
    248	return val;
    249}
    250
    251static long pem_get_fan(u8 *data, int len, int index)
    252{
    253	long val;
    254
    255	switch (index) {
    256	case PEM_FAN_FAN1:
    257	case PEM_FAN_FAN2:
    258	case PEM_FAN_FAN3:
    259		val = data[index] * 100;
    260		break;
    261	default:
    262		WARN_ON_ONCE(1);
    263		val = 0;
    264	}
    265	return val;
    266}
    267
    268/*
    269 * Show boolean, either a fault or an alarm.
    270 * .nr points to the register, .index is the bit mask to check
    271 */
    272static ssize_t pem_bool_show(struct device *dev, struct device_attribute *da,
    273			     char *buf)
    274{
    275	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(da);
    276	struct pem_data *data = pem_update_device(dev);
    277	u8 status;
    278
    279	if (IS_ERR(data))
    280		return PTR_ERR(data);
    281
    282	status = data->data_string[attr->nr] & attr->index;
    283	return sysfs_emit(buf, "%d\n", !!status);
    284}
    285
    286static ssize_t pem_data_show(struct device *dev, struct device_attribute *da,
    287			     char *buf)
    288{
    289	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
    290	struct pem_data *data = pem_update_device(dev);
    291	long value;
    292
    293	if (IS_ERR(data))
    294		return PTR_ERR(data);
    295
    296	value = pem_get_data(data->data_string, sizeof(data->data_string),
    297			     attr->index);
    298
    299	return sysfs_emit(buf, "%ld\n", value);
    300}
    301
    302static ssize_t pem_input_show(struct device *dev, struct device_attribute *da,
    303			      char *buf)
    304{
    305	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
    306	struct pem_data *data = pem_update_device(dev);
    307	long value;
    308
    309	if (IS_ERR(data))
    310		return PTR_ERR(data);
    311
    312	value = pem_get_input(data->input_string, sizeof(data->input_string),
    313			      attr->index);
    314
    315	return sysfs_emit(buf, "%ld\n", value);
    316}
    317
    318static ssize_t pem_fan_show(struct device *dev, struct device_attribute *da,
    319			    char *buf)
    320{
    321	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
    322	struct pem_data *data = pem_update_device(dev);
    323	long value;
    324
    325	if (IS_ERR(data))
    326		return PTR_ERR(data);
    327
    328	value = pem_get_fan(data->fan_speed, sizeof(data->fan_speed),
    329			    attr->index);
    330
    331	return sysfs_emit(buf, "%ld\n", value);
    332}
    333
    334/* Voltages */
    335static SENSOR_DEVICE_ATTR_RO(in1_input, pem_data, PEM_DATA_VOUT_LSB);
    336static SENSOR_DEVICE_ATTR_2_RO(in1_alarm, pem_bool, PEM_DATA_ALARM_1,
    337			       ALRM1_VOUT_OUT_LIMIT);
    338static SENSOR_DEVICE_ATTR_2_RO(in1_crit_alarm, pem_bool, PEM_DATA_ALARM_1,
    339			       ALRM1_OV_VOLT_SHUTDOWN);
    340static SENSOR_DEVICE_ATTR_RO(in2_input, pem_input, PEM_INPUT_VOLTAGE);
    341static SENSOR_DEVICE_ATTR_2_RO(in2_alarm, pem_bool, PEM_DATA_ALARM_1,
    342			       ALRM1_VIN_OUT_LIMIT | ALRM1_PRIMARY_FAULT);
    343
    344/* Currents */
    345static SENSOR_DEVICE_ATTR_RO(curr1_input, pem_data, PEM_DATA_CURRENT);
    346static SENSOR_DEVICE_ATTR_2_RO(curr1_alarm, pem_bool, PEM_DATA_ALARM_1,
    347			       ALRM1_VIN_OVERCURRENT);
    348
    349/* Power */
    350static SENSOR_DEVICE_ATTR_RO(power1_input, pem_input, PEM_INPUT_POWER_LSB);
    351static SENSOR_DEVICE_ATTR_2_RO(power1_alarm, pem_bool, PEM_DATA_ALARM_1,
    352			       ALRM1_POWER_LIMIT);
    353
    354/* Fans */
    355static SENSOR_DEVICE_ATTR_RO(fan1_input, pem_fan, PEM_FAN_FAN1);
    356static SENSOR_DEVICE_ATTR_RO(fan2_input, pem_fan, PEM_FAN_FAN2);
    357static SENSOR_DEVICE_ATTR_RO(fan3_input, pem_fan, PEM_FAN_FAN3);
    358static SENSOR_DEVICE_ATTR_2_RO(fan1_alarm, pem_bool, PEM_DATA_ALARM_2,
    359			       ALRM2_FAN_FAULT);
    360
    361/* Temperatures */
    362static SENSOR_DEVICE_ATTR_RO(temp1_input, pem_data, PEM_DATA_TEMP);
    363static SENSOR_DEVICE_ATTR_RO(temp1_max, pem_data, PEM_DATA_TEMP_MAX);
    364static SENSOR_DEVICE_ATTR_RO(temp1_crit, pem_data, PEM_DATA_TEMP_CRIT);
    365static SENSOR_DEVICE_ATTR_2_RO(temp1_alarm, pem_bool, PEM_DATA_ALARM_1,
    366			       ALRM1_TEMP_WARNING);
    367static SENSOR_DEVICE_ATTR_2_RO(temp1_crit_alarm, pem_bool, PEM_DATA_ALARM_1,
    368			       ALRM1_TEMP_SHUTDOWN);
    369static SENSOR_DEVICE_ATTR_2_RO(temp1_fault, pem_bool, PEM_DATA_ALARM_2,
    370			       ALRM2_TEMP_FAULT);
    371
    372static struct attribute *pem_attributes[] = {
    373	&sensor_dev_attr_in1_input.dev_attr.attr,
    374	&sensor_dev_attr_in1_alarm.dev_attr.attr,
    375	&sensor_dev_attr_in1_crit_alarm.dev_attr.attr,
    376	&sensor_dev_attr_in2_alarm.dev_attr.attr,
    377
    378	&sensor_dev_attr_curr1_alarm.dev_attr.attr,
    379
    380	&sensor_dev_attr_power1_alarm.dev_attr.attr,
    381
    382	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
    383
    384	&sensor_dev_attr_temp1_input.dev_attr.attr,
    385	&sensor_dev_attr_temp1_max.dev_attr.attr,
    386	&sensor_dev_attr_temp1_crit.dev_attr.attr,
    387	&sensor_dev_attr_temp1_alarm.dev_attr.attr,
    388	&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
    389	&sensor_dev_attr_temp1_fault.dev_attr.attr,
    390
    391	NULL,
    392};
    393
    394static const struct attribute_group pem_group = {
    395	.attrs = pem_attributes,
    396};
    397
    398static struct attribute *pem_input_attributes[] = {
    399	&sensor_dev_attr_in2_input.dev_attr.attr,
    400	&sensor_dev_attr_curr1_input.dev_attr.attr,
    401	&sensor_dev_attr_power1_input.dev_attr.attr,
    402	NULL
    403};
    404
    405static const struct attribute_group pem_input_group = {
    406	.attrs = pem_input_attributes,
    407};
    408
    409static struct attribute *pem_fan_attributes[] = {
    410	&sensor_dev_attr_fan1_input.dev_attr.attr,
    411	&sensor_dev_attr_fan2_input.dev_attr.attr,
    412	&sensor_dev_attr_fan3_input.dev_attr.attr,
    413	NULL
    414};
    415
    416static const struct attribute_group pem_fan_group = {
    417	.attrs = pem_fan_attributes,
    418};
    419
    420static int pem_probe(struct i2c_client *client)
    421{
    422	struct i2c_adapter *adapter = client->adapter;
    423	struct device *dev = &client->dev;
    424	struct device *hwmon_dev;
    425	struct pem_data *data;
    426	int ret, idx = 0;
    427
    428	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BLOCK_DATA
    429				     | I2C_FUNC_SMBUS_WRITE_BYTE))
    430		return -ENODEV;
    431
    432	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
    433	if (!data)
    434		return -ENOMEM;
    435
    436	data->client = client;
    437	mutex_init(&data->update_lock);
    438
    439	/*
    440	 * We use the next two commands to determine if the device is really
    441	 * there.
    442	 */
    443	ret = pem_read_block(client, PEM_READ_FIRMWARE_REV,
    444			     data->firmware_rev, sizeof(data->firmware_rev));
    445	if (ret < 0)
    446		return ret;
    447
    448	ret = i2c_smbus_write_byte(client, PEM_CLEAR_INFO_FLAGS);
    449	if (ret < 0)
    450		return ret;
    451
    452	dev_info(dev, "Firmware revision %d.%d.%d\n",
    453		 data->firmware_rev[0], data->firmware_rev[1],
    454		 data->firmware_rev[2]);
    455
    456	/* sysfs hooks */
    457	data->groups[idx++] = &pem_group;
    458
    459	/*
    460	 * Check if input readings are supported.
    461	 * This is the case if we can read input data,
    462	 * and if the returned data is not all zeros.
    463	 * Note that input alarms are always supported.
    464	 */
    465	ret = pem_read_block(client, PEM_READ_INPUT_STRING,
    466			     data->input_string,
    467			     sizeof(data->input_string) - 1);
    468	if (!ret && (data->input_string[0] || data->input_string[1] ||
    469		     data->input_string[2]))
    470		data->input_length = sizeof(data->input_string) - 1;
    471	else if (ret < 0) {
    472		/* Input string is one byte longer for some devices */
    473		ret = pem_read_block(client, PEM_READ_INPUT_STRING,
    474				    data->input_string,
    475				    sizeof(data->input_string));
    476		if (!ret && (data->input_string[0] || data->input_string[1] ||
    477			    data->input_string[2] || data->input_string[3]))
    478			data->input_length = sizeof(data->input_string);
    479	}
    480
    481	if (data->input_length)
    482		data->groups[idx++] = &pem_input_group;
    483
    484	/*
    485	 * Check if fan speed readings are supported.
    486	 * This is the case if we can read fan speed data,
    487	 * and if the returned data is not all zeros.
    488	 * Note that the fan alarm is always supported.
    489	 */
    490	ret = pem_read_block(client, PEM_READ_FAN_SPEED,
    491			     data->fan_speed,
    492			     sizeof(data->fan_speed));
    493	if (!ret && (data->fan_speed[0] || data->fan_speed[1] ||
    494		     data->fan_speed[2] || data->fan_speed[3])) {
    495		data->fans_supported = true;
    496		data->groups[idx++] = &pem_fan_group;
    497	}
    498
    499	hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
    500							   data, data->groups);
    501	return PTR_ERR_OR_ZERO(hwmon_dev);
    502}
    503
    504static const struct i2c_device_id pem_id[] = {
    505	{"lineage_pem", 0},
    506	{}
    507};
    508MODULE_DEVICE_TABLE(i2c, pem_id);
    509
    510static struct i2c_driver pem_driver = {
    511	.driver = {
    512		   .name = "lineage_pem",
    513		   },
    514	.probe_new = pem_probe,
    515	.id_table = pem_id,
    516};
    517
    518module_i2c_driver(pem_driver);
    519
    520MODULE_AUTHOR("Guenter Roeck <linux@roeck-us.net>");
    521MODULE_DESCRIPTION("Lineage CPL PEM hardware monitoring driver");
    522MODULE_LICENSE("GPL");