cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

smm665.c (20775B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Driver for SMM665 Power Controller / Monitor
      4 *
      5 * Copyright (C) 2010 Ericsson AB.
      6 *
      7 * This driver should also work for SMM465, SMM764, and SMM766, but is untested
      8 * for those chips. Only monitoring functionality is implemented.
      9 *
     10 * Datasheets:
     11 * http://www.summitmicro.com/prod_select/summary/SMM665/SMM665B_2089_20.pdf
     12 * http://www.summitmicro.com/prod_select/summary/SMM766B/SMM766B_2122.pdf
     13 */
     14
     15#include <linux/kernel.h>
     16#include <linux/module.h>
     17#include <linux/init.h>
     18#include <linux/err.h>
     19#include <linux/slab.h>
     20#include <linux/i2c.h>
     21#include <linux/hwmon.h>
     22#include <linux/hwmon-sysfs.h>
     23#include <linux/delay.h>
     24#include <linux/jiffies.h>
     25
     26/* Internal reference voltage (VREF, x 1000 */
     27#define SMM665_VREF_ADC_X1000	1250
     28
     29/* module parameters */
     30static int vref = SMM665_VREF_ADC_X1000;
     31module_param(vref, int, 0);
     32MODULE_PARM_DESC(vref, "Reference voltage in mV");
     33
     34enum chips { smm465, smm665, smm665c, smm764, smm766 };
     35
     36/*
     37 * ADC channel addresses
     38 */
     39#define	SMM665_MISC16_ADC_DATA_A	0x00
     40#define	SMM665_MISC16_ADC_DATA_B	0x01
     41#define	SMM665_MISC16_ADC_DATA_C	0x02
     42#define	SMM665_MISC16_ADC_DATA_D	0x03
     43#define	SMM665_MISC16_ADC_DATA_E	0x04
     44#define	SMM665_MISC16_ADC_DATA_F	0x05
     45#define	SMM665_MISC16_ADC_DATA_VDD	0x06
     46#define	SMM665_MISC16_ADC_DATA_12V	0x07
     47#define	SMM665_MISC16_ADC_DATA_INT_TEMP	0x08
     48#define	SMM665_MISC16_ADC_DATA_AIN1	0x09
     49#define	SMM665_MISC16_ADC_DATA_AIN2	0x0a
     50
     51/*
     52 * Command registers
     53 */
     54#define	SMM665_MISC8_CMD_STS		0x80
     55#define	SMM665_MISC8_STATUS1		0x81
     56#define	SMM665_MISC8_STATUSS2		0x82
     57#define	SMM665_MISC8_IO_POLARITY	0x83
     58#define	SMM665_MISC8_PUP_POLARITY	0x84
     59#define	SMM665_MISC8_ADOC_STATUS1	0x85
     60#define	SMM665_MISC8_ADOC_STATUS2	0x86
     61#define	SMM665_MISC8_WRITE_PROT		0x87
     62#define	SMM665_MISC8_STS_TRACK		0x88
     63
     64/*
     65 * Configuration registers and register groups
     66 */
     67#define SMM665_ADOC_ENABLE		0x0d
     68#define SMM665_LIMIT_BASE		0x80	/* First limit register */
     69
     70/*
     71 * Limit register bit masks
     72 */
     73#define SMM665_TRIGGER_RST		0x8000
     74#define SMM665_TRIGGER_HEALTHY		0x4000
     75#define SMM665_TRIGGER_POWEROFF		0x2000
     76#define SMM665_TRIGGER_SHUTDOWN		0x1000
     77#define SMM665_ADC_MASK			0x03ff
     78
     79#define smm665_is_critical(lim)	((lim) & (SMM665_TRIGGER_RST \
     80					| SMM665_TRIGGER_POWEROFF \
     81					| SMM665_TRIGGER_SHUTDOWN))
     82/*
     83 * Fault register bit definitions
     84 * Values are merged from status registers 1/2,
     85 * with status register 1 providing the upper 8 bits.
     86 */
     87#define SMM665_FAULT_A		0x0001
     88#define SMM665_FAULT_B		0x0002
     89#define SMM665_FAULT_C		0x0004
     90#define SMM665_FAULT_D		0x0008
     91#define SMM665_FAULT_E		0x0010
     92#define SMM665_FAULT_F		0x0020
     93#define SMM665_FAULT_VDD	0x0040
     94#define SMM665_FAULT_12V	0x0080
     95#define SMM665_FAULT_TEMP	0x0100
     96#define SMM665_FAULT_AIN1	0x0200
     97#define SMM665_FAULT_AIN2	0x0400
     98
     99/*
    100 * I2C Register addresses
    101 *
    102 * The configuration register needs to be the configured base register.
    103 * The command/status register address is derived from it.
    104 */
    105#define SMM665_REGMASK		0x78
    106#define SMM665_CMDREG_BASE	0x48
    107#define SMM665_CONFREG_BASE	0x50
    108
    109/*
    110 *  Equations given by chip manufacturer to calculate voltage/temperature values
    111 *  vref = Reference voltage on VREF_ADC pin (module parameter)
    112 *  adc  = 10bit ADC value read back from registers
    113 */
    114
    115/* Voltage A-F and VDD */
    116#define SMM665_VMON_ADC_TO_VOLTS(adc)  ((adc) * vref / 256)
    117
    118/* Voltage 12VIN */
    119#define SMM665_12VIN_ADC_TO_VOLTS(adc) ((adc) * vref * 3 / 256)
    120
    121/* Voltage AIN1, AIN2 */
    122#define SMM665_AIN_ADC_TO_VOLTS(adc)   ((adc) * vref / 512)
    123
    124/* Temp Sensor */
    125#define SMM665_TEMP_ADC_TO_CELSIUS(adc) (((adc) <= 511) ?		   \
    126					 ((int)(adc) * 1000 / 4) :	   \
    127					 (((int)(adc) - 0x400) * 1000 / 4))
    128
    129#define SMM665_NUM_ADC		11
    130
    131/*
    132 * Chip dependent ADC conversion time, in uS
    133 */
    134#define SMM665_ADC_WAIT_SMM665	70
    135#define SMM665_ADC_WAIT_SMM766	185
    136
    137struct smm665_data {
    138	enum chips type;
    139	int conversion_time;		/* ADC conversion time */
    140	struct i2c_client *client;
    141	struct mutex update_lock;
    142	bool valid;
    143	unsigned long last_updated;	/* in jiffies */
    144	u16 adc[SMM665_NUM_ADC];	/* adc values (raw) */
    145	u16 faults;			/* fault status */
    146	/* The following values are in mV */
    147	int critical_min_limit[SMM665_NUM_ADC];
    148	int alarm_min_limit[SMM665_NUM_ADC];
    149	int critical_max_limit[SMM665_NUM_ADC];
    150	int alarm_max_limit[SMM665_NUM_ADC];
    151	struct i2c_client *cmdreg;
    152};
    153
    154/*
    155 * smm665_read16()
    156 *
    157 * Read 16 bit value from <reg>, <reg+1>. Upper 8 bits are in <reg>.
    158 */
    159static int smm665_read16(struct i2c_client *client, int reg)
    160{
    161	int rv, val;
    162
    163	rv = i2c_smbus_read_byte_data(client, reg);
    164	if (rv < 0)
    165		return rv;
    166	val = rv << 8;
    167	rv = i2c_smbus_read_byte_data(client, reg + 1);
    168	if (rv < 0)
    169		return rv;
    170	val |= rv;
    171	return val;
    172}
    173
    174/*
    175 * Read adc value.
    176 */
    177static int smm665_read_adc(struct smm665_data *data, int adc)
    178{
    179	struct i2c_client *client = data->cmdreg;
    180	int rv;
    181	int radc;
    182
    183	/*
    184	 * Algorithm for reading ADC, per SMM665 datasheet
    185	 *
    186	 *  {[S][addr][W][Ack]} {[offset][Ack]} {[S][addr][R][Nack]}
    187	 * [wait conversion time]
    188	 *  {[S][addr][R][Ack]} {[datahi][Ack]} {[datalo][Ack][P]}
    189	 *
    190	 * To implement the first part of this exchange,
    191	 * do a full read transaction and expect a failure/Nack.
    192	 * This sets up the address pointer on the SMM665
    193	 * and starts the ADC conversion.
    194	 * Then do a two-byte read transaction.
    195	 */
    196	rv = i2c_smbus_read_byte_data(client, adc << 3);
    197	if (rv != -ENXIO) {
    198		/*
    199		 * We expect ENXIO to reflect NACK
    200		 * (per Documentation/i2c/fault-codes.rst).
    201		 * Everything else is an error.
    202		 */
    203		dev_dbg(&client->dev,
    204			"Unexpected return code %d when setting ADC index", rv);
    205		return (rv < 0) ? rv : -EIO;
    206	}
    207
    208	udelay(data->conversion_time);
    209
    210	/*
    211	 * Now read two bytes.
    212	 *
    213	 * Neither i2c_smbus_read_byte() nor
    214	 * i2c_smbus_read_block_data() worked here,
    215	 * so use i2c_smbus_read_word_swapped() instead.
    216	 * We could also try to use i2c_master_recv(),
    217	 * but that is not always supported.
    218	 */
    219	rv = i2c_smbus_read_word_swapped(client, 0);
    220	if (rv < 0) {
    221		dev_dbg(&client->dev, "Failed to read ADC value: error %d", rv);
    222		return rv;
    223	}
    224	/*
    225	 * Validate/verify readback adc channel (in bit 11..14).
    226	 */
    227	radc = (rv >> 11) & 0x0f;
    228	if (radc != adc) {
    229		dev_dbg(&client->dev, "Unexpected RADC: Expected %d got %d",
    230			adc, radc);
    231		return -EIO;
    232	}
    233
    234	return rv & SMM665_ADC_MASK;
    235}
    236
    237static struct smm665_data *smm665_update_device(struct device *dev)
    238{
    239	struct smm665_data *data = dev_get_drvdata(dev);
    240	struct i2c_client *client = data->client;
    241	struct smm665_data *ret = data;
    242
    243	mutex_lock(&data->update_lock);
    244
    245	if (time_after(jiffies, data->last_updated + HZ) || !data->valid) {
    246		int i, val;
    247
    248		/*
    249		 * read status registers
    250		 */
    251		val = smm665_read16(client, SMM665_MISC8_STATUS1);
    252		if (unlikely(val < 0)) {
    253			ret = ERR_PTR(val);
    254			goto abort;
    255		}
    256		data->faults = val;
    257
    258		/* Read adc registers */
    259		for (i = 0; i < SMM665_NUM_ADC; i++) {
    260			val = smm665_read_adc(data, i);
    261			if (unlikely(val < 0)) {
    262				ret = ERR_PTR(val);
    263				goto abort;
    264			}
    265			data->adc[i] = val;
    266		}
    267		data->last_updated = jiffies;
    268		data->valid = true;
    269	}
    270abort:
    271	mutex_unlock(&data->update_lock);
    272	return ret;
    273}
    274
    275/* Return converted value from given adc */
    276static int smm665_convert(u16 adcval, int index)
    277{
    278	int val = 0;
    279
    280	switch (index) {
    281	case SMM665_MISC16_ADC_DATA_12V:
    282		val = SMM665_12VIN_ADC_TO_VOLTS(adcval & SMM665_ADC_MASK);
    283		break;
    284
    285	case SMM665_MISC16_ADC_DATA_VDD:
    286	case SMM665_MISC16_ADC_DATA_A:
    287	case SMM665_MISC16_ADC_DATA_B:
    288	case SMM665_MISC16_ADC_DATA_C:
    289	case SMM665_MISC16_ADC_DATA_D:
    290	case SMM665_MISC16_ADC_DATA_E:
    291	case SMM665_MISC16_ADC_DATA_F:
    292		val = SMM665_VMON_ADC_TO_VOLTS(adcval & SMM665_ADC_MASK);
    293		break;
    294
    295	case SMM665_MISC16_ADC_DATA_AIN1:
    296	case SMM665_MISC16_ADC_DATA_AIN2:
    297		val = SMM665_AIN_ADC_TO_VOLTS(adcval & SMM665_ADC_MASK);
    298		break;
    299
    300	case SMM665_MISC16_ADC_DATA_INT_TEMP:
    301		val = SMM665_TEMP_ADC_TO_CELSIUS(adcval & SMM665_ADC_MASK);
    302		break;
    303
    304	default:
    305		/* If we get here, the developer messed up */
    306		WARN_ON_ONCE(1);
    307		break;
    308	}
    309
    310	return val;
    311}
    312
    313static int smm665_get_min(struct device *dev, int index)
    314{
    315	struct smm665_data *data = dev_get_drvdata(dev);
    316
    317	return data->alarm_min_limit[index];
    318}
    319
    320static int smm665_get_max(struct device *dev, int index)
    321{
    322	struct smm665_data *data = dev_get_drvdata(dev);
    323
    324	return data->alarm_max_limit[index];
    325}
    326
    327static int smm665_get_lcrit(struct device *dev, int index)
    328{
    329	struct smm665_data *data = dev_get_drvdata(dev);
    330
    331	return data->critical_min_limit[index];
    332}
    333
    334static int smm665_get_crit(struct device *dev, int index)
    335{
    336	struct smm665_data *data = dev_get_drvdata(dev);
    337
    338	return data->critical_max_limit[index];
    339}
    340
    341static ssize_t smm665_show_crit_alarm(struct device *dev,
    342				      struct device_attribute *da, char *buf)
    343{
    344	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
    345	struct smm665_data *data = smm665_update_device(dev);
    346	int val = 0;
    347
    348	if (IS_ERR(data))
    349		return PTR_ERR(data);
    350
    351	if (data->faults & (1 << attr->index))
    352		val = 1;
    353
    354	return sysfs_emit(buf, "%d\n", val);
    355}
    356
    357static ssize_t smm665_show_input(struct device *dev,
    358				 struct device_attribute *da, char *buf)
    359{
    360	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
    361	struct smm665_data *data = smm665_update_device(dev);
    362	int adc = attr->index;
    363	int val;
    364
    365	if (IS_ERR(data))
    366		return PTR_ERR(data);
    367
    368	val = smm665_convert(data->adc[adc], adc);
    369	return sysfs_emit(buf, "%d\n", val);
    370}
    371
    372#define SMM665_SHOW(what) \
    373static ssize_t smm665_show_##what(struct device *dev, \
    374				    struct device_attribute *da, char *buf) \
    375{ \
    376	struct sensor_device_attribute *attr = to_sensor_dev_attr(da); \
    377	const int val = smm665_get_##what(dev, attr->index); \
    378	return snprintf(buf, PAGE_SIZE, "%d\n", val); \
    379}
    380
    381SMM665_SHOW(min);
    382SMM665_SHOW(max);
    383SMM665_SHOW(lcrit);
    384SMM665_SHOW(crit);
    385
    386/*
    387 * These macros are used below in constructing device attribute objects
    388 * for use with sysfs_create_group() to make a sysfs device file
    389 * for each register.
    390 */
    391
    392#define SMM665_ATTR(name, type, cmd_idx) \
    393	static SENSOR_DEVICE_ATTR(name##_##type, S_IRUGO, \
    394				  smm665_show_##type, NULL, cmd_idx)
    395
    396/* Construct a sensor_device_attribute structure for each register */
    397
    398/* Input voltages */
    399SMM665_ATTR(in1, input, SMM665_MISC16_ADC_DATA_12V);
    400SMM665_ATTR(in2, input, SMM665_MISC16_ADC_DATA_VDD);
    401SMM665_ATTR(in3, input, SMM665_MISC16_ADC_DATA_A);
    402SMM665_ATTR(in4, input, SMM665_MISC16_ADC_DATA_B);
    403SMM665_ATTR(in5, input, SMM665_MISC16_ADC_DATA_C);
    404SMM665_ATTR(in6, input, SMM665_MISC16_ADC_DATA_D);
    405SMM665_ATTR(in7, input, SMM665_MISC16_ADC_DATA_E);
    406SMM665_ATTR(in8, input, SMM665_MISC16_ADC_DATA_F);
    407SMM665_ATTR(in9, input, SMM665_MISC16_ADC_DATA_AIN1);
    408SMM665_ATTR(in10, input, SMM665_MISC16_ADC_DATA_AIN2);
    409
    410/* Input voltages min */
    411SMM665_ATTR(in1, min, SMM665_MISC16_ADC_DATA_12V);
    412SMM665_ATTR(in2, min, SMM665_MISC16_ADC_DATA_VDD);
    413SMM665_ATTR(in3, min, SMM665_MISC16_ADC_DATA_A);
    414SMM665_ATTR(in4, min, SMM665_MISC16_ADC_DATA_B);
    415SMM665_ATTR(in5, min, SMM665_MISC16_ADC_DATA_C);
    416SMM665_ATTR(in6, min, SMM665_MISC16_ADC_DATA_D);
    417SMM665_ATTR(in7, min, SMM665_MISC16_ADC_DATA_E);
    418SMM665_ATTR(in8, min, SMM665_MISC16_ADC_DATA_F);
    419SMM665_ATTR(in9, min, SMM665_MISC16_ADC_DATA_AIN1);
    420SMM665_ATTR(in10, min, SMM665_MISC16_ADC_DATA_AIN2);
    421
    422/* Input voltages max */
    423SMM665_ATTR(in1, max, SMM665_MISC16_ADC_DATA_12V);
    424SMM665_ATTR(in2, max, SMM665_MISC16_ADC_DATA_VDD);
    425SMM665_ATTR(in3, max, SMM665_MISC16_ADC_DATA_A);
    426SMM665_ATTR(in4, max, SMM665_MISC16_ADC_DATA_B);
    427SMM665_ATTR(in5, max, SMM665_MISC16_ADC_DATA_C);
    428SMM665_ATTR(in6, max, SMM665_MISC16_ADC_DATA_D);
    429SMM665_ATTR(in7, max, SMM665_MISC16_ADC_DATA_E);
    430SMM665_ATTR(in8, max, SMM665_MISC16_ADC_DATA_F);
    431SMM665_ATTR(in9, max, SMM665_MISC16_ADC_DATA_AIN1);
    432SMM665_ATTR(in10, max, SMM665_MISC16_ADC_DATA_AIN2);
    433
    434/* Input voltages lcrit */
    435SMM665_ATTR(in1, lcrit, SMM665_MISC16_ADC_DATA_12V);
    436SMM665_ATTR(in2, lcrit, SMM665_MISC16_ADC_DATA_VDD);
    437SMM665_ATTR(in3, lcrit, SMM665_MISC16_ADC_DATA_A);
    438SMM665_ATTR(in4, lcrit, SMM665_MISC16_ADC_DATA_B);
    439SMM665_ATTR(in5, lcrit, SMM665_MISC16_ADC_DATA_C);
    440SMM665_ATTR(in6, lcrit, SMM665_MISC16_ADC_DATA_D);
    441SMM665_ATTR(in7, lcrit, SMM665_MISC16_ADC_DATA_E);
    442SMM665_ATTR(in8, lcrit, SMM665_MISC16_ADC_DATA_F);
    443SMM665_ATTR(in9, lcrit, SMM665_MISC16_ADC_DATA_AIN1);
    444SMM665_ATTR(in10, lcrit, SMM665_MISC16_ADC_DATA_AIN2);
    445
    446/* Input voltages crit */
    447SMM665_ATTR(in1, crit, SMM665_MISC16_ADC_DATA_12V);
    448SMM665_ATTR(in2, crit, SMM665_MISC16_ADC_DATA_VDD);
    449SMM665_ATTR(in3, crit, SMM665_MISC16_ADC_DATA_A);
    450SMM665_ATTR(in4, crit, SMM665_MISC16_ADC_DATA_B);
    451SMM665_ATTR(in5, crit, SMM665_MISC16_ADC_DATA_C);
    452SMM665_ATTR(in6, crit, SMM665_MISC16_ADC_DATA_D);
    453SMM665_ATTR(in7, crit, SMM665_MISC16_ADC_DATA_E);
    454SMM665_ATTR(in8, crit, SMM665_MISC16_ADC_DATA_F);
    455SMM665_ATTR(in9, crit, SMM665_MISC16_ADC_DATA_AIN1);
    456SMM665_ATTR(in10, crit, SMM665_MISC16_ADC_DATA_AIN2);
    457
    458/* critical alarms */
    459SMM665_ATTR(in1, crit_alarm, SMM665_FAULT_12V);
    460SMM665_ATTR(in2, crit_alarm, SMM665_FAULT_VDD);
    461SMM665_ATTR(in3, crit_alarm, SMM665_FAULT_A);
    462SMM665_ATTR(in4, crit_alarm, SMM665_FAULT_B);
    463SMM665_ATTR(in5, crit_alarm, SMM665_FAULT_C);
    464SMM665_ATTR(in6, crit_alarm, SMM665_FAULT_D);
    465SMM665_ATTR(in7, crit_alarm, SMM665_FAULT_E);
    466SMM665_ATTR(in8, crit_alarm, SMM665_FAULT_F);
    467SMM665_ATTR(in9, crit_alarm, SMM665_FAULT_AIN1);
    468SMM665_ATTR(in10, crit_alarm, SMM665_FAULT_AIN2);
    469
    470/* Temperature */
    471SMM665_ATTR(temp1, input, SMM665_MISC16_ADC_DATA_INT_TEMP);
    472SMM665_ATTR(temp1, min, SMM665_MISC16_ADC_DATA_INT_TEMP);
    473SMM665_ATTR(temp1, max, SMM665_MISC16_ADC_DATA_INT_TEMP);
    474SMM665_ATTR(temp1, lcrit, SMM665_MISC16_ADC_DATA_INT_TEMP);
    475SMM665_ATTR(temp1, crit, SMM665_MISC16_ADC_DATA_INT_TEMP);
    476SMM665_ATTR(temp1, crit_alarm, SMM665_FAULT_TEMP);
    477
    478/*
    479 * Finally, construct an array of pointers to members of the above objects,
    480 * as required for sysfs_create_group()
    481 */
    482static struct attribute *smm665_attrs[] = {
    483	&sensor_dev_attr_in1_input.dev_attr.attr,
    484	&sensor_dev_attr_in1_min.dev_attr.attr,
    485	&sensor_dev_attr_in1_max.dev_attr.attr,
    486	&sensor_dev_attr_in1_lcrit.dev_attr.attr,
    487	&sensor_dev_attr_in1_crit.dev_attr.attr,
    488	&sensor_dev_attr_in1_crit_alarm.dev_attr.attr,
    489
    490	&sensor_dev_attr_in2_input.dev_attr.attr,
    491	&sensor_dev_attr_in2_min.dev_attr.attr,
    492	&sensor_dev_attr_in2_max.dev_attr.attr,
    493	&sensor_dev_attr_in2_lcrit.dev_attr.attr,
    494	&sensor_dev_attr_in2_crit.dev_attr.attr,
    495	&sensor_dev_attr_in2_crit_alarm.dev_attr.attr,
    496
    497	&sensor_dev_attr_in3_input.dev_attr.attr,
    498	&sensor_dev_attr_in3_min.dev_attr.attr,
    499	&sensor_dev_attr_in3_max.dev_attr.attr,
    500	&sensor_dev_attr_in3_lcrit.dev_attr.attr,
    501	&sensor_dev_attr_in3_crit.dev_attr.attr,
    502	&sensor_dev_attr_in3_crit_alarm.dev_attr.attr,
    503
    504	&sensor_dev_attr_in4_input.dev_attr.attr,
    505	&sensor_dev_attr_in4_min.dev_attr.attr,
    506	&sensor_dev_attr_in4_max.dev_attr.attr,
    507	&sensor_dev_attr_in4_lcrit.dev_attr.attr,
    508	&sensor_dev_attr_in4_crit.dev_attr.attr,
    509	&sensor_dev_attr_in4_crit_alarm.dev_attr.attr,
    510
    511	&sensor_dev_attr_in5_input.dev_attr.attr,
    512	&sensor_dev_attr_in5_min.dev_attr.attr,
    513	&sensor_dev_attr_in5_max.dev_attr.attr,
    514	&sensor_dev_attr_in5_lcrit.dev_attr.attr,
    515	&sensor_dev_attr_in5_crit.dev_attr.attr,
    516	&sensor_dev_attr_in5_crit_alarm.dev_attr.attr,
    517
    518	&sensor_dev_attr_in6_input.dev_attr.attr,
    519	&sensor_dev_attr_in6_min.dev_attr.attr,
    520	&sensor_dev_attr_in6_max.dev_attr.attr,
    521	&sensor_dev_attr_in6_lcrit.dev_attr.attr,
    522	&sensor_dev_attr_in6_crit.dev_attr.attr,
    523	&sensor_dev_attr_in6_crit_alarm.dev_attr.attr,
    524
    525	&sensor_dev_attr_in7_input.dev_attr.attr,
    526	&sensor_dev_attr_in7_min.dev_attr.attr,
    527	&sensor_dev_attr_in7_max.dev_attr.attr,
    528	&sensor_dev_attr_in7_lcrit.dev_attr.attr,
    529	&sensor_dev_attr_in7_crit.dev_attr.attr,
    530	&sensor_dev_attr_in7_crit_alarm.dev_attr.attr,
    531
    532	&sensor_dev_attr_in8_input.dev_attr.attr,
    533	&sensor_dev_attr_in8_min.dev_attr.attr,
    534	&sensor_dev_attr_in8_max.dev_attr.attr,
    535	&sensor_dev_attr_in8_lcrit.dev_attr.attr,
    536	&sensor_dev_attr_in8_crit.dev_attr.attr,
    537	&sensor_dev_attr_in8_crit_alarm.dev_attr.attr,
    538
    539	&sensor_dev_attr_in9_input.dev_attr.attr,
    540	&sensor_dev_attr_in9_min.dev_attr.attr,
    541	&sensor_dev_attr_in9_max.dev_attr.attr,
    542	&sensor_dev_attr_in9_lcrit.dev_attr.attr,
    543	&sensor_dev_attr_in9_crit.dev_attr.attr,
    544	&sensor_dev_attr_in9_crit_alarm.dev_attr.attr,
    545
    546	&sensor_dev_attr_in10_input.dev_attr.attr,
    547	&sensor_dev_attr_in10_min.dev_attr.attr,
    548	&sensor_dev_attr_in10_max.dev_attr.attr,
    549	&sensor_dev_attr_in10_lcrit.dev_attr.attr,
    550	&sensor_dev_attr_in10_crit.dev_attr.attr,
    551	&sensor_dev_attr_in10_crit_alarm.dev_attr.attr,
    552
    553	&sensor_dev_attr_temp1_input.dev_attr.attr,
    554	&sensor_dev_attr_temp1_min.dev_attr.attr,
    555	&sensor_dev_attr_temp1_max.dev_attr.attr,
    556	&sensor_dev_attr_temp1_lcrit.dev_attr.attr,
    557	&sensor_dev_attr_temp1_crit.dev_attr.attr,
    558	&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
    559
    560	NULL,
    561};
    562
    563ATTRIBUTE_GROUPS(smm665);
    564
    565static const struct i2c_device_id smm665_id[];
    566
    567static int smm665_probe(struct i2c_client *client)
    568{
    569	struct i2c_adapter *adapter = client->adapter;
    570	struct smm665_data *data;
    571	struct device *hwmon_dev;
    572	int i, ret;
    573
    574	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA
    575				     | I2C_FUNC_SMBUS_WORD_DATA))
    576		return -ENODEV;
    577
    578	if (i2c_smbus_read_byte_data(client, SMM665_ADOC_ENABLE) < 0)
    579		return -ENODEV;
    580
    581	data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
    582	if (!data)
    583		return -ENOMEM;
    584
    585	i2c_set_clientdata(client, data);
    586	mutex_init(&data->update_lock);
    587
    588	data->client = client;
    589	data->type = i2c_match_id(smm665_id, client)->driver_data;
    590	data->cmdreg = i2c_new_dummy_device(adapter, (client->addr & ~SMM665_REGMASK)
    591				     | SMM665_CMDREG_BASE);
    592	if (IS_ERR(data->cmdreg))
    593		return PTR_ERR(data->cmdreg);
    594
    595	switch (data->type) {
    596	case smm465:
    597	case smm665:
    598		data->conversion_time = SMM665_ADC_WAIT_SMM665;
    599		break;
    600	case smm665c:
    601	case smm764:
    602	case smm766:
    603		data->conversion_time = SMM665_ADC_WAIT_SMM766;
    604		break;
    605	}
    606
    607	ret = -ENODEV;
    608	if (i2c_smbus_read_byte_data(data->cmdreg, SMM665_MISC8_CMD_STS) < 0)
    609		goto out_unregister;
    610
    611	/*
    612	 * Read limits.
    613	 *
    614	 * Limit registers start with register SMM665_LIMIT_BASE.
    615	 * Each channel uses 8 registers, providing four limit values
    616	 * per channel. Each limit value requires two registers, with the
    617	 * high byte in the first register and the low byte in the second
    618	 * register. The first two limits are under limit values, followed
    619	 * by two over limit values.
    620	 *
    621	 * Limit register order matches the ADC register order, so we use
    622	 * ADC register defines throughout the code to index limit registers.
    623	 *
    624	 * We save the first retrieved value both as "critical" and "alarm"
    625	 * value. The second value overwrites either the critical or the
    626	 * alarm value, depending on its configuration. This ensures that both
    627	 * critical and alarm values are initialized, even if both registers are
    628	 * configured as critical or non-critical.
    629	 */
    630	for (i = 0; i < SMM665_NUM_ADC; i++) {
    631		int val;
    632
    633		val = smm665_read16(client, SMM665_LIMIT_BASE + i * 8);
    634		if (unlikely(val < 0))
    635			goto out_unregister;
    636		data->critical_min_limit[i] = data->alarm_min_limit[i]
    637		  = smm665_convert(val, i);
    638		val = smm665_read16(client, SMM665_LIMIT_BASE + i * 8 + 2);
    639		if (unlikely(val < 0))
    640			goto out_unregister;
    641		if (smm665_is_critical(val))
    642			data->critical_min_limit[i] = smm665_convert(val, i);
    643		else
    644			data->alarm_min_limit[i] = smm665_convert(val, i);
    645		val = smm665_read16(client, SMM665_LIMIT_BASE + i * 8 + 4);
    646		if (unlikely(val < 0))
    647			goto out_unregister;
    648		data->critical_max_limit[i] = data->alarm_max_limit[i]
    649		  = smm665_convert(val, i);
    650		val = smm665_read16(client, SMM665_LIMIT_BASE + i * 8 + 6);
    651		if (unlikely(val < 0))
    652			goto out_unregister;
    653		if (smm665_is_critical(val))
    654			data->critical_max_limit[i] = smm665_convert(val, i);
    655		else
    656			data->alarm_max_limit[i] = smm665_convert(val, i);
    657	}
    658
    659	hwmon_dev = devm_hwmon_device_register_with_groups(&client->dev,
    660							   client->name, data,
    661							   smm665_groups);
    662	if (IS_ERR(hwmon_dev)) {
    663		ret = PTR_ERR(hwmon_dev);
    664		goto out_unregister;
    665	}
    666
    667	return 0;
    668
    669out_unregister:
    670	i2c_unregister_device(data->cmdreg);
    671	return ret;
    672}
    673
    674static int smm665_remove(struct i2c_client *client)
    675{
    676	struct smm665_data *data = i2c_get_clientdata(client);
    677
    678	i2c_unregister_device(data->cmdreg);
    679	return 0;
    680}
    681
    682static const struct i2c_device_id smm665_id[] = {
    683	{"smm465", smm465},
    684	{"smm665", smm665},
    685	{"smm665c", smm665c},
    686	{"smm764", smm764},
    687	{"smm766", smm766},
    688	{}
    689};
    690
    691MODULE_DEVICE_TABLE(i2c, smm665_id);
    692
    693/* This is the driver that will be inserted */
    694static struct i2c_driver smm665_driver = {
    695	.driver = {
    696		   .name = "smm665",
    697		   },
    698	.probe_new = smm665_probe,
    699	.remove = smm665_remove,
    700	.id_table = smm665_id,
    701};
    702
    703module_i2c_driver(smm665_driver);
    704
    705MODULE_AUTHOR("Guenter Roeck");
    706MODULE_DESCRIPTION("SMM665 driver");
    707MODULE_LICENSE("GPL");