cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

i2c-at91-master.c (27987B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 *  i2c Support for Atmel's AT91 Two-Wire Interface (TWI)
      4 *
      5 *  Copyright (C) 2011 Weinmann Medical GmbH
      6 *  Author: Nikolaus Voss <n.voss@weinmann.de>
      7 *
      8 *  Evolved from original work by:
      9 *  Copyright (C) 2004 Rick Bronson
     10 *  Converted to 2.6 by Andrew Victor <andrew@sanpeople.com>
     11 *
     12 *  Borrowed heavily from original work by:
     13 *  Copyright (C) 2000 Philip Edelbrock <phil@stimpy.netroedge.com>
     14 */
     15
     16#include <linux/clk.h>
     17#include <linux/completion.h>
     18#include <linux/dma-mapping.h>
     19#include <linux/dmaengine.h>
     20#include <linux/err.h>
     21#include <linux/gpio/consumer.h>
     22#include <linux/i2c.h>
     23#include <linux/interrupt.h>
     24#include <linux/io.h>
     25#include <linux/of.h>
     26#include <linux/of_device.h>
     27#include <linux/pinctrl/consumer.h>
     28#include <linux/platform_device.h>
     29#include <linux/pm_runtime.h>
     30
     31#include "i2c-at91.h"
     32
     33void at91_init_twi_bus_master(struct at91_twi_dev *dev)
     34{
     35	struct at91_twi_pdata *pdata = dev->pdata;
     36	u32 filtr = 0;
     37
     38	/* FIFO should be enabled immediately after the software reset */
     39	if (dev->fifo_size)
     40		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_FIFOEN);
     41	at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_MSEN);
     42	at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_SVDIS);
     43	at91_twi_write(dev, AT91_TWI_CWGR, dev->twi_cwgr_reg);
     44
     45	/* enable digital filter */
     46	if (pdata->has_dig_filtr && dev->enable_dig_filt)
     47		filtr |= AT91_TWI_FILTR_FILT;
     48
     49	/* enable advanced digital filter */
     50	if (pdata->has_adv_dig_filtr && dev->enable_dig_filt)
     51		filtr |= AT91_TWI_FILTR_FILT |
     52			 (AT91_TWI_FILTR_THRES(dev->filter_width) &
     53			 AT91_TWI_FILTR_THRES_MASK);
     54
     55	/* enable analog filter */
     56	if (pdata->has_ana_filtr && dev->enable_ana_filt)
     57		filtr |= AT91_TWI_FILTR_PADFEN;
     58
     59	if (filtr)
     60		at91_twi_write(dev, AT91_TWI_FILTR, filtr);
     61}
     62
     63/*
     64 * Calculate symmetric clock as stated in datasheet:
     65 * twi_clk = F_MAIN / (2 * (cdiv * (1 << ckdiv) + offset))
     66 */
     67static void at91_calc_twi_clock(struct at91_twi_dev *dev)
     68{
     69	int ckdiv, cdiv, div, hold = 0, filter_width = 0;
     70	struct at91_twi_pdata *pdata = dev->pdata;
     71	int offset = pdata->clk_offset;
     72	int max_ckdiv = pdata->clk_max_div;
     73	struct i2c_timings timings, *t = &timings;
     74
     75	i2c_parse_fw_timings(dev->dev, t, true);
     76
     77	div = max(0, (int)DIV_ROUND_UP(clk_get_rate(dev->clk),
     78				       2 * t->bus_freq_hz) - offset);
     79	ckdiv = fls(div >> 8);
     80	cdiv = div >> ckdiv;
     81
     82	if (ckdiv > max_ckdiv) {
     83		dev_warn(dev->dev, "%d exceeds ckdiv max value which is %d.\n",
     84			 ckdiv, max_ckdiv);
     85		ckdiv = max_ckdiv;
     86		cdiv = 255;
     87	}
     88
     89	if (pdata->has_hold_field) {
     90		/*
     91		 * hold time = HOLD + 3 x T_peripheral_clock
     92		 * Use clk rate in kHz to prevent overflows when computing
     93		 * hold.
     94		 */
     95		hold = DIV_ROUND_UP(t->sda_hold_ns
     96				    * (clk_get_rate(dev->clk) / 1000), 1000000);
     97		hold -= 3;
     98		if (hold < 0)
     99			hold = 0;
    100		if (hold > AT91_TWI_CWGR_HOLD_MAX) {
    101			dev_warn(dev->dev,
    102				 "HOLD field set to its maximum value (%d instead of %d)\n",
    103				 AT91_TWI_CWGR_HOLD_MAX, hold);
    104			hold = AT91_TWI_CWGR_HOLD_MAX;
    105		}
    106	}
    107
    108	if (pdata->has_adv_dig_filtr) {
    109		/*
    110		 * filter width = 0 to AT91_TWI_FILTR_THRES_MAX
    111		 * peripheral clocks
    112		 */
    113		filter_width = DIV_ROUND_UP(t->digital_filter_width_ns
    114				* (clk_get_rate(dev->clk) / 1000), 1000000);
    115		if (filter_width > AT91_TWI_FILTR_THRES_MAX) {
    116			dev_warn(dev->dev,
    117				"Filter threshold set to its maximum value (%d instead of %d)\n",
    118				AT91_TWI_FILTR_THRES_MAX, filter_width);
    119			filter_width = AT91_TWI_FILTR_THRES_MAX;
    120		}
    121	}
    122
    123	dev->twi_cwgr_reg = (ckdiv << 16) | (cdiv << 8) | cdiv
    124			    | AT91_TWI_CWGR_HOLD(hold);
    125
    126	dev->filter_width = filter_width;
    127
    128	dev_dbg(dev->dev, "cdiv %d ckdiv %d hold %d (%d ns), filter_width %d (%d ns)\n",
    129		cdiv, ckdiv, hold, t->sda_hold_ns, filter_width,
    130		t->digital_filter_width_ns);
    131}
    132
    133static void at91_twi_dma_cleanup(struct at91_twi_dev *dev)
    134{
    135	struct at91_twi_dma *dma = &dev->dma;
    136
    137	at91_twi_irq_save(dev);
    138
    139	if (dma->xfer_in_progress) {
    140		if (dma->direction == DMA_FROM_DEVICE)
    141			dmaengine_terminate_sync(dma->chan_rx);
    142		else
    143			dmaengine_terminate_sync(dma->chan_tx);
    144		dma->xfer_in_progress = false;
    145	}
    146	if (dma->buf_mapped) {
    147		dma_unmap_single(dev->dev, sg_dma_address(&dma->sg[0]),
    148				 dev->buf_len, dma->direction);
    149		dma->buf_mapped = false;
    150	}
    151
    152	at91_twi_irq_restore(dev);
    153}
    154
    155static void at91_twi_write_next_byte(struct at91_twi_dev *dev)
    156{
    157	if (!dev->buf_len)
    158		return;
    159
    160	/* 8bit write works with and without FIFO */
    161	writeb_relaxed(*dev->buf, dev->base + AT91_TWI_THR);
    162
    163	/* send stop when last byte has been written */
    164	if (--dev->buf_len == 0) {
    165		if (!dev->use_alt_cmd)
    166			at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
    167		at91_twi_write(dev, AT91_TWI_IDR, AT91_TWI_TXRDY);
    168	}
    169
    170	dev_dbg(dev->dev, "wrote 0x%x, to go %zu\n", *dev->buf, dev->buf_len);
    171
    172	++dev->buf;
    173}
    174
    175static void at91_twi_write_data_dma_callback(void *data)
    176{
    177	struct at91_twi_dev *dev = (struct at91_twi_dev *)data;
    178
    179	dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg[0]),
    180			 dev->buf_len, DMA_TO_DEVICE);
    181
    182	/*
    183	 * When this callback is called, THR/TX FIFO is likely not to be empty
    184	 * yet. So we have to wait for TXCOMP or NACK bits to be set into the
    185	 * Status Register to be sure that the STOP bit has been sent and the
    186	 * transfer is completed. The NACK interrupt has already been enabled,
    187	 * we just have to enable TXCOMP one.
    188	 */
    189	at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP);
    190	if (!dev->use_alt_cmd)
    191		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
    192}
    193
    194static void at91_twi_write_data_dma(struct at91_twi_dev *dev)
    195{
    196	dma_addr_t dma_addr;
    197	struct dma_async_tx_descriptor *txdesc;
    198	struct at91_twi_dma *dma = &dev->dma;
    199	struct dma_chan *chan_tx = dma->chan_tx;
    200	unsigned int sg_len = 1;
    201
    202	if (!dev->buf_len)
    203		return;
    204
    205	dma->direction = DMA_TO_DEVICE;
    206
    207	at91_twi_irq_save(dev);
    208	dma_addr = dma_map_single(dev->dev, dev->buf, dev->buf_len,
    209				  DMA_TO_DEVICE);
    210	if (dma_mapping_error(dev->dev, dma_addr)) {
    211		dev_err(dev->dev, "dma map failed\n");
    212		return;
    213	}
    214	dma->buf_mapped = true;
    215	at91_twi_irq_restore(dev);
    216
    217	if (dev->fifo_size) {
    218		size_t part1_len, part2_len;
    219		struct scatterlist *sg;
    220		unsigned fifo_mr;
    221
    222		sg_len = 0;
    223
    224		part1_len = dev->buf_len & ~0x3;
    225		if (part1_len) {
    226			sg = &dma->sg[sg_len++];
    227			sg_dma_len(sg) = part1_len;
    228			sg_dma_address(sg) = dma_addr;
    229		}
    230
    231		part2_len = dev->buf_len & 0x3;
    232		if (part2_len) {
    233			sg = &dma->sg[sg_len++];
    234			sg_dma_len(sg) = part2_len;
    235			sg_dma_address(sg) = dma_addr + part1_len;
    236		}
    237
    238		/*
    239		 * DMA controller is triggered when at least 4 data can be
    240		 * written into the TX FIFO
    241		 */
    242		fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
    243		fifo_mr &= ~AT91_TWI_FMR_TXRDYM_MASK;
    244		fifo_mr |= AT91_TWI_FMR_TXRDYM(AT91_TWI_FOUR_DATA);
    245		at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
    246	} else {
    247		sg_dma_len(&dma->sg[0]) = dev->buf_len;
    248		sg_dma_address(&dma->sg[0]) = dma_addr;
    249	}
    250
    251	txdesc = dmaengine_prep_slave_sg(chan_tx, dma->sg, sg_len,
    252					 DMA_MEM_TO_DEV,
    253					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
    254	if (!txdesc) {
    255		dev_err(dev->dev, "dma prep slave sg failed\n");
    256		goto error;
    257	}
    258
    259	txdesc->callback = at91_twi_write_data_dma_callback;
    260	txdesc->callback_param = dev;
    261
    262	dma->xfer_in_progress = true;
    263	dmaengine_submit(txdesc);
    264	dma_async_issue_pending(chan_tx);
    265
    266	return;
    267
    268error:
    269	at91_twi_dma_cleanup(dev);
    270}
    271
    272static void at91_twi_read_next_byte(struct at91_twi_dev *dev)
    273{
    274	/*
    275	 * If we are in this case, it means there is garbage data in RHR, so
    276	 * delete them.
    277	 */
    278	if (!dev->buf_len) {
    279		at91_twi_read(dev, AT91_TWI_RHR);
    280		return;
    281	}
    282
    283	/* 8bit read works with and without FIFO */
    284	*dev->buf = readb_relaxed(dev->base + AT91_TWI_RHR);
    285	--dev->buf_len;
    286
    287	/* return if aborting, we only needed to read RHR to clear RXRDY*/
    288	if (dev->recv_len_abort)
    289		return;
    290
    291	/* handle I2C_SMBUS_BLOCK_DATA */
    292	if (unlikely(dev->msg->flags & I2C_M_RECV_LEN)) {
    293		/* ensure length byte is a valid value */
    294		if (*dev->buf <= I2C_SMBUS_BLOCK_MAX && *dev->buf > 0) {
    295			dev->msg->flags &= ~I2C_M_RECV_LEN;
    296			dev->buf_len += *dev->buf;
    297			dev->msg->len = dev->buf_len + 1;
    298			dev_dbg(dev->dev, "received block length %zu\n",
    299					 dev->buf_len);
    300		} else {
    301			/* abort and send the stop by reading one more byte */
    302			dev->recv_len_abort = true;
    303			dev->buf_len = 1;
    304		}
    305	}
    306
    307	/* send stop if second but last byte has been read */
    308	if (!dev->use_alt_cmd && dev->buf_len == 1)
    309		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
    310
    311	dev_dbg(dev->dev, "read 0x%x, to go %zu\n", *dev->buf, dev->buf_len);
    312
    313	++dev->buf;
    314}
    315
    316static void at91_twi_read_data_dma_callback(void *data)
    317{
    318	struct at91_twi_dev *dev = (struct at91_twi_dev *)data;
    319	unsigned ier = AT91_TWI_TXCOMP;
    320
    321	dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg[0]),
    322			 dev->buf_len, DMA_FROM_DEVICE);
    323
    324	if (!dev->use_alt_cmd) {
    325		/* The last two bytes have to be read without using dma */
    326		dev->buf += dev->buf_len - 2;
    327		dev->buf_len = 2;
    328		ier |= AT91_TWI_RXRDY;
    329	}
    330	at91_twi_write(dev, AT91_TWI_IER, ier);
    331}
    332
    333static void at91_twi_read_data_dma(struct at91_twi_dev *dev)
    334{
    335	dma_addr_t dma_addr;
    336	struct dma_async_tx_descriptor *rxdesc;
    337	struct at91_twi_dma *dma = &dev->dma;
    338	struct dma_chan *chan_rx = dma->chan_rx;
    339	size_t buf_len;
    340
    341	buf_len = (dev->use_alt_cmd) ? dev->buf_len : dev->buf_len - 2;
    342	dma->direction = DMA_FROM_DEVICE;
    343
    344	/* Keep in mind that we won't use dma to read the last two bytes */
    345	at91_twi_irq_save(dev);
    346	dma_addr = dma_map_single(dev->dev, dev->buf, buf_len, DMA_FROM_DEVICE);
    347	if (dma_mapping_error(dev->dev, dma_addr)) {
    348		dev_err(dev->dev, "dma map failed\n");
    349		return;
    350	}
    351	dma->buf_mapped = true;
    352	at91_twi_irq_restore(dev);
    353
    354	if (dev->fifo_size && IS_ALIGNED(buf_len, 4)) {
    355		unsigned fifo_mr;
    356
    357		/*
    358		 * DMA controller is triggered when at least 4 data can be
    359		 * read from the RX FIFO
    360		 */
    361		fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
    362		fifo_mr &= ~AT91_TWI_FMR_RXRDYM_MASK;
    363		fifo_mr |= AT91_TWI_FMR_RXRDYM(AT91_TWI_FOUR_DATA);
    364		at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
    365	}
    366
    367	sg_dma_len(&dma->sg[0]) = buf_len;
    368	sg_dma_address(&dma->sg[0]) = dma_addr;
    369
    370	rxdesc = dmaengine_prep_slave_sg(chan_rx, dma->sg, 1, DMA_DEV_TO_MEM,
    371					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
    372	if (!rxdesc) {
    373		dev_err(dev->dev, "dma prep slave sg failed\n");
    374		goto error;
    375	}
    376
    377	rxdesc->callback = at91_twi_read_data_dma_callback;
    378	rxdesc->callback_param = dev;
    379
    380	dma->xfer_in_progress = true;
    381	dmaengine_submit(rxdesc);
    382	dma_async_issue_pending(dma->chan_rx);
    383
    384	return;
    385
    386error:
    387	at91_twi_dma_cleanup(dev);
    388}
    389
    390static irqreturn_t atmel_twi_interrupt(int irq, void *dev_id)
    391{
    392	struct at91_twi_dev *dev = dev_id;
    393	const unsigned status = at91_twi_read(dev, AT91_TWI_SR);
    394	const unsigned irqstatus = status & at91_twi_read(dev, AT91_TWI_IMR);
    395
    396	if (!irqstatus)
    397		return IRQ_NONE;
    398	/*
    399	 * In reception, the behavior of the twi device (before sama5d2) is
    400	 * weird. There is some magic about RXRDY flag! When a data has been
    401	 * almost received, the reception of a new one is anticipated if there
    402	 * is no stop command to send. That is the reason why ask for sending
    403	 * the stop command not on the last data but on the second last one.
    404	 *
    405	 * Unfortunately, we could still have the RXRDY flag set even if the
    406	 * transfer is done and we have read the last data. It might happen
    407	 * when the i2c slave device sends too quickly data after receiving the
    408	 * ack from the master. The data has been almost received before having
    409	 * the order to send stop. In this case, sending the stop command could
    410	 * cause a RXRDY interrupt with a TXCOMP one. It is better to manage
    411	 * the RXRDY interrupt first in order to not keep garbage data in the
    412	 * Receive Holding Register for the next transfer.
    413	 */
    414	if (irqstatus & AT91_TWI_RXRDY) {
    415		/*
    416		 * Read all available bytes at once by polling RXRDY usable w/
    417		 * and w/o FIFO. With FIFO enabled we could also read RXFL and
    418		 * avoid polling RXRDY.
    419		 */
    420		do {
    421			at91_twi_read_next_byte(dev);
    422		} while (at91_twi_read(dev, AT91_TWI_SR) & AT91_TWI_RXRDY);
    423	}
    424
    425	/*
    426	 * When a NACK condition is detected, the I2C controller sets the NACK,
    427	 * TXCOMP and TXRDY bits all together in the Status Register (SR).
    428	 *
    429	 * 1 - Handling NACK errors with CPU write transfer.
    430	 *
    431	 * In such case, we should not write the next byte into the Transmit
    432	 * Holding Register (THR) otherwise the I2C controller would start a new
    433	 * transfer and the I2C slave is likely to reply by another NACK.
    434	 *
    435	 * 2 - Handling NACK errors with DMA write transfer.
    436	 *
    437	 * By setting the TXRDY bit in the SR, the I2C controller also triggers
    438	 * the DMA controller to write the next data into the THR. Then the
    439	 * result depends on the hardware version of the I2C controller.
    440	 *
    441	 * 2a - Without support of the Alternative Command mode.
    442	 *
    443	 * This is the worst case: the DMA controller is triggered to write the
    444	 * next data into the THR, hence starting a new transfer: the I2C slave
    445	 * is likely to reply by another NACK.
    446	 * Concurrently, this interrupt handler is likely to be called to manage
    447	 * the first NACK before the I2C controller detects the second NACK and
    448	 * sets once again the NACK bit into the SR.
    449	 * When handling the first NACK, this interrupt handler disables the I2C
    450	 * controller interruptions, especially the NACK interrupt.
    451	 * Hence, the NACK bit is pending into the SR. This is why we should
    452	 * read the SR to clear all pending interrupts at the beginning of
    453	 * at91_do_twi_transfer() before actually starting a new transfer.
    454	 *
    455	 * 2b - With support of the Alternative Command mode.
    456	 *
    457	 * When a NACK condition is detected, the I2C controller also locks the
    458	 * THR (and sets the LOCK bit in the SR): even though the DMA controller
    459	 * is triggered by the TXRDY bit to write the next data into the THR,
    460	 * this data actually won't go on the I2C bus hence a second NACK is not
    461	 * generated.
    462	 */
    463	if (irqstatus & (AT91_TWI_TXCOMP | AT91_TWI_NACK)) {
    464		at91_disable_twi_interrupts(dev);
    465		complete(&dev->cmd_complete);
    466	} else if (irqstatus & AT91_TWI_TXRDY) {
    467		at91_twi_write_next_byte(dev);
    468	}
    469
    470	/* catch error flags */
    471	dev->transfer_status |= status;
    472
    473	return IRQ_HANDLED;
    474}
    475
    476static int at91_do_twi_transfer(struct at91_twi_dev *dev)
    477{
    478	int ret;
    479	unsigned long time_left;
    480	bool has_unre_flag = dev->pdata->has_unre_flag;
    481	bool has_alt_cmd = dev->pdata->has_alt_cmd;
    482
    483	/*
    484	 * WARNING: the TXCOMP bit in the Status Register is NOT a clear on
    485	 * read flag but shows the state of the transmission at the time the
    486	 * Status Register is read. According to the programmer datasheet,
    487	 * TXCOMP is set when both holding register and internal shifter are
    488	 * empty and STOP condition has been sent.
    489	 * Consequently, we should enable NACK interrupt rather than TXCOMP to
    490	 * detect transmission failure.
    491	 * Indeed let's take the case of an i2c write command using DMA.
    492	 * Whenever the slave doesn't acknowledge a byte, the LOCK, NACK and
    493	 * TXCOMP bits are set together into the Status Register.
    494	 * LOCK is a clear on write bit, which is set to prevent the DMA
    495	 * controller from sending new data on the i2c bus after a NACK
    496	 * condition has happened. Once locked, this i2c peripheral stops
    497	 * triggering the DMA controller for new data but it is more than
    498	 * likely that a new DMA transaction is already in progress, writing
    499	 * into the Transmit Holding Register. Since the peripheral is locked,
    500	 * these new data won't be sent to the i2c bus but they will remain
    501	 * into the Transmit Holding Register, so TXCOMP bit is cleared.
    502	 * Then when the interrupt handler is called, the Status Register is
    503	 * read: the TXCOMP bit is clear but NACK bit is still set. The driver
    504	 * manage the error properly, without waiting for timeout.
    505	 * This case can be reproduced easyly when writing into an at24 eeprom.
    506	 *
    507	 * Besides, the TXCOMP bit is already set before the i2c transaction
    508	 * has been started. For read transactions, this bit is cleared when
    509	 * writing the START bit into the Control Register. So the
    510	 * corresponding interrupt can safely be enabled just after.
    511	 * However for write transactions managed by the CPU, we first write
    512	 * into THR, so TXCOMP is cleared. Then we can safely enable TXCOMP
    513	 * interrupt. If TXCOMP interrupt were enabled before writing into THR,
    514	 * the interrupt handler would be called immediately and the i2c command
    515	 * would be reported as completed.
    516	 * Also when a write transaction is managed by the DMA controller,
    517	 * enabling the TXCOMP interrupt in this function may lead to a race
    518	 * condition since we don't know whether the TXCOMP interrupt is enabled
    519	 * before or after the DMA has started to write into THR. So the TXCOMP
    520	 * interrupt is enabled later by at91_twi_write_data_dma_callback().
    521	 * Immediately after in that DMA callback, if the alternative command
    522	 * mode is not used, we still need to send the STOP condition manually
    523	 * writing the corresponding bit into the Control Register.
    524	 */
    525
    526	dev_dbg(dev->dev, "transfer: %s %zu bytes.\n",
    527		(dev->msg->flags & I2C_M_RD) ? "read" : "write", dev->buf_len);
    528
    529	reinit_completion(&dev->cmd_complete);
    530	dev->transfer_status = 0;
    531
    532	/* Clear pending interrupts, such as NACK. */
    533	at91_twi_read(dev, AT91_TWI_SR);
    534
    535	if (dev->fifo_size) {
    536		unsigned fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
    537
    538		/* Reset FIFO mode register */
    539		fifo_mr &= ~(AT91_TWI_FMR_TXRDYM_MASK |
    540			     AT91_TWI_FMR_RXRDYM_MASK);
    541		fifo_mr |= AT91_TWI_FMR_TXRDYM(AT91_TWI_ONE_DATA);
    542		fifo_mr |= AT91_TWI_FMR_RXRDYM(AT91_TWI_ONE_DATA);
    543		at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
    544
    545		/* Flush FIFOs */
    546		at91_twi_write(dev, AT91_TWI_CR,
    547			       AT91_TWI_THRCLR | AT91_TWI_RHRCLR);
    548	}
    549
    550	if (!dev->buf_len) {
    551		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_QUICK);
    552		at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP);
    553	} else if (dev->msg->flags & I2C_M_RD) {
    554		unsigned start_flags = AT91_TWI_START;
    555
    556		/* if only one byte is to be read, immediately stop transfer */
    557		if (!dev->use_alt_cmd && dev->buf_len <= 1 &&
    558		    !(dev->msg->flags & I2C_M_RECV_LEN))
    559			start_flags |= AT91_TWI_STOP;
    560		at91_twi_write(dev, AT91_TWI_CR, start_flags);
    561		/*
    562		 * When using dma without alternative command mode, the last
    563		 * byte has to be read manually in order to not send the stop
    564		 * command too late and then to receive extra data.
    565		 * In practice, there are some issues if you use the dma to
    566		 * read n-1 bytes because of latency.
    567		 * Reading n-2 bytes with dma and the two last ones manually
    568		 * seems to be the best solution.
    569		 */
    570		if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) {
    571			at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK);
    572			at91_twi_read_data_dma(dev);
    573		} else {
    574			at91_twi_write(dev, AT91_TWI_IER,
    575				       AT91_TWI_TXCOMP |
    576				       AT91_TWI_NACK |
    577				       AT91_TWI_RXRDY);
    578		}
    579	} else {
    580		if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) {
    581			at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK);
    582			at91_twi_write_data_dma(dev);
    583		} else {
    584			at91_twi_write_next_byte(dev);
    585			at91_twi_write(dev, AT91_TWI_IER,
    586				       AT91_TWI_TXCOMP | AT91_TWI_NACK |
    587				       (dev->buf_len ? AT91_TWI_TXRDY : 0));
    588		}
    589	}
    590
    591	time_left = wait_for_completion_timeout(&dev->cmd_complete,
    592					      dev->adapter.timeout);
    593	if (time_left == 0) {
    594		dev->transfer_status |= at91_twi_read(dev, AT91_TWI_SR);
    595		dev_err(dev->dev, "controller timed out\n");
    596		at91_init_twi_bus(dev);
    597		ret = -ETIMEDOUT;
    598		goto error;
    599	}
    600	if (dev->transfer_status & AT91_TWI_NACK) {
    601		dev_dbg(dev->dev, "received nack\n");
    602		ret = -EREMOTEIO;
    603		goto error;
    604	}
    605	if (dev->transfer_status & AT91_TWI_OVRE) {
    606		dev_err(dev->dev, "overrun while reading\n");
    607		ret = -EIO;
    608		goto error;
    609	}
    610	if (has_unre_flag && dev->transfer_status & AT91_TWI_UNRE) {
    611		dev_err(dev->dev, "underrun while writing\n");
    612		ret = -EIO;
    613		goto error;
    614	}
    615	if ((has_alt_cmd || dev->fifo_size) &&
    616	    (dev->transfer_status & AT91_TWI_LOCK)) {
    617		dev_err(dev->dev, "tx locked\n");
    618		ret = -EIO;
    619		goto error;
    620	}
    621	if (dev->recv_len_abort) {
    622		dev_err(dev->dev, "invalid smbus block length recvd\n");
    623		ret = -EPROTO;
    624		goto error;
    625	}
    626
    627	dev_dbg(dev->dev, "transfer complete\n");
    628
    629	return 0;
    630
    631error:
    632	/* first stop DMA transfer if still in progress */
    633	at91_twi_dma_cleanup(dev);
    634	/* then flush THR/FIFO and unlock TX if locked */
    635	if ((has_alt_cmd || dev->fifo_size) &&
    636	    (dev->transfer_status & AT91_TWI_LOCK)) {
    637		dev_dbg(dev->dev, "unlock tx\n");
    638		at91_twi_write(dev, AT91_TWI_CR,
    639			       AT91_TWI_THRCLR | AT91_TWI_LOCKCLR);
    640	}
    641
    642	/*
    643	 * some faulty I2C slave devices might hold SDA down;
    644	 * we can send a bus clear command, hoping that the pins will be
    645	 * released
    646	 */
    647	i2c_recover_bus(&dev->adapter);
    648
    649	return ret;
    650}
    651
    652static int at91_twi_xfer(struct i2c_adapter *adap, struct i2c_msg *msg, int num)
    653{
    654	struct at91_twi_dev *dev = i2c_get_adapdata(adap);
    655	int ret;
    656	unsigned int_addr_flag = 0;
    657	struct i2c_msg *m_start = msg;
    658	bool is_read;
    659	u8 *dma_buf = NULL;
    660
    661	dev_dbg(&adap->dev, "at91_xfer: processing %d messages:\n", num);
    662
    663	ret = pm_runtime_get_sync(dev->dev);
    664	if (ret < 0)
    665		goto out;
    666
    667	if (num == 2) {
    668		int internal_address = 0;
    669		int i;
    670
    671		/* 1st msg is put into the internal address, start with 2nd */
    672		m_start = &msg[1];
    673		for (i = 0; i < msg->len; ++i) {
    674			const unsigned addr = msg->buf[msg->len - 1 - i];
    675
    676			internal_address |= addr << (8 * i);
    677			int_addr_flag += AT91_TWI_IADRSZ_1;
    678		}
    679		at91_twi_write(dev, AT91_TWI_IADR, internal_address);
    680	}
    681
    682	dev->use_alt_cmd = false;
    683	is_read = (m_start->flags & I2C_M_RD);
    684	if (dev->pdata->has_alt_cmd) {
    685		if (m_start->len > 0 &&
    686		    m_start->len < AT91_I2C_MAX_ALT_CMD_DATA_SIZE) {
    687			at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_ACMEN);
    688			at91_twi_write(dev, AT91_TWI_ACR,
    689				       AT91_TWI_ACR_DATAL(m_start->len) |
    690				       ((is_read) ? AT91_TWI_ACR_DIR : 0));
    691			dev->use_alt_cmd = true;
    692		} else {
    693			at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_ACMDIS);
    694		}
    695	}
    696
    697	at91_twi_write(dev, AT91_TWI_MMR,
    698		       (m_start->addr << 16) |
    699		       int_addr_flag |
    700		       ((!dev->use_alt_cmd && is_read) ? AT91_TWI_MREAD : 0));
    701
    702	dev->buf_len = m_start->len;
    703	dev->buf = m_start->buf;
    704	dev->msg = m_start;
    705	dev->recv_len_abort = false;
    706
    707	if (dev->use_dma) {
    708		dma_buf = i2c_get_dma_safe_msg_buf(m_start, 1);
    709		if (!dma_buf) {
    710			ret = -ENOMEM;
    711			goto out;
    712		}
    713		dev->buf = dma_buf;
    714	}
    715
    716	ret = at91_do_twi_transfer(dev);
    717	i2c_put_dma_safe_msg_buf(dma_buf, m_start, !ret);
    718
    719	ret = (ret < 0) ? ret : num;
    720out:
    721	pm_runtime_mark_last_busy(dev->dev);
    722	pm_runtime_put_autosuspend(dev->dev);
    723
    724	return ret;
    725}
    726
    727/*
    728 * The hardware can handle at most two messages concatenated by a
    729 * repeated start via it's internal address feature.
    730 */
    731static const struct i2c_adapter_quirks at91_twi_quirks = {
    732	.flags = I2C_AQ_COMB | I2C_AQ_COMB_WRITE_FIRST | I2C_AQ_COMB_SAME_ADDR,
    733	.max_comb_1st_msg_len = 3,
    734};
    735
    736static u32 at91_twi_func(struct i2c_adapter *adapter)
    737{
    738	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL
    739		| I2C_FUNC_SMBUS_READ_BLOCK_DATA;
    740}
    741
    742static const struct i2c_algorithm at91_twi_algorithm = {
    743	.master_xfer	= at91_twi_xfer,
    744	.functionality	= at91_twi_func,
    745};
    746
    747static int at91_twi_configure_dma(struct at91_twi_dev *dev, u32 phy_addr)
    748{
    749	int ret = 0;
    750	struct dma_slave_config slave_config;
    751	struct at91_twi_dma *dma = &dev->dma;
    752	enum dma_slave_buswidth addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
    753
    754	/*
    755	 * The actual width of the access will be chosen in
    756	 * dmaengine_prep_slave_sg():
    757	 * for each buffer in the scatter-gather list, if its size is aligned
    758	 * to addr_width then addr_width accesses will be performed to transfer
    759	 * the buffer. On the other hand, if the buffer size is not aligned to
    760	 * addr_width then the buffer is transferred using single byte accesses.
    761	 * Please refer to the Atmel eXtended DMA controller driver.
    762	 * When FIFOs are used, the TXRDYM threshold can always be set to
    763	 * trigger the XDMAC when at least 4 data can be written into the TX
    764	 * FIFO, even if single byte accesses are performed.
    765	 * However the RXRDYM threshold must be set to fit the access width,
    766	 * deduced from buffer length, so the XDMAC is triggered properly to
    767	 * read data from the RX FIFO.
    768	 */
    769	if (dev->fifo_size)
    770		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
    771
    772	memset(&slave_config, 0, sizeof(slave_config));
    773	slave_config.src_addr = (dma_addr_t)phy_addr + AT91_TWI_RHR;
    774	slave_config.src_addr_width = addr_width;
    775	slave_config.src_maxburst = 1;
    776	slave_config.dst_addr = (dma_addr_t)phy_addr + AT91_TWI_THR;
    777	slave_config.dst_addr_width = addr_width;
    778	slave_config.dst_maxburst = 1;
    779	slave_config.device_fc = false;
    780
    781	dma->chan_tx = dma_request_chan(dev->dev, "tx");
    782	if (IS_ERR(dma->chan_tx)) {
    783		ret = PTR_ERR(dma->chan_tx);
    784		dma->chan_tx = NULL;
    785		goto error;
    786	}
    787
    788	dma->chan_rx = dma_request_chan(dev->dev, "rx");
    789	if (IS_ERR(dma->chan_rx)) {
    790		ret = PTR_ERR(dma->chan_rx);
    791		dma->chan_rx = NULL;
    792		goto error;
    793	}
    794
    795	slave_config.direction = DMA_MEM_TO_DEV;
    796	if (dmaengine_slave_config(dma->chan_tx, &slave_config)) {
    797		dev_err(dev->dev, "failed to configure tx channel\n");
    798		ret = -EINVAL;
    799		goto error;
    800	}
    801
    802	slave_config.direction = DMA_DEV_TO_MEM;
    803	if (dmaengine_slave_config(dma->chan_rx, &slave_config)) {
    804		dev_err(dev->dev, "failed to configure rx channel\n");
    805		ret = -EINVAL;
    806		goto error;
    807	}
    808
    809	sg_init_table(dma->sg, 2);
    810	dma->buf_mapped = false;
    811	dma->xfer_in_progress = false;
    812	dev->use_dma = true;
    813
    814	dev_info(dev->dev, "using %s (tx) and %s (rx) for DMA transfers\n",
    815		 dma_chan_name(dma->chan_tx), dma_chan_name(dma->chan_rx));
    816
    817	return ret;
    818
    819error:
    820	if (ret != -EPROBE_DEFER)
    821		dev_info(dev->dev, "can't get DMA channel, continue without DMA support\n");
    822	if (dma->chan_rx)
    823		dma_release_channel(dma->chan_rx);
    824	if (dma->chan_tx)
    825		dma_release_channel(dma->chan_tx);
    826	return ret;
    827}
    828
    829static int at91_init_twi_recovery_gpio(struct platform_device *pdev,
    830				       struct at91_twi_dev *dev)
    831{
    832	struct i2c_bus_recovery_info *rinfo = &dev->rinfo;
    833
    834	rinfo->pinctrl = devm_pinctrl_get(&pdev->dev);
    835	if (!rinfo->pinctrl || IS_ERR(rinfo->pinctrl)) {
    836		dev_info(dev->dev, "can't get pinctrl, bus recovery not supported\n");
    837		return PTR_ERR(rinfo->pinctrl);
    838	}
    839	dev->adapter.bus_recovery_info = rinfo;
    840
    841	return 0;
    842}
    843
    844static int at91_twi_recover_bus_cmd(struct i2c_adapter *adap)
    845{
    846	struct at91_twi_dev *dev = i2c_get_adapdata(adap);
    847
    848	dev->transfer_status |= at91_twi_read(dev, AT91_TWI_SR);
    849	if (!(dev->transfer_status & AT91_TWI_SDA)) {
    850		dev_dbg(dev->dev, "SDA is down; sending bus clear command\n");
    851		if (dev->use_alt_cmd) {
    852			unsigned int acr;
    853
    854			acr = at91_twi_read(dev, AT91_TWI_ACR);
    855			acr &= ~AT91_TWI_ACR_DATAL_MASK;
    856			at91_twi_write(dev, AT91_TWI_ACR, acr);
    857		}
    858		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_CLEAR);
    859	}
    860
    861	return 0;
    862}
    863
    864static int at91_init_twi_recovery_info(struct platform_device *pdev,
    865				       struct at91_twi_dev *dev)
    866{
    867	struct i2c_bus_recovery_info *rinfo = &dev->rinfo;
    868	bool has_clear_cmd = dev->pdata->has_clear_cmd;
    869
    870	if (!has_clear_cmd)
    871		return at91_init_twi_recovery_gpio(pdev, dev);
    872
    873	rinfo->recover_bus = at91_twi_recover_bus_cmd;
    874	dev->adapter.bus_recovery_info = rinfo;
    875
    876	return 0;
    877}
    878
    879int at91_twi_probe_master(struct platform_device *pdev,
    880			  u32 phy_addr, struct at91_twi_dev *dev)
    881{
    882	int rc;
    883
    884	init_completion(&dev->cmd_complete);
    885
    886	rc = devm_request_irq(&pdev->dev, dev->irq, atmel_twi_interrupt, 0,
    887			      dev_name(dev->dev), dev);
    888	if (rc) {
    889		dev_err(dev->dev, "Cannot get irq %d: %d\n", dev->irq, rc);
    890		return rc;
    891	}
    892
    893	if (dev->dev->of_node) {
    894		rc = at91_twi_configure_dma(dev, phy_addr);
    895		if (rc == -EPROBE_DEFER)
    896			return rc;
    897	}
    898
    899	if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
    900				  &dev->fifo_size)) {
    901		dev_info(dev->dev, "Using FIFO (%u data)\n", dev->fifo_size);
    902	}
    903
    904	dev->enable_dig_filt = of_property_read_bool(pdev->dev.of_node,
    905						     "i2c-digital-filter");
    906
    907	dev->enable_ana_filt = of_property_read_bool(pdev->dev.of_node,
    908						     "i2c-analog-filter");
    909	at91_calc_twi_clock(dev);
    910
    911	rc = at91_init_twi_recovery_info(pdev, dev);
    912	if (rc == -EPROBE_DEFER)
    913		return rc;
    914
    915	dev->adapter.algo = &at91_twi_algorithm;
    916	dev->adapter.quirks = &at91_twi_quirks;
    917
    918	return 0;
    919}