cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

i2c-bcm-iproc.c (36310B)


      1/*
      2 * Copyright (C) 2014 Broadcom Corporation
      3 *
      4 * This program is free software; you can redistribute it and/or
      5 * modify it under the terms of the GNU General Public License as
      6 * published by the Free Software Foundation version 2.
      7 *
      8 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
      9 * kind, whether express or implied; without even the implied warranty
     10 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     11 * GNU General Public License for more details.
     12 */
     13
     14#include <linux/delay.h>
     15#include <linux/i2c.h>
     16#include <linux/interrupt.h>
     17#include <linux/io.h>
     18#include <linux/kernel.h>
     19#include <linux/module.h>
     20#include <linux/of_device.h>
     21#include <linux/platform_device.h>
     22#include <linux/slab.h>
     23
     24#define IDM_CTRL_DIRECT_OFFSET       0x00
     25#define CFG_OFFSET                   0x00
     26#define CFG_RESET_SHIFT              31
     27#define CFG_EN_SHIFT                 30
     28#define CFG_SLAVE_ADDR_0_SHIFT       28
     29#define CFG_M_RETRY_CNT_SHIFT        16
     30#define CFG_M_RETRY_CNT_MASK         0x0f
     31
     32#define TIM_CFG_OFFSET               0x04
     33#define TIM_CFG_MODE_400_SHIFT       31
     34#define TIM_RAND_SLAVE_STRETCH_SHIFT      24
     35#define TIM_RAND_SLAVE_STRETCH_MASK       0x7f
     36#define TIM_PERIODIC_SLAVE_STRETCH_SHIFT  16
     37#define TIM_PERIODIC_SLAVE_STRETCH_MASK   0x7f
     38
     39#define S_CFG_SMBUS_ADDR_OFFSET           0x08
     40#define S_CFG_EN_NIC_SMB_ADDR3_SHIFT      31
     41#define S_CFG_NIC_SMB_ADDR3_SHIFT         24
     42#define S_CFG_NIC_SMB_ADDR3_MASK          0x7f
     43#define S_CFG_EN_NIC_SMB_ADDR2_SHIFT      23
     44#define S_CFG_NIC_SMB_ADDR2_SHIFT         16
     45#define S_CFG_NIC_SMB_ADDR2_MASK          0x7f
     46#define S_CFG_EN_NIC_SMB_ADDR1_SHIFT      15
     47#define S_CFG_NIC_SMB_ADDR1_SHIFT         8
     48#define S_CFG_NIC_SMB_ADDR1_MASK          0x7f
     49#define S_CFG_EN_NIC_SMB_ADDR0_SHIFT      7
     50#define S_CFG_NIC_SMB_ADDR0_SHIFT         0
     51#define S_CFG_NIC_SMB_ADDR0_MASK          0x7f
     52
     53#define M_FIFO_CTRL_OFFSET           0x0c
     54#define M_FIFO_RX_FLUSH_SHIFT        31
     55#define M_FIFO_TX_FLUSH_SHIFT        30
     56#define M_FIFO_RX_CNT_SHIFT          16
     57#define M_FIFO_RX_CNT_MASK           0x7f
     58#define M_FIFO_RX_THLD_SHIFT         8
     59#define M_FIFO_RX_THLD_MASK          0x3f
     60
     61#define S_FIFO_CTRL_OFFSET           0x10
     62#define S_FIFO_RX_FLUSH_SHIFT        31
     63#define S_FIFO_TX_FLUSH_SHIFT        30
     64#define S_FIFO_RX_CNT_SHIFT          16
     65#define S_FIFO_RX_CNT_MASK           0x7f
     66#define S_FIFO_RX_THLD_SHIFT         8
     67#define S_FIFO_RX_THLD_MASK          0x3f
     68
     69#define M_CMD_OFFSET                 0x30
     70#define M_CMD_START_BUSY_SHIFT       31
     71#define M_CMD_STATUS_SHIFT           25
     72#define M_CMD_STATUS_MASK            0x07
     73#define M_CMD_STATUS_SUCCESS         0x0
     74#define M_CMD_STATUS_LOST_ARB        0x1
     75#define M_CMD_STATUS_NACK_ADDR       0x2
     76#define M_CMD_STATUS_NACK_DATA       0x3
     77#define M_CMD_STATUS_TIMEOUT         0x4
     78#define M_CMD_STATUS_FIFO_UNDERRUN   0x5
     79#define M_CMD_STATUS_RX_FIFO_FULL    0x6
     80#define M_CMD_PROTOCOL_SHIFT         9
     81#define M_CMD_PROTOCOL_MASK          0xf
     82#define M_CMD_PROTOCOL_QUICK         0x0
     83#define M_CMD_PROTOCOL_BLK_WR        0x7
     84#define M_CMD_PROTOCOL_BLK_RD        0x8
     85#define M_CMD_PROTOCOL_PROCESS       0xa
     86#define M_CMD_PEC_SHIFT              8
     87#define M_CMD_RD_CNT_SHIFT           0
     88#define M_CMD_RD_CNT_MASK            0xff
     89
     90#define S_CMD_OFFSET                 0x34
     91#define S_CMD_START_BUSY_SHIFT       31
     92#define S_CMD_STATUS_SHIFT           23
     93#define S_CMD_STATUS_MASK            0x07
     94#define S_CMD_STATUS_SUCCESS         0x0
     95#define S_CMD_STATUS_TIMEOUT         0x5
     96#define S_CMD_STATUS_MASTER_ABORT    0x7
     97
     98#define IE_OFFSET                    0x38
     99#define IE_M_RX_FIFO_FULL_SHIFT      31
    100#define IE_M_RX_THLD_SHIFT           30
    101#define IE_M_START_BUSY_SHIFT        28
    102#define IE_M_TX_UNDERRUN_SHIFT       27
    103#define IE_S_RX_FIFO_FULL_SHIFT      26
    104#define IE_S_RX_THLD_SHIFT           25
    105#define IE_S_RX_EVENT_SHIFT          24
    106#define IE_S_START_BUSY_SHIFT        23
    107#define IE_S_TX_UNDERRUN_SHIFT       22
    108#define IE_S_RD_EVENT_SHIFT          21
    109
    110#define IS_OFFSET                    0x3c
    111#define IS_M_RX_FIFO_FULL_SHIFT      31
    112#define IS_M_RX_THLD_SHIFT           30
    113#define IS_M_START_BUSY_SHIFT        28
    114#define IS_M_TX_UNDERRUN_SHIFT       27
    115#define IS_S_RX_FIFO_FULL_SHIFT      26
    116#define IS_S_RX_THLD_SHIFT           25
    117#define IS_S_RX_EVENT_SHIFT          24
    118#define IS_S_START_BUSY_SHIFT        23
    119#define IS_S_TX_UNDERRUN_SHIFT       22
    120#define IS_S_RD_EVENT_SHIFT          21
    121
    122#define M_TX_OFFSET                  0x40
    123#define M_TX_WR_STATUS_SHIFT         31
    124#define M_TX_DATA_SHIFT              0
    125#define M_TX_DATA_MASK               0xff
    126
    127#define M_RX_OFFSET                  0x44
    128#define M_RX_STATUS_SHIFT            30
    129#define M_RX_STATUS_MASK             0x03
    130#define M_RX_PEC_ERR_SHIFT           29
    131#define M_RX_DATA_SHIFT              0
    132#define M_RX_DATA_MASK               0xff
    133
    134#define S_TX_OFFSET                  0x48
    135#define S_TX_WR_STATUS_SHIFT         31
    136#define S_TX_DATA_SHIFT              0
    137#define S_TX_DATA_MASK               0xff
    138
    139#define S_RX_OFFSET                  0x4c
    140#define S_RX_STATUS_SHIFT            30
    141#define S_RX_STATUS_MASK             0x03
    142#define S_RX_PEC_ERR_SHIFT           29
    143#define S_RX_DATA_SHIFT              0
    144#define S_RX_DATA_MASK               0xff
    145
    146#define I2C_TIMEOUT_MSEC             50000
    147#define M_TX_RX_FIFO_SIZE            64
    148#define M_RX_FIFO_MAX_THLD_VALUE     (M_TX_RX_FIFO_SIZE - 1)
    149
    150#define M_RX_MAX_READ_LEN            255
    151#define M_RX_FIFO_THLD_VALUE         50
    152
    153#define IE_M_ALL_INTERRUPT_SHIFT     27
    154#define IE_M_ALL_INTERRUPT_MASK      0x1e
    155
    156#define SLAVE_READ_WRITE_BIT_MASK    0x1
    157#define SLAVE_READ_WRITE_BIT_SHIFT   0x1
    158#define SLAVE_MAX_SIZE_TRANSACTION   64
    159#define SLAVE_CLOCK_STRETCH_TIME     25
    160
    161#define IE_S_ALL_INTERRUPT_SHIFT     21
    162#define IE_S_ALL_INTERRUPT_MASK      0x3f
    163/*
    164 * It takes ~18us to reading 10bytes of data, hence to keep tasklet
    165 * running for less time, max slave read per tasklet is set to 10 bytes.
    166 */
    167#define MAX_SLAVE_RX_PER_INT         10
    168
    169enum i2c_slave_read_status {
    170	I2C_SLAVE_RX_FIFO_EMPTY = 0,
    171	I2C_SLAVE_RX_START,
    172	I2C_SLAVE_RX_DATA,
    173	I2C_SLAVE_RX_END,
    174};
    175
    176enum bus_speed_index {
    177	I2C_SPD_100K = 0,
    178	I2C_SPD_400K,
    179};
    180
    181enum bcm_iproc_i2c_type {
    182	IPROC_I2C,
    183	IPROC_I2C_NIC
    184};
    185
    186struct bcm_iproc_i2c_dev {
    187	struct device *device;
    188	enum bcm_iproc_i2c_type type;
    189	int irq;
    190
    191	void __iomem *base;
    192	void __iomem *idm_base;
    193
    194	u32 ape_addr_mask;
    195
    196	/* lock for indirect access through IDM */
    197	spinlock_t idm_lock;
    198
    199	struct i2c_adapter adapter;
    200	unsigned int bus_speed;
    201
    202	struct completion done;
    203	int xfer_is_done;
    204
    205	struct i2c_msg *msg;
    206
    207	struct i2c_client *slave;
    208
    209	/* bytes that have been transferred */
    210	unsigned int tx_bytes;
    211	/* bytes that have been read */
    212	unsigned int rx_bytes;
    213	unsigned int thld_bytes;
    214
    215	bool slave_rx_only;
    216	bool rx_start_rcvd;
    217	bool slave_read_complete;
    218	u32 tx_underrun;
    219	u32 slave_int_mask;
    220	struct tasklet_struct slave_rx_tasklet;
    221};
    222
    223/* tasklet to process slave rx data */
    224static void slave_rx_tasklet_fn(unsigned long);
    225
    226/*
    227 * Can be expanded in the future if more interrupt status bits are utilized
    228 */
    229#define ISR_MASK (BIT(IS_M_START_BUSY_SHIFT) | BIT(IS_M_TX_UNDERRUN_SHIFT)\
    230		| BIT(IS_M_RX_THLD_SHIFT))
    231
    232#define ISR_MASK_SLAVE (BIT(IS_S_START_BUSY_SHIFT)\
    233		| BIT(IS_S_RX_EVENT_SHIFT) | BIT(IS_S_RD_EVENT_SHIFT)\
    234		| BIT(IS_S_TX_UNDERRUN_SHIFT) | BIT(IS_S_RX_FIFO_FULL_SHIFT)\
    235		| BIT(IS_S_RX_THLD_SHIFT))
    236
    237static int bcm_iproc_i2c_reg_slave(struct i2c_client *slave);
    238static int bcm_iproc_i2c_unreg_slave(struct i2c_client *slave);
    239static void bcm_iproc_i2c_enable_disable(struct bcm_iproc_i2c_dev *iproc_i2c,
    240					 bool enable);
    241
    242static inline u32 iproc_i2c_rd_reg(struct bcm_iproc_i2c_dev *iproc_i2c,
    243				   u32 offset)
    244{
    245	u32 val;
    246
    247	if (iproc_i2c->idm_base) {
    248		spin_lock(&iproc_i2c->idm_lock);
    249		writel(iproc_i2c->ape_addr_mask,
    250		       iproc_i2c->idm_base + IDM_CTRL_DIRECT_OFFSET);
    251		val = readl(iproc_i2c->base + offset);
    252		spin_unlock(&iproc_i2c->idm_lock);
    253	} else {
    254		val = readl(iproc_i2c->base + offset);
    255	}
    256
    257	return val;
    258}
    259
    260static inline void iproc_i2c_wr_reg(struct bcm_iproc_i2c_dev *iproc_i2c,
    261				    u32 offset, u32 val)
    262{
    263	if (iproc_i2c->idm_base) {
    264		spin_lock(&iproc_i2c->idm_lock);
    265		writel(iproc_i2c->ape_addr_mask,
    266		       iproc_i2c->idm_base + IDM_CTRL_DIRECT_OFFSET);
    267		writel(val, iproc_i2c->base + offset);
    268		spin_unlock(&iproc_i2c->idm_lock);
    269	} else {
    270		writel(val, iproc_i2c->base + offset);
    271	}
    272}
    273
    274static void bcm_iproc_i2c_slave_init(
    275	struct bcm_iproc_i2c_dev *iproc_i2c, bool need_reset)
    276{
    277	u32 val;
    278
    279	iproc_i2c->tx_underrun = 0;
    280	if (need_reset) {
    281		/* put controller in reset */
    282		val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
    283		val |= BIT(CFG_RESET_SHIFT);
    284		iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
    285
    286		/* wait 100 usec per spec */
    287		udelay(100);
    288
    289		/* bring controller out of reset */
    290		val &= ~(BIT(CFG_RESET_SHIFT));
    291		iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
    292	}
    293
    294	/* flush TX/RX FIFOs */
    295	val = (BIT(S_FIFO_RX_FLUSH_SHIFT) | BIT(S_FIFO_TX_FLUSH_SHIFT));
    296	iproc_i2c_wr_reg(iproc_i2c, S_FIFO_CTRL_OFFSET, val);
    297
    298	/* Maximum slave stretch time */
    299	val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
    300	val &= ~(TIM_RAND_SLAVE_STRETCH_MASK << TIM_RAND_SLAVE_STRETCH_SHIFT);
    301	val |= (SLAVE_CLOCK_STRETCH_TIME << TIM_RAND_SLAVE_STRETCH_SHIFT);
    302	iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
    303
    304	/* Configure the slave address */
    305	val = iproc_i2c_rd_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET);
    306	val |= BIT(S_CFG_EN_NIC_SMB_ADDR3_SHIFT);
    307	val &= ~(S_CFG_NIC_SMB_ADDR3_MASK << S_CFG_NIC_SMB_ADDR3_SHIFT);
    308	val |= (iproc_i2c->slave->addr << S_CFG_NIC_SMB_ADDR3_SHIFT);
    309	iproc_i2c_wr_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET, val);
    310
    311	/* clear all pending slave interrupts */
    312	iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, ISR_MASK_SLAVE);
    313
    314	/* Enable interrupt register to indicate a valid byte in receive fifo */
    315	val = BIT(IE_S_RX_EVENT_SHIFT);
    316	/* Enable interrupt register to indicate Slave Rx FIFO Full */
    317	val |= BIT(IE_S_RX_FIFO_FULL_SHIFT);
    318	/* Enable interrupt register to indicate a Master read transaction */
    319	val |= BIT(IE_S_RD_EVENT_SHIFT);
    320	/* Enable interrupt register for the Slave BUSY command */
    321	val |= BIT(IE_S_START_BUSY_SHIFT);
    322	iproc_i2c->slave_int_mask = val;
    323	iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
    324}
    325
    326static void bcm_iproc_i2c_check_slave_status(
    327	struct bcm_iproc_i2c_dev *iproc_i2c)
    328{
    329	u32 val;
    330
    331	val = iproc_i2c_rd_reg(iproc_i2c, S_CMD_OFFSET);
    332	/* status is valid only when START_BUSY is cleared after it was set */
    333	if (val & BIT(S_CMD_START_BUSY_SHIFT))
    334		return;
    335
    336	val = (val >> S_CMD_STATUS_SHIFT) & S_CMD_STATUS_MASK;
    337	if (val == S_CMD_STATUS_TIMEOUT || val == S_CMD_STATUS_MASTER_ABORT) {
    338		dev_err(iproc_i2c->device, (val == S_CMD_STATUS_TIMEOUT) ?
    339			"slave random stretch time timeout\n" :
    340			"Master aborted read transaction\n");
    341		/* re-initialize i2c for recovery */
    342		bcm_iproc_i2c_enable_disable(iproc_i2c, false);
    343		bcm_iproc_i2c_slave_init(iproc_i2c, true);
    344		bcm_iproc_i2c_enable_disable(iproc_i2c, true);
    345	}
    346}
    347
    348static void bcm_iproc_i2c_slave_read(struct bcm_iproc_i2c_dev *iproc_i2c)
    349{
    350	u8 rx_data, rx_status;
    351	u32 rx_bytes = 0;
    352	u32 val;
    353
    354	while (rx_bytes < MAX_SLAVE_RX_PER_INT) {
    355		val = iproc_i2c_rd_reg(iproc_i2c, S_RX_OFFSET);
    356		rx_status = (val >> S_RX_STATUS_SHIFT) & S_RX_STATUS_MASK;
    357		rx_data = ((val >> S_RX_DATA_SHIFT) & S_RX_DATA_MASK);
    358
    359		if (rx_status == I2C_SLAVE_RX_START) {
    360			/* Start of SMBUS Master write */
    361			i2c_slave_event(iproc_i2c->slave,
    362					I2C_SLAVE_WRITE_REQUESTED, &rx_data);
    363			iproc_i2c->rx_start_rcvd = true;
    364			iproc_i2c->slave_read_complete = false;
    365		} else if (rx_status == I2C_SLAVE_RX_DATA &&
    366			   iproc_i2c->rx_start_rcvd) {
    367			/* Middle of SMBUS Master write */
    368			i2c_slave_event(iproc_i2c->slave,
    369					I2C_SLAVE_WRITE_RECEIVED, &rx_data);
    370		} else if (rx_status == I2C_SLAVE_RX_END &&
    371			   iproc_i2c->rx_start_rcvd) {
    372			/* End of SMBUS Master write */
    373			if (iproc_i2c->slave_rx_only)
    374				i2c_slave_event(iproc_i2c->slave,
    375						I2C_SLAVE_WRITE_RECEIVED,
    376						&rx_data);
    377
    378			i2c_slave_event(iproc_i2c->slave, I2C_SLAVE_STOP,
    379					&rx_data);
    380		} else if (rx_status == I2C_SLAVE_RX_FIFO_EMPTY) {
    381			iproc_i2c->rx_start_rcvd = false;
    382			iproc_i2c->slave_read_complete = true;
    383			break;
    384		}
    385
    386		rx_bytes++;
    387	}
    388}
    389
    390static void slave_rx_tasklet_fn(unsigned long data)
    391{
    392	struct bcm_iproc_i2c_dev *iproc_i2c = (struct bcm_iproc_i2c_dev *)data;
    393	u32 int_clr;
    394
    395	bcm_iproc_i2c_slave_read(iproc_i2c);
    396
    397	/* clear pending IS_S_RX_EVENT_SHIFT interrupt */
    398	int_clr = BIT(IS_S_RX_EVENT_SHIFT);
    399
    400	if (!iproc_i2c->slave_rx_only && iproc_i2c->slave_read_complete) {
    401		/*
    402		 * In case of single byte master-read request,
    403		 * IS_S_TX_UNDERRUN_SHIFT event is generated before
    404		 * IS_S_START_BUSY_SHIFT event. Hence start slave data send
    405		 * from first IS_S_TX_UNDERRUN_SHIFT event.
    406		 *
    407		 * This means don't send any data from slave when
    408		 * IS_S_RD_EVENT_SHIFT event is generated else it will increment
    409		 * eeprom or other backend slave driver read pointer twice.
    410		 */
    411		iproc_i2c->tx_underrun = 0;
    412		iproc_i2c->slave_int_mask |= BIT(IE_S_TX_UNDERRUN_SHIFT);
    413
    414		/* clear IS_S_RD_EVENT_SHIFT interrupt */
    415		int_clr |= BIT(IS_S_RD_EVENT_SHIFT);
    416	}
    417
    418	/* clear slave interrupt */
    419	iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, int_clr);
    420	/* enable slave interrupts */
    421	iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, iproc_i2c->slave_int_mask);
    422}
    423
    424static bool bcm_iproc_i2c_slave_isr(struct bcm_iproc_i2c_dev *iproc_i2c,
    425				    u32 status)
    426{
    427	u32 val;
    428	u8 value;
    429
    430	/*
    431	 * Slave events in case of master-write, master-write-read and,
    432	 * master-read
    433	 *
    434	 * Master-write     : only IS_S_RX_EVENT_SHIFT event
    435	 * Master-write-read: both IS_S_RX_EVENT_SHIFT and IS_S_RD_EVENT_SHIFT
    436	 *                    events
    437	 * Master-read      : both IS_S_RX_EVENT_SHIFT and IS_S_RD_EVENT_SHIFT
    438	 *                    events or only IS_S_RD_EVENT_SHIFT
    439	 *
    440	 * iproc has a slave rx fifo size of 64 bytes. Rx fifo full interrupt
    441	 * (IS_S_RX_FIFO_FULL_SHIFT) will be generated when RX fifo becomes
    442	 * full. This can happen if Master issues write requests of more than
    443	 * 64 bytes.
    444	 */
    445	if (status & BIT(IS_S_RX_EVENT_SHIFT) ||
    446	    status & BIT(IS_S_RD_EVENT_SHIFT) ||
    447	    status & BIT(IS_S_RX_FIFO_FULL_SHIFT)) {
    448		/* disable slave interrupts */
    449		val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
    450		val &= ~iproc_i2c->slave_int_mask;
    451		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
    452
    453		if (status & BIT(IS_S_RD_EVENT_SHIFT))
    454			/* Master-write-read request */
    455			iproc_i2c->slave_rx_only = false;
    456		else
    457			/* Master-write request only */
    458			iproc_i2c->slave_rx_only = true;
    459
    460		/* schedule tasklet to read data later */
    461		tasklet_schedule(&iproc_i2c->slave_rx_tasklet);
    462
    463		/*
    464		 * clear only IS_S_RX_EVENT_SHIFT and
    465		 * IS_S_RX_FIFO_FULL_SHIFT interrupt.
    466		 */
    467		val = BIT(IS_S_RX_EVENT_SHIFT);
    468		if (status & BIT(IS_S_RX_FIFO_FULL_SHIFT))
    469			val |= BIT(IS_S_RX_FIFO_FULL_SHIFT);
    470		iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, val);
    471	}
    472
    473	if (status & BIT(IS_S_TX_UNDERRUN_SHIFT)) {
    474		iproc_i2c->tx_underrun++;
    475		if (iproc_i2c->tx_underrun == 1)
    476			/* Start of SMBUS for Master Read */
    477			i2c_slave_event(iproc_i2c->slave,
    478					I2C_SLAVE_READ_REQUESTED,
    479					&value);
    480		else
    481			/* Master read other than start */
    482			i2c_slave_event(iproc_i2c->slave,
    483					I2C_SLAVE_READ_PROCESSED,
    484					&value);
    485
    486		iproc_i2c_wr_reg(iproc_i2c, S_TX_OFFSET, value);
    487		/* start transfer */
    488		val = BIT(S_CMD_START_BUSY_SHIFT);
    489		iproc_i2c_wr_reg(iproc_i2c, S_CMD_OFFSET, val);
    490
    491		/* clear interrupt */
    492		iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET,
    493				 BIT(IS_S_TX_UNDERRUN_SHIFT));
    494	}
    495
    496	/* Stop received from master in case of master read transaction */
    497	if (status & BIT(IS_S_START_BUSY_SHIFT)) {
    498		/*
    499		 * Disable interrupt for TX FIFO becomes empty and
    500		 * less than PKT_LENGTH bytes were output on the SMBUS
    501		 */
    502		iproc_i2c->slave_int_mask &= ~BIT(IE_S_TX_UNDERRUN_SHIFT);
    503		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET,
    504				 iproc_i2c->slave_int_mask);
    505
    506		/* End of SMBUS for Master Read */
    507		val = BIT(S_TX_WR_STATUS_SHIFT);
    508		iproc_i2c_wr_reg(iproc_i2c, S_TX_OFFSET, val);
    509
    510		val = BIT(S_CMD_START_BUSY_SHIFT);
    511		iproc_i2c_wr_reg(iproc_i2c, S_CMD_OFFSET, val);
    512
    513		/* flush TX FIFOs */
    514		val = iproc_i2c_rd_reg(iproc_i2c, S_FIFO_CTRL_OFFSET);
    515		val |= (BIT(S_FIFO_TX_FLUSH_SHIFT));
    516		iproc_i2c_wr_reg(iproc_i2c, S_FIFO_CTRL_OFFSET, val);
    517
    518		i2c_slave_event(iproc_i2c->slave, I2C_SLAVE_STOP, &value);
    519
    520		/* clear interrupt */
    521		iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET,
    522				 BIT(IS_S_START_BUSY_SHIFT));
    523	}
    524
    525	/* check slave transmit status only if slave is transmitting */
    526	if (!iproc_i2c->slave_rx_only)
    527		bcm_iproc_i2c_check_slave_status(iproc_i2c);
    528
    529	return true;
    530}
    531
    532static void bcm_iproc_i2c_read_valid_bytes(struct bcm_iproc_i2c_dev *iproc_i2c)
    533{
    534	struct i2c_msg *msg = iproc_i2c->msg;
    535	uint32_t val;
    536
    537	/* Read valid data from RX FIFO */
    538	while (iproc_i2c->rx_bytes < msg->len) {
    539		val = iproc_i2c_rd_reg(iproc_i2c, M_RX_OFFSET);
    540
    541		/* rx fifo empty */
    542		if (!((val >> M_RX_STATUS_SHIFT) & M_RX_STATUS_MASK))
    543			break;
    544
    545		msg->buf[iproc_i2c->rx_bytes] =
    546			(val >> M_RX_DATA_SHIFT) & M_RX_DATA_MASK;
    547		iproc_i2c->rx_bytes++;
    548	}
    549}
    550
    551static void bcm_iproc_i2c_send(struct bcm_iproc_i2c_dev *iproc_i2c)
    552{
    553	struct i2c_msg *msg = iproc_i2c->msg;
    554	unsigned int tx_bytes = msg->len - iproc_i2c->tx_bytes;
    555	unsigned int i;
    556	u32 val;
    557
    558	/* can only fill up to the FIFO size */
    559	tx_bytes = min_t(unsigned int, tx_bytes, M_TX_RX_FIFO_SIZE);
    560	for (i = 0; i < tx_bytes; i++) {
    561		/* start from where we left over */
    562		unsigned int idx = iproc_i2c->tx_bytes + i;
    563
    564		val = msg->buf[idx];
    565
    566		/* mark the last byte */
    567		if (idx == msg->len - 1) {
    568			val |= BIT(M_TX_WR_STATUS_SHIFT);
    569
    570			if (iproc_i2c->irq) {
    571				u32 tmp;
    572
    573				/*
    574				 * Since this is the last byte, we should now
    575				 * disable TX FIFO underrun interrupt
    576				 */
    577				tmp = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
    578				tmp &= ~BIT(IE_M_TX_UNDERRUN_SHIFT);
    579				iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET,
    580						 tmp);
    581			}
    582		}
    583
    584		/* load data into TX FIFO */
    585		iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
    586	}
    587
    588	/* update number of transferred bytes */
    589	iproc_i2c->tx_bytes += tx_bytes;
    590}
    591
    592static void bcm_iproc_i2c_read(struct bcm_iproc_i2c_dev *iproc_i2c)
    593{
    594	struct i2c_msg *msg = iproc_i2c->msg;
    595	u32 bytes_left, val;
    596
    597	bcm_iproc_i2c_read_valid_bytes(iproc_i2c);
    598	bytes_left = msg->len - iproc_i2c->rx_bytes;
    599	if (bytes_left == 0) {
    600		if (iproc_i2c->irq) {
    601			/* finished reading all data, disable rx thld event */
    602			val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
    603			val &= ~BIT(IS_M_RX_THLD_SHIFT);
    604			iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
    605		}
    606	} else if (bytes_left < iproc_i2c->thld_bytes) {
    607		/* set bytes left as threshold */
    608		val = iproc_i2c_rd_reg(iproc_i2c, M_FIFO_CTRL_OFFSET);
    609		val &= ~(M_FIFO_RX_THLD_MASK << M_FIFO_RX_THLD_SHIFT);
    610		val |= (bytes_left << M_FIFO_RX_THLD_SHIFT);
    611		iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
    612		iproc_i2c->thld_bytes = bytes_left;
    613	}
    614	/*
    615	 * bytes_left >= iproc_i2c->thld_bytes,
    616	 * hence no need to change the THRESHOLD SET.
    617	 * It will remain as iproc_i2c->thld_bytes itself
    618	 */
    619}
    620
    621static void bcm_iproc_i2c_process_m_event(struct bcm_iproc_i2c_dev *iproc_i2c,
    622					  u32 status)
    623{
    624	/* TX FIFO is empty and we have more data to send */
    625	if (status & BIT(IS_M_TX_UNDERRUN_SHIFT))
    626		bcm_iproc_i2c_send(iproc_i2c);
    627
    628	/* RX FIFO threshold is reached and data needs to be read out */
    629	if (status & BIT(IS_M_RX_THLD_SHIFT))
    630		bcm_iproc_i2c_read(iproc_i2c);
    631
    632	/* transfer is done */
    633	if (status & BIT(IS_M_START_BUSY_SHIFT)) {
    634		iproc_i2c->xfer_is_done = 1;
    635		if (iproc_i2c->irq)
    636			complete(&iproc_i2c->done);
    637	}
    638}
    639
    640static irqreturn_t bcm_iproc_i2c_isr(int irq, void *data)
    641{
    642	struct bcm_iproc_i2c_dev *iproc_i2c = data;
    643	u32 slave_status;
    644	u32 status;
    645	bool ret;
    646
    647	status = iproc_i2c_rd_reg(iproc_i2c, IS_OFFSET);
    648	/* process only slave interrupt which are enabled */
    649	slave_status = status & iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET) &
    650		       ISR_MASK_SLAVE;
    651
    652	if (slave_status) {
    653		ret = bcm_iproc_i2c_slave_isr(iproc_i2c, slave_status);
    654		if (ret)
    655			return IRQ_HANDLED;
    656		else
    657			return IRQ_NONE;
    658	}
    659
    660	status &= ISR_MASK;
    661	if (!status)
    662		return IRQ_NONE;
    663
    664	/* process all master based events */
    665	bcm_iproc_i2c_process_m_event(iproc_i2c, status);
    666	iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, status);
    667
    668	return IRQ_HANDLED;
    669}
    670
    671static int bcm_iproc_i2c_init(struct bcm_iproc_i2c_dev *iproc_i2c)
    672{
    673	u32 val;
    674
    675	/* put controller in reset */
    676	val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
    677	val |= BIT(CFG_RESET_SHIFT);
    678	val &= ~(BIT(CFG_EN_SHIFT));
    679	iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
    680
    681	/* wait 100 usec per spec */
    682	udelay(100);
    683
    684	/* bring controller out of reset */
    685	val &= ~(BIT(CFG_RESET_SHIFT));
    686	iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
    687
    688	/* flush TX/RX FIFOs and set RX FIFO threshold to zero */
    689	val = (BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT));
    690	iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
    691	/* disable all interrupts */
    692	val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
    693	val &= ~(IE_M_ALL_INTERRUPT_MASK <<
    694			IE_M_ALL_INTERRUPT_SHIFT);
    695	iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
    696
    697	/* clear all pending interrupts */
    698	iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, 0xffffffff);
    699
    700	return 0;
    701}
    702
    703static void bcm_iproc_i2c_enable_disable(struct bcm_iproc_i2c_dev *iproc_i2c,
    704					 bool enable)
    705{
    706	u32 val;
    707
    708	val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
    709	if (enable)
    710		val |= BIT(CFG_EN_SHIFT);
    711	else
    712		val &= ~BIT(CFG_EN_SHIFT);
    713	iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
    714}
    715
    716static int bcm_iproc_i2c_check_status(struct bcm_iproc_i2c_dev *iproc_i2c,
    717				      struct i2c_msg *msg)
    718{
    719	u32 val;
    720
    721	val = iproc_i2c_rd_reg(iproc_i2c, M_CMD_OFFSET);
    722	val = (val >> M_CMD_STATUS_SHIFT) & M_CMD_STATUS_MASK;
    723
    724	switch (val) {
    725	case M_CMD_STATUS_SUCCESS:
    726		return 0;
    727
    728	case M_CMD_STATUS_LOST_ARB:
    729		dev_dbg(iproc_i2c->device, "lost bus arbitration\n");
    730		return -EAGAIN;
    731
    732	case M_CMD_STATUS_NACK_ADDR:
    733		dev_dbg(iproc_i2c->device, "NAK addr:0x%02x\n", msg->addr);
    734		return -ENXIO;
    735
    736	case M_CMD_STATUS_NACK_DATA:
    737		dev_dbg(iproc_i2c->device, "NAK data\n");
    738		return -ENXIO;
    739
    740	case M_CMD_STATUS_TIMEOUT:
    741		dev_dbg(iproc_i2c->device, "bus timeout\n");
    742		return -ETIMEDOUT;
    743
    744	case M_CMD_STATUS_FIFO_UNDERRUN:
    745		dev_dbg(iproc_i2c->device, "FIFO under-run\n");
    746		return -ENXIO;
    747
    748	case M_CMD_STATUS_RX_FIFO_FULL:
    749		dev_dbg(iproc_i2c->device, "RX FIFO full\n");
    750		return -ETIMEDOUT;
    751
    752	default:
    753		dev_dbg(iproc_i2c->device, "unknown error code=%d\n", val);
    754
    755		/* re-initialize i2c for recovery */
    756		bcm_iproc_i2c_enable_disable(iproc_i2c, false);
    757		bcm_iproc_i2c_init(iproc_i2c);
    758		bcm_iproc_i2c_enable_disable(iproc_i2c, true);
    759
    760		return -EIO;
    761	}
    762}
    763
    764static int bcm_iproc_i2c_xfer_wait(struct bcm_iproc_i2c_dev *iproc_i2c,
    765				   struct i2c_msg *msg,
    766				   u32 cmd)
    767{
    768	unsigned long time_left = msecs_to_jiffies(I2C_TIMEOUT_MSEC);
    769	u32 val, status;
    770	int ret;
    771
    772	iproc_i2c_wr_reg(iproc_i2c, M_CMD_OFFSET, cmd);
    773
    774	if (iproc_i2c->irq) {
    775		time_left = wait_for_completion_timeout(&iproc_i2c->done,
    776							time_left);
    777		/* disable all interrupts */
    778		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
    779		/* read it back to flush the write */
    780		iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
    781		/* make sure the interrupt handler isn't running */
    782		synchronize_irq(iproc_i2c->irq);
    783
    784	} else { /* polling mode */
    785		unsigned long timeout = jiffies + time_left;
    786
    787		do {
    788			status = iproc_i2c_rd_reg(iproc_i2c,
    789						  IS_OFFSET) & ISR_MASK;
    790			bcm_iproc_i2c_process_m_event(iproc_i2c, status);
    791			iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, status);
    792
    793			if (time_after(jiffies, timeout)) {
    794				time_left = 0;
    795				break;
    796			}
    797
    798			cpu_relax();
    799			cond_resched();
    800		} while (!iproc_i2c->xfer_is_done);
    801	}
    802
    803	if (!time_left && !iproc_i2c->xfer_is_done) {
    804		dev_err(iproc_i2c->device, "transaction timed out\n");
    805
    806		/* flush both TX/RX FIFOs */
    807		val = BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT);
    808		iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
    809		return -ETIMEDOUT;
    810	}
    811
    812	ret = bcm_iproc_i2c_check_status(iproc_i2c, msg);
    813	if (ret) {
    814		/* flush both TX/RX FIFOs */
    815		val = BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT);
    816		iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
    817		return ret;
    818	}
    819
    820	return 0;
    821}
    822
    823/*
    824 * If 'process_call' is true, then this is a multi-msg transfer that requires
    825 * a repeated start between the messages.
    826 * More specifically, it must be a write (reg) followed by a read (data).
    827 * The i2c quirks are set to enforce this rule.
    828 */
    829static int bcm_iproc_i2c_xfer_internal(struct bcm_iproc_i2c_dev *iproc_i2c,
    830					struct i2c_msg *msgs, bool process_call)
    831{
    832	int i;
    833	u8 addr;
    834	u32 val, tmp, val_intr_en;
    835	unsigned int tx_bytes;
    836	struct i2c_msg *msg = &msgs[0];
    837
    838	/* check if bus is busy */
    839	if (!!(iproc_i2c_rd_reg(iproc_i2c,
    840				M_CMD_OFFSET) & BIT(M_CMD_START_BUSY_SHIFT))) {
    841		dev_warn(iproc_i2c->device, "bus is busy\n");
    842		return -EBUSY;
    843	}
    844
    845	iproc_i2c->msg = msg;
    846
    847	/* format and load slave address into the TX FIFO */
    848	addr = i2c_8bit_addr_from_msg(msg);
    849	iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, addr);
    850
    851	/*
    852	 * For a write transaction, load data into the TX FIFO. Only allow
    853	 * loading up to TX FIFO size - 1 bytes of data since the first byte
    854	 * has been used up by the slave address
    855	 */
    856	tx_bytes = min_t(unsigned int, msg->len, M_TX_RX_FIFO_SIZE - 1);
    857	if (!(msg->flags & I2C_M_RD)) {
    858		for (i = 0; i < tx_bytes; i++) {
    859			val = msg->buf[i];
    860
    861			/* mark the last byte */
    862			if (!process_call && (i == msg->len - 1))
    863				val |= BIT(M_TX_WR_STATUS_SHIFT);
    864
    865			iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
    866		}
    867		iproc_i2c->tx_bytes = tx_bytes;
    868	}
    869
    870	/* Process the read message if this is process call */
    871	if (process_call) {
    872		msg++;
    873		iproc_i2c->msg = msg;  /* point to second msg */
    874
    875		/*
    876		 * The last byte to be sent out should be a slave
    877		 * address with read operation
    878		 */
    879		addr = i2c_8bit_addr_from_msg(msg);
    880		/* mark it the last byte out */
    881		val = addr | BIT(M_TX_WR_STATUS_SHIFT);
    882		iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
    883	}
    884
    885	/* mark as incomplete before starting the transaction */
    886	if (iproc_i2c->irq)
    887		reinit_completion(&iproc_i2c->done);
    888
    889	iproc_i2c->xfer_is_done = 0;
    890
    891	/*
    892	 * Enable the "start busy" interrupt, which will be triggered after the
    893	 * transaction is done, i.e., the internal start_busy bit, transitions
    894	 * from 1 to 0.
    895	 */
    896	val_intr_en = BIT(IE_M_START_BUSY_SHIFT);
    897
    898	/*
    899	 * If TX data size is larger than the TX FIFO, need to enable TX
    900	 * underrun interrupt, which will be triggerred when the TX FIFO is
    901	 * empty. When that happens we can then pump more data into the FIFO
    902	 */
    903	if (!process_call && !(msg->flags & I2C_M_RD) &&
    904	    msg->len > iproc_i2c->tx_bytes)
    905		val_intr_en |= BIT(IE_M_TX_UNDERRUN_SHIFT);
    906
    907	/*
    908	 * Now we can activate the transfer. For a read operation, specify the
    909	 * number of bytes to read
    910	 */
    911	val = BIT(M_CMD_START_BUSY_SHIFT);
    912
    913	if (msg->len == 0) {
    914		/* SMBUS QUICK Command (Read/Write) */
    915		val |= (M_CMD_PROTOCOL_QUICK << M_CMD_PROTOCOL_SHIFT);
    916	} else if (msg->flags & I2C_M_RD) {
    917		u32 protocol;
    918
    919		iproc_i2c->rx_bytes = 0;
    920		if (msg->len > M_RX_FIFO_MAX_THLD_VALUE)
    921			iproc_i2c->thld_bytes = M_RX_FIFO_THLD_VALUE;
    922		else
    923			iproc_i2c->thld_bytes = msg->len;
    924
    925		/* set threshold value */
    926		tmp = iproc_i2c_rd_reg(iproc_i2c, M_FIFO_CTRL_OFFSET);
    927		tmp &= ~(M_FIFO_RX_THLD_MASK << M_FIFO_RX_THLD_SHIFT);
    928		tmp |= iproc_i2c->thld_bytes << M_FIFO_RX_THLD_SHIFT;
    929		iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, tmp);
    930
    931		/* enable the RX threshold interrupt */
    932		val_intr_en |= BIT(IE_M_RX_THLD_SHIFT);
    933
    934		protocol = process_call ?
    935				M_CMD_PROTOCOL_PROCESS : M_CMD_PROTOCOL_BLK_RD;
    936
    937		val |= (protocol << M_CMD_PROTOCOL_SHIFT) |
    938		       (msg->len << M_CMD_RD_CNT_SHIFT);
    939	} else {
    940		val |= (M_CMD_PROTOCOL_BLK_WR << M_CMD_PROTOCOL_SHIFT);
    941	}
    942
    943	if (iproc_i2c->irq)
    944		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val_intr_en);
    945
    946	return bcm_iproc_i2c_xfer_wait(iproc_i2c, msg, val);
    947}
    948
    949static int bcm_iproc_i2c_xfer(struct i2c_adapter *adapter,
    950			      struct i2c_msg msgs[], int num)
    951{
    952	struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(adapter);
    953	bool process_call = false;
    954	int ret;
    955
    956	if (num == 2) {
    957		/* Repeated start, use process call */
    958		process_call = true;
    959		if (msgs[1].flags & I2C_M_NOSTART) {
    960			dev_err(iproc_i2c->device, "Invalid repeated start\n");
    961			return -EOPNOTSUPP;
    962		}
    963	}
    964
    965	ret = bcm_iproc_i2c_xfer_internal(iproc_i2c, msgs, process_call);
    966	if (ret) {
    967		dev_dbg(iproc_i2c->device, "xfer failed\n");
    968		return ret;
    969	}
    970
    971	return num;
    972}
    973
    974static uint32_t bcm_iproc_i2c_functionality(struct i2c_adapter *adap)
    975{
    976	u32 val;
    977
    978	val = I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
    979
    980	if (adap->algo->reg_slave)
    981		val |= I2C_FUNC_SLAVE;
    982
    983	return val;
    984}
    985
    986static struct i2c_algorithm bcm_iproc_algo = {
    987	.master_xfer = bcm_iproc_i2c_xfer,
    988	.functionality = bcm_iproc_i2c_functionality,
    989	.reg_slave = bcm_iproc_i2c_reg_slave,
    990	.unreg_slave = bcm_iproc_i2c_unreg_slave,
    991};
    992
    993static const struct i2c_adapter_quirks bcm_iproc_i2c_quirks = {
    994	.flags = I2C_AQ_COMB_WRITE_THEN_READ,
    995	.max_comb_1st_msg_len = M_TX_RX_FIFO_SIZE,
    996	.max_read_len = M_RX_MAX_READ_LEN,
    997};
    998
    999static int bcm_iproc_i2c_cfg_speed(struct bcm_iproc_i2c_dev *iproc_i2c)
   1000{
   1001	unsigned int bus_speed;
   1002	u32 val;
   1003	int ret = of_property_read_u32(iproc_i2c->device->of_node,
   1004				       "clock-frequency", &bus_speed);
   1005	if (ret < 0) {
   1006		dev_info(iproc_i2c->device,
   1007			"unable to interpret clock-frequency DT property\n");
   1008		bus_speed = I2C_MAX_STANDARD_MODE_FREQ;
   1009	}
   1010
   1011	if (bus_speed < I2C_MAX_STANDARD_MODE_FREQ) {
   1012		dev_err(iproc_i2c->device, "%d Hz bus speed not supported\n",
   1013			bus_speed);
   1014		dev_err(iproc_i2c->device,
   1015			"valid speeds are 100khz and 400khz\n");
   1016		return -EINVAL;
   1017	} else if (bus_speed < I2C_MAX_FAST_MODE_FREQ) {
   1018		bus_speed = I2C_MAX_STANDARD_MODE_FREQ;
   1019	} else {
   1020		bus_speed = I2C_MAX_FAST_MODE_FREQ;
   1021	}
   1022
   1023	iproc_i2c->bus_speed = bus_speed;
   1024	val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
   1025	val &= ~BIT(TIM_CFG_MODE_400_SHIFT);
   1026	val |= (bus_speed == I2C_MAX_FAST_MODE_FREQ) << TIM_CFG_MODE_400_SHIFT;
   1027	iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
   1028
   1029	dev_info(iproc_i2c->device, "bus set to %u Hz\n", bus_speed);
   1030
   1031	return 0;
   1032}
   1033
   1034static int bcm_iproc_i2c_probe(struct platform_device *pdev)
   1035{
   1036	int irq, ret = 0;
   1037	struct bcm_iproc_i2c_dev *iproc_i2c;
   1038	struct i2c_adapter *adap;
   1039	struct resource *res;
   1040
   1041	iproc_i2c = devm_kzalloc(&pdev->dev, sizeof(*iproc_i2c),
   1042				 GFP_KERNEL);
   1043	if (!iproc_i2c)
   1044		return -ENOMEM;
   1045
   1046	platform_set_drvdata(pdev, iproc_i2c);
   1047	iproc_i2c->device = &pdev->dev;
   1048	iproc_i2c->type =
   1049		(enum bcm_iproc_i2c_type)of_device_get_match_data(&pdev->dev);
   1050	init_completion(&iproc_i2c->done);
   1051
   1052	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
   1053	iproc_i2c->base = devm_ioremap_resource(iproc_i2c->device, res);
   1054	if (IS_ERR(iproc_i2c->base))
   1055		return PTR_ERR(iproc_i2c->base);
   1056
   1057	if (iproc_i2c->type == IPROC_I2C_NIC) {
   1058		res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
   1059		iproc_i2c->idm_base = devm_ioremap_resource(iproc_i2c->device,
   1060							    res);
   1061		if (IS_ERR(iproc_i2c->idm_base))
   1062			return PTR_ERR(iproc_i2c->idm_base);
   1063
   1064		ret = of_property_read_u32(iproc_i2c->device->of_node,
   1065					   "brcm,ape-hsls-addr-mask",
   1066					   &iproc_i2c->ape_addr_mask);
   1067		if (ret < 0) {
   1068			dev_err(iproc_i2c->device,
   1069				"'brcm,ape-hsls-addr-mask' missing\n");
   1070			return -EINVAL;
   1071		}
   1072
   1073		spin_lock_init(&iproc_i2c->idm_lock);
   1074
   1075		/* no slave support */
   1076		bcm_iproc_algo.reg_slave = NULL;
   1077		bcm_iproc_algo.unreg_slave = NULL;
   1078	}
   1079
   1080	ret = bcm_iproc_i2c_init(iproc_i2c);
   1081	if (ret)
   1082		return ret;
   1083
   1084	ret = bcm_iproc_i2c_cfg_speed(iproc_i2c);
   1085	if (ret)
   1086		return ret;
   1087
   1088	irq = platform_get_irq(pdev, 0);
   1089	if (irq > 0) {
   1090		ret = devm_request_irq(iproc_i2c->device, irq,
   1091				       bcm_iproc_i2c_isr, 0, pdev->name,
   1092				       iproc_i2c);
   1093		if (ret < 0) {
   1094			dev_err(iproc_i2c->device,
   1095				"unable to request irq %i\n", irq);
   1096			return ret;
   1097		}
   1098
   1099		iproc_i2c->irq = irq;
   1100	} else {
   1101		dev_warn(iproc_i2c->device,
   1102			 "no irq resource, falling back to poll mode\n");
   1103	}
   1104
   1105	bcm_iproc_i2c_enable_disable(iproc_i2c, true);
   1106
   1107	adap = &iproc_i2c->adapter;
   1108	i2c_set_adapdata(adap, iproc_i2c);
   1109	snprintf(adap->name, sizeof(adap->name),
   1110		"Broadcom iProc (%s)",
   1111		of_node_full_name(iproc_i2c->device->of_node));
   1112	adap->algo = &bcm_iproc_algo;
   1113	adap->quirks = &bcm_iproc_i2c_quirks;
   1114	adap->dev.parent = &pdev->dev;
   1115	adap->dev.of_node = pdev->dev.of_node;
   1116
   1117	return i2c_add_adapter(adap);
   1118}
   1119
   1120static int bcm_iproc_i2c_remove(struct platform_device *pdev)
   1121{
   1122	struct bcm_iproc_i2c_dev *iproc_i2c = platform_get_drvdata(pdev);
   1123
   1124	if (iproc_i2c->irq) {
   1125		/*
   1126		 * Make sure there's no pending interrupt when we remove the
   1127		 * adapter
   1128		 */
   1129		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
   1130		iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
   1131		synchronize_irq(iproc_i2c->irq);
   1132	}
   1133
   1134	i2c_del_adapter(&iproc_i2c->adapter);
   1135	bcm_iproc_i2c_enable_disable(iproc_i2c, false);
   1136
   1137	return 0;
   1138}
   1139
   1140#ifdef CONFIG_PM_SLEEP
   1141
   1142static int bcm_iproc_i2c_suspend(struct device *dev)
   1143{
   1144	struct bcm_iproc_i2c_dev *iproc_i2c = dev_get_drvdata(dev);
   1145
   1146	if (iproc_i2c->irq) {
   1147		/*
   1148		 * Make sure there's no pending interrupt when we go into
   1149		 * suspend
   1150		 */
   1151		iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
   1152		iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
   1153		synchronize_irq(iproc_i2c->irq);
   1154	}
   1155
   1156	/* now disable the controller */
   1157	bcm_iproc_i2c_enable_disable(iproc_i2c, false);
   1158
   1159	return 0;
   1160}
   1161
   1162static int bcm_iproc_i2c_resume(struct device *dev)
   1163{
   1164	struct bcm_iproc_i2c_dev *iproc_i2c = dev_get_drvdata(dev);
   1165	int ret;
   1166	u32 val;
   1167
   1168	/*
   1169	 * Power domain could have been shut off completely in system deep
   1170	 * sleep, so re-initialize the block here
   1171	 */
   1172	ret = bcm_iproc_i2c_init(iproc_i2c);
   1173	if (ret)
   1174		return ret;
   1175
   1176	/* configure to the desired bus speed */
   1177	val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
   1178	val &= ~BIT(TIM_CFG_MODE_400_SHIFT);
   1179	val |= (iproc_i2c->bus_speed == I2C_MAX_FAST_MODE_FREQ) << TIM_CFG_MODE_400_SHIFT;
   1180	iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
   1181
   1182	bcm_iproc_i2c_enable_disable(iproc_i2c, true);
   1183
   1184	return 0;
   1185}
   1186
   1187static const struct dev_pm_ops bcm_iproc_i2c_pm_ops = {
   1188	.suspend_late = &bcm_iproc_i2c_suspend,
   1189	.resume_early = &bcm_iproc_i2c_resume
   1190};
   1191
   1192#define BCM_IPROC_I2C_PM_OPS (&bcm_iproc_i2c_pm_ops)
   1193#else
   1194#define BCM_IPROC_I2C_PM_OPS NULL
   1195#endif /* CONFIG_PM_SLEEP */
   1196
   1197
   1198static int bcm_iproc_i2c_reg_slave(struct i2c_client *slave)
   1199{
   1200	struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(slave->adapter);
   1201
   1202	if (iproc_i2c->slave)
   1203		return -EBUSY;
   1204
   1205	if (slave->flags & I2C_CLIENT_TEN)
   1206		return -EAFNOSUPPORT;
   1207
   1208	iproc_i2c->slave = slave;
   1209
   1210	tasklet_init(&iproc_i2c->slave_rx_tasklet, slave_rx_tasklet_fn,
   1211		     (unsigned long)iproc_i2c);
   1212
   1213	bcm_iproc_i2c_slave_init(iproc_i2c, false);
   1214	return 0;
   1215}
   1216
   1217static int bcm_iproc_i2c_unreg_slave(struct i2c_client *slave)
   1218{
   1219	u32 tmp;
   1220	struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(slave->adapter);
   1221
   1222	if (!iproc_i2c->slave)
   1223		return -EINVAL;
   1224
   1225	disable_irq(iproc_i2c->irq);
   1226
   1227	tasklet_kill(&iproc_i2c->slave_rx_tasklet);
   1228
   1229	/* disable all slave interrupts */
   1230	tmp = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
   1231	tmp &= ~(IE_S_ALL_INTERRUPT_MASK <<
   1232			IE_S_ALL_INTERRUPT_SHIFT);
   1233	iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, tmp);
   1234
   1235	/* Erase the slave address programmed */
   1236	tmp = iproc_i2c_rd_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET);
   1237	tmp &= ~BIT(S_CFG_EN_NIC_SMB_ADDR3_SHIFT);
   1238	iproc_i2c_wr_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET, tmp);
   1239
   1240	/* flush TX/RX FIFOs */
   1241	tmp = (BIT(S_FIFO_RX_FLUSH_SHIFT) | BIT(S_FIFO_TX_FLUSH_SHIFT));
   1242	iproc_i2c_wr_reg(iproc_i2c, S_FIFO_CTRL_OFFSET, tmp);
   1243
   1244	/* clear all pending slave interrupts */
   1245	iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, ISR_MASK_SLAVE);
   1246
   1247	iproc_i2c->slave = NULL;
   1248
   1249	enable_irq(iproc_i2c->irq);
   1250
   1251	return 0;
   1252}
   1253
   1254static const struct of_device_id bcm_iproc_i2c_of_match[] = {
   1255	{
   1256		.compatible = "brcm,iproc-i2c",
   1257		.data = (int *)IPROC_I2C,
   1258	}, {
   1259		.compatible = "brcm,iproc-nic-i2c",
   1260		.data = (int *)IPROC_I2C_NIC,
   1261	},
   1262	{ /* sentinel */ }
   1263};
   1264MODULE_DEVICE_TABLE(of, bcm_iproc_i2c_of_match);
   1265
   1266static struct platform_driver bcm_iproc_i2c_driver = {
   1267	.driver = {
   1268		.name = "bcm-iproc-i2c",
   1269		.of_match_table = bcm_iproc_i2c_of_match,
   1270		.pm = BCM_IPROC_I2C_PM_OPS,
   1271	},
   1272	.probe = bcm_iproc_i2c_probe,
   1273	.remove = bcm_iproc_i2c_remove,
   1274};
   1275module_platform_driver(bcm_iproc_i2c_driver);
   1276
   1277MODULE_AUTHOR("Ray Jui <rjui@broadcom.com>");
   1278MODULE_DESCRIPTION("Broadcom iProc I2C Driver");
   1279MODULE_LICENSE("GPL v2");