cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

i2c-img-scb.c (42012B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * I2C adapter for the IMG Serial Control Bus (SCB) IP block.
      4 *
      5 * Copyright (C) 2009, 2010, 2012, 2014 Imagination Technologies Ltd.
      6 *
      7 * There are three ways that this I2C controller can be driven:
      8 *
      9 * - Raw control of the SDA and SCK signals.
     10 *
     11 *   This corresponds to MODE_RAW, which takes control of the signals
     12 *   directly for a certain number of clock cycles (the INT_TIMING
     13 *   interrupt can be used for timing).
     14 *
     15 * - Atomic commands. A low level I2C symbol (such as generate
     16 *   start/stop/ack/nack bit, generate byte, receive byte, and receive
     17 *   ACK) is given to the hardware, with detection of completion by bits
     18 *   in the LINESTAT register.
     19 *
     20 *   This mode of operation is used by MODE_ATOMIC, which uses an I2C
     21 *   state machine in the interrupt handler to compose/react to I2C
     22 *   transactions using atomic mode commands, and also by MODE_SEQUENCE,
     23 *   which emits a simple fixed sequence of atomic mode commands.
     24 *
     25 *   Due to software control, the use of atomic commands usually results
     26 *   in suboptimal use of the bus, with gaps between the I2C symbols while
     27 *   the driver decides what to do next.
     28 *
     29 * - Automatic mode. A bus address, and whether to read/write is
     30 *   specified, and the hardware takes care of the I2C state machine,
     31 *   using a FIFO to send/receive bytes of data to an I2C slave. The
     32 *   driver just has to keep the FIFO drained or filled in response to the
     33 *   appropriate FIFO interrupts.
     34 *
     35 *   This corresponds to MODE_AUTOMATIC, which manages the FIFOs and deals
     36 *   with control of repeated start bits between I2C messages.
     37 *
     38 *   Use of automatic mode and the FIFO can make much more efficient use
     39 *   of the bus compared to individual atomic commands, with potentially
     40 *   no wasted time between I2C symbols or I2C messages.
     41 *
     42 * In most cases MODE_AUTOMATIC is used, however if any of the messages in
     43 * a transaction are zero byte writes (e.g. used by i2cdetect for probing
     44 * the bus), MODE_ATOMIC must be used since automatic mode is normally
     45 * started by the writing of data into the FIFO.
     46 *
     47 * The other modes are used in specific circumstances where MODE_ATOMIC and
     48 * MODE_AUTOMATIC aren't appropriate. MODE_RAW is used to implement a bus
     49 * recovery routine. MODE_SEQUENCE is used to reset the bus and make sure
     50 * it is in a sane state.
     51 *
     52 * Notice that the driver implements a timer-based timeout mechanism.
     53 * The reason for this mechanism is to reduce the number of interrupts
     54 * received in automatic mode.
     55 *
     56 * The driver would get a slave event and transaction done interrupts for
     57 * each atomic mode command that gets completed. However, these events are
     58 * not needed in automatic mode, becase those atomic mode commands are
     59 * managed automatically by the hardware.
     60 *
     61 * In practice, normal I2C transactions will be complete well before you
     62 * get the timer interrupt, as the timer is re-scheduled during FIFO
     63 * maintenance and disabled after the transaction is complete.
     64 *
     65 * In this way normal automatic mode operation isn't impacted by
     66 * unnecessary interrupts, but the exceptional abort condition can still be
     67 * detected (with a slight delay).
     68 */
     69
     70#include <linux/bitops.h>
     71#include <linux/clk.h>
     72#include <linux/completion.h>
     73#include <linux/err.h>
     74#include <linux/i2c.h>
     75#include <linux/init.h>
     76#include <linux/interrupt.h>
     77#include <linux/io.h>
     78#include <linux/kernel.h>
     79#include <linux/module.h>
     80#include <linux/of_platform.h>
     81#include <linux/platform_device.h>
     82#include <linux/pm_runtime.h>
     83#include <linux/slab.h>
     84#include <linux/timer.h>
     85
     86/* Register offsets */
     87
     88#define SCB_STATUS_REG			0x00
     89#define SCB_OVERRIDE_REG		0x04
     90#define SCB_READ_ADDR_REG		0x08
     91#define SCB_READ_COUNT_REG		0x0c
     92#define SCB_WRITE_ADDR_REG		0x10
     93#define SCB_READ_DATA_REG		0x14
     94#define SCB_WRITE_DATA_REG		0x18
     95#define SCB_FIFO_STATUS_REG		0x1c
     96#define SCB_CONTROL_SOFT_RESET		0x1f
     97#define SCB_CLK_SET_REG			0x3c
     98#define SCB_INT_STATUS_REG		0x40
     99#define SCB_INT_CLEAR_REG		0x44
    100#define SCB_INT_MASK_REG		0x48
    101#define SCB_CONTROL_REG			0x4c
    102#define SCB_TIME_TPL_REG		0x50
    103#define SCB_TIME_TPH_REG		0x54
    104#define SCB_TIME_TP2S_REG		0x58
    105#define SCB_TIME_TBI_REG		0x60
    106#define SCB_TIME_TSL_REG		0x64
    107#define SCB_TIME_TDL_REG		0x68
    108#define SCB_TIME_TSDL_REG		0x6c
    109#define SCB_TIME_TSDH_REG		0x70
    110#define SCB_READ_XADDR_REG		0x74
    111#define SCB_WRITE_XADDR_REG		0x78
    112#define SCB_WRITE_COUNT_REG		0x7c
    113#define SCB_CORE_REV_REG		0x80
    114#define SCB_TIME_TCKH_REG		0x84
    115#define SCB_TIME_TCKL_REG		0x88
    116#define SCB_FIFO_FLUSH_REG		0x8c
    117#define SCB_READ_FIFO_REG		0x94
    118#define SCB_CLEAR_REG			0x98
    119
    120/* SCB_CONTROL_REG bits */
    121
    122#define SCB_CONTROL_CLK_ENABLE		0x1e0
    123#define SCB_CONTROL_TRANSACTION_HALT	0x200
    124
    125#define FIFO_READ_FULL			BIT(0)
    126#define FIFO_READ_EMPTY			BIT(1)
    127#define FIFO_WRITE_FULL			BIT(2)
    128#define FIFO_WRITE_EMPTY		BIT(3)
    129
    130/* SCB_CLK_SET_REG bits */
    131#define SCB_FILT_DISABLE		BIT(31)
    132#define SCB_FILT_BYPASS			BIT(30)
    133#define SCB_FILT_INC_MASK		0x7f
    134#define SCB_FILT_INC_SHIFT		16
    135#define SCB_INC_MASK			0x7f
    136#define SCB_INC_SHIFT			8
    137
    138/* SCB_INT_*_REG bits */
    139
    140#define INT_BUS_INACTIVE		BIT(0)
    141#define INT_UNEXPECTED_START		BIT(1)
    142#define INT_SCLK_LOW_TIMEOUT		BIT(2)
    143#define INT_SDAT_LOW_TIMEOUT		BIT(3)
    144#define INT_WRITE_ACK_ERR		BIT(4)
    145#define INT_ADDR_ACK_ERR		BIT(5)
    146#define INT_FIFO_FULL			BIT(9)
    147#define INT_FIFO_FILLING		BIT(10)
    148#define INT_FIFO_EMPTY			BIT(11)
    149#define INT_FIFO_EMPTYING		BIT(12)
    150#define INT_TRANSACTION_DONE		BIT(15)
    151#define INT_SLAVE_EVENT			BIT(16)
    152#define INT_MASTER_HALTED		BIT(17)
    153#define INT_TIMING			BIT(18)
    154#define INT_STOP_DETECTED		BIT(19)
    155
    156#define INT_FIFO_FULL_FILLING	(INT_FIFO_FULL  | INT_FIFO_FILLING)
    157
    158/* Level interrupts need clearing after handling instead of before */
    159#define INT_LEVEL			0x01e00
    160
    161/* Don't allow any interrupts while the clock may be off */
    162#define INT_ENABLE_MASK_INACTIVE	0x00000
    163
    164/* Interrupt masks for the different driver modes */
    165
    166#define INT_ENABLE_MASK_RAW		INT_TIMING
    167
    168#define INT_ENABLE_MASK_ATOMIC		(INT_TRANSACTION_DONE | \
    169					 INT_SLAVE_EVENT      | \
    170					 INT_ADDR_ACK_ERR     | \
    171					 INT_WRITE_ACK_ERR)
    172
    173#define INT_ENABLE_MASK_AUTOMATIC	(INT_SCLK_LOW_TIMEOUT | \
    174					 INT_ADDR_ACK_ERR     | \
    175					 INT_WRITE_ACK_ERR    | \
    176					 INT_FIFO_FULL        | \
    177					 INT_FIFO_FILLING     | \
    178					 INT_FIFO_EMPTY       | \
    179					 INT_MASTER_HALTED    | \
    180					 INT_STOP_DETECTED)
    181
    182#define INT_ENABLE_MASK_WAITSTOP	(INT_SLAVE_EVENT      | \
    183					 INT_ADDR_ACK_ERR     | \
    184					 INT_WRITE_ACK_ERR)
    185
    186/* SCB_STATUS_REG fields */
    187
    188#define LINESTAT_SCLK_LINE_STATUS	BIT(0)
    189#define LINESTAT_SCLK_EN		BIT(1)
    190#define LINESTAT_SDAT_LINE_STATUS	BIT(2)
    191#define LINESTAT_SDAT_EN		BIT(3)
    192#define LINESTAT_DET_START_STATUS	BIT(4)
    193#define LINESTAT_DET_STOP_STATUS	BIT(5)
    194#define LINESTAT_DET_ACK_STATUS		BIT(6)
    195#define LINESTAT_DET_NACK_STATUS	BIT(7)
    196#define LINESTAT_BUS_IDLE		BIT(8)
    197#define LINESTAT_T_DONE_STATUS		BIT(9)
    198#define LINESTAT_SCLK_OUT_STATUS	BIT(10)
    199#define LINESTAT_SDAT_OUT_STATUS	BIT(11)
    200#define LINESTAT_GEN_LINE_MASK_STATUS	BIT(12)
    201#define LINESTAT_START_BIT_DET		BIT(13)
    202#define LINESTAT_STOP_BIT_DET		BIT(14)
    203#define LINESTAT_ACK_DET		BIT(15)
    204#define LINESTAT_NACK_DET		BIT(16)
    205#define LINESTAT_INPUT_HELD_V		BIT(17)
    206#define LINESTAT_ABORT_DET		BIT(18)
    207#define LINESTAT_ACK_OR_NACK_DET	(LINESTAT_ACK_DET | LINESTAT_NACK_DET)
    208#define LINESTAT_INPUT_DATA		0xff000000
    209#define LINESTAT_INPUT_DATA_SHIFT	24
    210
    211#define LINESTAT_CLEAR_SHIFT		13
    212#define LINESTAT_LATCHED		(0x3f << LINESTAT_CLEAR_SHIFT)
    213
    214/* SCB_OVERRIDE_REG fields */
    215
    216#define OVERRIDE_SCLK_OVR		BIT(0)
    217#define OVERRIDE_SCLKEN_OVR		BIT(1)
    218#define OVERRIDE_SDAT_OVR		BIT(2)
    219#define OVERRIDE_SDATEN_OVR		BIT(3)
    220#define OVERRIDE_MASTER			BIT(9)
    221#define OVERRIDE_LINE_OVR_EN		BIT(10)
    222#define OVERRIDE_DIRECT			BIT(11)
    223#define OVERRIDE_CMD_SHIFT		4
    224#define OVERRIDE_CMD_MASK		0x1f
    225#define OVERRIDE_DATA_SHIFT		24
    226
    227#define OVERRIDE_SCLK_DOWN		(OVERRIDE_LINE_OVR_EN | \
    228					 OVERRIDE_SCLKEN_OVR)
    229#define OVERRIDE_SCLK_UP		(OVERRIDE_LINE_OVR_EN | \
    230					 OVERRIDE_SCLKEN_OVR | \
    231					 OVERRIDE_SCLK_OVR)
    232#define OVERRIDE_SDAT_DOWN		(OVERRIDE_LINE_OVR_EN | \
    233					 OVERRIDE_SDATEN_OVR)
    234#define OVERRIDE_SDAT_UP		(OVERRIDE_LINE_OVR_EN | \
    235					 OVERRIDE_SDATEN_OVR | \
    236					 OVERRIDE_SDAT_OVR)
    237
    238/* OVERRIDE_CMD values */
    239
    240#define CMD_PAUSE			0x00
    241#define CMD_GEN_DATA			0x01
    242#define CMD_GEN_START			0x02
    243#define CMD_GEN_STOP			0x03
    244#define CMD_GEN_ACK			0x04
    245#define CMD_GEN_NACK			0x05
    246#define CMD_RET_DATA			0x08
    247#define CMD_RET_ACK			0x09
    248
    249/* Fixed timing values */
    250
    251#define TIMEOUT_TBI			0x0
    252#define TIMEOUT_TSL			0xffff
    253#define TIMEOUT_TDL			0x0
    254
    255/* Transaction timeout */
    256
    257#define IMG_I2C_TIMEOUT			(msecs_to_jiffies(1000))
    258
    259/*
    260 * Worst incs are 1 (innacurate) and 16*256 (irregular).
    261 * So a sensible inc is the logarithmic mean: 64 (2^6), which is
    262 * in the middle of the valid range (0-127).
    263 */
    264#define SCB_OPT_INC		64
    265
    266/* Setup the clock enable filtering for 25 ns */
    267#define SCB_FILT_GLITCH		25
    268
    269/*
    270 * Bits to return from interrupt handler functions for different modes.
    271 * This delays completion until we've finished with the registers, so that the
    272 * function waiting for completion can safely disable the clock to save power.
    273 */
    274#define ISR_COMPLETE_M		BIT(31)
    275#define ISR_FATAL_M		BIT(30)
    276#define ISR_WAITSTOP		BIT(29)
    277#define ISR_STATUS_M		0x0000ffff	/* contains +ve errno */
    278#define ISR_COMPLETE(err)	(ISR_COMPLETE_M | (ISR_STATUS_M & (err)))
    279#define ISR_FATAL(err)		(ISR_COMPLETE(err) | ISR_FATAL_M)
    280
    281#define IMG_I2C_PM_TIMEOUT	1000 /* ms */
    282
    283enum img_i2c_mode {
    284	MODE_INACTIVE,
    285	MODE_RAW,
    286	MODE_ATOMIC,
    287	MODE_AUTOMATIC,
    288	MODE_SEQUENCE,
    289	MODE_FATAL,
    290	MODE_WAITSTOP,
    291	MODE_SUSPEND,
    292};
    293
    294/* Timing parameters for i2c modes (in ns) */
    295struct img_i2c_timings {
    296	const char *name;
    297	unsigned int max_bitrate;
    298	unsigned int tckh, tckl, tsdh, tsdl;
    299	unsigned int tp2s, tpl, tph;
    300};
    301
    302/* The timings array must be ordered from slower to faster */
    303static struct img_i2c_timings timings[] = {
    304	/* Standard mode */
    305	{
    306		.name = "standard",
    307		.max_bitrate = I2C_MAX_STANDARD_MODE_FREQ,
    308		.tckh = 4000,
    309		.tckl = 4700,
    310		.tsdh = 4700,
    311		.tsdl = 8700,
    312		.tp2s = 4700,
    313		.tpl = 4700,
    314		.tph = 4000,
    315	},
    316	/* Fast mode */
    317	{
    318		.name = "fast",
    319		.max_bitrate = I2C_MAX_FAST_MODE_FREQ,
    320		.tckh = 600,
    321		.tckl = 1300,
    322		.tsdh = 600,
    323		.tsdl = 1200,
    324		.tp2s = 1300,
    325		.tpl = 600,
    326		.tph = 600,
    327	},
    328};
    329
    330/* Reset dance */
    331static u8 img_i2c_reset_seq[] = { CMD_GEN_START,
    332				  CMD_GEN_DATA, 0xff,
    333				  CMD_RET_ACK,
    334				  CMD_GEN_START,
    335				  CMD_GEN_STOP,
    336				  0 };
    337/* Just issue a stop (after an abort condition) */
    338static u8 img_i2c_stop_seq[] = {  CMD_GEN_STOP,
    339				  0 };
    340
    341/* We're interested in different interrupts depending on the mode */
    342static unsigned int img_i2c_int_enable_by_mode[] = {
    343	[MODE_INACTIVE]  = INT_ENABLE_MASK_INACTIVE,
    344	[MODE_RAW]       = INT_ENABLE_MASK_RAW,
    345	[MODE_ATOMIC]    = INT_ENABLE_MASK_ATOMIC,
    346	[MODE_AUTOMATIC] = INT_ENABLE_MASK_AUTOMATIC,
    347	[MODE_SEQUENCE]  = INT_ENABLE_MASK_ATOMIC,
    348	[MODE_FATAL]     = 0,
    349	[MODE_WAITSTOP]  = INT_ENABLE_MASK_WAITSTOP,
    350	[MODE_SUSPEND]   = 0,
    351};
    352
    353/* Atomic command names */
    354static const char * const img_i2c_atomic_cmd_names[] = {
    355	[CMD_PAUSE]	= "PAUSE",
    356	[CMD_GEN_DATA]	= "GEN_DATA",
    357	[CMD_GEN_START]	= "GEN_START",
    358	[CMD_GEN_STOP]	= "GEN_STOP",
    359	[CMD_GEN_ACK]	= "GEN_ACK",
    360	[CMD_GEN_NACK]	= "GEN_NACK",
    361	[CMD_RET_DATA]	= "RET_DATA",
    362	[CMD_RET_ACK]	= "RET_ACK",
    363};
    364
    365struct img_i2c {
    366	struct i2c_adapter adap;
    367
    368	void __iomem *base;
    369
    370	/*
    371	 * The scb core clock is used to get the input frequency, and to disable
    372	 * it after every set of transactions to save some power.
    373	 */
    374	struct clk *scb_clk, *sys_clk;
    375	unsigned int bitrate;
    376	bool need_wr_rd_fence;
    377
    378	/* state */
    379	struct completion msg_complete;
    380	spinlock_t lock;	/* lock before doing anything with the state */
    381	struct i2c_msg msg;
    382
    383	/* After the last transaction, wait for a stop bit */
    384	bool last_msg;
    385	int msg_status;
    386
    387	enum img_i2c_mode mode;
    388	u32 int_enable;		/* depends on mode */
    389	u32 line_status;	/* line status over command */
    390
    391	/*
    392	 * To avoid slave event interrupts in automatic mode, use a timer to
    393	 * poll the abort condition if we don't get an interrupt for too long.
    394	 */
    395	struct timer_list check_timer;
    396	bool t_halt;
    397
    398	/* atomic mode state */
    399	bool at_t_done;
    400	bool at_slave_event;
    401	int at_cur_cmd;
    402	u8 at_cur_data;
    403
    404	/* Sequence: either reset or stop. See img_i2c_sequence. */
    405	u8 *seq;
    406
    407	/* raw mode */
    408	unsigned int raw_timeout;
    409};
    410
    411static int img_i2c_runtime_suspend(struct device *dev);
    412static int img_i2c_runtime_resume(struct device *dev);
    413
    414static void img_i2c_writel(struct img_i2c *i2c, u32 offset, u32 value)
    415{
    416	writel(value, i2c->base + offset);
    417}
    418
    419static u32 img_i2c_readl(struct img_i2c *i2c, u32 offset)
    420{
    421	return readl(i2c->base + offset);
    422}
    423
    424/*
    425 * The code to read from the master read fifo, and write to the master
    426 * write fifo, checks a bit in an SCB register before every byte to
    427 * ensure that the fifo is not full (write fifo) or empty (read fifo).
    428 * Due to clock domain crossing inside the SCB block the updated value
    429 * of this bit is only visible after 2 cycles.
    430 *
    431 * The scb_wr_rd_fence() function does 2 dummy writes (to the read-only
    432 * revision register), and it's called after reading from or writing to the
    433 * fifos to ensure that subsequent reads of the fifo status bits do not read
    434 * stale values.
    435 */
    436static void img_i2c_wr_rd_fence(struct img_i2c *i2c)
    437{
    438	if (i2c->need_wr_rd_fence) {
    439		img_i2c_writel(i2c, SCB_CORE_REV_REG, 0);
    440		img_i2c_writel(i2c, SCB_CORE_REV_REG, 0);
    441	}
    442}
    443
    444static void img_i2c_switch_mode(struct img_i2c *i2c, enum img_i2c_mode mode)
    445{
    446	i2c->mode = mode;
    447	i2c->int_enable = img_i2c_int_enable_by_mode[mode];
    448	i2c->line_status = 0;
    449}
    450
    451static void img_i2c_raw_op(struct img_i2c *i2c)
    452{
    453	i2c->raw_timeout = 0;
    454	img_i2c_writel(i2c, SCB_OVERRIDE_REG,
    455		OVERRIDE_SCLKEN_OVR |
    456		OVERRIDE_SDATEN_OVR |
    457		OVERRIDE_MASTER |
    458		OVERRIDE_LINE_OVR_EN |
    459		OVERRIDE_DIRECT |
    460		((i2c->at_cur_cmd & OVERRIDE_CMD_MASK) << OVERRIDE_CMD_SHIFT) |
    461		(i2c->at_cur_data << OVERRIDE_DATA_SHIFT));
    462}
    463
    464static const char *img_i2c_atomic_op_name(unsigned int cmd)
    465{
    466	if (unlikely(cmd >= ARRAY_SIZE(img_i2c_atomic_cmd_names)))
    467		return "UNKNOWN";
    468	return img_i2c_atomic_cmd_names[cmd];
    469}
    470
    471/* Send a single atomic mode command to the hardware */
    472static void img_i2c_atomic_op(struct img_i2c *i2c, int cmd, u8 data)
    473{
    474	i2c->at_cur_cmd = cmd;
    475	i2c->at_cur_data = data;
    476
    477	/* work around lack of data setup time when generating data */
    478	if (cmd == CMD_GEN_DATA && i2c->mode == MODE_ATOMIC) {
    479		u32 line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
    480
    481		if (line_status & LINESTAT_SDAT_LINE_STATUS && !(data & 0x80)) {
    482			/* hold the data line down for a moment */
    483			img_i2c_switch_mode(i2c, MODE_RAW);
    484			img_i2c_raw_op(i2c);
    485			return;
    486		}
    487	}
    488
    489	dev_dbg(i2c->adap.dev.parent,
    490		"atomic cmd=%s (%d) data=%#x\n",
    491		img_i2c_atomic_op_name(cmd), cmd, data);
    492	i2c->at_t_done = (cmd == CMD_RET_DATA || cmd == CMD_RET_ACK);
    493	i2c->at_slave_event = false;
    494	i2c->line_status = 0;
    495
    496	img_i2c_writel(i2c, SCB_OVERRIDE_REG,
    497		((cmd & OVERRIDE_CMD_MASK) << OVERRIDE_CMD_SHIFT) |
    498		OVERRIDE_MASTER |
    499		OVERRIDE_DIRECT |
    500		(data << OVERRIDE_DATA_SHIFT));
    501}
    502
    503/* Start a transaction in atomic mode */
    504static void img_i2c_atomic_start(struct img_i2c *i2c)
    505{
    506	img_i2c_switch_mode(i2c, MODE_ATOMIC);
    507	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
    508	img_i2c_atomic_op(i2c, CMD_GEN_START, 0x00);
    509}
    510
    511static void img_i2c_soft_reset(struct img_i2c *i2c)
    512{
    513	i2c->t_halt = false;
    514	img_i2c_writel(i2c, SCB_CONTROL_REG, 0);
    515	img_i2c_writel(i2c, SCB_CONTROL_REG,
    516		       SCB_CONTROL_CLK_ENABLE | SCB_CONTROL_SOFT_RESET);
    517}
    518
    519/*
    520 * Enable or release transaction halt for control of repeated starts.
    521 * In version 3.3 of the IP when transaction halt is set, an interrupt
    522 * will be generated after each byte of a transfer instead of after
    523 * every transfer but before the stop bit.
    524 * Due to this behaviour we have to be careful that every time we
    525 * release the transaction halt we have to re-enable it straight away
    526 * so that we only process a single byte, not doing so will result in
    527 * all remaining bytes been processed and a stop bit being issued,
    528 * which will prevent us having a repeated start.
    529 */
    530static void img_i2c_transaction_halt(struct img_i2c *i2c, bool t_halt)
    531{
    532	u32 val;
    533
    534	if (i2c->t_halt == t_halt)
    535		return;
    536	i2c->t_halt = t_halt;
    537	val = img_i2c_readl(i2c, SCB_CONTROL_REG);
    538	if (t_halt)
    539		val |= SCB_CONTROL_TRANSACTION_HALT;
    540	else
    541		val &= ~SCB_CONTROL_TRANSACTION_HALT;
    542	img_i2c_writel(i2c, SCB_CONTROL_REG, val);
    543}
    544
    545/* Drain data from the FIFO into the buffer (automatic mode) */
    546static void img_i2c_read_fifo(struct img_i2c *i2c)
    547{
    548	while (i2c->msg.len) {
    549		u32 fifo_status;
    550		u8 data;
    551
    552		img_i2c_wr_rd_fence(i2c);
    553		fifo_status = img_i2c_readl(i2c, SCB_FIFO_STATUS_REG);
    554		if (fifo_status & FIFO_READ_EMPTY)
    555			break;
    556
    557		data = img_i2c_readl(i2c, SCB_READ_DATA_REG);
    558		*i2c->msg.buf = data;
    559
    560		img_i2c_writel(i2c, SCB_READ_FIFO_REG, 0xff);
    561		i2c->msg.len--;
    562		i2c->msg.buf++;
    563	}
    564}
    565
    566/* Fill the FIFO with data from the buffer (automatic mode) */
    567static void img_i2c_write_fifo(struct img_i2c *i2c)
    568{
    569	while (i2c->msg.len) {
    570		u32 fifo_status;
    571
    572		img_i2c_wr_rd_fence(i2c);
    573		fifo_status = img_i2c_readl(i2c, SCB_FIFO_STATUS_REG);
    574		if (fifo_status & FIFO_WRITE_FULL)
    575			break;
    576
    577		img_i2c_writel(i2c, SCB_WRITE_DATA_REG, *i2c->msg.buf);
    578		i2c->msg.len--;
    579		i2c->msg.buf++;
    580	}
    581
    582	/* Disable fifo emptying interrupt if nothing more to write */
    583	if (!i2c->msg.len)
    584		i2c->int_enable &= ~INT_FIFO_EMPTYING;
    585}
    586
    587/* Start a read transaction in automatic mode */
    588static void img_i2c_read(struct img_i2c *i2c)
    589{
    590	img_i2c_switch_mode(i2c, MODE_AUTOMATIC);
    591	if (!i2c->last_msg)
    592		i2c->int_enable |= INT_SLAVE_EVENT;
    593
    594	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
    595	img_i2c_writel(i2c, SCB_READ_ADDR_REG, i2c->msg.addr);
    596	img_i2c_writel(i2c, SCB_READ_COUNT_REG, i2c->msg.len);
    597
    598	mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
    599}
    600
    601/* Start a write transaction in automatic mode */
    602static void img_i2c_write(struct img_i2c *i2c)
    603{
    604	img_i2c_switch_mode(i2c, MODE_AUTOMATIC);
    605	if (!i2c->last_msg)
    606		i2c->int_enable |= INT_SLAVE_EVENT;
    607
    608	img_i2c_writel(i2c, SCB_WRITE_ADDR_REG, i2c->msg.addr);
    609	img_i2c_writel(i2c, SCB_WRITE_COUNT_REG, i2c->msg.len);
    610
    611	mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
    612	img_i2c_write_fifo(i2c);
    613
    614	/* img_i2c_write_fifo() may modify int_enable */
    615	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
    616}
    617
    618/*
    619 * Indicate that the transaction is complete. This is called from the
    620 * ISR to wake up the waiting thread, after which the ISR must not
    621 * access any more SCB registers.
    622 */
    623static void img_i2c_complete_transaction(struct img_i2c *i2c, int status)
    624{
    625	img_i2c_switch_mode(i2c, MODE_INACTIVE);
    626	if (status) {
    627		i2c->msg_status = status;
    628		img_i2c_transaction_halt(i2c, false);
    629	}
    630	complete(&i2c->msg_complete);
    631}
    632
    633static unsigned int img_i2c_raw_atomic_delay_handler(struct img_i2c *i2c,
    634					u32 int_status, u32 line_status)
    635{
    636	/* Stay in raw mode for this, so we don't just loop infinitely */
    637	img_i2c_atomic_op(i2c, i2c->at_cur_cmd, i2c->at_cur_data);
    638	img_i2c_switch_mode(i2c, MODE_ATOMIC);
    639	return 0;
    640}
    641
    642static unsigned int img_i2c_raw(struct img_i2c *i2c, u32 int_status,
    643				u32 line_status)
    644{
    645	if (int_status & INT_TIMING) {
    646		if (i2c->raw_timeout == 0)
    647			return img_i2c_raw_atomic_delay_handler(i2c,
    648				int_status, line_status);
    649		--i2c->raw_timeout;
    650	}
    651	return 0;
    652}
    653
    654static unsigned int img_i2c_sequence(struct img_i2c *i2c, u32 int_status)
    655{
    656	static const unsigned int continue_bits[] = {
    657		[CMD_GEN_START] = LINESTAT_START_BIT_DET,
    658		[CMD_GEN_DATA]  = LINESTAT_INPUT_HELD_V,
    659		[CMD_RET_ACK]   = LINESTAT_ACK_DET | LINESTAT_NACK_DET,
    660		[CMD_RET_DATA]  = LINESTAT_INPUT_HELD_V,
    661		[CMD_GEN_STOP]  = LINESTAT_STOP_BIT_DET,
    662	};
    663	int next_cmd = -1;
    664	u8 next_data = 0x00;
    665
    666	if (int_status & INT_SLAVE_EVENT)
    667		i2c->at_slave_event = true;
    668	if (int_status & INT_TRANSACTION_DONE)
    669		i2c->at_t_done = true;
    670
    671	if (!i2c->at_slave_event || !i2c->at_t_done)
    672		return 0;
    673
    674	/* wait if no continue bits are set */
    675	if (i2c->at_cur_cmd >= 0 &&
    676	    i2c->at_cur_cmd < ARRAY_SIZE(continue_bits)) {
    677		unsigned int cont_bits = continue_bits[i2c->at_cur_cmd];
    678
    679		if (cont_bits) {
    680			cont_bits |= LINESTAT_ABORT_DET;
    681			if (!(i2c->line_status & cont_bits))
    682				return 0;
    683		}
    684	}
    685
    686	/* follow the sequence of commands in i2c->seq */
    687	next_cmd = *i2c->seq;
    688	/* stop on a nil */
    689	if (!next_cmd) {
    690		img_i2c_writel(i2c, SCB_OVERRIDE_REG, 0);
    691		return ISR_COMPLETE(0);
    692	}
    693	/* when generating data, the next byte is the data */
    694	if (next_cmd == CMD_GEN_DATA) {
    695		++i2c->seq;
    696		next_data = *i2c->seq;
    697	}
    698	++i2c->seq;
    699	img_i2c_atomic_op(i2c, next_cmd, next_data);
    700
    701	return 0;
    702}
    703
    704static void img_i2c_reset_start(struct img_i2c *i2c)
    705{
    706	/* Initiate the magic dance */
    707	img_i2c_switch_mode(i2c, MODE_SEQUENCE);
    708	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
    709	i2c->seq = img_i2c_reset_seq;
    710	i2c->at_slave_event = true;
    711	i2c->at_t_done = true;
    712	i2c->at_cur_cmd = -1;
    713
    714	/* img_i2c_reset_seq isn't empty so the following won't fail */
    715	img_i2c_sequence(i2c, 0);
    716}
    717
    718static void img_i2c_stop_start(struct img_i2c *i2c)
    719{
    720	/* Initiate a stop bit sequence */
    721	img_i2c_switch_mode(i2c, MODE_SEQUENCE);
    722	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
    723	i2c->seq = img_i2c_stop_seq;
    724	i2c->at_slave_event = true;
    725	i2c->at_t_done = true;
    726	i2c->at_cur_cmd = -1;
    727
    728	/* img_i2c_stop_seq isn't empty so the following won't fail */
    729	img_i2c_sequence(i2c, 0);
    730}
    731
    732static unsigned int img_i2c_atomic(struct img_i2c *i2c,
    733				   u32 int_status,
    734				   u32 line_status)
    735{
    736	int next_cmd = -1;
    737	u8 next_data = 0x00;
    738
    739	if (int_status & INT_SLAVE_EVENT)
    740		i2c->at_slave_event = true;
    741	if (int_status & INT_TRANSACTION_DONE)
    742		i2c->at_t_done = true;
    743
    744	if (!i2c->at_slave_event || !i2c->at_t_done)
    745		goto next_atomic_cmd;
    746	if (i2c->line_status & LINESTAT_ABORT_DET) {
    747		dev_dbg(i2c->adap.dev.parent, "abort condition detected\n");
    748		next_cmd = CMD_GEN_STOP;
    749		i2c->msg_status = -EIO;
    750		goto next_atomic_cmd;
    751	}
    752
    753	/* i2c->at_cur_cmd may have completed */
    754	switch (i2c->at_cur_cmd) {
    755	case CMD_GEN_START:
    756		next_cmd = CMD_GEN_DATA;
    757		next_data = i2c_8bit_addr_from_msg(&i2c->msg);
    758		break;
    759	case CMD_GEN_DATA:
    760		if (i2c->line_status & LINESTAT_INPUT_HELD_V)
    761			next_cmd = CMD_RET_ACK;
    762		break;
    763	case CMD_RET_ACK:
    764		if (i2c->line_status & LINESTAT_ACK_DET ||
    765		    (i2c->line_status & LINESTAT_NACK_DET &&
    766		    i2c->msg.flags & I2C_M_IGNORE_NAK)) {
    767			if (i2c->msg.len == 0) {
    768				next_cmd = CMD_GEN_STOP;
    769			} else if (i2c->msg.flags & I2C_M_RD) {
    770				next_cmd = CMD_RET_DATA;
    771			} else {
    772				next_cmd = CMD_GEN_DATA;
    773				next_data = *i2c->msg.buf;
    774				--i2c->msg.len;
    775				++i2c->msg.buf;
    776			}
    777		} else if (i2c->line_status & LINESTAT_NACK_DET) {
    778			i2c->msg_status = -EIO;
    779			next_cmd = CMD_GEN_STOP;
    780		}
    781		break;
    782	case CMD_RET_DATA:
    783		if (i2c->line_status & LINESTAT_INPUT_HELD_V) {
    784			*i2c->msg.buf = (i2c->line_status &
    785						LINESTAT_INPUT_DATA)
    786					>> LINESTAT_INPUT_DATA_SHIFT;
    787			--i2c->msg.len;
    788			++i2c->msg.buf;
    789			if (i2c->msg.len)
    790				next_cmd = CMD_GEN_ACK;
    791			else
    792				next_cmd = CMD_GEN_NACK;
    793		}
    794		break;
    795	case CMD_GEN_ACK:
    796		if (i2c->line_status & LINESTAT_ACK_DET) {
    797			next_cmd = CMD_RET_DATA;
    798		} else {
    799			i2c->msg_status = -EIO;
    800			next_cmd = CMD_GEN_STOP;
    801		}
    802		break;
    803	case CMD_GEN_NACK:
    804		next_cmd = CMD_GEN_STOP;
    805		break;
    806	case CMD_GEN_STOP:
    807		img_i2c_writel(i2c, SCB_OVERRIDE_REG, 0);
    808		return ISR_COMPLETE(0);
    809	default:
    810		dev_err(i2c->adap.dev.parent, "bad atomic command %d\n",
    811			i2c->at_cur_cmd);
    812		i2c->msg_status = -EIO;
    813		next_cmd = CMD_GEN_STOP;
    814		break;
    815	}
    816
    817next_atomic_cmd:
    818	if (next_cmd != -1) {
    819		/* don't actually stop unless we're the last transaction */
    820		if (next_cmd == CMD_GEN_STOP && !i2c->msg_status &&
    821						!i2c->last_msg)
    822			return ISR_COMPLETE(0);
    823		img_i2c_atomic_op(i2c, next_cmd, next_data);
    824	}
    825	return 0;
    826}
    827
    828/*
    829 * Timer function to check if something has gone wrong in automatic mode (so we
    830 * don't have to handle so many interrupts just to catch an exception).
    831 */
    832static void img_i2c_check_timer(struct timer_list *t)
    833{
    834	struct img_i2c *i2c = from_timer(i2c, t, check_timer);
    835	unsigned long flags;
    836	unsigned int line_status;
    837
    838	spin_lock_irqsave(&i2c->lock, flags);
    839	line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
    840
    841	/* check for an abort condition */
    842	if (line_status & LINESTAT_ABORT_DET) {
    843		dev_dbg(i2c->adap.dev.parent,
    844			"abort condition detected by check timer\n");
    845		/* enable slave event interrupt mask to trigger irq */
    846		img_i2c_writel(i2c, SCB_INT_MASK_REG,
    847			       i2c->int_enable | INT_SLAVE_EVENT);
    848	}
    849
    850	spin_unlock_irqrestore(&i2c->lock, flags);
    851}
    852
    853static unsigned int img_i2c_auto(struct img_i2c *i2c,
    854				 unsigned int int_status,
    855				 unsigned int line_status)
    856{
    857	if (int_status & (INT_WRITE_ACK_ERR | INT_ADDR_ACK_ERR))
    858		return ISR_COMPLETE(EIO);
    859
    860	if (line_status & LINESTAT_ABORT_DET) {
    861		dev_dbg(i2c->adap.dev.parent, "abort condition detected\n");
    862		/* empty the read fifo */
    863		if ((i2c->msg.flags & I2C_M_RD) &&
    864		    (int_status & INT_FIFO_FULL_FILLING))
    865			img_i2c_read_fifo(i2c);
    866		/* use atomic mode and try to force a stop bit */
    867		i2c->msg_status = -EIO;
    868		img_i2c_stop_start(i2c);
    869		return 0;
    870	}
    871
    872	/* Enable transaction halt on start bit */
    873	if (!i2c->last_msg && line_status & LINESTAT_START_BIT_DET) {
    874		img_i2c_transaction_halt(i2c, !i2c->last_msg);
    875		/* we're no longer interested in the slave event */
    876		i2c->int_enable &= ~INT_SLAVE_EVENT;
    877	}
    878
    879	mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
    880
    881	if (int_status & INT_STOP_DETECTED) {
    882		/* Drain remaining data in FIFO and complete transaction */
    883		if (i2c->msg.flags & I2C_M_RD)
    884			img_i2c_read_fifo(i2c);
    885		return ISR_COMPLETE(0);
    886	}
    887
    888	if (i2c->msg.flags & I2C_M_RD) {
    889		if (int_status & (INT_FIFO_FULL_FILLING | INT_MASTER_HALTED)) {
    890			img_i2c_read_fifo(i2c);
    891			if (i2c->msg.len == 0)
    892				return ISR_WAITSTOP;
    893		}
    894	} else {
    895		if (int_status & (INT_FIFO_EMPTY | INT_MASTER_HALTED)) {
    896			if ((int_status & INT_FIFO_EMPTY) &&
    897			    i2c->msg.len == 0)
    898				return ISR_WAITSTOP;
    899			img_i2c_write_fifo(i2c);
    900		}
    901	}
    902	if (int_status & INT_MASTER_HALTED) {
    903		/*
    904		 * Release and then enable transaction halt, to
    905		 * allow only a single byte to proceed.
    906		 */
    907		img_i2c_transaction_halt(i2c, false);
    908		img_i2c_transaction_halt(i2c, !i2c->last_msg);
    909	}
    910
    911	return 0;
    912}
    913
    914static irqreturn_t img_i2c_isr(int irq, void *dev_id)
    915{
    916	struct img_i2c *i2c = (struct img_i2c *)dev_id;
    917	u32 int_status, line_status;
    918	/* We handle transaction completion AFTER accessing registers */
    919	unsigned int hret;
    920
    921	/* Read interrupt status register. */
    922	int_status = img_i2c_readl(i2c, SCB_INT_STATUS_REG);
    923	/* Clear detected interrupts. */
    924	img_i2c_writel(i2c, SCB_INT_CLEAR_REG, int_status);
    925
    926	/*
    927	 * Read line status and clear it until it actually is clear.  We have
    928	 * to be careful not to lose any line status bits that get latched.
    929	 */
    930	line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
    931	if (line_status & LINESTAT_LATCHED) {
    932		img_i2c_writel(i2c, SCB_CLEAR_REG,
    933			      (line_status & LINESTAT_LATCHED)
    934				>> LINESTAT_CLEAR_SHIFT);
    935		img_i2c_wr_rd_fence(i2c);
    936	}
    937
    938	spin_lock(&i2c->lock);
    939
    940	/* Keep track of line status bits received */
    941	i2c->line_status &= ~LINESTAT_INPUT_DATA;
    942	i2c->line_status |= line_status;
    943
    944	/*
    945	 * Certain interrupts indicate that sclk low timeout is not
    946	 * a problem. If any of these are set, just continue.
    947	 */
    948	if ((int_status & INT_SCLK_LOW_TIMEOUT) &&
    949	    !(int_status & (INT_SLAVE_EVENT |
    950			    INT_FIFO_EMPTY |
    951			    INT_FIFO_FULL))) {
    952		dev_crit(i2c->adap.dev.parent,
    953			 "fatal: clock low timeout occurred %s addr 0x%02x\n",
    954			 (i2c->msg.flags & I2C_M_RD) ? "reading" : "writing",
    955			 i2c->msg.addr);
    956		hret = ISR_FATAL(EIO);
    957		goto out;
    958	}
    959
    960	if (i2c->mode == MODE_ATOMIC)
    961		hret = img_i2c_atomic(i2c, int_status, line_status);
    962	else if (i2c->mode == MODE_AUTOMATIC)
    963		hret = img_i2c_auto(i2c, int_status, line_status);
    964	else if (i2c->mode == MODE_SEQUENCE)
    965		hret = img_i2c_sequence(i2c, int_status);
    966	else if (i2c->mode == MODE_WAITSTOP && (int_status & INT_SLAVE_EVENT) &&
    967			 (line_status & LINESTAT_STOP_BIT_DET))
    968		hret = ISR_COMPLETE(0);
    969	else if (i2c->mode == MODE_RAW)
    970		hret = img_i2c_raw(i2c, int_status, line_status);
    971	else
    972		hret = 0;
    973
    974	/* Clear detected level interrupts. */
    975	img_i2c_writel(i2c, SCB_INT_CLEAR_REG, int_status & INT_LEVEL);
    976
    977out:
    978	if (hret & ISR_WAITSTOP) {
    979		/*
    980		 * Only wait for stop on last message.
    981		 * Also we may already have detected the stop bit.
    982		 */
    983		if (!i2c->last_msg || i2c->line_status & LINESTAT_STOP_BIT_DET)
    984			hret = ISR_COMPLETE(0);
    985		else
    986			img_i2c_switch_mode(i2c, MODE_WAITSTOP);
    987	}
    988
    989	/* now we've finished using regs, handle transaction completion */
    990	if (hret & ISR_COMPLETE_M) {
    991		int status = -(hret & ISR_STATUS_M);
    992
    993		img_i2c_complete_transaction(i2c, status);
    994		if (hret & ISR_FATAL_M)
    995			img_i2c_switch_mode(i2c, MODE_FATAL);
    996	}
    997
    998	/* Enable interrupts (int_enable may be altered by changing mode) */
    999	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
   1000
   1001	spin_unlock(&i2c->lock);
   1002
   1003	return IRQ_HANDLED;
   1004}
   1005
   1006/* Force a bus reset sequence and wait for it to complete */
   1007static int img_i2c_reset_bus(struct img_i2c *i2c)
   1008{
   1009	unsigned long flags;
   1010	unsigned long time_left;
   1011
   1012	spin_lock_irqsave(&i2c->lock, flags);
   1013	reinit_completion(&i2c->msg_complete);
   1014	img_i2c_reset_start(i2c);
   1015	spin_unlock_irqrestore(&i2c->lock, flags);
   1016
   1017	time_left = wait_for_completion_timeout(&i2c->msg_complete,
   1018					      IMG_I2C_TIMEOUT);
   1019	if (time_left == 0)
   1020		return -ETIMEDOUT;
   1021	return 0;
   1022}
   1023
   1024static int img_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs,
   1025			int num)
   1026{
   1027	struct img_i2c *i2c = i2c_get_adapdata(adap);
   1028	bool atomic = false;
   1029	int i, ret;
   1030	unsigned long time_left;
   1031
   1032	if (i2c->mode == MODE_SUSPEND) {
   1033		WARN(1, "refusing to service transaction in suspended state\n");
   1034		return -EIO;
   1035	}
   1036
   1037	if (i2c->mode == MODE_FATAL)
   1038		return -EIO;
   1039
   1040	for (i = 0; i < num; i++) {
   1041		/*
   1042		 * 0 byte reads are not possible because the slave could try
   1043		 * and pull the data line low, preventing a stop bit.
   1044		 */
   1045		if (!msgs[i].len && msgs[i].flags & I2C_M_RD)
   1046			return -EIO;
   1047		/*
   1048		 * 0 byte writes are possible and used for probing, but we
   1049		 * cannot do them in automatic mode, so use atomic mode
   1050		 * instead.
   1051		 *
   1052		 * Also, the I2C_M_IGNORE_NAK mode can only be implemented
   1053		 * in atomic mode.
   1054		 */
   1055		if (!msgs[i].len ||
   1056		    (msgs[i].flags & I2C_M_IGNORE_NAK))
   1057			atomic = true;
   1058	}
   1059
   1060	ret = pm_runtime_resume_and_get(adap->dev.parent);
   1061	if (ret < 0)
   1062		return ret;
   1063
   1064	for (i = 0; i < num; i++) {
   1065		struct i2c_msg *msg = &msgs[i];
   1066		unsigned long flags;
   1067
   1068		spin_lock_irqsave(&i2c->lock, flags);
   1069
   1070		/*
   1071		 * Make a copy of the message struct. We mustn't modify the
   1072		 * original or we'll confuse drivers and i2c-dev.
   1073		 */
   1074		i2c->msg = *msg;
   1075		i2c->msg_status = 0;
   1076
   1077		/*
   1078		 * After the last message we must have waited for a stop bit.
   1079		 * Not waiting can cause problems when the clock is disabled
   1080		 * before the stop bit is sent, and the linux I2C interface
   1081		 * requires separate transfers not to joined with repeated
   1082		 * start.
   1083		 */
   1084		i2c->last_msg = (i == num - 1);
   1085		reinit_completion(&i2c->msg_complete);
   1086
   1087		/*
   1088		 * Clear line status and all interrupts before starting a
   1089		 * transfer, as we may have unserviced interrupts from
   1090		 * previous transfers that might be handled in the context
   1091		 * of the new transfer.
   1092		 */
   1093		img_i2c_writel(i2c, SCB_INT_CLEAR_REG, ~0);
   1094		img_i2c_writel(i2c, SCB_CLEAR_REG, ~0);
   1095
   1096		if (atomic) {
   1097			img_i2c_atomic_start(i2c);
   1098		} else {
   1099			/*
   1100			 * Enable transaction halt if not the last message in
   1101			 * the queue so that we can control repeated starts.
   1102			 */
   1103			img_i2c_transaction_halt(i2c, !i2c->last_msg);
   1104
   1105			if (msg->flags & I2C_M_RD)
   1106				img_i2c_read(i2c);
   1107			else
   1108				img_i2c_write(i2c);
   1109
   1110			/*
   1111			 * Release and then enable transaction halt, to
   1112			 * allow only a single byte to proceed.
   1113			 * This doesn't have an effect on the initial transfer
   1114			 * but will allow the following transfers to start
   1115			 * processing if the previous transfer was marked as
   1116			 * complete while the i2c block was halted.
   1117			 */
   1118			img_i2c_transaction_halt(i2c, false);
   1119			img_i2c_transaction_halt(i2c, !i2c->last_msg);
   1120		}
   1121		spin_unlock_irqrestore(&i2c->lock, flags);
   1122
   1123		time_left = wait_for_completion_timeout(&i2c->msg_complete,
   1124						      IMG_I2C_TIMEOUT);
   1125		del_timer_sync(&i2c->check_timer);
   1126
   1127		if (time_left == 0) {
   1128			dev_err(adap->dev.parent, "i2c transfer timed out\n");
   1129			i2c->msg_status = -ETIMEDOUT;
   1130			break;
   1131		}
   1132
   1133		if (i2c->msg_status)
   1134			break;
   1135	}
   1136
   1137	pm_runtime_mark_last_busy(adap->dev.parent);
   1138	pm_runtime_put_autosuspend(adap->dev.parent);
   1139
   1140	return i2c->msg_status ? i2c->msg_status : num;
   1141}
   1142
   1143static u32 img_i2c_func(struct i2c_adapter *adap)
   1144{
   1145	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
   1146}
   1147
   1148static const struct i2c_algorithm img_i2c_algo = {
   1149	.master_xfer = img_i2c_xfer,
   1150	.functionality = img_i2c_func,
   1151};
   1152
   1153static int img_i2c_init(struct img_i2c *i2c)
   1154{
   1155	unsigned int clk_khz, bitrate_khz, clk_period, tckh, tckl, tsdh;
   1156	unsigned int i, data, prescale, inc, int_bitrate, filt;
   1157	struct img_i2c_timings timing;
   1158	u32 rev;
   1159	int ret;
   1160
   1161	ret = pm_runtime_resume_and_get(i2c->adap.dev.parent);
   1162	if (ret < 0)
   1163		return ret;
   1164
   1165	rev = img_i2c_readl(i2c, SCB_CORE_REV_REG);
   1166	if ((rev & 0x00ffffff) < 0x00020200) {
   1167		dev_info(i2c->adap.dev.parent,
   1168			 "Unknown hardware revision (%d.%d.%d.%d)\n",
   1169			 (rev >> 24) & 0xff, (rev >> 16) & 0xff,
   1170			 (rev >> 8) & 0xff, rev & 0xff);
   1171		pm_runtime_mark_last_busy(i2c->adap.dev.parent);
   1172		pm_runtime_put_autosuspend(i2c->adap.dev.parent);
   1173		return -EINVAL;
   1174	}
   1175
   1176	/* Fencing enabled by default. */
   1177	i2c->need_wr_rd_fence = true;
   1178
   1179	/* Determine what mode we're in from the bitrate */
   1180	timing = timings[0];
   1181	for (i = 0; i < ARRAY_SIZE(timings); i++) {
   1182		if (i2c->bitrate <= timings[i].max_bitrate) {
   1183			timing = timings[i];
   1184			break;
   1185		}
   1186	}
   1187	if (i2c->bitrate > timings[ARRAY_SIZE(timings) - 1].max_bitrate) {
   1188		dev_warn(i2c->adap.dev.parent,
   1189			 "requested bitrate (%u) is higher than the max bitrate supported (%u)\n",
   1190			 i2c->bitrate,
   1191			 timings[ARRAY_SIZE(timings) - 1].max_bitrate);
   1192		timing = timings[ARRAY_SIZE(timings) - 1];
   1193		i2c->bitrate = timing.max_bitrate;
   1194	}
   1195
   1196	bitrate_khz = i2c->bitrate / 1000;
   1197	clk_khz = clk_get_rate(i2c->scb_clk) / 1000;
   1198
   1199	/* Find the prescale that would give us that inc (approx delay = 0) */
   1200	prescale = SCB_OPT_INC * clk_khz / (256 * 16 * bitrate_khz);
   1201	prescale = clamp_t(unsigned int, prescale, 1, 8);
   1202	clk_khz /= prescale;
   1203
   1204	/* Setup the clock increment value */
   1205	inc = (256 * 16 * bitrate_khz) / clk_khz;
   1206
   1207	/*
   1208	 * The clock generation logic allows to filter glitches on the bus.
   1209	 * This filter is able to remove bus glitches shorter than 50ns.
   1210	 * If the clock enable rate is greater than 20 MHz, no filtering
   1211	 * is required, so we need to disable it.
   1212	 * If it's between the 20-40 MHz range, there's no need to divide
   1213	 * the clock to get a filter.
   1214	 */
   1215	if (clk_khz < 20000) {
   1216		filt = SCB_FILT_DISABLE;
   1217	} else if (clk_khz < 40000) {
   1218		filt = SCB_FILT_BYPASS;
   1219	} else {
   1220		/* Calculate filter clock */
   1221		filt = (64000 / ((clk_khz / 1000) * SCB_FILT_GLITCH));
   1222
   1223		/* Scale up if needed */
   1224		if (64000 % ((clk_khz / 1000) * SCB_FILT_GLITCH))
   1225			inc++;
   1226
   1227		if (filt > SCB_FILT_INC_MASK)
   1228			filt = SCB_FILT_INC_MASK;
   1229
   1230		filt = (filt & SCB_FILT_INC_MASK) << SCB_FILT_INC_SHIFT;
   1231	}
   1232	data = filt | ((inc & SCB_INC_MASK) << SCB_INC_SHIFT) | (prescale - 1);
   1233	img_i2c_writel(i2c, SCB_CLK_SET_REG, data);
   1234
   1235	/* Obtain the clock period of the fx16 clock in ns */
   1236	clk_period = (256 * 1000000) / (clk_khz * inc);
   1237
   1238	/* Calculate the bitrate in terms of internal clock pulses */
   1239	int_bitrate = 1000000 / (bitrate_khz * clk_period);
   1240	if ((1000000 % (bitrate_khz * clk_period)) >=
   1241	    ((bitrate_khz * clk_period) / 2))
   1242		int_bitrate++;
   1243
   1244	/*
   1245	 * Setup clock duty cycle, start with 50% and adjust TCKH and TCKL
   1246	 * values from there if they don't meet minimum timing requirements
   1247	 */
   1248	tckh = int_bitrate / 2;
   1249	tckl = int_bitrate - tckh;
   1250
   1251	/* Adjust TCKH and TCKL values */
   1252	data = DIV_ROUND_UP(timing.tckl, clk_period);
   1253
   1254	if (tckl < data) {
   1255		tckl = data;
   1256		tckh = int_bitrate - tckl;
   1257	}
   1258
   1259	if (tckh > 0)
   1260		--tckh;
   1261
   1262	if (tckl > 0)
   1263		--tckl;
   1264
   1265	img_i2c_writel(i2c, SCB_TIME_TCKH_REG, tckh);
   1266	img_i2c_writel(i2c, SCB_TIME_TCKL_REG, tckl);
   1267
   1268	/* Setup TSDH value */
   1269	tsdh = DIV_ROUND_UP(timing.tsdh, clk_period);
   1270
   1271	if (tsdh > 1)
   1272		data = tsdh - 1;
   1273	else
   1274		data = 0x01;
   1275	img_i2c_writel(i2c, SCB_TIME_TSDH_REG, data);
   1276
   1277	/* This value is used later */
   1278	tsdh = data;
   1279
   1280	/* Setup TPL value */
   1281	data = timing.tpl / clk_period;
   1282	if (data > 0)
   1283		--data;
   1284	img_i2c_writel(i2c, SCB_TIME_TPL_REG, data);
   1285
   1286	/* Setup TPH value */
   1287	data = timing.tph / clk_period;
   1288	if (data > 0)
   1289		--data;
   1290	img_i2c_writel(i2c, SCB_TIME_TPH_REG, data);
   1291
   1292	/* Setup TSDL value to TPL + TSDH + 2 */
   1293	img_i2c_writel(i2c, SCB_TIME_TSDL_REG, data + tsdh + 2);
   1294
   1295	/* Setup TP2S value */
   1296	data = timing.tp2s / clk_period;
   1297	if (data > 0)
   1298		--data;
   1299	img_i2c_writel(i2c, SCB_TIME_TP2S_REG, data);
   1300
   1301	img_i2c_writel(i2c, SCB_TIME_TBI_REG, TIMEOUT_TBI);
   1302	img_i2c_writel(i2c, SCB_TIME_TSL_REG, TIMEOUT_TSL);
   1303	img_i2c_writel(i2c, SCB_TIME_TDL_REG, TIMEOUT_TDL);
   1304
   1305	/* Take module out of soft reset and enable clocks */
   1306	img_i2c_soft_reset(i2c);
   1307
   1308	/* Disable all interrupts */
   1309	img_i2c_writel(i2c, SCB_INT_MASK_REG, 0);
   1310
   1311	/* Clear all interrupts */
   1312	img_i2c_writel(i2c, SCB_INT_CLEAR_REG, ~0);
   1313
   1314	/* Clear the scb_line_status events */
   1315	img_i2c_writel(i2c, SCB_CLEAR_REG, ~0);
   1316
   1317	/* Enable interrupts */
   1318	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
   1319
   1320	/* Perform a synchronous sequence to reset the bus */
   1321	ret = img_i2c_reset_bus(i2c);
   1322
   1323	pm_runtime_mark_last_busy(i2c->adap.dev.parent);
   1324	pm_runtime_put_autosuspend(i2c->adap.dev.parent);
   1325
   1326	return ret;
   1327}
   1328
   1329static int img_i2c_probe(struct platform_device *pdev)
   1330{
   1331	struct device_node *node = pdev->dev.of_node;
   1332	struct img_i2c *i2c;
   1333	int irq, ret;
   1334	u32 val;
   1335
   1336	i2c = devm_kzalloc(&pdev->dev, sizeof(struct img_i2c), GFP_KERNEL);
   1337	if (!i2c)
   1338		return -ENOMEM;
   1339
   1340	i2c->base = devm_platform_ioremap_resource(pdev, 0);
   1341	if (IS_ERR(i2c->base))
   1342		return PTR_ERR(i2c->base);
   1343
   1344	irq = platform_get_irq(pdev, 0);
   1345	if (irq < 0)
   1346		return irq;
   1347
   1348	i2c->sys_clk = devm_clk_get(&pdev->dev, "sys");
   1349	if (IS_ERR(i2c->sys_clk)) {
   1350		dev_err(&pdev->dev, "can't get system clock\n");
   1351		return PTR_ERR(i2c->sys_clk);
   1352	}
   1353
   1354	i2c->scb_clk = devm_clk_get(&pdev->dev, "scb");
   1355	if (IS_ERR(i2c->scb_clk)) {
   1356		dev_err(&pdev->dev, "can't get core clock\n");
   1357		return PTR_ERR(i2c->scb_clk);
   1358	}
   1359
   1360	ret = devm_request_irq(&pdev->dev, irq, img_i2c_isr, 0,
   1361			       pdev->name, i2c);
   1362	if (ret) {
   1363		dev_err(&pdev->dev, "can't request irq %d\n", irq);
   1364		return ret;
   1365	}
   1366
   1367	/* Set up the exception check timer */
   1368	timer_setup(&i2c->check_timer, img_i2c_check_timer, 0);
   1369
   1370	i2c->bitrate = timings[0].max_bitrate;
   1371	if (!of_property_read_u32(node, "clock-frequency", &val))
   1372		i2c->bitrate = val;
   1373
   1374	i2c_set_adapdata(&i2c->adap, i2c);
   1375	i2c->adap.dev.parent = &pdev->dev;
   1376	i2c->adap.dev.of_node = node;
   1377	i2c->adap.owner = THIS_MODULE;
   1378	i2c->adap.algo = &img_i2c_algo;
   1379	i2c->adap.retries = 5;
   1380	i2c->adap.nr = pdev->id;
   1381	snprintf(i2c->adap.name, sizeof(i2c->adap.name), "IMG SCB I2C");
   1382
   1383	img_i2c_switch_mode(i2c, MODE_INACTIVE);
   1384	spin_lock_init(&i2c->lock);
   1385	init_completion(&i2c->msg_complete);
   1386
   1387	platform_set_drvdata(pdev, i2c);
   1388
   1389	pm_runtime_set_autosuspend_delay(&pdev->dev, IMG_I2C_PM_TIMEOUT);
   1390	pm_runtime_use_autosuspend(&pdev->dev);
   1391	pm_runtime_enable(&pdev->dev);
   1392	if (!pm_runtime_enabled(&pdev->dev)) {
   1393		ret = img_i2c_runtime_resume(&pdev->dev);
   1394		if (ret)
   1395			return ret;
   1396	}
   1397
   1398	ret = img_i2c_init(i2c);
   1399	if (ret)
   1400		goto rpm_disable;
   1401
   1402	ret = i2c_add_numbered_adapter(&i2c->adap);
   1403	if (ret < 0)
   1404		goto rpm_disable;
   1405
   1406	return 0;
   1407
   1408rpm_disable:
   1409	if (!pm_runtime_enabled(&pdev->dev))
   1410		img_i2c_runtime_suspend(&pdev->dev);
   1411	pm_runtime_disable(&pdev->dev);
   1412	pm_runtime_dont_use_autosuspend(&pdev->dev);
   1413	return ret;
   1414}
   1415
   1416static int img_i2c_remove(struct platform_device *dev)
   1417{
   1418	struct img_i2c *i2c = platform_get_drvdata(dev);
   1419
   1420	i2c_del_adapter(&i2c->adap);
   1421	pm_runtime_disable(&dev->dev);
   1422	if (!pm_runtime_status_suspended(&dev->dev))
   1423		img_i2c_runtime_suspend(&dev->dev);
   1424
   1425	return 0;
   1426}
   1427
   1428static int img_i2c_runtime_suspend(struct device *dev)
   1429{
   1430	struct img_i2c *i2c = dev_get_drvdata(dev);
   1431
   1432	clk_disable_unprepare(i2c->scb_clk);
   1433	clk_disable_unprepare(i2c->sys_clk);
   1434
   1435	return 0;
   1436}
   1437
   1438static int img_i2c_runtime_resume(struct device *dev)
   1439{
   1440	struct img_i2c *i2c = dev_get_drvdata(dev);
   1441	int ret;
   1442
   1443	ret = clk_prepare_enable(i2c->sys_clk);
   1444	if (ret) {
   1445		dev_err(dev, "Unable to enable sys clock\n");
   1446		return ret;
   1447	}
   1448
   1449	ret = clk_prepare_enable(i2c->scb_clk);
   1450	if (ret) {
   1451		dev_err(dev, "Unable to enable scb clock\n");
   1452		clk_disable_unprepare(i2c->sys_clk);
   1453		return ret;
   1454	}
   1455
   1456	return 0;
   1457}
   1458
   1459#ifdef CONFIG_PM_SLEEP
   1460static int img_i2c_suspend(struct device *dev)
   1461{
   1462	struct img_i2c *i2c = dev_get_drvdata(dev);
   1463	int ret;
   1464
   1465	ret = pm_runtime_force_suspend(dev);
   1466	if (ret)
   1467		return ret;
   1468
   1469	img_i2c_switch_mode(i2c, MODE_SUSPEND);
   1470
   1471	return 0;
   1472}
   1473
   1474static int img_i2c_resume(struct device *dev)
   1475{
   1476	struct img_i2c *i2c = dev_get_drvdata(dev);
   1477	int ret;
   1478
   1479	ret = pm_runtime_force_resume(dev);
   1480	if (ret)
   1481		return ret;
   1482
   1483	img_i2c_init(i2c);
   1484
   1485	return 0;
   1486}
   1487#endif /* CONFIG_PM_SLEEP */
   1488
   1489static const struct dev_pm_ops img_i2c_pm = {
   1490	SET_RUNTIME_PM_OPS(img_i2c_runtime_suspend,
   1491			   img_i2c_runtime_resume,
   1492			   NULL)
   1493	SET_SYSTEM_SLEEP_PM_OPS(img_i2c_suspend, img_i2c_resume)
   1494};
   1495
   1496static const struct of_device_id img_scb_i2c_match[] = {
   1497	{ .compatible = "img,scb-i2c" },
   1498	{ }
   1499};
   1500MODULE_DEVICE_TABLE(of, img_scb_i2c_match);
   1501
   1502static struct platform_driver img_scb_i2c_driver = {
   1503	.driver = {
   1504		.name		= "img-i2c-scb",
   1505		.of_match_table	= img_scb_i2c_match,
   1506		.pm		= &img_i2c_pm,
   1507	},
   1508	.probe = img_i2c_probe,
   1509	.remove = img_i2c_remove,
   1510};
   1511module_platform_driver(img_scb_i2c_driver);
   1512
   1513MODULE_AUTHOR("James Hogan <jhogan@kernel.org>");
   1514MODULE_DESCRIPTION("IMG host I2C driver");
   1515MODULE_LICENSE("GPL v2");