cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

i2c-mxs.c (24418B)


      1// SPDX-License-Identifier: GPL-2.0+
      2/*
      3 * Freescale MXS I2C bus driver
      4 *
      5 * Copyright (C) 2012-2013 Marek Vasut <marex@denx.de>
      6 * Copyright (C) 2011-2012 Wolfram Sang, Pengutronix e.K.
      7 *
      8 * based on a (non-working) driver which was:
      9 *
     10 * Copyright (C) 2009-2010 Freescale Semiconductor, Inc. All Rights Reserved.
     11 */
     12
     13#include <linux/slab.h>
     14#include <linux/device.h>
     15#include <linux/module.h>
     16#include <linux/i2c.h>
     17#include <linux/err.h>
     18#include <linux/interrupt.h>
     19#include <linux/completion.h>
     20#include <linux/platform_device.h>
     21#include <linux/jiffies.h>
     22#include <linux/io.h>
     23#include <linux/stmp_device.h>
     24#include <linux/of.h>
     25#include <linux/of_device.h>
     26#include <linux/dma-mapping.h>
     27#include <linux/dmaengine.h>
     28#include <linux/dma/mxs-dma.h>
     29
     30#define DRIVER_NAME "mxs-i2c"
     31
     32#define MXS_I2C_CTRL0		(0x00)
     33#define MXS_I2C_CTRL0_SET	(0x04)
     34#define MXS_I2C_CTRL0_CLR	(0x08)
     35
     36#define MXS_I2C_CTRL0_SFTRST			0x80000000
     37#define MXS_I2C_CTRL0_RUN			0x20000000
     38#define MXS_I2C_CTRL0_SEND_NAK_ON_LAST		0x02000000
     39#define MXS_I2C_CTRL0_PIO_MODE			0x01000000
     40#define MXS_I2C_CTRL0_RETAIN_CLOCK		0x00200000
     41#define MXS_I2C_CTRL0_POST_SEND_STOP		0x00100000
     42#define MXS_I2C_CTRL0_PRE_SEND_START		0x00080000
     43#define MXS_I2C_CTRL0_MASTER_MODE		0x00020000
     44#define MXS_I2C_CTRL0_DIRECTION			0x00010000
     45#define MXS_I2C_CTRL0_XFER_COUNT(v)		((v) & 0x0000FFFF)
     46
     47#define MXS_I2C_TIMING0		(0x10)
     48#define MXS_I2C_TIMING1		(0x20)
     49#define MXS_I2C_TIMING2		(0x30)
     50
     51#define MXS_I2C_CTRL1		(0x40)
     52#define MXS_I2C_CTRL1_SET	(0x44)
     53#define MXS_I2C_CTRL1_CLR	(0x48)
     54
     55#define MXS_I2C_CTRL1_CLR_GOT_A_NAK		0x10000000
     56#define MXS_I2C_CTRL1_BUS_FREE_IRQ		0x80
     57#define MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ	0x40
     58#define MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ		0x20
     59#define MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ	0x10
     60#define MXS_I2C_CTRL1_EARLY_TERM_IRQ		0x08
     61#define MXS_I2C_CTRL1_MASTER_LOSS_IRQ		0x04
     62#define MXS_I2C_CTRL1_SLAVE_STOP_IRQ		0x02
     63#define MXS_I2C_CTRL1_SLAVE_IRQ			0x01
     64
     65#define MXS_I2C_STAT		(0x50)
     66#define MXS_I2C_STAT_GOT_A_NAK			0x10000000
     67#define MXS_I2C_STAT_BUS_BUSY			0x00000800
     68#define MXS_I2C_STAT_CLK_GEN_BUSY		0x00000400
     69
     70#define MXS_I2C_DATA(i2c)	((i2c->dev_type == MXS_I2C_V1) ? 0x60 : 0xa0)
     71
     72#define MXS_I2C_DEBUG0_CLR(i2c)	((i2c->dev_type == MXS_I2C_V1) ? 0x78 : 0xb8)
     73
     74#define MXS_I2C_DEBUG0_DMAREQ	0x80000000
     75
     76#define MXS_I2C_IRQ_MASK	(MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ | \
     77				 MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ | \
     78				 MXS_I2C_CTRL1_EARLY_TERM_IRQ | \
     79				 MXS_I2C_CTRL1_MASTER_LOSS_IRQ | \
     80				 MXS_I2C_CTRL1_SLAVE_STOP_IRQ | \
     81				 MXS_I2C_CTRL1_SLAVE_IRQ)
     82
     83
     84#define MXS_CMD_I2C_SELECT	(MXS_I2C_CTRL0_RETAIN_CLOCK |	\
     85				 MXS_I2C_CTRL0_PRE_SEND_START |	\
     86				 MXS_I2C_CTRL0_MASTER_MODE |	\
     87				 MXS_I2C_CTRL0_DIRECTION |	\
     88				 MXS_I2C_CTRL0_XFER_COUNT(1))
     89
     90#define MXS_CMD_I2C_WRITE	(MXS_I2C_CTRL0_PRE_SEND_START |	\
     91				 MXS_I2C_CTRL0_MASTER_MODE |	\
     92				 MXS_I2C_CTRL0_DIRECTION)
     93
     94#define MXS_CMD_I2C_READ	(MXS_I2C_CTRL0_SEND_NAK_ON_LAST | \
     95				 MXS_I2C_CTRL0_MASTER_MODE)
     96
     97enum mxs_i2c_devtype {
     98	MXS_I2C_UNKNOWN = 0,
     99	MXS_I2C_V1,
    100	MXS_I2C_V2,
    101};
    102
    103/**
    104 * struct mxs_i2c_dev - per device, private MXS-I2C data
    105 *
    106 * @dev: driver model device node
    107 * @dev_type: distinguish i.MX23/i.MX28 features
    108 * @regs: IO registers pointer
    109 * @cmd_complete: completion object for transaction wait
    110 * @cmd_err: error code for last transaction
    111 * @adapter: i2c subsystem adapter node
    112 */
    113struct mxs_i2c_dev {
    114	struct device *dev;
    115	enum mxs_i2c_devtype dev_type;
    116	void __iomem *regs;
    117	struct completion cmd_complete;
    118	int cmd_err;
    119	struct i2c_adapter adapter;
    120
    121	uint32_t timing0;
    122	uint32_t timing1;
    123	uint32_t timing2;
    124
    125	/* DMA support components */
    126	struct dma_chan			*dmach;
    127	uint32_t			pio_data[2];
    128	uint32_t			addr_data;
    129	struct scatterlist		sg_io[2];
    130	bool				dma_read;
    131};
    132
    133static int mxs_i2c_reset(struct mxs_i2c_dev *i2c)
    134{
    135	int ret = stmp_reset_block(i2c->regs);
    136	if (ret)
    137		return ret;
    138
    139	/*
    140	 * Configure timing for the I2C block. The I2C TIMING2 register has to
    141	 * be programmed with this particular magic number. The rest is derived
    142	 * from the XTAL speed and requested I2C speed.
    143	 *
    144	 * For details, see i.MX233 [25.4.2 - 25.4.4] and i.MX28 [27.5.2 - 27.5.4].
    145	 */
    146	writel(i2c->timing0, i2c->regs + MXS_I2C_TIMING0);
    147	writel(i2c->timing1, i2c->regs + MXS_I2C_TIMING1);
    148	writel(i2c->timing2, i2c->regs + MXS_I2C_TIMING2);
    149
    150	writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET);
    151
    152	return 0;
    153}
    154
    155static void mxs_i2c_dma_finish(struct mxs_i2c_dev *i2c)
    156{
    157	if (i2c->dma_read) {
    158		dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
    159		dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
    160	} else {
    161		dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
    162	}
    163}
    164
    165static void mxs_i2c_dma_irq_callback(void *param)
    166{
    167	struct mxs_i2c_dev *i2c = param;
    168
    169	complete(&i2c->cmd_complete);
    170	mxs_i2c_dma_finish(i2c);
    171}
    172
    173static int mxs_i2c_dma_setup_xfer(struct i2c_adapter *adap,
    174			struct i2c_msg *msg, uint32_t flags)
    175{
    176	struct dma_async_tx_descriptor *desc;
    177	struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
    178
    179	i2c->addr_data = i2c_8bit_addr_from_msg(msg);
    180
    181	if (msg->flags & I2C_M_RD) {
    182		i2c->dma_read = true;
    183
    184		/*
    185		 * SELECT command.
    186		 */
    187
    188		/* Queue the PIO register write transfer. */
    189		i2c->pio_data[0] = MXS_CMD_I2C_SELECT;
    190		desc = dmaengine_prep_slave_sg(i2c->dmach,
    191					(struct scatterlist *)&i2c->pio_data[0],
    192					1, DMA_TRANS_NONE, 0);
    193		if (!desc) {
    194			dev_err(i2c->dev,
    195				"Failed to get PIO reg. write descriptor.\n");
    196			goto select_init_pio_fail;
    197		}
    198
    199		/* Queue the DMA data transfer. */
    200		sg_init_one(&i2c->sg_io[0], &i2c->addr_data, 1);
    201		dma_map_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
    202		desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[0], 1,
    203					DMA_MEM_TO_DEV,
    204					DMA_PREP_INTERRUPT |
    205					MXS_DMA_CTRL_WAIT4END);
    206		if (!desc) {
    207			dev_err(i2c->dev,
    208				"Failed to get DMA data write descriptor.\n");
    209			goto select_init_dma_fail;
    210		}
    211
    212		/*
    213		 * READ command.
    214		 */
    215
    216		/* Queue the PIO register write transfer. */
    217		i2c->pio_data[1] = flags | MXS_CMD_I2C_READ |
    218				MXS_I2C_CTRL0_XFER_COUNT(msg->len);
    219		desc = dmaengine_prep_slave_sg(i2c->dmach,
    220					(struct scatterlist *)&i2c->pio_data[1],
    221					1, DMA_TRANS_NONE, DMA_PREP_INTERRUPT);
    222		if (!desc) {
    223			dev_err(i2c->dev,
    224				"Failed to get PIO reg. write descriptor.\n");
    225			goto select_init_dma_fail;
    226		}
    227
    228		/* Queue the DMA data transfer. */
    229		sg_init_one(&i2c->sg_io[1], msg->buf, msg->len);
    230		dma_map_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
    231		desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[1], 1,
    232					DMA_DEV_TO_MEM,
    233					DMA_PREP_INTERRUPT |
    234					MXS_DMA_CTRL_WAIT4END);
    235		if (!desc) {
    236			dev_err(i2c->dev,
    237				"Failed to get DMA data write descriptor.\n");
    238			goto read_init_dma_fail;
    239		}
    240	} else {
    241		i2c->dma_read = false;
    242
    243		/*
    244		 * WRITE command.
    245		 */
    246
    247		/* Queue the PIO register write transfer. */
    248		i2c->pio_data[0] = flags | MXS_CMD_I2C_WRITE |
    249				MXS_I2C_CTRL0_XFER_COUNT(msg->len + 1);
    250		desc = dmaengine_prep_slave_sg(i2c->dmach,
    251					(struct scatterlist *)&i2c->pio_data[0],
    252					1, DMA_TRANS_NONE, 0);
    253		if (!desc) {
    254			dev_err(i2c->dev,
    255				"Failed to get PIO reg. write descriptor.\n");
    256			goto write_init_pio_fail;
    257		}
    258
    259		/* Queue the DMA data transfer. */
    260		sg_init_table(i2c->sg_io, 2);
    261		sg_set_buf(&i2c->sg_io[0], &i2c->addr_data, 1);
    262		sg_set_buf(&i2c->sg_io[1], msg->buf, msg->len);
    263		dma_map_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
    264		desc = dmaengine_prep_slave_sg(i2c->dmach, i2c->sg_io, 2,
    265					DMA_MEM_TO_DEV,
    266					DMA_PREP_INTERRUPT |
    267					MXS_DMA_CTRL_WAIT4END);
    268		if (!desc) {
    269			dev_err(i2c->dev,
    270				"Failed to get DMA data write descriptor.\n");
    271			goto write_init_dma_fail;
    272		}
    273	}
    274
    275	/*
    276	 * The last descriptor must have this callback,
    277	 * to finish the DMA transaction.
    278	 */
    279	desc->callback = mxs_i2c_dma_irq_callback;
    280	desc->callback_param = i2c;
    281
    282	/* Start the transfer. */
    283	dmaengine_submit(desc);
    284	dma_async_issue_pending(i2c->dmach);
    285	return 0;
    286
    287/* Read failpath. */
    288read_init_dma_fail:
    289	dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
    290select_init_dma_fail:
    291	dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
    292select_init_pio_fail:
    293	dmaengine_terminate_sync(i2c->dmach);
    294	return -EINVAL;
    295
    296/* Write failpath. */
    297write_init_dma_fail:
    298	dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
    299write_init_pio_fail:
    300	dmaengine_terminate_sync(i2c->dmach);
    301	return -EINVAL;
    302}
    303
    304static int mxs_i2c_pio_wait_xfer_end(struct mxs_i2c_dev *i2c)
    305{
    306	unsigned long timeout = jiffies + msecs_to_jiffies(1000);
    307
    308	while (readl(i2c->regs + MXS_I2C_CTRL0) & MXS_I2C_CTRL0_RUN) {
    309		if (readl(i2c->regs + MXS_I2C_CTRL1) &
    310				MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
    311			return -ENXIO;
    312		if (time_after(jiffies, timeout))
    313			return -ETIMEDOUT;
    314		cond_resched();
    315	}
    316
    317	return 0;
    318}
    319
    320static int mxs_i2c_pio_check_error_state(struct mxs_i2c_dev *i2c)
    321{
    322	u32 state;
    323
    324	state = readl(i2c->regs + MXS_I2C_CTRL1_CLR) & MXS_I2C_IRQ_MASK;
    325
    326	if (state & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
    327		i2c->cmd_err = -ENXIO;
    328	else if (state & (MXS_I2C_CTRL1_EARLY_TERM_IRQ |
    329			  MXS_I2C_CTRL1_MASTER_LOSS_IRQ |
    330			  MXS_I2C_CTRL1_SLAVE_STOP_IRQ |
    331			  MXS_I2C_CTRL1_SLAVE_IRQ))
    332		i2c->cmd_err = -EIO;
    333
    334	return i2c->cmd_err;
    335}
    336
    337static void mxs_i2c_pio_trigger_cmd(struct mxs_i2c_dev *i2c, u32 cmd)
    338{
    339	u32 reg;
    340
    341	writel(cmd, i2c->regs + MXS_I2C_CTRL0);
    342
    343	/* readback makes sure the write is latched into hardware */
    344	reg = readl(i2c->regs + MXS_I2C_CTRL0);
    345	reg |= MXS_I2C_CTRL0_RUN;
    346	writel(reg, i2c->regs + MXS_I2C_CTRL0);
    347}
    348
    349/*
    350 * Start WRITE transaction on the I2C bus. By studying i.MX23 datasheet,
    351 * CTRL0::PIO_MODE bit description clarifies the order in which the registers
    352 * must be written during PIO mode operation. First, the CTRL0 register has
    353 * to be programmed with all the necessary bits but the RUN bit. Then the
    354 * payload has to be written into the DATA register. Finally, the transmission
    355 * is executed by setting the RUN bit in CTRL0.
    356 */
    357static void mxs_i2c_pio_trigger_write_cmd(struct mxs_i2c_dev *i2c, u32 cmd,
    358					  u32 data)
    359{
    360	writel(cmd, i2c->regs + MXS_I2C_CTRL0);
    361
    362	if (i2c->dev_type == MXS_I2C_V1)
    363		writel(MXS_I2C_CTRL0_PIO_MODE, i2c->regs + MXS_I2C_CTRL0_SET);
    364
    365	writel(data, i2c->regs + MXS_I2C_DATA(i2c));
    366	writel(MXS_I2C_CTRL0_RUN, i2c->regs + MXS_I2C_CTRL0_SET);
    367}
    368
    369static int mxs_i2c_pio_setup_xfer(struct i2c_adapter *adap,
    370			struct i2c_msg *msg, uint32_t flags)
    371{
    372	struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
    373	uint32_t addr_data = i2c_8bit_addr_from_msg(msg);
    374	uint32_t data = 0;
    375	int i, ret, xlen = 0, xmit = 0;
    376	uint32_t start;
    377
    378	/* Mute IRQs coming from this block. */
    379	writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_CLR);
    380
    381	/*
    382	 * MX23 idea:
    383	 * - Enable CTRL0::PIO_MODE (1 << 24)
    384	 * - Enable CTRL1::ACK_MODE (1 << 27)
    385	 *
    386	 * WARNING! The MX23 is broken in some way, even if it claims
    387	 * to support PIO, when we try to transfer any amount of data
    388	 * that is not aligned to 4 bytes, the DMA engine will have
    389	 * bits in DEBUG1::DMA_BYTES_ENABLES still set even after the
    390	 * transfer. This in turn will mess up the next transfer as
    391	 * the block it emit one byte write onto the bus terminated
    392	 * with a NAK+STOP. A possible workaround is to reset the IP
    393	 * block after every PIO transmission, which might just work.
    394	 *
    395	 * NOTE: The CTRL0::PIO_MODE description is important, since
    396	 * it outlines how the PIO mode is really supposed to work.
    397	 */
    398	if (msg->flags & I2C_M_RD) {
    399		/*
    400		 * PIO READ transfer:
    401		 *
    402		 * This transfer MUST be limited to 4 bytes maximum. It is not
    403		 * possible to transfer more than four bytes via PIO, since we
    404		 * can not in any way make sure we can read the data from the
    405		 * DATA register fast enough. Besides, the RX FIFO is only four
    406		 * bytes deep, thus we can only really read up to four bytes at
    407		 * time. Finally, there is no bit indicating us that new data
    408		 * arrived at the FIFO and can thus be fetched from the DATA
    409		 * register.
    410		 */
    411		BUG_ON(msg->len > 4);
    412
    413		/* SELECT command. */
    414		mxs_i2c_pio_trigger_write_cmd(i2c, MXS_CMD_I2C_SELECT,
    415					      addr_data);
    416
    417		ret = mxs_i2c_pio_wait_xfer_end(i2c);
    418		if (ret) {
    419			dev_dbg(i2c->dev,
    420				"PIO: Failed to send SELECT command!\n");
    421			goto cleanup;
    422		}
    423
    424		/* READ command. */
    425		mxs_i2c_pio_trigger_cmd(i2c,
    426					MXS_CMD_I2C_READ | flags |
    427					MXS_I2C_CTRL0_XFER_COUNT(msg->len));
    428
    429		ret = mxs_i2c_pio_wait_xfer_end(i2c);
    430		if (ret) {
    431			dev_dbg(i2c->dev,
    432				"PIO: Failed to send READ command!\n");
    433			goto cleanup;
    434		}
    435
    436		data = readl(i2c->regs + MXS_I2C_DATA(i2c));
    437		for (i = 0; i < msg->len; i++) {
    438			msg->buf[i] = data & 0xff;
    439			data >>= 8;
    440		}
    441	} else {
    442		/*
    443		 * PIO WRITE transfer:
    444		 *
    445		 * The code below implements clock stretching to circumvent
    446		 * the possibility of kernel not being able to supply data
    447		 * fast enough. It is possible to transfer arbitrary amount
    448		 * of data using PIO write.
    449		 */
    450
    451		/*
    452		 * The LSB of data buffer is the first byte blasted across
    453		 * the bus. Higher order bytes follow. Thus the following
    454		 * filling schematic.
    455		 */
    456
    457		data = addr_data << 24;
    458
    459		/* Start the transfer with START condition. */
    460		start = MXS_I2C_CTRL0_PRE_SEND_START;
    461
    462		/* If the transfer is long, use clock stretching. */
    463		if (msg->len > 3)
    464			start |= MXS_I2C_CTRL0_RETAIN_CLOCK;
    465
    466		for (i = 0; i < msg->len; i++) {
    467			data >>= 8;
    468			data |= (msg->buf[i] << 24);
    469
    470			xmit = 0;
    471
    472			/* This is the last transfer of the message. */
    473			if (i + 1 == msg->len) {
    474				/* Add optional STOP flag. */
    475				start |= flags;
    476				/* Remove RETAIN_CLOCK bit. */
    477				start &= ~MXS_I2C_CTRL0_RETAIN_CLOCK;
    478				xmit = 1;
    479			}
    480
    481			/* Four bytes are ready in the "data" variable. */
    482			if ((i & 3) == 2)
    483				xmit = 1;
    484
    485			/* Nothing interesting happened, continue stuffing. */
    486			if (!xmit)
    487				continue;
    488
    489			/*
    490			 * Compute the size of the transfer and shift the
    491			 * data accordingly.
    492			 *
    493			 * i = (4k + 0) .... xlen = 2
    494			 * i = (4k + 1) .... xlen = 3
    495			 * i = (4k + 2) .... xlen = 4
    496			 * i = (4k + 3) .... xlen = 1
    497			 */
    498
    499			if ((i % 4) == 3)
    500				xlen = 1;
    501			else
    502				xlen = (i % 4) + 2;
    503
    504			data >>= (4 - xlen) * 8;
    505
    506			dev_dbg(i2c->dev,
    507				"PIO: len=%i pos=%i total=%i [W%s%s%s]\n",
    508				xlen, i, msg->len,
    509				start & MXS_I2C_CTRL0_PRE_SEND_START ? "S" : "",
    510				start & MXS_I2C_CTRL0_POST_SEND_STOP ? "E" : "",
    511				start & MXS_I2C_CTRL0_RETAIN_CLOCK ? "C" : "");
    512
    513			writel(MXS_I2C_DEBUG0_DMAREQ,
    514			       i2c->regs + MXS_I2C_DEBUG0_CLR(i2c));
    515
    516			mxs_i2c_pio_trigger_write_cmd(i2c,
    517				start | MXS_I2C_CTRL0_MASTER_MODE |
    518				MXS_I2C_CTRL0_DIRECTION |
    519				MXS_I2C_CTRL0_XFER_COUNT(xlen), data);
    520
    521			/* The START condition is sent only once. */
    522			start &= ~MXS_I2C_CTRL0_PRE_SEND_START;
    523
    524			/* Wait for the end of the transfer. */
    525			ret = mxs_i2c_pio_wait_xfer_end(i2c);
    526			if (ret) {
    527				dev_dbg(i2c->dev,
    528					"PIO: Failed to finish WRITE cmd!\n");
    529				break;
    530			}
    531
    532			/* Check NAK here. */
    533			ret = readl(i2c->regs + MXS_I2C_STAT) &
    534				    MXS_I2C_STAT_GOT_A_NAK;
    535			if (ret) {
    536				ret = -ENXIO;
    537				goto cleanup;
    538			}
    539		}
    540	}
    541
    542	/* make sure we capture any occurred error into cmd_err */
    543	ret = mxs_i2c_pio_check_error_state(i2c);
    544
    545cleanup:
    546	/* Clear any dangling IRQs and re-enable interrupts. */
    547	writel(MXS_I2C_IRQ_MASK, i2c->regs + MXS_I2C_CTRL1_CLR);
    548	writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET);
    549
    550	/* Clear the PIO_MODE on i.MX23 */
    551	if (i2c->dev_type == MXS_I2C_V1)
    552		writel(MXS_I2C_CTRL0_PIO_MODE, i2c->regs + MXS_I2C_CTRL0_CLR);
    553
    554	return ret;
    555}
    556
    557/*
    558 * Low level master read/write transaction.
    559 */
    560static int mxs_i2c_xfer_msg(struct i2c_adapter *adap, struct i2c_msg *msg,
    561				int stop)
    562{
    563	struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
    564	int ret;
    565	int flags;
    566	int use_pio = 0;
    567	unsigned long time_left;
    568
    569	flags = stop ? MXS_I2C_CTRL0_POST_SEND_STOP : 0;
    570
    571	dev_dbg(i2c->dev, "addr: 0x%04x, len: %d, flags: 0x%x, stop: %d\n",
    572		msg->addr, msg->len, msg->flags, stop);
    573
    574	/*
    575	 * The MX28 I2C IP block can only do PIO READ for transfer of to up
    576	 * 4 bytes of length. The write transfer is not limited as it can use
    577	 * clock stretching to avoid FIFO underruns.
    578	 */
    579	if ((msg->flags & I2C_M_RD) && (msg->len <= 4))
    580		use_pio = 1;
    581	if (!(msg->flags & I2C_M_RD) && (msg->len < 7))
    582		use_pio = 1;
    583
    584	i2c->cmd_err = 0;
    585	if (use_pio) {
    586		ret = mxs_i2c_pio_setup_xfer(adap, msg, flags);
    587		/* No need to reset the block if NAK was received. */
    588		if (ret && (ret != -ENXIO))
    589			mxs_i2c_reset(i2c);
    590	} else {
    591		reinit_completion(&i2c->cmd_complete);
    592		ret = mxs_i2c_dma_setup_xfer(adap, msg, flags);
    593		if (ret)
    594			return ret;
    595
    596		time_left = wait_for_completion_timeout(&i2c->cmd_complete,
    597						msecs_to_jiffies(1000));
    598		if (!time_left)
    599			goto timeout;
    600
    601		ret = i2c->cmd_err;
    602	}
    603
    604	if (ret == -ENXIO) {
    605		/*
    606		 * If the transfer fails with a NAK from the slave the
    607		 * controller halts until it gets told to return to idle state.
    608		 */
    609		writel(MXS_I2C_CTRL1_CLR_GOT_A_NAK,
    610		       i2c->regs + MXS_I2C_CTRL1_SET);
    611	}
    612
    613	/*
    614	 * WARNING!
    615	 * The i.MX23 is strange. After each and every operation, it's I2C IP
    616	 * block must be reset, otherwise the IP block will misbehave. This can
    617	 * be observed on the bus by the block sending out one single byte onto
    618	 * the bus. In case such an error happens, bit 27 will be set in the
    619	 * DEBUG0 register. This bit is not documented in the i.MX23 datasheet
    620	 * and is marked as "TBD" instead. To reset this bit to a correct state,
    621	 * reset the whole block. Since the block reset does not take long, do
    622	 * reset the block after every transfer to play safe.
    623	 */
    624	if (i2c->dev_type == MXS_I2C_V1)
    625		mxs_i2c_reset(i2c);
    626
    627	dev_dbg(i2c->dev, "Done with err=%d\n", ret);
    628
    629	return ret;
    630
    631timeout:
    632	dev_dbg(i2c->dev, "Timeout!\n");
    633	mxs_i2c_dma_finish(i2c);
    634	ret = mxs_i2c_reset(i2c);
    635	if (ret)
    636		return ret;
    637
    638	return -ETIMEDOUT;
    639}
    640
    641static int mxs_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[],
    642			int num)
    643{
    644	int i;
    645	int err;
    646
    647	for (i = 0; i < num; i++) {
    648		err = mxs_i2c_xfer_msg(adap, &msgs[i], i == (num - 1));
    649		if (err)
    650			return err;
    651	}
    652
    653	return num;
    654}
    655
    656static u32 mxs_i2c_func(struct i2c_adapter *adap)
    657{
    658	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
    659}
    660
    661static irqreturn_t mxs_i2c_isr(int this_irq, void *dev_id)
    662{
    663	struct mxs_i2c_dev *i2c = dev_id;
    664	u32 stat = readl(i2c->regs + MXS_I2C_CTRL1) & MXS_I2C_IRQ_MASK;
    665
    666	if (!stat)
    667		return IRQ_NONE;
    668
    669	if (stat & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
    670		i2c->cmd_err = -ENXIO;
    671	else if (stat & (MXS_I2C_CTRL1_EARLY_TERM_IRQ |
    672		    MXS_I2C_CTRL1_MASTER_LOSS_IRQ |
    673		    MXS_I2C_CTRL1_SLAVE_STOP_IRQ | MXS_I2C_CTRL1_SLAVE_IRQ))
    674		/* MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ is only for slaves */
    675		i2c->cmd_err = -EIO;
    676
    677	writel(stat, i2c->regs + MXS_I2C_CTRL1_CLR);
    678
    679	return IRQ_HANDLED;
    680}
    681
    682static const struct i2c_algorithm mxs_i2c_algo = {
    683	.master_xfer = mxs_i2c_xfer,
    684	.functionality = mxs_i2c_func,
    685};
    686
    687static const struct i2c_adapter_quirks mxs_i2c_quirks = {
    688	.flags = I2C_AQ_NO_ZERO_LEN,
    689};
    690
    691static void mxs_i2c_derive_timing(struct mxs_i2c_dev *i2c, uint32_t speed)
    692{
    693	/* The I2C block clock runs at 24MHz */
    694	const uint32_t clk = 24000000;
    695	uint32_t divider;
    696	uint16_t high_count, low_count, rcv_count, xmit_count;
    697	uint32_t bus_free, leadin;
    698	struct device *dev = i2c->dev;
    699
    700	divider = DIV_ROUND_UP(clk, speed);
    701
    702	if (divider < 25) {
    703		/*
    704		 * limit the divider, so that min(low_count, high_count)
    705		 * is >= 1
    706		 */
    707		divider = 25;
    708		dev_warn(dev,
    709			"Speed too high (%u.%03u kHz), using %u.%03u kHz\n",
    710			speed / 1000, speed % 1000,
    711			clk / divider / 1000, clk / divider % 1000);
    712	} else if (divider > 1897) {
    713		/*
    714		 * limit the divider, so that max(low_count, high_count)
    715		 * cannot exceed 1023
    716		 */
    717		divider = 1897;
    718		dev_warn(dev,
    719			"Speed too low (%u.%03u kHz), using %u.%03u kHz\n",
    720			speed / 1000, speed % 1000,
    721			clk / divider / 1000, clk / divider % 1000);
    722	}
    723
    724	/*
    725	 * The I2C spec specifies the following timing data:
    726	 *                          standard mode  fast mode Bitfield name
    727	 * tLOW (SCL LOW period)     4700 ns        1300 ns
    728	 * tHIGH (SCL HIGH period)   4000 ns         600 ns
    729	 * tSU;DAT (data setup time)  250 ns         100 ns
    730	 * tHD;STA (START hold time) 4000 ns         600 ns
    731	 * tBUF (bus free time)      4700 ns        1300 ns
    732	 *
    733	 * The hardware (of the i.MX28 at least) seems to add 2 additional
    734	 * clock cycles to the low_count and 7 cycles to the high_count.
    735	 * This is compensated for by subtracting the respective constants
    736	 * from the values written to the timing registers.
    737	 */
    738	if (speed > I2C_MAX_STANDARD_MODE_FREQ) {
    739		/* fast mode */
    740		low_count = DIV_ROUND_CLOSEST(divider * 13, (13 + 6));
    741		high_count = DIV_ROUND_CLOSEST(divider * 6, (13 + 6));
    742		leadin = DIV_ROUND_UP(600 * (clk / 1000000), 1000);
    743		bus_free = DIV_ROUND_UP(1300 * (clk / 1000000), 1000);
    744	} else {
    745		/* normal mode */
    746		low_count = DIV_ROUND_CLOSEST(divider * 47, (47 + 40));
    747		high_count = DIV_ROUND_CLOSEST(divider * 40, (47 + 40));
    748		leadin = DIV_ROUND_UP(4700 * (clk / 1000000), 1000);
    749		bus_free = DIV_ROUND_UP(4700 * (clk / 1000000), 1000);
    750	}
    751	rcv_count = high_count * 3 / 8;
    752	xmit_count = low_count * 3 / 8;
    753
    754	dev_dbg(dev,
    755		"speed=%u(actual %u) divider=%u low=%u high=%u xmit=%u rcv=%u leadin=%u bus_free=%u\n",
    756		speed, clk / divider, divider, low_count, high_count,
    757		xmit_count, rcv_count, leadin, bus_free);
    758
    759	low_count -= 2;
    760	high_count -= 7;
    761	i2c->timing0 = (high_count << 16) | rcv_count;
    762	i2c->timing1 = (low_count << 16) | xmit_count;
    763	i2c->timing2 = (bus_free << 16 | leadin);
    764}
    765
    766static int mxs_i2c_get_ofdata(struct mxs_i2c_dev *i2c)
    767{
    768	uint32_t speed;
    769	struct device *dev = i2c->dev;
    770	struct device_node *node = dev->of_node;
    771	int ret;
    772
    773	ret = of_property_read_u32(node, "clock-frequency", &speed);
    774	if (ret) {
    775		dev_warn(dev, "No I2C speed selected, using 100kHz\n");
    776		speed = I2C_MAX_STANDARD_MODE_FREQ;
    777	}
    778
    779	mxs_i2c_derive_timing(i2c, speed);
    780
    781	return 0;
    782}
    783
    784static const struct of_device_id mxs_i2c_dt_ids[] = {
    785	{ .compatible = "fsl,imx23-i2c", .data = (void *)MXS_I2C_V1, },
    786	{ .compatible = "fsl,imx28-i2c", .data = (void *)MXS_I2C_V2, },
    787	{ /* sentinel */ }
    788};
    789MODULE_DEVICE_TABLE(of, mxs_i2c_dt_ids);
    790
    791static int mxs_i2c_probe(struct platform_device *pdev)
    792{
    793	struct device *dev = &pdev->dev;
    794	struct mxs_i2c_dev *i2c;
    795	struct i2c_adapter *adap;
    796	int err, irq;
    797
    798	i2c = devm_kzalloc(dev, sizeof(*i2c), GFP_KERNEL);
    799	if (!i2c)
    800		return -ENOMEM;
    801
    802	i2c->dev_type = (enum mxs_i2c_devtype)of_device_get_match_data(&pdev->dev);
    803
    804	i2c->regs = devm_platform_ioremap_resource(pdev, 0);
    805	if (IS_ERR(i2c->regs))
    806		return PTR_ERR(i2c->regs);
    807
    808	irq = platform_get_irq(pdev, 0);
    809	if (irq < 0)
    810		return irq;
    811
    812	err = devm_request_irq(dev, irq, mxs_i2c_isr, 0, dev_name(dev), i2c);
    813	if (err)
    814		return err;
    815
    816	i2c->dev = dev;
    817
    818	init_completion(&i2c->cmd_complete);
    819
    820	if (dev->of_node) {
    821		err = mxs_i2c_get_ofdata(i2c);
    822		if (err)
    823			return err;
    824	}
    825
    826	/* Setup the DMA */
    827	i2c->dmach = dma_request_chan(dev, "rx-tx");
    828	if (IS_ERR(i2c->dmach)) {
    829		dev_err(dev, "Failed to request dma\n");
    830		return PTR_ERR(i2c->dmach);
    831	}
    832
    833	platform_set_drvdata(pdev, i2c);
    834
    835	/* Do reset to enforce correct startup after pinmuxing */
    836	err = mxs_i2c_reset(i2c);
    837	if (err)
    838		return err;
    839
    840	adap = &i2c->adapter;
    841	strlcpy(adap->name, "MXS I2C adapter", sizeof(adap->name));
    842	adap->owner = THIS_MODULE;
    843	adap->algo = &mxs_i2c_algo;
    844	adap->quirks = &mxs_i2c_quirks;
    845	adap->dev.parent = dev;
    846	adap->nr = pdev->id;
    847	adap->dev.of_node = pdev->dev.of_node;
    848	i2c_set_adapdata(adap, i2c);
    849	err = i2c_add_numbered_adapter(adap);
    850	if (err) {
    851		writel(MXS_I2C_CTRL0_SFTRST,
    852				i2c->regs + MXS_I2C_CTRL0_SET);
    853		return err;
    854	}
    855
    856	return 0;
    857}
    858
    859static int mxs_i2c_remove(struct platform_device *pdev)
    860{
    861	struct mxs_i2c_dev *i2c = platform_get_drvdata(pdev);
    862
    863	i2c_del_adapter(&i2c->adapter);
    864
    865	if (i2c->dmach)
    866		dma_release_channel(i2c->dmach);
    867
    868	writel(MXS_I2C_CTRL0_SFTRST, i2c->regs + MXS_I2C_CTRL0_SET);
    869
    870	return 0;
    871}
    872
    873static struct platform_driver mxs_i2c_driver = {
    874	.driver = {
    875		   .name = DRIVER_NAME,
    876		   .of_match_table = mxs_i2c_dt_ids,
    877		   },
    878	.probe = mxs_i2c_probe,
    879	.remove = mxs_i2c_remove,
    880};
    881
    882static int __init mxs_i2c_init(void)
    883{
    884	return platform_driver_register(&mxs_i2c_driver);
    885}
    886subsys_initcall(mxs_i2c_init);
    887
    888static void __exit mxs_i2c_exit(void)
    889{
    890	platform_driver_unregister(&mxs_i2c_driver);
    891}
    892module_exit(mxs_i2c_exit);
    893
    894MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
    895MODULE_AUTHOR("Wolfram Sang <kernel@pengutronix.de>");
    896MODULE_DESCRIPTION("MXS I2C Bus Driver");
    897MODULE_LICENSE("GPL");
    898MODULE_ALIAS("platform:" DRIVER_NAME);