cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

i2c-qcom-cci.c (19593B)


      1// SPDX-License-Identifier: GPL-2.0
      2// Copyright (c) 2012-2016, The Linux Foundation. All rights reserved.
      3// Copyright (c) 2017-2022 Linaro Limited.
      4
      5#include <linux/clk.h>
      6#include <linux/completion.h>
      7#include <linux/i2c.h>
      8#include <linux/io.h>
      9#include <linux/interrupt.h>
     10#include <linux/module.h>
     11#include <linux/of.h>
     12#include <linux/platform_device.h>
     13#include <linux/pm_runtime.h>
     14
     15#define CCI_HW_VERSION				0x0
     16#define CCI_RESET_CMD				0x004
     17#define CCI_RESET_CMD_MASK			0x0f73f3f7
     18#define CCI_RESET_CMD_M0_MASK			0x000003f1
     19#define CCI_RESET_CMD_M1_MASK			0x0003f001
     20#define CCI_QUEUE_START				0x008
     21#define CCI_HALT_REQ				0x034
     22#define CCI_HALT_REQ_I2C_M0_Q0Q1		BIT(0)
     23#define CCI_HALT_REQ_I2C_M1_Q0Q1		BIT(1)
     24
     25#define CCI_I2C_Mm_SCL_CTL(m)			(0x100 + 0x100 * (m))
     26#define CCI_I2C_Mm_SDA_CTL_0(m)			(0x104 + 0x100 * (m))
     27#define CCI_I2C_Mm_SDA_CTL_1(m)			(0x108 + 0x100 * (m))
     28#define CCI_I2C_Mm_SDA_CTL_2(m)			(0x10c + 0x100 * (m))
     29#define CCI_I2C_Mm_MISC_CTL(m)			(0x110 + 0x100 * (m))
     30
     31#define CCI_I2C_Mm_READ_DATA(m)			(0x118 + 0x100 * (m))
     32#define CCI_I2C_Mm_READ_BUF_LEVEL(m)		(0x11c + 0x100 * (m))
     33#define CCI_I2C_Mm_Qn_EXEC_WORD_CNT(m, n)	(0x300 + 0x200 * (m) + 0x100 * (n))
     34#define CCI_I2C_Mm_Qn_CUR_WORD_CNT(m, n)	(0x304 + 0x200 * (m) + 0x100 * (n))
     35#define CCI_I2C_Mm_Qn_CUR_CMD(m, n)		(0x308 + 0x200 * (m) + 0x100 * (n))
     36#define CCI_I2C_Mm_Qn_REPORT_STATUS(m, n)	(0x30c + 0x200 * (m) + 0x100 * (n))
     37#define CCI_I2C_Mm_Qn_LOAD_DATA(m, n)		(0x310 + 0x200 * (m) + 0x100 * (n))
     38
     39#define CCI_IRQ_GLOBAL_CLEAR_CMD		0xc00
     40#define CCI_IRQ_MASK_0				0xc04
     41#define CCI_IRQ_MASK_0_I2C_M0_RD_DONE		BIT(0)
     42#define CCI_IRQ_MASK_0_I2C_M0_Q0_REPORT		BIT(4)
     43#define CCI_IRQ_MASK_0_I2C_M0_Q1_REPORT		BIT(8)
     44#define CCI_IRQ_MASK_0_I2C_M1_RD_DONE		BIT(12)
     45#define CCI_IRQ_MASK_0_I2C_M1_Q0_REPORT		BIT(16)
     46#define CCI_IRQ_MASK_0_I2C_M1_Q1_REPORT		BIT(20)
     47#define CCI_IRQ_MASK_0_RST_DONE_ACK		BIT(24)
     48#define CCI_IRQ_MASK_0_I2C_M0_Q0Q1_HALT_ACK	BIT(25)
     49#define CCI_IRQ_MASK_0_I2C_M1_Q0Q1_HALT_ACK	BIT(26)
     50#define CCI_IRQ_MASK_0_I2C_M0_ERROR		0x18000ee6
     51#define CCI_IRQ_MASK_0_I2C_M1_ERROR		0x60ee6000
     52#define CCI_IRQ_CLEAR_0				0xc08
     53#define CCI_IRQ_STATUS_0			0xc0c
     54#define CCI_IRQ_STATUS_0_I2C_M0_RD_DONE		BIT(0)
     55#define CCI_IRQ_STATUS_0_I2C_M0_Q0_REPORT	BIT(4)
     56#define CCI_IRQ_STATUS_0_I2C_M0_Q1_REPORT	BIT(8)
     57#define CCI_IRQ_STATUS_0_I2C_M1_RD_DONE		BIT(12)
     58#define CCI_IRQ_STATUS_0_I2C_M1_Q0_REPORT	BIT(16)
     59#define CCI_IRQ_STATUS_0_I2C_M1_Q1_REPORT	BIT(20)
     60#define CCI_IRQ_STATUS_0_RST_DONE_ACK		BIT(24)
     61#define CCI_IRQ_STATUS_0_I2C_M0_Q0Q1_HALT_ACK	BIT(25)
     62#define CCI_IRQ_STATUS_0_I2C_M1_Q0Q1_HALT_ACK	BIT(26)
     63#define CCI_IRQ_STATUS_0_I2C_M0_Q0_NACK_ERR	BIT(27)
     64#define CCI_IRQ_STATUS_0_I2C_M0_Q1_NACK_ERR	BIT(28)
     65#define CCI_IRQ_STATUS_0_I2C_M1_Q0_NACK_ERR	BIT(29)
     66#define CCI_IRQ_STATUS_0_I2C_M1_Q1_NACK_ERR	BIT(30)
     67#define CCI_IRQ_STATUS_0_I2C_M0_ERROR		0x18000ee6
     68#define CCI_IRQ_STATUS_0_I2C_M1_ERROR		0x60ee6000
     69
     70#define CCI_TIMEOUT	(msecs_to_jiffies(100))
     71#define NUM_MASTERS	2
     72#define NUM_QUEUES	2
     73
     74/* Max number of resources + 1 for a NULL terminator */
     75#define CCI_RES_MAX	6
     76
     77#define CCI_I2C_SET_PARAM	1
     78#define CCI_I2C_REPORT		8
     79#define CCI_I2C_WRITE		9
     80#define CCI_I2C_READ		10
     81
     82#define CCI_I2C_REPORT_IRQ_EN	BIT(8)
     83
     84enum {
     85	I2C_MODE_STANDARD,
     86	I2C_MODE_FAST,
     87	I2C_MODE_FAST_PLUS,
     88};
     89
     90enum cci_i2c_queue_t {
     91	QUEUE_0,
     92	QUEUE_1
     93};
     94
     95struct hw_params {
     96	u16 thigh; /* HIGH period of the SCL clock in clock ticks */
     97	u16 tlow; /* LOW period of the SCL clock */
     98	u16 tsu_sto; /* set-up time for STOP condition */
     99	u16 tsu_sta; /* set-up time for a repeated START condition */
    100	u16 thd_dat; /* data hold time */
    101	u16 thd_sta; /* hold time (repeated) START condition */
    102	u16 tbuf; /* bus free time between a STOP and START condition */
    103	u8 scl_stretch_en;
    104	u16 trdhld;
    105	u16 tsp; /* pulse width of spikes suppressed by the input filter */
    106};
    107
    108struct cci;
    109
    110struct cci_master {
    111	struct i2c_adapter adap;
    112	u16 master;
    113	u8 mode;
    114	int status;
    115	struct completion irq_complete;
    116	struct cci *cci;
    117};
    118
    119struct cci_data {
    120	unsigned int num_masters;
    121	struct i2c_adapter_quirks quirks;
    122	u16 queue_size[NUM_QUEUES];
    123	unsigned long cci_clk_rate;
    124	struct hw_params params[3];
    125};
    126
    127struct cci {
    128	struct device *dev;
    129	void __iomem *base;
    130	unsigned int irq;
    131	const struct cci_data *data;
    132	struct clk_bulk_data *clocks;
    133	int nclocks;
    134	struct cci_master master[NUM_MASTERS];
    135};
    136
    137static irqreturn_t cci_isr(int irq, void *dev)
    138{
    139	struct cci *cci = dev;
    140	u32 val, reset = 0;
    141	int ret = IRQ_NONE;
    142
    143	val = readl(cci->base + CCI_IRQ_STATUS_0);
    144	writel(val, cci->base + CCI_IRQ_CLEAR_0);
    145	writel(0x1, cci->base + CCI_IRQ_GLOBAL_CLEAR_CMD);
    146
    147	if (val & CCI_IRQ_STATUS_0_RST_DONE_ACK) {
    148		complete(&cci->master[0].irq_complete);
    149		if (cci->master[1].master)
    150			complete(&cci->master[1].irq_complete);
    151		ret = IRQ_HANDLED;
    152	}
    153
    154	if (val & CCI_IRQ_STATUS_0_I2C_M0_RD_DONE ||
    155			val & CCI_IRQ_STATUS_0_I2C_M0_Q0_REPORT ||
    156			val & CCI_IRQ_STATUS_0_I2C_M0_Q1_REPORT) {
    157		cci->master[0].status = 0;
    158		complete(&cci->master[0].irq_complete);
    159		ret = IRQ_HANDLED;
    160	}
    161
    162	if (val & CCI_IRQ_STATUS_0_I2C_M1_RD_DONE ||
    163			val & CCI_IRQ_STATUS_0_I2C_M1_Q0_REPORT ||
    164			val & CCI_IRQ_STATUS_0_I2C_M1_Q1_REPORT) {
    165		cci->master[1].status = 0;
    166		complete(&cci->master[1].irq_complete);
    167		ret = IRQ_HANDLED;
    168	}
    169
    170	if (unlikely(val & CCI_IRQ_STATUS_0_I2C_M0_Q0Q1_HALT_ACK)) {
    171		reset = CCI_RESET_CMD_M0_MASK;
    172		ret = IRQ_HANDLED;
    173	}
    174
    175	if (unlikely(val & CCI_IRQ_STATUS_0_I2C_M1_Q0Q1_HALT_ACK)) {
    176		reset = CCI_RESET_CMD_M1_MASK;
    177		ret = IRQ_HANDLED;
    178	}
    179
    180	if (unlikely(reset))
    181		writel(reset, cci->base + CCI_RESET_CMD);
    182
    183	if (unlikely(val & CCI_IRQ_STATUS_0_I2C_M0_ERROR)) {
    184		if (val & CCI_IRQ_STATUS_0_I2C_M0_Q0_NACK_ERR ||
    185			val & CCI_IRQ_STATUS_0_I2C_M0_Q1_NACK_ERR)
    186			cci->master[0].status = -ENXIO;
    187		else
    188			cci->master[0].status = -EIO;
    189
    190		writel(CCI_HALT_REQ_I2C_M0_Q0Q1, cci->base + CCI_HALT_REQ);
    191		ret = IRQ_HANDLED;
    192	}
    193
    194	if (unlikely(val & CCI_IRQ_STATUS_0_I2C_M1_ERROR)) {
    195		if (val & CCI_IRQ_STATUS_0_I2C_M1_Q0_NACK_ERR ||
    196			val & CCI_IRQ_STATUS_0_I2C_M1_Q1_NACK_ERR)
    197			cci->master[1].status = -ENXIO;
    198		else
    199			cci->master[1].status = -EIO;
    200
    201		writel(CCI_HALT_REQ_I2C_M1_Q0Q1, cci->base + CCI_HALT_REQ);
    202		ret = IRQ_HANDLED;
    203	}
    204
    205	return ret;
    206}
    207
    208static int cci_halt(struct cci *cci, u8 master_num)
    209{
    210	struct cci_master *master;
    211	u32 val;
    212
    213	if (master_num >= cci->data->num_masters) {
    214		dev_err(cci->dev, "Unsupported master idx (%u)\n", master_num);
    215		return -EINVAL;
    216	}
    217
    218	val = BIT(master_num);
    219	master = &cci->master[master_num];
    220
    221	reinit_completion(&master->irq_complete);
    222	writel(val, cci->base + CCI_HALT_REQ);
    223
    224	if (!wait_for_completion_timeout(&master->irq_complete, CCI_TIMEOUT)) {
    225		dev_err(cci->dev, "CCI halt timeout\n");
    226		return -ETIMEDOUT;
    227	}
    228
    229	return 0;
    230}
    231
    232static int cci_reset(struct cci *cci)
    233{
    234	/*
    235	 * we reset the whole controller, here and for implicity use
    236	 * master[0].xxx for waiting on it.
    237	 */
    238	reinit_completion(&cci->master[0].irq_complete);
    239	writel(CCI_RESET_CMD_MASK, cci->base + CCI_RESET_CMD);
    240
    241	if (!wait_for_completion_timeout(&cci->master[0].irq_complete,
    242					 CCI_TIMEOUT)) {
    243		dev_err(cci->dev, "CCI reset timeout\n");
    244		return -ETIMEDOUT;
    245	}
    246
    247	return 0;
    248}
    249
    250static int cci_init(struct cci *cci)
    251{
    252	u32 val = CCI_IRQ_MASK_0_I2C_M0_RD_DONE |
    253			CCI_IRQ_MASK_0_I2C_M0_Q0_REPORT |
    254			CCI_IRQ_MASK_0_I2C_M0_Q1_REPORT |
    255			CCI_IRQ_MASK_0_I2C_M1_RD_DONE |
    256			CCI_IRQ_MASK_0_I2C_M1_Q0_REPORT |
    257			CCI_IRQ_MASK_0_I2C_M1_Q1_REPORT |
    258			CCI_IRQ_MASK_0_RST_DONE_ACK |
    259			CCI_IRQ_MASK_0_I2C_M0_Q0Q1_HALT_ACK |
    260			CCI_IRQ_MASK_0_I2C_M1_Q0Q1_HALT_ACK |
    261			CCI_IRQ_MASK_0_I2C_M0_ERROR |
    262			CCI_IRQ_MASK_0_I2C_M1_ERROR;
    263	int i;
    264
    265	writel(val, cci->base + CCI_IRQ_MASK_0);
    266
    267	for (i = 0; i < cci->data->num_masters; i++) {
    268		int mode = cci->master[i].mode;
    269		const struct hw_params *hw;
    270
    271		if (!cci->master[i].cci)
    272			continue;
    273
    274		hw = &cci->data->params[mode];
    275
    276		val = hw->thigh << 16 | hw->tlow;
    277		writel(val, cci->base + CCI_I2C_Mm_SCL_CTL(i));
    278
    279		val = hw->tsu_sto << 16 | hw->tsu_sta;
    280		writel(val, cci->base + CCI_I2C_Mm_SDA_CTL_0(i));
    281
    282		val = hw->thd_dat << 16 | hw->thd_sta;
    283		writel(val, cci->base + CCI_I2C_Mm_SDA_CTL_1(i));
    284
    285		val = hw->tbuf;
    286		writel(val, cci->base + CCI_I2C_Mm_SDA_CTL_2(i));
    287
    288		val = hw->scl_stretch_en << 8 | hw->trdhld << 4 | hw->tsp;
    289		writel(val, cci->base + CCI_I2C_Mm_MISC_CTL(i));
    290	}
    291
    292	return 0;
    293}
    294
    295static int cci_run_queue(struct cci *cci, u8 master, u8 queue)
    296{
    297	u32 val;
    298
    299	val = readl(cci->base + CCI_I2C_Mm_Qn_CUR_WORD_CNT(master, queue));
    300	writel(val, cci->base + CCI_I2C_Mm_Qn_EXEC_WORD_CNT(master, queue));
    301
    302	reinit_completion(&cci->master[master].irq_complete);
    303	val = BIT(master * 2 + queue);
    304	writel(val, cci->base + CCI_QUEUE_START);
    305
    306	if (!wait_for_completion_timeout(&cci->master[master].irq_complete,
    307					 CCI_TIMEOUT)) {
    308		dev_err(cci->dev, "master %d queue %d timeout\n",
    309			master, queue);
    310		cci_reset(cci);
    311		cci_init(cci);
    312		return -ETIMEDOUT;
    313	}
    314
    315	return cci->master[master].status;
    316}
    317
    318static int cci_validate_queue(struct cci *cci, u8 master, u8 queue)
    319{
    320	u32 val;
    321
    322	val = readl(cci->base + CCI_I2C_Mm_Qn_CUR_WORD_CNT(master, queue));
    323	if (val == cci->data->queue_size[queue])
    324		return -EINVAL;
    325
    326	if (!val)
    327		return 0;
    328
    329	val = CCI_I2C_REPORT | CCI_I2C_REPORT_IRQ_EN;
    330	writel(val, cci->base + CCI_I2C_Mm_Qn_LOAD_DATA(master, queue));
    331
    332	return cci_run_queue(cci, master, queue);
    333}
    334
    335static int cci_i2c_read(struct cci *cci, u16 master,
    336			u16 addr, u8 *buf, u16 len)
    337{
    338	u32 val, words_read, words_exp;
    339	u8 queue = QUEUE_1;
    340	int i, index = 0, ret;
    341	bool first = true;
    342
    343	/*
    344	 * Call validate queue to make sure queue is empty before starting.
    345	 * This is to avoid overflow / underflow of queue.
    346	 */
    347	ret = cci_validate_queue(cci, master, queue);
    348	if (ret < 0)
    349		return ret;
    350
    351	val = CCI_I2C_SET_PARAM | (addr & 0x7f) << 4;
    352	writel(val, cci->base + CCI_I2C_Mm_Qn_LOAD_DATA(master, queue));
    353
    354	val = CCI_I2C_READ | len << 4;
    355	writel(val, cci->base + CCI_I2C_Mm_Qn_LOAD_DATA(master, queue));
    356
    357	ret = cci_run_queue(cci, master, queue);
    358	if (ret < 0)
    359		return ret;
    360
    361	words_read = readl(cci->base + CCI_I2C_Mm_READ_BUF_LEVEL(master));
    362	words_exp = len / 4 + 1;
    363	if (words_read != words_exp) {
    364		dev_err(cci->dev, "words read = %d, words expected = %d\n",
    365			words_read, words_exp);
    366		return -EIO;
    367	}
    368
    369	do {
    370		val = readl(cci->base + CCI_I2C_Mm_READ_DATA(master));
    371
    372		for (i = 0; i < 4 && index < len; i++) {
    373			if (first) {
    374				/* The LS byte of this register represents the
    375				 * first byte read from the slave during a read
    376				 * access.
    377				 */
    378				first = false;
    379				continue;
    380			}
    381			buf[index++] = (val >> (i * 8)) & 0xff;
    382		}
    383	} while (--words_read);
    384
    385	return 0;
    386}
    387
    388static int cci_i2c_write(struct cci *cci, u16 master,
    389			 u16 addr, u8 *buf, u16 len)
    390{
    391	u8 queue = QUEUE_0;
    392	u8 load[12] = { 0 };
    393	int i = 0, j, ret;
    394	u32 val;
    395
    396	/*
    397	 * Call validate queue to make sure queue is empty before starting.
    398	 * This is to avoid overflow / underflow of queue.
    399	 */
    400	ret = cci_validate_queue(cci, master, queue);
    401	if (ret < 0)
    402		return ret;
    403
    404	val = CCI_I2C_SET_PARAM | (addr & 0x7f) << 4;
    405	writel(val, cci->base + CCI_I2C_Mm_Qn_LOAD_DATA(master, queue));
    406
    407	load[i++] = CCI_I2C_WRITE | len << 4;
    408
    409	for (j = 0; j < len; j++)
    410		load[i++] = buf[j];
    411
    412	for (j = 0; j < i; j += 4) {
    413		val = load[j];
    414		val |= load[j + 1] << 8;
    415		val |= load[j + 2] << 16;
    416		val |= load[j + 3] << 24;
    417		writel(val, cci->base + CCI_I2C_Mm_Qn_LOAD_DATA(master, queue));
    418	}
    419
    420	val = CCI_I2C_REPORT | CCI_I2C_REPORT_IRQ_EN;
    421	writel(val, cci->base + CCI_I2C_Mm_Qn_LOAD_DATA(master, queue));
    422
    423	return cci_run_queue(cci, master, queue);
    424}
    425
    426static int cci_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num)
    427{
    428	struct cci_master *cci_master = i2c_get_adapdata(adap);
    429	struct cci *cci = cci_master->cci;
    430	int i, ret;
    431
    432	ret = pm_runtime_get_sync(cci->dev);
    433	if (ret < 0)
    434		goto err;
    435
    436	for (i = 0; i < num; i++) {
    437		if (msgs[i].flags & I2C_M_RD)
    438			ret = cci_i2c_read(cci, cci_master->master,
    439					   msgs[i].addr, msgs[i].buf,
    440					   msgs[i].len);
    441		else
    442			ret = cci_i2c_write(cci, cci_master->master,
    443					    msgs[i].addr, msgs[i].buf,
    444					    msgs[i].len);
    445
    446		if (ret < 0)
    447			break;
    448	}
    449
    450	if (!ret)
    451		ret = num;
    452
    453err:
    454	pm_runtime_mark_last_busy(cci->dev);
    455	pm_runtime_put_autosuspend(cci->dev);
    456
    457	return ret;
    458}
    459
    460static u32 cci_func(struct i2c_adapter *adap)
    461{
    462	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
    463}
    464
    465static const struct i2c_algorithm cci_algo = {
    466	.master_xfer	= cci_xfer,
    467	.functionality	= cci_func,
    468};
    469
    470static int cci_enable_clocks(struct cci *cci)
    471{
    472	return clk_bulk_prepare_enable(cci->nclocks, cci->clocks);
    473}
    474
    475static void cci_disable_clocks(struct cci *cci)
    476{
    477	clk_bulk_disable_unprepare(cci->nclocks, cci->clocks);
    478}
    479
    480static int __maybe_unused cci_suspend_runtime(struct device *dev)
    481{
    482	struct cci *cci = dev_get_drvdata(dev);
    483
    484	cci_disable_clocks(cci);
    485	return 0;
    486}
    487
    488static int __maybe_unused cci_resume_runtime(struct device *dev)
    489{
    490	struct cci *cci = dev_get_drvdata(dev);
    491	int ret;
    492
    493	ret = cci_enable_clocks(cci);
    494	if (ret)
    495		return ret;
    496
    497	cci_init(cci);
    498	return 0;
    499}
    500
    501static int __maybe_unused cci_suspend(struct device *dev)
    502{
    503	if (!pm_runtime_suspended(dev))
    504		return cci_suspend_runtime(dev);
    505
    506	return 0;
    507}
    508
    509static int __maybe_unused cci_resume(struct device *dev)
    510{
    511	cci_resume_runtime(dev);
    512	pm_runtime_mark_last_busy(dev);
    513	pm_request_autosuspend(dev);
    514
    515	return 0;
    516}
    517
    518static const struct dev_pm_ops qcom_cci_pm = {
    519	SET_SYSTEM_SLEEP_PM_OPS(cci_suspend, cci_resume)
    520	SET_RUNTIME_PM_OPS(cci_suspend_runtime, cci_resume_runtime, NULL)
    521};
    522
    523static int cci_probe(struct platform_device *pdev)
    524{
    525	struct device *dev = &pdev->dev;
    526	unsigned long cci_clk_rate = 0;
    527	struct device_node *child;
    528	struct resource *r;
    529	struct cci *cci;
    530	int ret, i;
    531	u32 val;
    532
    533	cci = devm_kzalloc(dev, sizeof(*cci), GFP_KERNEL);
    534	if (!cci)
    535		return -ENOMEM;
    536
    537	cci->dev = dev;
    538	platform_set_drvdata(pdev, cci);
    539	cci->data = device_get_match_data(dev);
    540	if (!cci->data)
    541		return -ENOENT;
    542
    543	for_each_available_child_of_node(dev->of_node, child) {
    544		u32 idx;
    545
    546		ret = of_property_read_u32(child, "reg", &idx);
    547		if (ret) {
    548			dev_err(dev, "%pOF invalid 'reg' property", child);
    549			continue;
    550		}
    551
    552		if (idx >= cci->data->num_masters) {
    553			dev_err(dev, "%pOF invalid 'reg' value: %u (max is %u)",
    554				child, idx, cci->data->num_masters - 1);
    555			continue;
    556		}
    557
    558		cci->master[idx].adap.quirks = &cci->data->quirks;
    559		cci->master[idx].adap.algo = &cci_algo;
    560		cci->master[idx].adap.dev.parent = dev;
    561		cci->master[idx].adap.dev.of_node = of_node_get(child);
    562		cci->master[idx].master = idx;
    563		cci->master[idx].cci = cci;
    564
    565		i2c_set_adapdata(&cci->master[idx].adap, &cci->master[idx]);
    566		snprintf(cci->master[idx].adap.name,
    567			 sizeof(cci->master[idx].adap.name), "Qualcomm-CCI");
    568
    569		cci->master[idx].mode = I2C_MODE_STANDARD;
    570		ret = of_property_read_u32(child, "clock-frequency", &val);
    571		if (!ret) {
    572			if (val == I2C_MAX_FAST_MODE_FREQ)
    573				cci->master[idx].mode = I2C_MODE_FAST;
    574			else if (val == I2C_MAX_FAST_MODE_PLUS_FREQ)
    575				cci->master[idx].mode = I2C_MODE_FAST_PLUS;
    576		}
    577
    578		init_completion(&cci->master[idx].irq_complete);
    579	}
    580
    581	/* Memory */
    582
    583	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
    584	cci->base = devm_ioremap_resource(dev, r);
    585	if (IS_ERR(cci->base))
    586		return PTR_ERR(cci->base);
    587
    588	/* Clocks */
    589
    590	ret = devm_clk_bulk_get_all(dev, &cci->clocks);
    591	if (ret < 1) {
    592		dev_err(dev, "failed to get clocks %d\n", ret);
    593		return ret;
    594	}
    595	cci->nclocks = ret;
    596
    597	/* Retrieve CCI clock rate */
    598	for (i = 0; i < cci->nclocks; i++) {
    599		if (!strcmp(cci->clocks[i].id, "cci")) {
    600			cci_clk_rate = clk_get_rate(cci->clocks[i].clk);
    601			break;
    602		}
    603	}
    604
    605	if (cci_clk_rate != cci->data->cci_clk_rate) {
    606		/* cci clock set by the bootloader or via assigned clock rate
    607		 * in DT.
    608		 */
    609		dev_warn(dev, "Found %lu cci clk rate while %lu was expected\n",
    610			 cci_clk_rate, cci->data->cci_clk_rate);
    611	}
    612
    613	ret = cci_enable_clocks(cci);
    614	if (ret < 0)
    615		return ret;
    616
    617	/* Interrupt */
    618
    619	ret = platform_get_irq(pdev, 0);
    620	if (ret < 0)
    621		goto disable_clocks;
    622	cci->irq = ret;
    623
    624	ret = devm_request_irq(dev, cci->irq, cci_isr, 0, dev_name(dev), cci);
    625	if (ret < 0) {
    626		dev_err(dev, "request_irq failed, ret: %d\n", ret);
    627		goto disable_clocks;
    628	}
    629
    630	val = readl(cci->base + CCI_HW_VERSION);
    631	dev_dbg(dev, "CCI HW version = 0x%08x", val);
    632
    633	ret = cci_reset(cci);
    634	if (ret < 0)
    635		goto error;
    636
    637	ret = cci_init(cci);
    638	if (ret < 0)
    639		goto error;
    640
    641	for (i = 0; i < cci->data->num_masters; i++) {
    642		if (!cci->master[i].cci)
    643			continue;
    644
    645		ret = i2c_add_adapter(&cci->master[i].adap);
    646		if (ret < 0) {
    647			of_node_put(cci->master[i].adap.dev.of_node);
    648			goto error_i2c;
    649		}
    650	}
    651
    652	pm_runtime_set_autosuspend_delay(dev, MSEC_PER_SEC);
    653	pm_runtime_use_autosuspend(dev);
    654	pm_runtime_set_active(dev);
    655	pm_runtime_enable(dev);
    656
    657	return 0;
    658
    659error_i2c:
    660	for (--i ; i >= 0; i--) {
    661		if (cci->master[i].cci) {
    662			i2c_del_adapter(&cci->master[i].adap);
    663			of_node_put(cci->master[i].adap.dev.of_node);
    664		}
    665	}
    666error:
    667	disable_irq(cci->irq);
    668disable_clocks:
    669	cci_disable_clocks(cci);
    670
    671	return ret;
    672}
    673
    674static int cci_remove(struct platform_device *pdev)
    675{
    676	struct cci *cci = platform_get_drvdata(pdev);
    677	int i;
    678
    679	for (i = 0; i < cci->data->num_masters; i++) {
    680		if (cci->master[i].cci) {
    681			i2c_del_adapter(&cci->master[i].adap);
    682			of_node_put(cci->master[i].adap.dev.of_node);
    683		}
    684		cci_halt(cci, i);
    685	}
    686
    687	disable_irq(cci->irq);
    688	pm_runtime_disable(&pdev->dev);
    689	pm_runtime_set_suspended(&pdev->dev);
    690
    691	return 0;
    692}
    693
    694static const struct cci_data cci_v1_data = {
    695	.num_masters = 1,
    696	.queue_size = { 64, 16 },
    697	.quirks = {
    698		.max_write_len = 10,
    699		.max_read_len = 12,
    700	},
    701	.cci_clk_rate =  19200000,
    702	.params[I2C_MODE_STANDARD] = {
    703		.thigh = 78,
    704		.tlow = 114,
    705		.tsu_sto = 28,
    706		.tsu_sta = 28,
    707		.thd_dat = 10,
    708		.thd_sta = 77,
    709		.tbuf = 118,
    710		.scl_stretch_en = 0,
    711		.trdhld = 6,
    712		.tsp = 1
    713	},
    714	.params[I2C_MODE_FAST] = {
    715		.thigh = 20,
    716		.tlow = 28,
    717		.tsu_sto = 21,
    718		.tsu_sta = 21,
    719		.thd_dat = 13,
    720		.thd_sta = 18,
    721		.tbuf = 32,
    722		.scl_stretch_en = 0,
    723		.trdhld = 6,
    724		.tsp = 3
    725	},
    726};
    727
    728static const struct cci_data cci_v2_data = {
    729	.num_masters = 2,
    730	.queue_size = { 64, 16 },
    731	.quirks = {
    732		.max_write_len = 11,
    733		.max_read_len = 12,
    734	},
    735	.cci_clk_rate =  37500000,
    736	.params[I2C_MODE_STANDARD] = {
    737		.thigh = 201,
    738		.tlow = 174,
    739		.tsu_sto = 204,
    740		.tsu_sta = 231,
    741		.thd_dat = 22,
    742		.thd_sta = 162,
    743		.tbuf = 227,
    744		.scl_stretch_en = 0,
    745		.trdhld = 6,
    746		.tsp = 3
    747	},
    748	.params[I2C_MODE_FAST] = {
    749		.thigh = 38,
    750		.tlow = 56,
    751		.tsu_sto = 40,
    752		.tsu_sta = 40,
    753		.thd_dat = 22,
    754		.thd_sta = 35,
    755		.tbuf = 62,
    756		.scl_stretch_en = 0,
    757		.trdhld = 6,
    758		.tsp = 3
    759	},
    760	.params[I2C_MODE_FAST_PLUS] = {
    761		.thigh = 16,
    762		.tlow = 22,
    763		.tsu_sto = 17,
    764		.tsu_sta = 18,
    765		.thd_dat = 16,
    766		.thd_sta = 15,
    767		.tbuf = 24,
    768		.scl_stretch_en = 0,
    769		.trdhld = 3,
    770		.tsp = 3
    771	},
    772};
    773
    774static const struct of_device_id cci_dt_match[] = {
    775	{ .compatible = "qcom,msm8916-cci", .data = &cci_v1_data},
    776	{ .compatible = "qcom,msm8996-cci", .data = &cci_v2_data},
    777	{ .compatible = "qcom,sdm845-cci", .data = &cci_v2_data},
    778	{ .compatible = "qcom,sm8250-cci", .data = &cci_v2_data},
    779	{ .compatible = "qcom,sm8450-cci", .data = &cci_v2_data},
    780	{}
    781};
    782MODULE_DEVICE_TABLE(of, cci_dt_match);
    783
    784static struct platform_driver qcom_cci_driver = {
    785	.probe  = cci_probe,
    786	.remove = cci_remove,
    787	.driver = {
    788		.name = "i2c-qcom-cci",
    789		.of_match_table = cci_dt_match,
    790		.pm = &qcom_cci_pm,
    791	},
    792};
    793
    794module_platform_driver(qcom_cci_driver);
    795
    796MODULE_DESCRIPTION("Qualcomm Camera Control Interface driver");
    797MODULE_AUTHOR("Todor Tomov <todor.tomov@linaro.org>");
    798MODULE_AUTHOR("Loic Poulain <loic.poulain@linaro.org>");
    799MODULE_LICENSE("GPL v2");