cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

i2c-rk3x.c (36790B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Driver for I2C adapter in Rockchip RK3xxx SoC
      4 *
      5 * Max Schwarz <max.schwarz@online.de>
      6 * based on the patches by Rockchip Inc.
      7 */
      8
      9#include <linux/kernel.h>
     10#include <linux/module.h>
     11#include <linux/i2c.h>
     12#include <linux/interrupt.h>
     13#include <linux/iopoll.h>
     14#include <linux/errno.h>
     15#include <linux/err.h>
     16#include <linux/platform_device.h>
     17#include <linux/io.h>
     18#include <linux/of_address.h>
     19#include <linux/of_irq.h>
     20#include <linux/spinlock.h>
     21#include <linux/clk.h>
     22#include <linux/wait.h>
     23#include <linux/mfd/syscon.h>
     24#include <linux/regmap.h>
     25#include <linux/math64.h>
     26
     27
     28/* Register Map */
     29#define REG_CON        0x00 /* control register */
     30#define REG_CLKDIV     0x04 /* clock divisor register */
     31#define REG_MRXADDR    0x08 /* slave address for REGISTER_TX */
     32#define REG_MRXRADDR   0x0c /* slave register address for REGISTER_TX */
     33#define REG_MTXCNT     0x10 /* number of bytes to be transmitted */
     34#define REG_MRXCNT     0x14 /* number of bytes to be received */
     35#define REG_IEN        0x18 /* interrupt enable */
     36#define REG_IPD        0x1c /* interrupt pending */
     37#define REG_FCNT       0x20 /* finished count */
     38
     39/* Data buffer offsets */
     40#define TXBUFFER_BASE 0x100
     41#define RXBUFFER_BASE 0x200
     42
     43/* REG_CON bits */
     44#define REG_CON_EN        BIT(0)
     45enum {
     46	REG_CON_MOD_TX = 0,      /* transmit data */
     47	REG_CON_MOD_REGISTER_TX, /* select register and restart */
     48	REG_CON_MOD_RX,          /* receive data */
     49	REG_CON_MOD_REGISTER_RX, /* broken: transmits read addr AND writes
     50				  * register addr */
     51};
     52#define REG_CON_MOD(mod)  ((mod) << 1)
     53#define REG_CON_MOD_MASK  (BIT(1) | BIT(2))
     54#define REG_CON_START     BIT(3)
     55#define REG_CON_STOP      BIT(4)
     56#define REG_CON_LASTACK   BIT(5) /* 1: send NACK after last received byte */
     57#define REG_CON_ACTACK    BIT(6) /* 1: stop if NACK is received */
     58
     59#define REG_CON_TUNING_MASK GENMASK_ULL(15, 8)
     60
     61#define REG_CON_SDA_CFG(cfg) ((cfg) << 8)
     62#define REG_CON_STA_CFG(cfg) ((cfg) << 12)
     63#define REG_CON_STO_CFG(cfg) ((cfg) << 14)
     64
     65/* REG_MRXADDR bits */
     66#define REG_MRXADDR_VALID(x) BIT(24 + (x)) /* [x*8+7:x*8] of MRX[R]ADDR valid */
     67
     68/* REG_IEN/REG_IPD bits */
     69#define REG_INT_BTF       BIT(0) /* a byte was transmitted */
     70#define REG_INT_BRF       BIT(1) /* a byte was received */
     71#define REG_INT_MBTF      BIT(2) /* master data transmit finished */
     72#define REG_INT_MBRF      BIT(3) /* master data receive finished */
     73#define REG_INT_START     BIT(4) /* START condition generated */
     74#define REG_INT_STOP      BIT(5) /* STOP condition generated */
     75#define REG_INT_NAKRCV    BIT(6) /* NACK received */
     76#define REG_INT_ALL       0x7f
     77
     78/* Constants */
     79#define WAIT_TIMEOUT      1000 /* ms */
     80#define DEFAULT_SCL_RATE  (100 * 1000) /* Hz */
     81
     82/**
     83 * struct i2c_spec_values:
     84 * @min_hold_start_ns: min hold time (repeated) START condition
     85 * @min_low_ns: min LOW period of the SCL clock
     86 * @min_high_ns: min HIGH period of the SCL cloc
     87 * @min_setup_start_ns: min set-up time for a repeated START conditio
     88 * @max_data_hold_ns: max data hold time
     89 * @min_data_setup_ns: min data set-up time
     90 * @min_setup_stop_ns: min set-up time for STOP condition
     91 * @min_hold_buffer_ns: min bus free time between a STOP and
     92 * START condition
     93 */
     94struct i2c_spec_values {
     95	unsigned long min_hold_start_ns;
     96	unsigned long min_low_ns;
     97	unsigned long min_high_ns;
     98	unsigned long min_setup_start_ns;
     99	unsigned long max_data_hold_ns;
    100	unsigned long min_data_setup_ns;
    101	unsigned long min_setup_stop_ns;
    102	unsigned long min_hold_buffer_ns;
    103};
    104
    105static const struct i2c_spec_values standard_mode_spec = {
    106	.min_hold_start_ns = 4000,
    107	.min_low_ns = 4700,
    108	.min_high_ns = 4000,
    109	.min_setup_start_ns = 4700,
    110	.max_data_hold_ns = 3450,
    111	.min_data_setup_ns = 250,
    112	.min_setup_stop_ns = 4000,
    113	.min_hold_buffer_ns = 4700,
    114};
    115
    116static const struct i2c_spec_values fast_mode_spec = {
    117	.min_hold_start_ns = 600,
    118	.min_low_ns = 1300,
    119	.min_high_ns = 600,
    120	.min_setup_start_ns = 600,
    121	.max_data_hold_ns = 900,
    122	.min_data_setup_ns = 100,
    123	.min_setup_stop_ns = 600,
    124	.min_hold_buffer_ns = 1300,
    125};
    126
    127static const struct i2c_spec_values fast_mode_plus_spec = {
    128	.min_hold_start_ns = 260,
    129	.min_low_ns = 500,
    130	.min_high_ns = 260,
    131	.min_setup_start_ns = 260,
    132	.max_data_hold_ns = 400,
    133	.min_data_setup_ns = 50,
    134	.min_setup_stop_ns = 260,
    135	.min_hold_buffer_ns = 500,
    136};
    137
    138/**
    139 * struct rk3x_i2c_calced_timings:
    140 * @div_low: Divider output for low
    141 * @div_high: Divider output for high
    142 * @tuning: Used to adjust setup/hold data time,
    143 * setup/hold start time and setup stop time for
    144 * v1's calc_timings, the tuning should all be 0
    145 * for old hardware anyone using v0's calc_timings.
    146 */
    147struct rk3x_i2c_calced_timings {
    148	unsigned long div_low;
    149	unsigned long div_high;
    150	unsigned int tuning;
    151};
    152
    153enum rk3x_i2c_state {
    154	STATE_IDLE,
    155	STATE_START,
    156	STATE_READ,
    157	STATE_WRITE,
    158	STATE_STOP
    159};
    160
    161/**
    162 * struct rk3x_i2c_soc_data:
    163 * @grf_offset: offset inside the grf regmap for setting the i2c type
    164 * @calc_timings: Callback function for i2c timing information calculated
    165 */
    166struct rk3x_i2c_soc_data {
    167	int grf_offset;
    168	int (*calc_timings)(unsigned long, struct i2c_timings *,
    169			    struct rk3x_i2c_calced_timings *);
    170};
    171
    172/**
    173 * struct rk3x_i2c - private data of the controller
    174 * @adap: corresponding I2C adapter
    175 * @dev: device for this controller
    176 * @soc_data: related soc data struct
    177 * @regs: virtual memory area
    178 * @clk: function clk for rk3399 or function & Bus clks for others
    179 * @pclk: Bus clk for rk3399
    180 * @clk_rate_nb: i2c clk rate change notify
    181 * @t: I2C known timing information
    182 * @lock: spinlock for the i2c bus
    183 * @wait: the waitqueue to wait for i2c transfer
    184 * @busy: the condition for the event to wait for
    185 * @msg: current i2c message
    186 * @addr: addr of i2c slave device
    187 * @mode: mode of i2c transfer
    188 * @is_last_msg: flag determines whether it is the last msg in this transfer
    189 * @state: state of i2c transfer
    190 * @processed: byte length which has been send or received
    191 * @error: error code for i2c transfer
    192 */
    193struct rk3x_i2c {
    194	struct i2c_adapter adap;
    195	struct device *dev;
    196	const struct rk3x_i2c_soc_data *soc_data;
    197
    198	/* Hardware resources */
    199	void __iomem *regs;
    200	struct clk *clk;
    201	struct clk *pclk;
    202	struct notifier_block clk_rate_nb;
    203
    204	/* Settings */
    205	struct i2c_timings t;
    206
    207	/* Synchronization & notification */
    208	spinlock_t lock;
    209	wait_queue_head_t wait;
    210	bool busy;
    211
    212	/* Current message */
    213	struct i2c_msg *msg;
    214	u8 addr;
    215	unsigned int mode;
    216	bool is_last_msg;
    217
    218	/* I2C state machine */
    219	enum rk3x_i2c_state state;
    220	unsigned int processed;
    221	int error;
    222};
    223
    224static inline void i2c_writel(struct rk3x_i2c *i2c, u32 value,
    225			      unsigned int offset)
    226{
    227	writel(value, i2c->regs + offset);
    228}
    229
    230static inline u32 i2c_readl(struct rk3x_i2c *i2c, unsigned int offset)
    231{
    232	return readl(i2c->regs + offset);
    233}
    234
    235/* Reset all interrupt pending bits */
    236static inline void rk3x_i2c_clean_ipd(struct rk3x_i2c *i2c)
    237{
    238	i2c_writel(i2c, REG_INT_ALL, REG_IPD);
    239}
    240
    241/**
    242 * Generate a START condition, which triggers a REG_INT_START interrupt.
    243 */
    244static void rk3x_i2c_start(struct rk3x_i2c *i2c)
    245{
    246	u32 val = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;
    247
    248	i2c_writel(i2c, REG_INT_START, REG_IEN);
    249
    250	/* enable adapter with correct mode, send START condition */
    251	val |= REG_CON_EN | REG_CON_MOD(i2c->mode) | REG_CON_START;
    252
    253	/* if we want to react to NACK, set ACTACK bit */
    254	if (!(i2c->msg->flags & I2C_M_IGNORE_NAK))
    255		val |= REG_CON_ACTACK;
    256
    257	i2c_writel(i2c, val, REG_CON);
    258}
    259
    260/**
    261 * Generate a STOP condition, which triggers a REG_INT_STOP interrupt.
    262 *
    263 * @error: Error code to return in rk3x_i2c_xfer
    264 */
    265static void rk3x_i2c_stop(struct rk3x_i2c *i2c, int error)
    266{
    267	unsigned int ctrl;
    268
    269	i2c->processed = 0;
    270	i2c->msg = NULL;
    271	i2c->error = error;
    272
    273	if (i2c->is_last_msg) {
    274		/* Enable stop interrupt */
    275		i2c_writel(i2c, REG_INT_STOP, REG_IEN);
    276
    277		i2c->state = STATE_STOP;
    278
    279		ctrl = i2c_readl(i2c, REG_CON);
    280		ctrl |= REG_CON_STOP;
    281		i2c_writel(i2c, ctrl, REG_CON);
    282	} else {
    283		/* Signal rk3x_i2c_xfer to start the next message. */
    284		i2c->busy = false;
    285		i2c->state = STATE_IDLE;
    286
    287		/*
    288		 * The HW is actually not capable of REPEATED START. But we can
    289		 * get the intended effect by resetting its internal state
    290		 * and issuing an ordinary START.
    291		 */
    292		ctrl = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;
    293		i2c_writel(i2c, ctrl, REG_CON);
    294
    295		/* signal that we are finished with the current msg */
    296		wake_up(&i2c->wait);
    297	}
    298}
    299
    300/**
    301 * Setup a read according to i2c->msg
    302 */
    303static void rk3x_i2c_prepare_read(struct rk3x_i2c *i2c)
    304{
    305	unsigned int len = i2c->msg->len - i2c->processed;
    306	u32 con;
    307
    308	con = i2c_readl(i2c, REG_CON);
    309
    310	/*
    311	 * The hw can read up to 32 bytes at a time. If we need more than one
    312	 * chunk, send an ACK after the last byte of the current chunk.
    313	 */
    314	if (len > 32) {
    315		len = 32;
    316		con &= ~REG_CON_LASTACK;
    317	} else {
    318		con |= REG_CON_LASTACK;
    319	}
    320
    321	/* make sure we are in plain RX mode if we read a second chunk */
    322	if (i2c->processed != 0) {
    323		con &= ~REG_CON_MOD_MASK;
    324		con |= REG_CON_MOD(REG_CON_MOD_RX);
    325	}
    326
    327	i2c_writel(i2c, con, REG_CON);
    328	i2c_writel(i2c, len, REG_MRXCNT);
    329}
    330
    331/**
    332 * Fill the transmit buffer with data from i2c->msg
    333 */
    334static void rk3x_i2c_fill_transmit_buf(struct rk3x_i2c *i2c)
    335{
    336	unsigned int i, j;
    337	u32 cnt = 0;
    338	u32 val;
    339	u8 byte;
    340
    341	for (i = 0; i < 8; ++i) {
    342		val = 0;
    343		for (j = 0; j < 4; ++j) {
    344			if ((i2c->processed == i2c->msg->len) && (cnt != 0))
    345				break;
    346
    347			if (i2c->processed == 0 && cnt == 0)
    348				byte = (i2c->addr & 0x7f) << 1;
    349			else
    350				byte = i2c->msg->buf[i2c->processed++];
    351
    352			val |= byte << (j * 8);
    353			cnt++;
    354		}
    355
    356		i2c_writel(i2c, val, TXBUFFER_BASE + 4 * i);
    357
    358		if (i2c->processed == i2c->msg->len)
    359			break;
    360	}
    361
    362	i2c_writel(i2c, cnt, REG_MTXCNT);
    363}
    364
    365
    366/* IRQ handlers for individual states */
    367
    368static void rk3x_i2c_handle_start(struct rk3x_i2c *i2c, unsigned int ipd)
    369{
    370	if (!(ipd & REG_INT_START)) {
    371		rk3x_i2c_stop(i2c, -EIO);
    372		dev_warn(i2c->dev, "unexpected irq in START: 0x%x\n", ipd);
    373		rk3x_i2c_clean_ipd(i2c);
    374		return;
    375	}
    376
    377	/* ack interrupt */
    378	i2c_writel(i2c, REG_INT_START, REG_IPD);
    379
    380	/* disable start bit */
    381	i2c_writel(i2c, i2c_readl(i2c, REG_CON) & ~REG_CON_START, REG_CON);
    382
    383	/* enable appropriate interrupts and transition */
    384	if (i2c->mode == REG_CON_MOD_TX) {
    385		i2c_writel(i2c, REG_INT_MBTF | REG_INT_NAKRCV, REG_IEN);
    386		i2c->state = STATE_WRITE;
    387		rk3x_i2c_fill_transmit_buf(i2c);
    388	} else {
    389		/* in any other case, we are going to be reading. */
    390		i2c_writel(i2c, REG_INT_MBRF | REG_INT_NAKRCV, REG_IEN);
    391		i2c->state = STATE_READ;
    392		rk3x_i2c_prepare_read(i2c);
    393	}
    394}
    395
    396static void rk3x_i2c_handle_write(struct rk3x_i2c *i2c, unsigned int ipd)
    397{
    398	if (!(ipd & REG_INT_MBTF)) {
    399		rk3x_i2c_stop(i2c, -EIO);
    400		dev_err(i2c->dev, "unexpected irq in WRITE: 0x%x\n", ipd);
    401		rk3x_i2c_clean_ipd(i2c);
    402		return;
    403	}
    404
    405	/* ack interrupt */
    406	i2c_writel(i2c, REG_INT_MBTF, REG_IPD);
    407
    408	/* are we finished? */
    409	if (i2c->processed == i2c->msg->len)
    410		rk3x_i2c_stop(i2c, i2c->error);
    411	else
    412		rk3x_i2c_fill_transmit_buf(i2c);
    413}
    414
    415static void rk3x_i2c_handle_read(struct rk3x_i2c *i2c, unsigned int ipd)
    416{
    417	unsigned int i;
    418	unsigned int len = i2c->msg->len - i2c->processed;
    419	u32 val;
    420	u8 byte;
    421
    422	/* we only care for MBRF here. */
    423	if (!(ipd & REG_INT_MBRF))
    424		return;
    425
    426	/* ack interrupt (read also produces a spurious START flag, clear it too) */
    427	i2c_writel(i2c, REG_INT_MBRF | REG_INT_START, REG_IPD);
    428
    429	/* Can only handle a maximum of 32 bytes at a time */
    430	if (len > 32)
    431		len = 32;
    432
    433	/* read the data from receive buffer */
    434	for (i = 0; i < len; ++i) {
    435		if (i % 4 == 0)
    436			val = i2c_readl(i2c, RXBUFFER_BASE + (i / 4) * 4);
    437
    438		byte = (val >> ((i % 4) * 8)) & 0xff;
    439		i2c->msg->buf[i2c->processed++] = byte;
    440	}
    441
    442	/* are we finished? */
    443	if (i2c->processed == i2c->msg->len)
    444		rk3x_i2c_stop(i2c, i2c->error);
    445	else
    446		rk3x_i2c_prepare_read(i2c);
    447}
    448
    449static void rk3x_i2c_handle_stop(struct rk3x_i2c *i2c, unsigned int ipd)
    450{
    451	unsigned int con;
    452
    453	if (!(ipd & REG_INT_STOP)) {
    454		rk3x_i2c_stop(i2c, -EIO);
    455		dev_err(i2c->dev, "unexpected irq in STOP: 0x%x\n", ipd);
    456		rk3x_i2c_clean_ipd(i2c);
    457		return;
    458	}
    459
    460	/* ack interrupt */
    461	i2c_writel(i2c, REG_INT_STOP, REG_IPD);
    462
    463	/* disable STOP bit */
    464	con = i2c_readl(i2c, REG_CON);
    465	con &= ~REG_CON_STOP;
    466	i2c_writel(i2c, con, REG_CON);
    467
    468	i2c->busy = false;
    469	i2c->state = STATE_IDLE;
    470
    471	/* signal rk3x_i2c_xfer that we are finished */
    472	wake_up(&i2c->wait);
    473}
    474
    475static irqreturn_t rk3x_i2c_irq(int irqno, void *dev_id)
    476{
    477	struct rk3x_i2c *i2c = dev_id;
    478	unsigned int ipd;
    479
    480	spin_lock(&i2c->lock);
    481
    482	ipd = i2c_readl(i2c, REG_IPD);
    483	if (i2c->state == STATE_IDLE) {
    484		dev_warn(i2c->dev, "irq in STATE_IDLE, ipd = 0x%x\n", ipd);
    485		rk3x_i2c_clean_ipd(i2c);
    486		goto out;
    487	}
    488
    489	dev_dbg(i2c->dev, "IRQ: state %d, ipd: %x\n", i2c->state, ipd);
    490
    491	/* Clean interrupt bits we don't care about */
    492	ipd &= ~(REG_INT_BRF | REG_INT_BTF);
    493
    494	if (ipd & REG_INT_NAKRCV) {
    495		/*
    496		 * We got a NACK in the last operation. Depending on whether
    497		 * IGNORE_NAK is set, we have to stop the operation and report
    498		 * an error.
    499		 */
    500		i2c_writel(i2c, REG_INT_NAKRCV, REG_IPD);
    501
    502		ipd &= ~REG_INT_NAKRCV;
    503
    504		if (!(i2c->msg->flags & I2C_M_IGNORE_NAK))
    505			rk3x_i2c_stop(i2c, -ENXIO);
    506	}
    507
    508	/* is there anything left to handle? */
    509	if ((ipd & REG_INT_ALL) == 0)
    510		goto out;
    511
    512	switch (i2c->state) {
    513	case STATE_START:
    514		rk3x_i2c_handle_start(i2c, ipd);
    515		break;
    516	case STATE_WRITE:
    517		rk3x_i2c_handle_write(i2c, ipd);
    518		break;
    519	case STATE_READ:
    520		rk3x_i2c_handle_read(i2c, ipd);
    521		break;
    522	case STATE_STOP:
    523		rk3x_i2c_handle_stop(i2c, ipd);
    524		break;
    525	case STATE_IDLE:
    526		break;
    527	}
    528
    529out:
    530	spin_unlock(&i2c->lock);
    531	return IRQ_HANDLED;
    532}
    533
    534/**
    535 * Get timing values of I2C specification
    536 *
    537 * @speed: Desired SCL frequency
    538 *
    539 * Returns: Matched i2c spec values.
    540 */
    541static const struct i2c_spec_values *rk3x_i2c_get_spec(unsigned int speed)
    542{
    543	if (speed <= I2C_MAX_STANDARD_MODE_FREQ)
    544		return &standard_mode_spec;
    545	else if (speed <= I2C_MAX_FAST_MODE_FREQ)
    546		return &fast_mode_spec;
    547	else
    548		return &fast_mode_plus_spec;
    549}
    550
    551/**
    552 * Calculate divider values for desired SCL frequency
    553 *
    554 * @clk_rate: I2C input clock rate
    555 * @t: Known I2C timing information
    556 * @t_calc: Caculated rk3x private timings that would be written into regs
    557 *
    558 * Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case
    559 * a best-effort divider value is returned in divs. If the target rate is
    560 * too high, we silently use the highest possible rate.
    561 */
    562static int rk3x_i2c_v0_calc_timings(unsigned long clk_rate,
    563				    struct i2c_timings *t,
    564				    struct rk3x_i2c_calced_timings *t_calc)
    565{
    566	unsigned long min_low_ns, min_high_ns;
    567	unsigned long max_low_ns, min_total_ns;
    568
    569	unsigned long clk_rate_khz, scl_rate_khz;
    570
    571	unsigned long min_low_div, min_high_div;
    572	unsigned long max_low_div;
    573
    574	unsigned long min_div_for_hold, min_total_div;
    575	unsigned long extra_div, extra_low_div, ideal_low_div;
    576
    577	unsigned long data_hold_buffer_ns = 50;
    578	const struct i2c_spec_values *spec;
    579	int ret = 0;
    580
    581	/* Only support standard-mode and fast-mode */
    582	if (WARN_ON(t->bus_freq_hz > I2C_MAX_FAST_MODE_FREQ))
    583		t->bus_freq_hz = I2C_MAX_FAST_MODE_FREQ;
    584
    585	/* prevent scl_rate_khz from becoming 0 */
    586	if (WARN_ON(t->bus_freq_hz < 1000))
    587		t->bus_freq_hz = 1000;
    588
    589	/*
    590	 * min_low_ns:  The minimum number of ns we need to hold low to
    591	 *		meet I2C specification, should include fall time.
    592	 * min_high_ns: The minimum number of ns we need to hold high to
    593	 *		meet I2C specification, should include rise time.
    594	 * max_low_ns:  The maximum number of ns we can hold low to meet
    595	 *		I2C specification.
    596	 *
    597	 * Note: max_low_ns should be (maximum data hold time * 2 - buffer)
    598	 *	 This is because the i2c host on Rockchip holds the data line
    599	 *	 for half the low time.
    600	 */
    601	spec = rk3x_i2c_get_spec(t->bus_freq_hz);
    602	min_high_ns = t->scl_rise_ns + spec->min_high_ns;
    603
    604	/*
    605	 * Timings for repeated start:
    606	 * - controller appears to drop SDA at .875x (7/8) programmed clk high.
    607	 * - controller appears to keep SCL high for 2x programmed clk high.
    608	 *
    609	 * We need to account for those rules in picking our "high" time so
    610	 * we meet tSU;STA and tHD;STA times.
    611	 */
    612	min_high_ns = max(min_high_ns, DIV_ROUND_UP(
    613		(t->scl_rise_ns + spec->min_setup_start_ns) * 1000, 875));
    614	min_high_ns = max(min_high_ns, DIV_ROUND_UP(
    615		(t->scl_rise_ns + spec->min_setup_start_ns + t->sda_fall_ns +
    616		spec->min_high_ns), 2));
    617
    618	min_low_ns = t->scl_fall_ns + spec->min_low_ns;
    619	max_low_ns =  spec->max_data_hold_ns * 2 - data_hold_buffer_ns;
    620	min_total_ns = min_low_ns + min_high_ns;
    621
    622	/* Adjust to avoid overflow */
    623	clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000);
    624	scl_rate_khz = t->bus_freq_hz / 1000;
    625
    626	/*
    627	 * We need the total div to be >= this number
    628	 * so we don't clock too fast.
    629	 */
    630	min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8);
    631
    632	/* These are the min dividers needed for min hold times. */
    633	min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000);
    634	min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000);
    635	min_div_for_hold = (min_low_div + min_high_div);
    636
    637	/*
    638	 * This is the maximum divider so we don't go over the maximum.
    639	 * We don't round up here (we round down) since this is a maximum.
    640	 */
    641	max_low_div = clk_rate_khz * max_low_ns / (8 * 1000000);
    642
    643	if (min_low_div > max_low_div) {
    644		WARN_ONCE(true,
    645			  "Conflicting, min_low_div %lu, max_low_div %lu\n",
    646			  min_low_div, max_low_div);
    647		max_low_div = min_low_div;
    648	}
    649
    650	if (min_div_for_hold > min_total_div) {
    651		/*
    652		 * Time needed to meet hold requirements is important.
    653		 * Just use that.
    654		 */
    655		t_calc->div_low = min_low_div;
    656		t_calc->div_high = min_high_div;
    657	} else {
    658		/*
    659		 * We've got to distribute some time among the low and high
    660		 * so we don't run too fast.
    661		 */
    662		extra_div = min_total_div - min_div_for_hold;
    663
    664		/*
    665		 * We'll try to split things up perfectly evenly,
    666		 * biasing slightly towards having a higher div
    667		 * for low (spend more time low).
    668		 */
    669		ideal_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns,
    670					     scl_rate_khz * 8 * min_total_ns);
    671
    672		/* Don't allow it to go over the maximum */
    673		if (ideal_low_div > max_low_div)
    674			ideal_low_div = max_low_div;
    675
    676		/*
    677		 * Handle when the ideal low div is going to take up
    678		 * more than we have.
    679		 */
    680		if (ideal_low_div > min_low_div + extra_div)
    681			ideal_low_div = min_low_div + extra_div;
    682
    683		/* Give low the "ideal" and give high whatever extra is left */
    684		extra_low_div = ideal_low_div - min_low_div;
    685		t_calc->div_low = ideal_low_div;
    686		t_calc->div_high = min_high_div + (extra_div - extra_low_div);
    687	}
    688
    689	/*
    690	 * Adjust to the fact that the hardware has an implicit "+1".
    691	 * NOTE: Above calculations always produce div_low > 0 and div_high > 0.
    692	 */
    693	t_calc->div_low--;
    694	t_calc->div_high--;
    695
    696	/* Give the tuning value 0, that would not update con register */
    697	t_calc->tuning = 0;
    698	/* Maximum divider supported by hw is 0xffff */
    699	if (t_calc->div_low > 0xffff) {
    700		t_calc->div_low = 0xffff;
    701		ret = -EINVAL;
    702	}
    703
    704	if (t_calc->div_high > 0xffff) {
    705		t_calc->div_high = 0xffff;
    706		ret = -EINVAL;
    707	}
    708
    709	return ret;
    710}
    711
    712/**
    713 * Calculate timing values for desired SCL frequency
    714 *
    715 * @clk_rate: I2C input clock rate
    716 * @t: Known I2C timing information
    717 * @t_calc: Caculated rk3x private timings that would be written into regs
    718 *
    719 * Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case
    720 * a best-effort divider value is returned in divs. If the target rate is
    721 * too high, we silently use the highest possible rate.
    722 * The following formulas are v1's method to calculate timings.
    723 *
    724 * l = divl + 1;
    725 * h = divh + 1;
    726 * s = sda_update_config + 1;
    727 * u = start_setup_config + 1;
    728 * p = stop_setup_config + 1;
    729 * T = Tclk_i2c;
    730 *
    731 * tHigh = 8 * h * T;
    732 * tLow = 8 * l * T;
    733 *
    734 * tHD;sda = (l * s + 1) * T;
    735 * tSU;sda = [(8 - s) * l + 1] * T;
    736 * tI2C = 8 * (l + h) * T;
    737 *
    738 * tSU;sta = (8h * u + 1) * T;
    739 * tHD;sta = [8h * (u + 1) - 1] * T;
    740 * tSU;sto = (8h * p + 1) * T;
    741 */
    742static int rk3x_i2c_v1_calc_timings(unsigned long clk_rate,
    743				    struct i2c_timings *t,
    744				    struct rk3x_i2c_calced_timings *t_calc)
    745{
    746	unsigned long min_low_ns, min_high_ns;
    747	unsigned long min_setup_start_ns, min_setup_data_ns;
    748	unsigned long min_setup_stop_ns, max_hold_data_ns;
    749
    750	unsigned long clk_rate_khz, scl_rate_khz;
    751
    752	unsigned long min_low_div, min_high_div;
    753
    754	unsigned long min_div_for_hold, min_total_div;
    755	unsigned long extra_div, extra_low_div;
    756	unsigned long sda_update_cfg, stp_sta_cfg, stp_sto_cfg;
    757
    758	const struct i2c_spec_values *spec;
    759	int ret = 0;
    760
    761	/* Support standard-mode, fast-mode and fast-mode plus */
    762	if (WARN_ON(t->bus_freq_hz > I2C_MAX_FAST_MODE_PLUS_FREQ))
    763		t->bus_freq_hz = I2C_MAX_FAST_MODE_PLUS_FREQ;
    764
    765	/* prevent scl_rate_khz from becoming 0 */
    766	if (WARN_ON(t->bus_freq_hz < 1000))
    767		t->bus_freq_hz = 1000;
    768
    769	/*
    770	 * min_low_ns: The minimum number of ns we need to hold low to
    771	 *	       meet I2C specification, should include fall time.
    772	 * min_high_ns: The minimum number of ns we need to hold high to
    773	 *	        meet I2C specification, should include rise time.
    774	 */
    775	spec = rk3x_i2c_get_spec(t->bus_freq_hz);
    776
    777	/* calculate min-divh and min-divl */
    778	clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000);
    779	scl_rate_khz = t->bus_freq_hz / 1000;
    780	min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8);
    781
    782	min_high_ns = t->scl_rise_ns + spec->min_high_ns;
    783	min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000);
    784
    785	min_low_ns = t->scl_fall_ns + spec->min_low_ns;
    786	min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000);
    787
    788	/*
    789	 * Final divh and divl must be greater than 0, otherwise the
    790	 * hardware would not output the i2c clk.
    791	 */
    792	min_high_div = (min_high_div < 1) ? 2 : min_high_div;
    793	min_low_div = (min_low_div < 1) ? 2 : min_low_div;
    794
    795	/* These are the min dividers needed for min hold times. */
    796	min_div_for_hold = (min_low_div + min_high_div);
    797
    798	/*
    799	 * This is the maximum divider so we don't go over the maximum.
    800	 * We don't round up here (we round down) since this is a maximum.
    801	 */
    802	if (min_div_for_hold >= min_total_div) {
    803		/*
    804		 * Time needed to meet hold requirements is important.
    805		 * Just use that.
    806		 */
    807		t_calc->div_low = min_low_div;
    808		t_calc->div_high = min_high_div;
    809	} else {
    810		/*
    811		 * We've got to distribute some time among the low and high
    812		 * so we don't run too fast.
    813		 * We'll try to split things up by the scale of min_low_div and
    814		 * min_high_div, biasing slightly towards having a higher div
    815		 * for low (spend more time low).
    816		 */
    817		extra_div = min_total_div - min_div_for_hold;
    818		extra_low_div = DIV_ROUND_UP(min_low_div * extra_div,
    819					     min_div_for_hold);
    820
    821		t_calc->div_low = min_low_div + extra_low_div;
    822		t_calc->div_high = min_high_div + (extra_div - extra_low_div);
    823	}
    824
    825	/*
    826	 * calculate sda data hold count by the rules, data_upd_st:3
    827	 * is a appropriate value to reduce calculated times.
    828	 */
    829	for (sda_update_cfg = 3; sda_update_cfg > 0; sda_update_cfg--) {
    830		max_hold_data_ns =  DIV_ROUND_UP((sda_update_cfg
    831						 * (t_calc->div_low) + 1)
    832						 * 1000000, clk_rate_khz);
    833		min_setup_data_ns =  DIV_ROUND_UP(((8 - sda_update_cfg)
    834						 * (t_calc->div_low) + 1)
    835						 * 1000000, clk_rate_khz);
    836		if ((max_hold_data_ns < spec->max_data_hold_ns) &&
    837		    (min_setup_data_ns > spec->min_data_setup_ns))
    838			break;
    839	}
    840
    841	/* calculate setup start config */
    842	min_setup_start_ns = t->scl_rise_ns + spec->min_setup_start_ns;
    843	stp_sta_cfg = DIV_ROUND_UP(clk_rate_khz * min_setup_start_ns
    844			   - 1000000, 8 * 1000000 * (t_calc->div_high));
    845
    846	/* calculate setup stop config */
    847	min_setup_stop_ns = t->scl_rise_ns + spec->min_setup_stop_ns;
    848	stp_sto_cfg = DIV_ROUND_UP(clk_rate_khz * min_setup_stop_ns
    849			   - 1000000, 8 * 1000000 * (t_calc->div_high));
    850
    851	t_calc->tuning = REG_CON_SDA_CFG(--sda_update_cfg) |
    852			 REG_CON_STA_CFG(--stp_sta_cfg) |
    853			 REG_CON_STO_CFG(--stp_sto_cfg);
    854
    855	t_calc->div_low--;
    856	t_calc->div_high--;
    857
    858	/* Maximum divider supported by hw is 0xffff */
    859	if (t_calc->div_low > 0xffff) {
    860		t_calc->div_low = 0xffff;
    861		ret = -EINVAL;
    862	}
    863
    864	if (t_calc->div_high > 0xffff) {
    865		t_calc->div_high = 0xffff;
    866		ret = -EINVAL;
    867	}
    868
    869	return ret;
    870}
    871
    872static void rk3x_i2c_adapt_div(struct rk3x_i2c *i2c, unsigned long clk_rate)
    873{
    874	struct i2c_timings *t = &i2c->t;
    875	struct rk3x_i2c_calced_timings calc;
    876	u64 t_low_ns, t_high_ns;
    877	unsigned long flags;
    878	u32 val;
    879	int ret;
    880
    881	ret = i2c->soc_data->calc_timings(clk_rate, t, &calc);
    882	WARN_ONCE(ret != 0, "Could not reach SCL freq %u", t->bus_freq_hz);
    883
    884	clk_enable(i2c->pclk);
    885
    886	spin_lock_irqsave(&i2c->lock, flags);
    887	val = i2c_readl(i2c, REG_CON);
    888	val &= ~REG_CON_TUNING_MASK;
    889	val |= calc.tuning;
    890	i2c_writel(i2c, val, REG_CON);
    891	i2c_writel(i2c, (calc.div_high << 16) | (calc.div_low & 0xffff),
    892		   REG_CLKDIV);
    893	spin_unlock_irqrestore(&i2c->lock, flags);
    894
    895	clk_disable(i2c->pclk);
    896
    897	t_low_ns = div_u64(((u64)calc.div_low + 1) * 8 * 1000000000, clk_rate);
    898	t_high_ns = div_u64(((u64)calc.div_high + 1) * 8 * 1000000000,
    899			    clk_rate);
    900	dev_dbg(i2c->dev,
    901		"CLK %lukhz, Req %uns, Act low %lluns high %lluns\n",
    902		clk_rate / 1000,
    903		1000000000 / t->bus_freq_hz,
    904		t_low_ns, t_high_ns);
    905}
    906
    907/**
    908 * rk3x_i2c_clk_notifier_cb - Clock rate change callback
    909 * @nb:		Pointer to notifier block
    910 * @event:	Notification reason
    911 * @data:	Pointer to notification data object
    912 *
    913 * The callback checks whether a valid bus frequency can be generated after the
    914 * change. If so, the change is acknowledged, otherwise the change is aborted.
    915 * New dividers are written to the HW in the pre- or post change notification
    916 * depending on the scaling direction.
    917 *
    918 * Code adapted from i2c-cadence.c.
    919 *
    920 * Return:	NOTIFY_STOP if the rate change should be aborted, NOTIFY_OK
    921 *		to acknowledge the change, NOTIFY_DONE if the notification is
    922 *		considered irrelevant.
    923 */
    924static int rk3x_i2c_clk_notifier_cb(struct notifier_block *nb, unsigned long
    925				    event, void *data)
    926{
    927	struct clk_notifier_data *ndata = data;
    928	struct rk3x_i2c *i2c = container_of(nb, struct rk3x_i2c, clk_rate_nb);
    929	struct rk3x_i2c_calced_timings calc;
    930
    931	switch (event) {
    932	case PRE_RATE_CHANGE:
    933		/*
    934		 * Try the calculation (but don't store the result) ahead of
    935		 * time to see if we need to block the clock change.  Timings
    936		 * shouldn't actually take effect until rk3x_i2c_adapt_div().
    937		 */
    938		if (i2c->soc_data->calc_timings(ndata->new_rate, &i2c->t,
    939						&calc) != 0)
    940			return NOTIFY_STOP;
    941
    942		/* scale up */
    943		if (ndata->new_rate > ndata->old_rate)
    944			rk3x_i2c_adapt_div(i2c, ndata->new_rate);
    945
    946		return NOTIFY_OK;
    947	case POST_RATE_CHANGE:
    948		/* scale down */
    949		if (ndata->new_rate < ndata->old_rate)
    950			rk3x_i2c_adapt_div(i2c, ndata->new_rate);
    951		return NOTIFY_OK;
    952	case ABORT_RATE_CHANGE:
    953		/* scale up */
    954		if (ndata->new_rate > ndata->old_rate)
    955			rk3x_i2c_adapt_div(i2c, ndata->old_rate);
    956		return NOTIFY_OK;
    957	default:
    958		return NOTIFY_DONE;
    959	}
    960}
    961
    962/**
    963 * Setup I2C registers for an I2C operation specified by msgs, num.
    964 *
    965 * Must be called with i2c->lock held.
    966 *
    967 * @msgs: I2C msgs to process
    968 * @num: Number of msgs
    969 *
    970 * returns: Number of I2C msgs processed or negative in case of error
    971 */
    972static int rk3x_i2c_setup(struct rk3x_i2c *i2c, struct i2c_msg *msgs, int num)
    973{
    974	u32 addr = (msgs[0].addr & 0x7f) << 1;
    975	int ret = 0;
    976
    977	/*
    978	 * The I2C adapter can issue a small (len < 4) write packet before
    979	 * reading. This speeds up SMBus-style register reads.
    980	 * The MRXADDR/MRXRADDR hold the slave address and the slave register
    981	 * address in this case.
    982	 */
    983
    984	if (num >= 2 && msgs[0].len < 4 &&
    985	    !(msgs[0].flags & I2C_M_RD) && (msgs[1].flags & I2C_M_RD)) {
    986		u32 reg_addr = 0;
    987		int i;
    988
    989		dev_dbg(i2c->dev, "Combined write/read from addr 0x%x\n",
    990			addr >> 1);
    991
    992		/* Fill MRXRADDR with the register address(es) */
    993		for (i = 0; i < msgs[0].len; ++i) {
    994			reg_addr |= msgs[0].buf[i] << (i * 8);
    995			reg_addr |= REG_MRXADDR_VALID(i);
    996		}
    997
    998		/* msgs[0] is handled by hw. */
    999		i2c->msg = &msgs[1];
   1000
   1001		i2c->mode = REG_CON_MOD_REGISTER_TX;
   1002
   1003		i2c_writel(i2c, addr | REG_MRXADDR_VALID(0), REG_MRXADDR);
   1004		i2c_writel(i2c, reg_addr, REG_MRXRADDR);
   1005
   1006		ret = 2;
   1007	} else {
   1008		/*
   1009		 * We'll have to do it the boring way and process the msgs
   1010		 * one-by-one.
   1011		 */
   1012
   1013		if (msgs[0].flags & I2C_M_RD) {
   1014			addr |= 1; /* set read bit */
   1015
   1016			/*
   1017			 * We have to transmit the slave addr first. Use
   1018			 * MOD_REGISTER_TX for that purpose.
   1019			 */
   1020			i2c->mode = REG_CON_MOD_REGISTER_TX;
   1021			i2c_writel(i2c, addr | REG_MRXADDR_VALID(0),
   1022				   REG_MRXADDR);
   1023			i2c_writel(i2c, 0, REG_MRXRADDR);
   1024		} else {
   1025			i2c->mode = REG_CON_MOD_TX;
   1026		}
   1027
   1028		i2c->msg = &msgs[0];
   1029
   1030		ret = 1;
   1031	}
   1032
   1033	i2c->addr = msgs[0].addr;
   1034	i2c->busy = true;
   1035	i2c->state = STATE_START;
   1036	i2c->processed = 0;
   1037	i2c->error = 0;
   1038
   1039	rk3x_i2c_clean_ipd(i2c);
   1040
   1041	return ret;
   1042}
   1043
   1044static int rk3x_i2c_wait_xfer_poll(struct rk3x_i2c *i2c)
   1045{
   1046	ktime_t timeout = ktime_add_ms(ktime_get(), WAIT_TIMEOUT);
   1047
   1048	while (READ_ONCE(i2c->busy) &&
   1049	       ktime_compare(ktime_get(), timeout) < 0) {
   1050		udelay(5);
   1051		rk3x_i2c_irq(0, i2c);
   1052	}
   1053
   1054	return !i2c->busy;
   1055}
   1056
   1057static int rk3x_i2c_xfer_common(struct i2c_adapter *adap,
   1058				struct i2c_msg *msgs, int num, bool polling)
   1059{
   1060	struct rk3x_i2c *i2c = (struct rk3x_i2c *)adap->algo_data;
   1061	unsigned long timeout, flags;
   1062	u32 val;
   1063	int ret = 0;
   1064	int i;
   1065
   1066	spin_lock_irqsave(&i2c->lock, flags);
   1067
   1068	clk_enable(i2c->clk);
   1069	clk_enable(i2c->pclk);
   1070
   1071	i2c->is_last_msg = false;
   1072
   1073	/*
   1074	 * Process msgs. We can handle more than one message at once (see
   1075	 * rk3x_i2c_setup()).
   1076	 */
   1077	for (i = 0; i < num; i += ret) {
   1078		ret = rk3x_i2c_setup(i2c, msgs + i, num - i);
   1079
   1080		if (ret < 0) {
   1081			dev_err(i2c->dev, "rk3x_i2c_setup() failed\n");
   1082			break;
   1083		}
   1084
   1085		if (i + ret >= num)
   1086			i2c->is_last_msg = true;
   1087
   1088		spin_unlock_irqrestore(&i2c->lock, flags);
   1089
   1090		rk3x_i2c_start(i2c);
   1091
   1092		if (!polling) {
   1093			timeout = wait_event_timeout(i2c->wait, !i2c->busy,
   1094						     msecs_to_jiffies(WAIT_TIMEOUT));
   1095		} else {
   1096			timeout = rk3x_i2c_wait_xfer_poll(i2c);
   1097		}
   1098
   1099		spin_lock_irqsave(&i2c->lock, flags);
   1100
   1101		if (timeout == 0) {
   1102			dev_err(i2c->dev, "timeout, ipd: 0x%02x, state: %d\n",
   1103				i2c_readl(i2c, REG_IPD), i2c->state);
   1104
   1105			/* Force a STOP condition without interrupt */
   1106			i2c_writel(i2c, 0, REG_IEN);
   1107			val = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;
   1108			val |= REG_CON_EN | REG_CON_STOP;
   1109			i2c_writel(i2c, val, REG_CON);
   1110
   1111			i2c->state = STATE_IDLE;
   1112
   1113			ret = -ETIMEDOUT;
   1114			break;
   1115		}
   1116
   1117		if (i2c->error) {
   1118			ret = i2c->error;
   1119			break;
   1120		}
   1121	}
   1122
   1123	clk_disable(i2c->pclk);
   1124	clk_disable(i2c->clk);
   1125
   1126	spin_unlock_irqrestore(&i2c->lock, flags);
   1127
   1128	return ret < 0 ? ret : num;
   1129}
   1130
   1131static int rk3x_i2c_xfer(struct i2c_adapter *adap,
   1132			 struct i2c_msg *msgs, int num)
   1133{
   1134	return rk3x_i2c_xfer_common(adap, msgs, num, false);
   1135}
   1136
   1137static int rk3x_i2c_xfer_polling(struct i2c_adapter *adap,
   1138				 struct i2c_msg *msgs, int num)
   1139{
   1140	return rk3x_i2c_xfer_common(adap, msgs, num, true);
   1141}
   1142
   1143static __maybe_unused int rk3x_i2c_resume(struct device *dev)
   1144{
   1145	struct rk3x_i2c *i2c = dev_get_drvdata(dev);
   1146
   1147	rk3x_i2c_adapt_div(i2c, clk_get_rate(i2c->clk));
   1148
   1149	return 0;
   1150}
   1151
   1152static u32 rk3x_i2c_func(struct i2c_adapter *adap)
   1153{
   1154	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_PROTOCOL_MANGLING;
   1155}
   1156
   1157static const struct i2c_algorithm rk3x_i2c_algorithm = {
   1158	.master_xfer		= rk3x_i2c_xfer,
   1159	.master_xfer_atomic	= rk3x_i2c_xfer_polling,
   1160	.functionality		= rk3x_i2c_func,
   1161};
   1162
   1163static const struct rk3x_i2c_soc_data rv1108_soc_data = {
   1164	.grf_offset = -1,
   1165	.calc_timings = rk3x_i2c_v1_calc_timings,
   1166};
   1167
   1168static const struct rk3x_i2c_soc_data rk3066_soc_data = {
   1169	.grf_offset = 0x154,
   1170	.calc_timings = rk3x_i2c_v0_calc_timings,
   1171};
   1172
   1173static const struct rk3x_i2c_soc_data rk3188_soc_data = {
   1174	.grf_offset = 0x0a4,
   1175	.calc_timings = rk3x_i2c_v0_calc_timings,
   1176};
   1177
   1178static const struct rk3x_i2c_soc_data rk3228_soc_data = {
   1179	.grf_offset = -1,
   1180	.calc_timings = rk3x_i2c_v0_calc_timings,
   1181};
   1182
   1183static const struct rk3x_i2c_soc_data rk3288_soc_data = {
   1184	.grf_offset = -1,
   1185	.calc_timings = rk3x_i2c_v0_calc_timings,
   1186};
   1187
   1188static const struct rk3x_i2c_soc_data rk3399_soc_data = {
   1189	.grf_offset = -1,
   1190	.calc_timings = rk3x_i2c_v1_calc_timings,
   1191};
   1192
   1193static const struct of_device_id rk3x_i2c_match[] = {
   1194	{
   1195		.compatible = "rockchip,rv1108-i2c",
   1196		.data = &rv1108_soc_data
   1197	},
   1198	{
   1199		.compatible = "rockchip,rk3066-i2c",
   1200		.data = &rk3066_soc_data
   1201	},
   1202	{
   1203		.compatible = "rockchip,rk3188-i2c",
   1204		.data = &rk3188_soc_data
   1205	},
   1206	{
   1207		.compatible = "rockchip,rk3228-i2c",
   1208		.data = &rk3228_soc_data
   1209	},
   1210	{
   1211		.compatible = "rockchip,rk3288-i2c",
   1212		.data = &rk3288_soc_data
   1213	},
   1214	{
   1215		.compatible = "rockchip,rk3399-i2c",
   1216		.data = &rk3399_soc_data
   1217	},
   1218	{},
   1219};
   1220MODULE_DEVICE_TABLE(of, rk3x_i2c_match);
   1221
   1222static int rk3x_i2c_probe(struct platform_device *pdev)
   1223{
   1224	struct device_node *np = pdev->dev.of_node;
   1225	const struct of_device_id *match;
   1226	struct rk3x_i2c *i2c;
   1227	int ret = 0;
   1228	int bus_nr;
   1229	u32 value;
   1230	int irq;
   1231	unsigned long clk_rate;
   1232
   1233	i2c = devm_kzalloc(&pdev->dev, sizeof(struct rk3x_i2c), GFP_KERNEL);
   1234	if (!i2c)
   1235		return -ENOMEM;
   1236
   1237	match = of_match_node(rk3x_i2c_match, np);
   1238	i2c->soc_data = match->data;
   1239
   1240	/* use common interface to get I2C timing properties */
   1241	i2c_parse_fw_timings(&pdev->dev, &i2c->t, true);
   1242
   1243	strlcpy(i2c->adap.name, "rk3x-i2c", sizeof(i2c->adap.name));
   1244	i2c->adap.owner = THIS_MODULE;
   1245	i2c->adap.algo = &rk3x_i2c_algorithm;
   1246	i2c->adap.retries = 3;
   1247	i2c->adap.dev.of_node = np;
   1248	i2c->adap.algo_data = i2c;
   1249	i2c->adap.dev.parent = &pdev->dev;
   1250
   1251	i2c->dev = &pdev->dev;
   1252
   1253	spin_lock_init(&i2c->lock);
   1254	init_waitqueue_head(&i2c->wait);
   1255
   1256	i2c->regs = devm_platform_ioremap_resource(pdev, 0);
   1257	if (IS_ERR(i2c->regs))
   1258		return PTR_ERR(i2c->regs);
   1259
   1260	/* Try to set the I2C adapter number from dt */
   1261	bus_nr = of_alias_get_id(np, "i2c");
   1262
   1263	/*
   1264	 * Switch to new interface if the SoC also offers the old one.
   1265	 * The control bit is located in the GRF register space.
   1266	 */
   1267	if (i2c->soc_data->grf_offset >= 0) {
   1268		struct regmap *grf;
   1269
   1270		grf = syscon_regmap_lookup_by_phandle(np, "rockchip,grf");
   1271		if (IS_ERR(grf)) {
   1272			dev_err(&pdev->dev,
   1273				"rk3x-i2c needs 'rockchip,grf' property\n");
   1274			return PTR_ERR(grf);
   1275		}
   1276
   1277		if (bus_nr < 0) {
   1278			dev_err(&pdev->dev, "rk3x-i2c needs i2cX alias");
   1279			return -EINVAL;
   1280		}
   1281
   1282		/* 27+i: write mask, 11+i: value */
   1283		value = BIT(27 + bus_nr) | BIT(11 + bus_nr);
   1284
   1285		ret = regmap_write(grf, i2c->soc_data->grf_offset, value);
   1286		if (ret != 0) {
   1287			dev_err(i2c->dev, "Could not write to GRF: %d\n", ret);
   1288			return ret;
   1289		}
   1290	}
   1291
   1292	/* IRQ setup */
   1293	irq = platform_get_irq(pdev, 0);
   1294	if (irq < 0)
   1295		return irq;
   1296
   1297	ret = devm_request_irq(&pdev->dev, irq, rk3x_i2c_irq,
   1298			       0, dev_name(&pdev->dev), i2c);
   1299	if (ret < 0) {
   1300		dev_err(&pdev->dev, "cannot request IRQ\n");
   1301		return ret;
   1302	}
   1303
   1304	platform_set_drvdata(pdev, i2c);
   1305
   1306	if (i2c->soc_data->calc_timings == rk3x_i2c_v0_calc_timings) {
   1307		/* Only one clock to use for bus clock and peripheral clock */
   1308		i2c->clk = devm_clk_get(&pdev->dev, NULL);
   1309		i2c->pclk = i2c->clk;
   1310	} else {
   1311		i2c->clk = devm_clk_get(&pdev->dev, "i2c");
   1312		i2c->pclk = devm_clk_get(&pdev->dev, "pclk");
   1313	}
   1314
   1315	if (IS_ERR(i2c->clk))
   1316		return dev_err_probe(&pdev->dev, PTR_ERR(i2c->clk),
   1317				     "Can't get bus clk\n");
   1318
   1319	if (IS_ERR(i2c->pclk))
   1320		return dev_err_probe(&pdev->dev, PTR_ERR(i2c->pclk),
   1321				     "Can't get periph clk\n");
   1322
   1323	ret = clk_prepare(i2c->clk);
   1324	if (ret < 0) {
   1325		dev_err(&pdev->dev, "Can't prepare bus clk: %d\n", ret);
   1326		return ret;
   1327	}
   1328	ret = clk_prepare(i2c->pclk);
   1329	if (ret < 0) {
   1330		dev_err(&pdev->dev, "Can't prepare periph clock: %d\n", ret);
   1331		goto err_clk;
   1332	}
   1333
   1334	i2c->clk_rate_nb.notifier_call = rk3x_i2c_clk_notifier_cb;
   1335	ret = clk_notifier_register(i2c->clk, &i2c->clk_rate_nb);
   1336	if (ret != 0) {
   1337		dev_err(&pdev->dev, "Unable to register clock notifier\n");
   1338		goto err_pclk;
   1339	}
   1340
   1341	ret = clk_enable(i2c->clk);
   1342	if (ret < 0) {
   1343		dev_err(&pdev->dev, "Can't enable bus clk: %d\n", ret);
   1344		goto err_clk_notifier;
   1345	}
   1346
   1347	clk_rate = clk_get_rate(i2c->clk);
   1348	rk3x_i2c_adapt_div(i2c, clk_rate);
   1349	clk_disable(i2c->clk);
   1350
   1351	ret = i2c_add_adapter(&i2c->adap);
   1352	if (ret < 0)
   1353		goto err_clk_notifier;
   1354
   1355	return 0;
   1356
   1357err_clk_notifier:
   1358	clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb);
   1359err_pclk:
   1360	clk_unprepare(i2c->pclk);
   1361err_clk:
   1362	clk_unprepare(i2c->clk);
   1363	return ret;
   1364}
   1365
   1366static int rk3x_i2c_remove(struct platform_device *pdev)
   1367{
   1368	struct rk3x_i2c *i2c = platform_get_drvdata(pdev);
   1369
   1370	i2c_del_adapter(&i2c->adap);
   1371
   1372	clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb);
   1373	clk_unprepare(i2c->pclk);
   1374	clk_unprepare(i2c->clk);
   1375
   1376	return 0;
   1377}
   1378
   1379static SIMPLE_DEV_PM_OPS(rk3x_i2c_pm_ops, NULL, rk3x_i2c_resume);
   1380
   1381static struct platform_driver rk3x_i2c_driver = {
   1382	.probe   = rk3x_i2c_probe,
   1383	.remove  = rk3x_i2c_remove,
   1384	.driver  = {
   1385		.name  = "rk3x-i2c",
   1386		.of_match_table = rk3x_i2c_match,
   1387		.pm = &rk3x_i2c_pm_ops,
   1388	},
   1389};
   1390
   1391module_platform_driver(rk3x_i2c_driver);
   1392
   1393MODULE_DESCRIPTION("Rockchip RK3xxx I2C Bus driver");
   1394MODULE_AUTHOR("Max Schwarz <max.schwarz@online.de>");
   1395MODULE_LICENSE("GPL v2");