cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

dma.c (22154B)


      1// SPDX-License-Identifier: BSD-3-Clause
      2/*
      3 * Copyright (c) 2020, MIPI Alliance, Inc.
      4 *
      5 * Author: Nicolas Pitre <npitre@baylibre.com>
      6 *
      7 * Note: The I3C HCI v2.0 spec is still in flux. The IBI support is based on
      8 * v1.x of the spec and v2.0 will likely be split out.
      9 */
     10
     11#include <linux/bitfield.h>
     12#include <linux/device.h>
     13#include <linux/dma-mapping.h>
     14#include <linux/errno.h>
     15#include <linux/i3c/master.h>
     16#include <linux/io.h>
     17
     18#include "hci.h"
     19#include "cmd.h"
     20#include "ibi.h"
     21
     22
     23/*
     24 * Software Parameter Values (somewhat arb itrary for now).
     25 * Some of them could be determined at run time eventually.
     26 */
     27
     28#define XFER_RINGS			1	/* max: 8 */
     29#define XFER_RING_ENTRIES		16	/* max: 255 */
     30
     31#define IBI_RINGS			1	/* max: 8 */
     32#define IBI_STATUS_RING_ENTRIES		32	/* max: 255 */
     33#define IBI_CHUNK_CACHELINES		1	/* max: 256 bytes equivalent */
     34#define IBI_CHUNK_POOL_SIZE		128	/* max: 1023 */
     35
     36/*
     37 * Ring Header Preamble
     38 */
     39
     40#define rhs_reg_read(r)		readl(hci->RHS_regs + (RHS_##r))
     41#define rhs_reg_write(r, v)	writel(v, hci->RHS_regs + (RHS_##r))
     42
     43#define RHS_CONTROL			0x00
     44#define PREAMBLE_SIZE			GENMASK(31, 24)	/* Preamble Section Size */
     45#define HEADER_SIZE			GENMASK(23, 16)	/* Ring Header Size */
     46#define MAX_HEADER_COUNT_CAP		GENMASK(7, 4) /* HC Max Header Count */
     47#define MAX_HEADER_COUNT		GENMASK(3, 0) /* Driver Max Header Count */
     48
     49#define RHS_RHn_OFFSET(n)		(0x04 + (n)*4)
     50
     51/*
     52 * Ring Header (Per-Ring Bundle)
     53 */
     54
     55#define rh_reg_read(r)		readl(rh->regs + (RH_##r))
     56#define rh_reg_write(r, v)	writel(v, rh->regs + (RH_##r))
     57
     58#define RH_CR_SETUP			0x00	/* Command/Response Ring */
     59#define CR_XFER_STRUCT_SIZE		GENMASK(31, 24)
     60#define CR_RESP_STRUCT_SIZE		GENMASK(23, 16)
     61#define CR_RING_SIZE			GENMASK(8, 0)
     62
     63#define RH_IBI_SETUP			0x04
     64#define IBI_STATUS_STRUCT_SIZE		GENMASK(31, 24)
     65#define IBI_STATUS_RING_SIZE		GENMASK(23, 16)
     66#define IBI_DATA_CHUNK_SIZE		GENMASK(12, 10)
     67#define IBI_DATA_CHUNK_COUNT		GENMASK(9, 0)
     68
     69#define RH_CHUNK_CONTROL			0x08
     70
     71#define RH_INTR_STATUS			0x10
     72#define RH_INTR_STATUS_ENABLE		0x14
     73#define RH_INTR_SIGNAL_ENABLE		0x18
     74#define RH_INTR_FORCE			0x1c
     75#define INTR_IBI_READY			BIT(12)
     76#define INTR_TRANSFER_COMPLETION	BIT(11)
     77#define INTR_RING_OP			BIT(10)
     78#define INTR_TRANSFER_ERR		BIT(9)
     79#define INTR_WARN_INS_STOP_MODE		BIT(7)
     80#define INTR_IBI_RING_FULL		BIT(6)
     81#define INTR_TRANSFER_ABORT		BIT(5)
     82
     83#define RH_RING_STATUS			0x20
     84#define RING_STATUS_LOCKED		BIT(3)
     85#define RING_STATUS_ABORTED		BIT(2)
     86#define RING_STATUS_RUNNING		BIT(1)
     87#define RING_STATUS_ENABLED		BIT(0)
     88
     89#define RH_RING_CONTROL			0x24
     90#define RING_CTRL_ABORT			BIT(2)
     91#define RING_CTRL_RUN_STOP		BIT(1)
     92#define RING_CTRL_ENABLE		BIT(0)
     93
     94#define RH_RING_OPERATION1		0x28
     95#define RING_OP1_IBI_DEQ_PTR		GENMASK(23, 16)
     96#define RING_OP1_CR_SW_DEQ_PTR		GENMASK(15, 8)
     97#define RING_OP1_CR_ENQ_PTR		GENMASK(7, 0)
     98
     99#define RH_RING_OPERATION2		0x2c
    100#define RING_OP2_IBI_ENQ_PTR		GENMASK(23, 16)
    101#define RING_OP2_CR_DEQ_PTR		GENMASK(7, 0)
    102
    103#define RH_CMD_RING_BASE_LO		0x30
    104#define RH_CMD_RING_BASE_HI		0x34
    105#define RH_RESP_RING_BASE_LO		0x38
    106#define RH_RESP_RING_BASE_HI		0x3c
    107#define RH_IBI_STATUS_RING_BASE_LO	0x40
    108#define RH_IBI_STATUS_RING_BASE_HI	0x44
    109#define RH_IBI_DATA_RING_BASE_LO	0x48
    110#define RH_IBI_DATA_RING_BASE_HI	0x4c
    111
    112#define RH_CMD_RING_SG			0x50	/* Ring Scatter Gather Support */
    113#define RH_RESP_RING_SG			0x54
    114#define RH_IBI_STATUS_RING_SG		0x58
    115#define RH_IBI_DATA_RING_SG		0x5c
    116#define RING_SG_BLP			BIT(31)	/* Buffer Vs. List Pointer */
    117#define RING_SG_LIST_SIZE		GENMASK(15, 0)
    118
    119/*
    120 * Data Buffer Descriptor (in memory)
    121 */
    122
    123#define DATA_BUF_BLP			BIT(31)	/* Buffer Vs. List Pointer */
    124#define DATA_BUF_IOC			BIT(30)	/* Interrupt on Completion */
    125#define DATA_BUF_BLOCK_SIZE		GENMASK(15, 0)
    126
    127
    128struct hci_rh_data {
    129	void __iomem *regs;
    130	void *xfer, *resp, *ibi_status, *ibi_data;
    131	dma_addr_t xfer_dma, resp_dma, ibi_status_dma, ibi_data_dma;
    132	unsigned int xfer_entries, ibi_status_entries, ibi_chunks_total;
    133	unsigned int xfer_struct_sz, resp_struct_sz, ibi_status_sz, ibi_chunk_sz;
    134	unsigned int done_ptr, ibi_chunk_ptr;
    135	struct hci_xfer **src_xfers;
    136	spinlock_t lock;
    137	struct completion op_done;
    138};
    139
    140struct hci_rings_data {
    141	unsigned int total;
    142	struct hci_rh_data headers[];
    143};
    144
    145struct hci_dma_dev_ibi_data {
    146	struct i3c_generic_ibi_pool *pool;
    147	unsigned int max_len;
    148};
    149
    150static inline u32 lo32(dma_addr_t physaddr)
    151{
    152	return physaddr;
    153}
    154
    155static inline u32 hi32(dma_addr_t physaddr)
    156{
    157	/* trickery to avoid compiler warnings on 32-bit build targets */
    158	if (sizeof(dma_addr_t) > 4) {
    159		u64 hi = physaddr;
    160		return hi >> 32;
    161	}
    162	return 0;
    163}
    164
    165static void hci_dma_cleanup(struct i3c_hci *hci)
    166{
    167	struct hci_rings_data *rings = hci->io_data;
    168	struct hci_rh_data *rh;
    169	unsigned int i;
    170
    171	if (!rings)
    172		return;
    173
    174	for (i = 0; i < rings->total; i++) {
    175		rh = &rings->headers[i];
    176
    177		rh_reg_write(RING_CONTROL, 0);
    178		rh_reg_write(CR_SETUP, 0);
    179		rh_reg_write(IBI_SETUP, 0);
    180		rh_reg_write(INTR_SIGNAL_ENABLE, 0);
    181
    182		if (rh->xfer)
    183			dma_free_coherent(&hci->master.dev,
    184					  rh->xfer_struct_sz * rh->xfer_entries,
    185					  rh->xfer, rh->xfer_dma);
    186		if (rh->resp)
    187			dma_free_coherent(&hci->master.dev,
    188					  rh->resp_struct_sz * rh->xfer_entries,
    189					  rh->resp, rh->resp_dma);
    190		kfree(rh->src_xfers);
    191		if (rh->ibi_status)
    192			dma_free_coherent(&hci->master.dev,
    193					  rh->ibi_status_sz * rh->ibi_status_entries,
    194					  rh->ibi_status, rh->ibi_status_dma);
    195		if (rh->ibi_data_dma)
    196			dma_unmap_single(&hci->master.dev, rh->ibi_data_dma,
    197					 rh->ibi_chunk_sz * rh->ibi_chunks_total,
    198					 DMA_FROM_DEVICE);
    199		kfree(rh->ibi_data);
    200	}
    201
    202	rhs_reg_write(CONTROL, 0);
    203
    204	kfree(rings);
    205	hci->io_data = NULL;
    206}
    207
    208static int hci_dma_init(struct i3c_hci *hci)
    209{
    210	struct hci_rings_data *rings;
    211	struct hci_rh_data *rh;
    212	u32 regval;
    213	unsigned int i, nr_rings, xfers_sz, resps_sz;
    214	unsigned int ibi_status_ring_sz, ibi_data_ring_sz;
    215	int ret;
    216
    217	regval = rhs_reg_read(CONTROL);
    218	nr_rings = FIELD_GET(MAX_HEADER_COUNT_CAP, regval);
    219	dev_info(&hci->master.dev, "%d DMA rings available\n", nr_rings);
    220	if (unlikely(nr_rings > 8)) {
    221		dev_err(&hci->master.dev, "number of rings should be <= 8\n");
    222		nr_rings = 8;
    223	}
    224	if (nr_rings > XFER_RINGS)
    225		nr_rings = XFER_RINGS;
    226	rings = kzalloc(struct_size(rings, headers, nr_rings), GFP_KERNEL);
    227	if (!rings)
    228		return -ENOMEM;
    229	hci->io_data = rings;
    230	rings->total = nr_rings;
    231
    232	for (i = 0; i < rings->total; i++) {
    233		u32 offset = rhs_reg_read(RHn_OFFSET(i));
    234
    235		dev_info(&hci->master.dev, "Ring %d at offset %#x\n", i, offset);
    236		ret = -EINVAL;
    237		if (!offset)
    238			goto err_out;
    239		rh = &rings->headers[i];
    240		rh->regs = hci->base_regs + offset;
    241		spin_lock_init(&rh->lock);
    242		init_completion(&rh->op_done);
    243
    244		rh->xfer_entries = XFER_RING_ENTRIES;
    245
    246		regval = rh_reg_read(CR_SETUP);
    247		rh->xfer_struct_sz = FIELD_GET(CR_XFER_STRUCT_SIZE, regval);
    248		rh->resp_struct_sz = FIELD_GET(CR_RESP_STRUCT_SIZE, regval);
    249		DBG("xfer_struct_sz = %d, resp_struct_sz = %d",
    250		    rh->xfer_struct_sz, rh->resp_struct_sz);
    251		xfers_sz = rh->xfer_struct_sz * rh->xfer_entries;
    252		resps_sz = rh->resp_struct_sz * rh->xfer_entries;
    253
    254		rh->xfer = dma_alloc_coherent(&hci->master.dev, xfers_sz,
    255					      &rh->xfer_dma, GFP_KERNEL);
    256		rh->resp = dma_alloc_coherent(&hci->master.dev, resps_sz,
    257					      &rh->resp_dma, GFP_KERNEL);
    258		rh->src_xfers =
    259			kmalloc_array(rh->xfer_entries, sizeof(*rh->src_xfers),
    260				      GFP_KERNEL);
    261		ret = -ENOMEM;
    262		if (!rh->xfer || !rh->resp || !rh->src_xfers)
    263			goto err_out;
    264
    265		rh_reg_write(CMD_RING_BASE_LO, lo32(rh->xfer_dma));
    266		rh_reg_write(CMD_RING_BASE_HI, hi32(rh->xfer_dma));
    267		rh_reg_write(RESP_RING_BASE_LO, lo32(rh->resp_dma));
    268		rh_reg_write(RESP_RING_BASE_HI, hi32(rh->resp_dma));
    269
    270		regval = FIELD_PREP(CR_RING_SIZE, rh->xfer_entries);
    271		rh_reg_write(CR_SETUP, regval);
    272
    273		rh_reg_write(INTR_STATUS_ENABLE, 0xffffffff);
    274		rh_reg_write(INTR_SIGNAL_ENABLE, INTR_IBI_READY |
    275						 INTR_TRANSFER_COMPLETION |
    276						 INTR_RING_OP |
    277						 INTR_TRANSFER_ERR |
    278						 INTR_WARN_INS_STOP_MODE |
    279						 INTR_IBI_RING_FULL |
    280						 INTR_TRANSFER_ABORT);
    281
    282		/* IBIs */
    283
    284		if (i >= IBI_RINGS)
    285			goto ring_ready;
    286
    287		regval = rh_reg_read(IBI_SETUP);
    288		rh->ibi_status_sz = FIELD_GET(IBI_STATUS_STRUCT_SIZE, regval);
    289		rh->ibi_status_entries = IBI_STATUS_RING_ENTRIES;
    290		rh->ibi_chunks_total = IBI_CHUNK_POOL_SIZE;
    291
    292		rh->ibi_chunk_sz = dma_get_cache_alignment();
    293		rh->ibi_chunk_sz *= IBI_CHUNK_CACHELINES;
    294		BUG_ON(rh->ibi_chunk_sz > 256);
    295
    296		ibi_status_ring_sz = rh->ibi_status_sz * rh->ibi_status_entries;
    297		ibi_data_ring_sz = rh->ibi_chunk_sz * rh->ibi_chunks_total;
    298
    299		rh->ibi_status =
    300			dma_alloc_coherent(&hci->master.dev, ibi_status_ring_sz,
    301					   &rh->ibi_status_dma, GFP_KERNEL);
    302		rh->ibi_data = kmalloc(ibi_data_ring_sz, GFP_KERNEL);
    303		ret = -ENOMEM;
    304		if (!rh->ibi_status || !rh->ibi_data)
    305			goto err_out;
    306		rh->ibi_data_dma =
    307			dma_map_single(&hci->master.dev, rh->ibi_data,
    308				       ibi_data_ring_sz, DMA_FROM_DEVICE);
    309		if (dma_mapping_error(&hci->master.dev, rh->ibi_data_dma)) {
    310			rh->ibi_data_dma = 0;
    311			ret = -ENOMEM;
    312			goto err_out;
    313		}
    314
    315		regval = FIELD_PREP(IBI_STATUS_RING_SIZE,
    316				    rh->ibi_status_entries) |
    317			 FIELD_PREP(IBI_DATA_CHUNK_SIZE,
    318				    ilog2(rh->ibi_chunk_sz) - 2) |
    319			 FIELD_PREP(IBI_DATA_CHUNK_COUNT,
    320				    rh->ibi_chunks_total);
    321		rh_reg_write(IBI_SETUP, regval);
    322
    323		regval = rh_reg_read(INTR_SIGNAL_ENABLE);
    324		regval |= INTR_IBI_READY;
    325		rh_reg_write(INTR_SIGNAL_ENABLE, regval);
    326
    327ring_ready:
    328		rh_reg_write(RING_CONTROL, RING_CTRL_ENABLE);
    329	}
    330
    331	regval = FIELD_PREP(MAX_HEADER_COUNT, rings->total);
    332	rhs_reg_write(CONTROL, regval);
    333	return 0;
    334
    335err_out:
    336	hci_dma_cleanup(hci);
    337	return ret;
    338}
    339
    340static void hci_dma_unmap_xfer(struct i3c_hci *hci,
    341			       struct hci_xfer *xfer_list, unsigned int n)
    342{
    343	struct hci_xfer *xfer;
    344	unsigned int i;
    345
    346	for (i = 0; i < n; i++) {
    347		xfer = xfer_list + i;
    348		dma_unmap_single(&hci->master.dev,
    349				 xfer->data_dma, xfer->data_len,
    350				 xfer->rnw ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
    351	}
    352}
    353
    354static int hci_dma_queue_xfer(struct i3c_hci *hci,
    355			      struct hci_xfer *xfer_list, int n)
    356{
    357	struct hci_rings_data *rings = hci->io_data;
    358	struct hci_rh_data *rh;
    359	unsigned int i, ring, enqueue_ptr;
    360	u32 op1_val, op2_val;
    361
    362	/* For now we only use ring 0 */
    363	ring = 0;
    364	rh = &rings->headers[ring];
    365
    366	op1_val = rh_reg_read(RING_OPERATION1);
    367	enqueue_ptr = FIELD_GET(RING_OP1_CR_ENQ_PTR, op1_val);
    368	for (i = 0; i < n; i++) {
    369		struct hci_xfer *xfer = xfer_list + i;
    370		u32 *ring_data = rh->xfer + rh->xfer_struct_sz * enqueue_ptr;
    371
    372		/* store cmd descriptor */
    373		*ring_data++ = xfer->cmd_desc[0];
    374		*ring_data++ = xfer->cmd_desc[1];
    375		if (hci->cmd == &mipi_i3c_hci_cmd_v2) {
    376			*ring_data++ = xfer->cmd_desc[2];
    377			*ring_data++ = xfer->cmd_desc[3];
    378		}
    379
    380		/* first word of Data Buffer Descriptor Structure */
    381		if (!xfer->data)
    382			xfer->data_len = 0;
    383		*ring_data++ =
    384			FIELD_PREP(DATA_BUF_BLOCK_SIZE, xfer->data_len) |
    385			((i == n - 1) ? DATA_BUF_IOC : 0);
    386
    387		/* 2nd and 3rd words of Data Buffer Descriptor Structure */
    388		if (xfer->data) {
    389			xfer->data_dma =
    390				dma_map_single(&hci->master.dev,
    391					       xfer->data,
    392					       xfer->data_len,
    393					       xfer->rnw ?
    394						  DMA_FROM_DEVICE :
    395						  DMA_TO_DEVICE);
    396			if (dma_mapping_error(&hci->master.dev,
    397					      xfer->data_dma)) {
    398				hci_dma_unmap_xfer(hci, xfer_list, i);
    399				return -ENOMEM;
    400			}
    401			*ring_data++ = lo32(xfer->data_dma);
    402			*ring_data++ = hi32(xfer->data_dma);
    403		} else {
    404			*ring_data++ = 0;
    405			*ring_data++ = 0;
    406		}
    407
    408		/* remember corresponding xfer struct */
    409		rh->src_xfers[enqueue_ptr] = xfer;
    410		/* remember corresponding ring/entry for this xfer structure */
    411		xfer->ring_number = ring;
    412		xfer->ring_entry = enqueue_ptr;
    413
    414		enqueue_ptr = (enqueue_ptr + 1) % rh->xfer_entries;
    415
    416		/*
    417		 * We may update the hardware view of the enqueue pointer
    418		 * only if we didn't reach its dequeue pointer.
    419		 */
    420		op2_val = rh_reg_read(RING_OPERATION2);
    421		if (enqueue_ptr == FIELD_GET(RING_OP2_CR_DEQ_PTR, op2_val)) {
    422			/* the ring is full */
    423			hci_dma_unmap_xfer(hci, xfer_list, i + 1);
    424			return -EBUSY;
    425		}
    426	}
    427
    428	/* take care to update the hardware enqueue pointer atomically */
    429	spin_lock_irq(&rh->lock);
    430	op1_val = rh_reg_read(RING_OPERATION1);
    431	op1_val &= ~RING_OP1_CR_ENQ_PTR;
    432	op1_val |= FIELD_PREP(RING_OP1_CR_ENQ_PTR, enqueue_ptr);
    433	rh_reg_write(RING_OPERATION1, op1_val);
    434	spin_unlock_irq(&rh->lock);
    435
    436	return 0;
    437}
    438
    439static bool hci_dma_dequeue_xfer(struct i3c_hci *hci,
    440				 struct hci_xfer *xfer_list, int n)
    441{
    442	struct hci_rings_data *rings = hci->io_data;
    443	struct hci_rh_data *rh = &rings->headers[xfer_list[0].ring_number];
    444	unsigned int i;
    445	bool did_unqueue = false;
    446
    447	/* stop the ring */
    448	rh_reg_write(RING_CONTROL, RING_CTRL_ABORT);
    449	if (wait_for_completion_timeout(&rh->op_done, HZ) == 0) {
    450		/*
    451		 * We're deep in it if ever this condition is ever met.
    452		 * Hardware might still be writing to memory, etc.
    453		 * Better suspend the world than risking silent corruption.
    454		 */
    455		dev_crit(&hci->master.dev, "unable to abort the ring\n");
    456		BUG();
    457	}
    458
    459	for (i = 0; i < n; i++) {
    460		struct hci_xfer *xfer = xfer_list + i;
    461		int idx = xfer->ring_entry;
    462
    463		/*
    464		 * At the time the abort happened, the xfer might have
    465		 * completed already. If not then replace corresponding
    466		 * descriptor entries with a no-op.
    467		 */
    468		if (idx >= 0) {
    469			u32 *ring_data = rh->xfer + rh->xfer_struct_sz * idx;
    470
    471			/* store no-op cmd descriptor */
    472			*ring_data++ = FIELD_PREP(CMD_0_ATTR, 0x7);
    473			*ring_data++ = 0;
    474			if (hci->cmd == &mipi_i3c_hci_cmd_v2) {
    475				*ring_data++ = 0;
    476				*ring_data++ = 0;
    477			}
    478
    479			/* disassociate this xfer struct */
    480			rh->src_xfers[idx] = NULL;
    481
    482			/* and unmap it */
    483			hci_dma_unmap_xfer(hci, xfer, 1);
    484
    485			did_unqueue = true;
    486		}
    487	}
    488
    489	/* restart the ring */
    490	rh_reg_write(RING_CONTROL, RING_CTRL_ENABLE);
    491
    492	return did_unqueue;
    493}
    494
    495static void hci_dma_xfer_done(struct i3c_hci *hci, struct hci_rh_data *rh)
    496{
    497	u32 op1_val, op2_val, resp, *ring_resp;
    498	unsigned int tid, done_ptr = rh->done_ptr;
    499	struct hci_xfer *xfer;
    500
    501	for (;;) {
    502		op2_val = rh_reg_read(RING_OPERATION2);
    503		if (done_ptr == FIELD_GET(RING_OP2_CR_DEQ_PTR, op2_val))
    504			break;
    505
    506		ring_resp = rh->resp + rh->resp_struct_sz * done_ptr;
    507		resp = *ring_resp;
    508		tid = RESP_TID(resp);
    509		DBG("resp = 0x%08x", resp);
    510
    511		xfer = rh->src_xfers[done_ptr];
    512		if (!xfer) {
    513			DBG("orphaned ring entry");
    514		} else {
    515			hci_dma_unmap_xfer(hci, xfer, 1);
    516			xfer->ring_entry = -1;
    517			xfer->response = resp;
    518			if (tid != xfer->cmd_tid) {
    519				dev_err(&hci->master.dev,
    520					"response tid=%d when expecting %d\n",
    521					tid, xfer->cmd_tid);
    522				/* TODO: do something about it? */
    523			}
    524			if (xfer->completion)
    525				complete(xfer->completion);
    526		}
    527
    528		done_ptr = (done_ptr + 1) % rh->xfer_entries;
    529		rh->done_ptr = done_ptr;
    530	}
    531
    532	/* take care to update the software dequeue pointer atomically */
    533	spin_lock(&rh->lock);
    534	op1_val = rh_reg_read(RING_OPERATION1);
    535	op1_val &= ~RING_OP1_CR_SW_DEQ_PTR;
    536	op1_val |= FIELD_PREP(RING_OP1_CR_SW_DEQ_PTR, done_ptr);
    537	rh_reg_write(RING_OPERATION1, op1_val);
    538	spin_unlock(&rh->lock);
    539}
    540
    541static int hci_dma_request_ibi(struct i3c_hci *hci, struct i3c_dev_desc *dev,
    542			       const struct i3c_ibi_setup *req)
    543{
    544	struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev);
    545	struct i3c_generic_ibi_pool *pool;
    546	struct hci_dma_dev_ibi_data *dev_ibi;
    547
    548	dev_ibi = kmalloc(sizeof(*dev_ibi), GFP_KERNEL);
    549	if (!dev_ibi)
    550		return -ENOMEM;
    551	pool = i3c_generic_ibi_alloc_pool(dev, req);
    552	if (IS_ERR(pool)) {
    553		kfree(dev_ibi);
    554		return PTR_ERR(pool);
    555	}
    556	dev_ibi->pool = pool;
    557	dev_ibi->max_len = req->max_payload_len;
    558	dev_data->ibi_data = dev_ibi;
    559	return 0;
    560}
    561
    562static void hci_dma_free_ibi(struct i3c_hci *hci, struct i3c_dev_desc *dev)
    563{
    564	struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev);
    565	struct hci_dma_dev_ibi_data *dev_ibi = dev_data->ibi_data;
    566
    567	dev_data->ibi_data = NULL;
    568	i3c_generic_ibi_free_pool(dev_ibi->pool);
    569	kfree(dev_ibi);
    570}
    571
    572static void hci_dma_recycle_ibi_slot(struct i3c_hci *hci,
    573				     struct i3c_dev_desc *dev,
    574				     struct i3c_ibi_slot *slot)
    575{
    576	struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev);
    577	struct hci_dma_dev_ibi_data *dev_ibi = dev_data->ibi_data;
    578
    579	i3c_generic_ibi_recycle_slot(dev_ibi->pool, slot);
    580}
    581
    582static void hci_dma_process_ibi(struct i3c_hci *hci, struct hci_rh_data *rh)
    583{
    584	struct i3c_dev_desc *dev;
    585	struct i3c_hci_dev_data *dev_data;
    586	struct hci_dma_dev_ibi_data *dev_ibi;
    587	struct i3c_ibi_slot *slot;
    588	u32 op1_val, op2_val, ibi_status_error;
    589	unsigned int ptr, enq_ptr, deq_ptr;
    590	unsigned int ibi_size, ibi_chunks, ibi_data_offset, first_part;
    591	int ibi_addr, last_ptr;
    592	void *ring_ibi_data;
    593	dma_addr_t ring_ibi_data_dma;
    594
    595	op1_val = rh_reg_read(RING_OPERATION1);
    596	deq_ptr = FIELD_GET(RING_OP1_IBI_DEQ_PTR, op1_val);
    597
    598	op2_val = rh_reg_read(RING_OPERATION2);
    599	enq_ptr = FIELD_GET(RING_OP2_IBI_ENQ_PTR, op2_val);
    600
    601	ibi_status_error = 0;
    602	ibi_addr = -1;
    603	ibi_chunks = 0;
    604	ibi_size = 0;
    605	last_ptr = -1;
    606
    607	/* let's find all we can about this IBI */
    608	for (ptr = deq_ptr; ptr != enq_ptr;
    609	     ptr = (ptr + 1) % rh->ibi_status_entries) {
    610		u32 ibi_status, *ring_ibi_status;
    611		unsigned int chunks;
    612
    613		ring_ibi_status = rh->ibi_status + rh->ibi_status_sz * ptr;
    614		ibi_status = *ring_ibi_status;
    615		DBG("status = %#x", ibi_status);
    616
    617		if (ibi_status_error) {
    618			/* we no longer care */
    619		} else if (ibi_status & IBI_ERROR) {
    620			ibi_status_error = ibi_status;
    621		} else if (ibi_addr ==  -1) {
    622			ibi_addr = FIELD_GET(IBI_TARGET_ADDR, ibi_status);
    623		} else if (ibi_addr != FIELD_GET(IBI_TARGET_ADDR, ibi_status)) {
    624			/* the address changed unexpectedly */
    625			ibi_status_error = ibi_status;
    626		}
    627
    628		chunks = FIELD_GET(IBI_CHUNKS, ibi_status);
    629		ibi_chunks += chunks;
    630		if (!(ibi_status & IBI_LAST_STATUS)) {
    631			ibi_size += chunks * rh->ibi_chunk_sz;
    632		} else {
    633			ibi_size += FIELD_GET(IBI_DATA_LENGTH, ibi_status);
    634			last_ptr = ptr;
    635			break;
    636		}
    637	}
    638
    639	/* validate what we've got */
    640
    641	if (last_ptr == -1) {
    642		/* this IBI sequence is not yet complete */
    643		DBG("no LAST_STATUS available (e=%d d=%d)", enq_ptr, deq_ptr);
    644		return;
    645	}
    646	deq_ptr = last_ptr + 1;
    647	deq_ptr %= rh->ibi_status_entries;
    648
    649	if (ibi_status_error) {
    650		dev_err(&hci->master.dev, "IBI error from %#x\n", ibi_addr);
    651		goto done;
    652	}
    653
    654	/* determine who this is for */
    655	dev = i3c_hci_addr_to_dev(hci, ibi_addr);
    656	if (!dev) {
    657		dev_err(&hci->master.dev,
    658			"IBI for unknown device %#x\n", ibi_addr);
    659		goto done;
    660	}
    661
    662	dev_data = i3c_dev_get_master_data(dev);
    663	dev_ibi = dev_data->ibi_data;
    664	if (ibi_size > dev_ibi->max_len) {
    665		dev_err(&hci->master.dev, "IBI payload too big (%d > %d)\n",
    666			ibi_size, dev_ibi->max_len);
    667		goto done;
    668	}
    669
    670	/*
    671	 * This ring model is not suitable for zero-copy processing of IBIs.
    672	 * We have the data chunk ring wrap-around to deal with, meaning
    673	 * that the payload might span multiple chunks beginning at the
    674	 * end of the ring and wrap to the start of the ring. Furthermore
    675	 * there is no guarantee that those chunks will be released in order
    676	 * and in a timely manner by the upper driver. So let's just copy
    677	 * them to a discrete buffer. In practice they're supposed to be
    678	 * small anyway.
    679	 */
    680	slot = i3c_generic_ibi_get_free_slot(dev_ibi->pool);
    681	if (!slot) {
    682		dev_err(&hci->master.dev, "no free slot for IBI\n");
    683		goto done;
    684	}
    685
    686	/* copy first part of the payload */
    687	ibi_data_offset = rh->ibi_chunk_sz * rh->ibi_chunk_ptr;
    688	ring_ibi_data = rh->ibi_data + ibi_data_offset;
    689	ring_ibi_data_dma = rh->ibi_data_dma + ibi_data_offset;
    690	first_part = (rh->ibi_chunks_total - rh->ibi_chunk_ptr)
    691			* rh->ibi_chunk_sz;
    692	if (first_part > ibi_size)
    693		first_part = ibi_size;
    694	dma_sync_single_for_cpu(&hci->master.dev, ring_ibi_data_dma,
    695				first_part, DMA_FROM_DEVICE);
    696	memcpy(slot->data, ring_ibi_data, first_part);
    697
    698	/* copy second part if any */
    699	if (ibi_size > first_part) {
    700		/* we wrap back to the start and copy remaining data */
    701		ring_ibi_data = rh->ibi_data;
    702		ring_ibi_data_dma = rh->ibi_data_dma;
    703		dma_sync_single_for_cpu(&hci->master.dev, ring_ibi_data_dma,
    704					ibi_size - first_part, DMA_FROM_DEVICE);
    705		memcpy(slot->data + first_part, ring_ibi_data,
    706		       ibi_size - first_part);
    707	}
    708
    709	/* submit it */
    710	slot->dev = dev;
    711	slot->len = ibi_size;
    712	i3c_master_queue_ibi(dev, slot);
    713
    714done:
    715	/* take care to update the ibi dequeue pointer atomically */
    716	spin_lock(&rh->lock);
    717	op1_val = rh_reg_read(RING_OPERATION1);
    718	op1_val &= ~RING_OP1_IBI_DEQ_PTR;
    719	op1_val |= FIELD_PREP(RING_OP1_IBI_DEQ_PTR, deq_ptr);
    720	rh_reg_write(RING_OPERATION1, op1_val);
    721	spin_unlock(&rh->lock);
    722
    723	/* update the chunk pointer */
    724	rh->ibi_chunk_ptr += ibi_chunks;
    725	rh->ibi_chunk_ptr %= rh->ibi_chunks_total;
    726
    727	/* and tell the hardware about freed chunks */
    728	rh_reg_write(CHUNK_CONTROL, rh_reg_read(CHUNK_CONTROL) + ibi_chunks);
    729}
    730
    731static bool hci_dma_irq_handler(struct i3c_hci *hci, unsigned int mask)
    732{
    733	struct hci_rings_data *rings = hci->io_data;
    734	unsigned int i;
    735	bool handled = false;
    736
    737	for (i = 0; mask && i < 8; i++) {
    738		struct hci_rh_data *rh;
    739		u32 status;
    740
    741		if (!(mask & BIT(i)))
    742			continue;
    743		mask &= ~BIT(i);
    744
    745		rh = &rings->headers[i];
    746		status = rh_reg_read(INTR_STATUS);
    747		DBG("rh%d status: %#x", i, status);
    748		if (!status)
    749			continue;
    750		rh_reg_write(INTR_STATUS, status);
    751
    752		if (status & INTR_IBI_READY)
    753			hci_dma_process_ibi(hci, rh);
    754		if (status & (INTR_TRANSFER_COMPLETION | INTR_TRANSFER_ERR))
    755			hci_dma_xfer_done(hci, rh);
    756		if (status & INTR_RING_OP)
    757			complete(&rh->op_done);
    758
    759		if (status & INTR_TRANSFER_ABORT)
    760			dev_notice_ratelimited(&hci->master.dev,
    761				"ring %d: Transfer Aborted\n", i);
    762		if (status & INTR_WARN_INS_STOP_MODE)
    763			dev_warn_ratelimited(&hci->master.dev,
    764				"ring %d: Inserted Stop on Mode Change\n", i);
    765		if (status & INTR_IBI_RING_FULL)
    766			dev_err_ratelimited(&hci->master.dev,
    767				"ring %d: IBI Ring Full Condition\n", i);
    768
    769		handled = true;
    770	}
    771
    772	return handled;
    773}
    774
    775const struct hci_io_ops mipi_i3c_hci_dma = {
    776	.init			= hci_dma_init,
    777	.cleanup		= hci_dma_cleanup,
    778	.queue_xfer		= hci_dma_queue_xfer,
    779	.dequeue_xfer		= hci_dma_dequeue_xfer,
    780	.irq_handler		= hci_dma_irq_handler,
    781	.request_ibi		= hci_dma_request_ibi,
    782	.free_ibi		= hci_dma_free_ibi,
    783	.recycle_ibi_slot	= hci_dma_recycle_ibi_slot,
    784};